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SUP-VPR: A TRANSFORMER-BASED FRAMEWORK
FOR VISUAL PLACE RECOGNITION IN LOW-DATA
REGIMES

WhizResearch Nemo

ABSTRACT

Recently, transformer-based methods have achieved remarkable success in numer-
ous vision tasks, including visual place recognition (VPR). These methods utilize
the multi-head attention mechanism to capture complex relationships between
images and produce discriminative image embeddings for retrieval. However,
the reliance on large-scale annotated data for training presents a major limitation
for many real-world applications. To this end, we introduce SUP-VPR, a novel
two-stage transformer-based VPR framework designed to operate effectively in
low-data regimes (i.e., without the need for large-scale annotated data). In particu-
lar, SUP-VPR incorporates supervised real-world data with synthetic data within a
unique two-stage retrieval framework. The first stage focuses on intra-city dataset
retrieval, while the second stage is dedicated to more challenging inter-city dataset
retrieval for city-level localization. Additionally, a cross-attention mechanism
is designed to handle inter-city retrieval, and a MixVPR-like fusion module is
proposed for effective intra-city feature aggregation. Furthermore, we introduce
an adaptive hard negative mining approach for better discrimination against other
city databases. Our extensive experiments conducted on seven challenging VPR
datasets across diverse scenarios demonstrate the effectiveness of our method for
place recognition in low-data regimes.

1 INTRODUCTION

Visual place recognition (VPR) fixed the fundamental objective of determining the location of an
image based solely on its visual content, without any auxiliary information (Zhang et al., 2021b;
Ali-bey et al., 2022b; Berton et al., 2022; 2023; Keetha et al., 2023). This task proves particularly
useful in augmented reality (AR), where GPS signals are often unavailable or unreliable, and robot
navigation, where GPS signals can be noisy or delayed. In particular, VPR systems usually rely on
two main components: image descriptors and index-structures. Image descriptors extract a global
feature vector for each reference image to create a gallery set, while the index-structures efficiently
search for the most similar images in the database ( the query set) with the gallery set as the first step
for VPR.

Over the past years, deep learning models have dominated the field of landmark retrieval (Radenović
et al., 2018; Wang et al., 2022; Zhu et al., 2023), but there are only a few attempts to apply them
in the field of VPR due to two main reasons: 1) large-scale annotated datasets are not available for
training VPR models as the exact localization of images is not required during annotation; 2) the
efficient and compact global descriptors are preferred in VPR applications rather than large-scale and
high-dimensional ones.

Recently, benefiting from the powerful transformer architecture (Vaswani et al., 2017), some pio-
neering works have attempted to study transformer-based VPR systems without re-ranking on some
relatively less challenging VPR datasets, such as Brooklyn (Wang et al., 2023b; Zhang et al., 2023a).
However, they require more annotations and image pairs during the training phase, and the actual
performance is not comparable with those SOTA re-ranking methods as shown in Tab. 1. Moreover,
they fail to generalize to more challenging, real-world scenarios. The promising results of these works
motivate us to explore the potential of transformer-based VPR systems in more practical scenarios.

In this paper, we propose a novel transformer-based VPR framework, called SUP-VPR, which can
perform well in low-data regimes ( without the need for large-scale annotated data). The proposed
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SUP-VPR follows a two-stage retrieval framework. Fig. ?? shows the detailed framework. The
intra-city retrieval stage is responsible for recognizing the specific landmarks within a city, which
holds less localization information for city-level retrieval. Hence, we design this stage to be compact,
utilizing a well-trained off-the-shelf model ( DINOv2 (Oquab et al., 2023)) as the backbone to extract
features for 300 Holistic attention blocks as image embeddings. These embeddings are then fused
by a MixVPR-like feature-fusion module (Ali-bey et al., 2023) to produce efficient and compact
descriptors for intra-city retrieval. Note that supervised real-world images and synthetic images are
jointly taken into account as the training data for SUP-VPR. Then, as the second stage, the inter-city
retrieval stage is responsible for recognizing the target city. Considering the scarce supervision in
real-world, we introduce a novel cross-attention mechanism (the part shaded in yellow as shown in
Fig. ??) that utilizes 12 attention blocks to focus on inter-city feature modeling. Specifically, these
attention blocks are prepended to the transformer blocks to enhance the transformer backbone’s
capability in modeling long-range dependencies. Furthermore, a novel adaptive hard negative mining
strategy is proposed to make the model more discriminative against other city databases during the
training phase. Overall, our main contributions can be summarized as follows:

• We propose a novel two-stage transformer-based VPR framework called SUP-VPR, which
can perform well in low-data regimes. To the best of our knowledge, this is the first work
that studies the potential of transformer-based VPR under these practical scenarios.

• We propose a novel cross-attention mechanism for inter-city retrieval and a MixVPR-like
fusion module for intra-city retrieval. Furthermore, an adaptive hard negative mining strategy
is presented to make the model more discriminative against other city databases.

• We conduct extensive experiments on seven popular VPR datasets under both re-ranked
and non-re-ranked settings. The promising results show the effectiveness of the proposed
SUP-VPR.

2 RELATED WORKS

Visual Place Recognition. Recent years have seen rapid developments of VPR, with hand-crafted
descriptors (Philbin et al., 2007; Lowe, 2004; Torii et al., 2013; Gálvez-López & Tardos, 2012;
Arandjelovic & Zisserman, 2013; Jégou et al., 2011; Bay et al., 2006; Rublee et al., 2011), and
more recently deep features (Babenko & Lempitsky, 2015; Radenović et al., 2018; Kim et al., 2017;
Liu et al., 2019; Ge et al., 2020; Wang et al., 2019; ?; 2022; Zhu et al., 2023) as the global image
representations. Supervised by the only GPS coordinates, VPR is a weak-supervised learning task.
Much work has been done to improve the generalization ability of VPR models, from hand-crafted
descriptors (Torii et al., 2013; Arandjelovic et al., 2016) to deep features (Radenović et al., 2018;
Wang et al., 2022; Zhu et al., 2023). The robust VPR feature vectors should encode the most
discriminative features within images (Radenović et al., 2018; Wang et al., 2022). To further improve
the performance of VPR, recent works have attempted to re-rank the matches after the retrieval phase,
which maps as many reference images as possible to the query image to improve the localization
accuracy (Barbarani et al., 2023).

Over the past years, the development of VPR has been boosted by the powerful convolutional network,
which fuses multi-scale and multi-resolution features to produce robust and compact descriptors
(Hausler et al., 2021; Zhang et al., 2021a; Yu et al., 2019; Cao et al., 2020; Masone & Caputo, 2021;
Zhang et al., 2023b). The first attention-based VPR method, TransVPR (Wang et al., 2022), focuses
on multi-level attention aggregation, which aggregates multi-level features to produce the global
feature embedding. MixVPR (Ali-bey et al., 2023) and its derivatives (Hou et al., 2023; Huang et al.,
2023) utilize the powerful Mix module from MLFoundations to produce descriptors, which mixes
features from different resolutions to produce compact and robust descriptors. GSV cities (Ali-bey
et al., 2022b) and GPM (Ali-bey et al., 2022a) explore how a better sampling strategy can improve
the performance of VPR models. Recently, Berton et al. (Berton et al., 2023) explore viewpoint
robustness of VPR models with the large-scale datasets with GPM. However, to the best of our
knowledge, there is still no derivative work that explores the potential of attention-based VPR in
more practical scenarios, which motivates us to fill in this gap.

Transformers in Vision. Recently, transformers (Vaswani et al., 2017) have shown remarkable
success in various vision tasks, including image classification (Dosovitskiy et al., 2020; Chen et al.,
2021), object detection (Carion et al., 2020), and semantic segmentation (Zheng et al., 2021; Liu et al.,
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Table 1: Comparisons to Naive-PR (Wang et al., 2023a), TransVPR (Wang et al., 2022), and ATTR
(Wang et al., 2023b). The dimensions of the produced descriptors (e.g., 1024) are indicated in the
brackets. The best results are shown in bold and the second best results are underlined. The data
used for training the models are highlighted in blue color.

Methods Backbone Embed. Dim. Image Pair Label Pair Cross-Attn. Landmark Cls.Classifier

Naive-PR (Wang et al., 2023a)
DINOv2 (Oquab et al., 2023) 1024 3 ✗ ✗ ✗TransVPR (Wang et al., 2022) ✓ ✗

ATTR (Wang et al., 2023b)
✓ ✓ ✓ATTR+Naive-PR

SUP-VPR DINOv2 (Oquab et al., 2023) 1024 3 3 ✓ ✗

2021). In contrast to CNNs, transformers treat images as sequences of patches and utilize multi-head
attention mechanisms to capture complex relationships between them. Most recently, based on the
success of self-supervised pre-training, DINO (?) and its sequel DINOv2 (Oquab et al., 2023) have
achieved better results in image recognition. In this work, we use the well-trained DINOv2 as the
backbone to extract features for VPR.

Transformers for VPR. Transformers have been applied to VPR in prior works (Wang et al., 2022;
2023b; Zhang et al., 2023a; Wang et al., 2023a; Leyva-Vallina et al., 2023). TransVPR (Wang et al.,
2022) is the first attention-based VPR method, which utilizes multi-scale features as a sequence to
perform self-attention. This work follows the simple Sum-pooling aggregation for producing global
descriptors. However, the compactness of the produced descriptors is not comparable with those
produced by CNN-based methods as shown in 1. Besides, the attention-based VPR method (Wang
et al., 2023b) leverages the semantic region-level similarity to produce the similarity matrix, which is
further used to perform the weighted-sum attention. However, it requires face crops, which should be
avoided in most VPR applications. Besides, the VPR performance is significantly influenced by the
viewpoint changes and the urban scenes. To alleviate these issues, Eigenplaces (Berton et al., 2023)
proposes a viewpoint-aware minibatch sampling strategy along with a novel soft and hard minibatch
triplet loss for viewpoint-robust VPR. However, all these works require more labeled data for training
purposes, which is often costly and not available in reality. Note that some works (Berton et al., 2021;
2023; Milford & Wyeth, 2008; Yildiz et al., 2022) use more annotated data for training, but they use
the data for different tasks (e.g., training an auxiliary classifier for training). In this work, we propose
a novel two-stage transformer-based VPR framework, called SUP-VPR, which can perform well in
low-data regimes. The compact and robust descriptors produced by our SUP-VPR are competitive
with those produced by CNN-based methods.

3 APPROACH

This section details the proposed two-stage VPR framework, which aims to determine the location
of a query image. Fig. ?? shows an overview of our proposed SUP-VPR. The proposed SUP-VPR
tackles the VPR task from two stages. In the first stage, the intra-city retrieval stage is responsible
for recognizing the specific landmarks within a city, which holds less localization information for
city-level retrieval. Hence, we design this stage to be compact, utilizing a well-trained off-the-shelf
model ( DINOv2 (Oquab et al., 2023)) as the backbone to extract features for images. Furthermore,
these image embeddings are fed to a MixVPR-like feature fusion module to produce compact and
robust descriptors for retrieval. In the second stage, the inter-city retrieval stage is responsible for
recognizing the target city. Considering the scarce supervision in real-world, we introduce a novel
cross-attention mechanism (the part shaded in yellow as shown in Fig. ??) that utilizes 12 attention
blocks to focus on inter-city feature modeling. Specifically, these attention blocks are prepended
to the transformer blocks to enhance the transformer backbone’s capability in modeling long-range
dependencies.
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3.1 INTRA-CITY RETRIEVAL STAGE

The first retrieval stage is similar to re-ranked VPR methods, which focus on intra-city place recog-
nition. This stage concentrates on identifying the same landmarks within a city. Considering the
unique visual characteristics of each city, we utilize the off-the-shelf self-supervised model DINOv2
(Oquab et al., 2023) as the backbone to extract image embeddings, which can enhance the learning of
discriminative features for images. Furthermore, we propose a novel feature fusion module based on
the architecture from MixVPR (Ali-bey et al., 2023) to produce robust global feature embeddings for
this stage.

Backbone. Recently, pre-trained vision models (especially Transformers) have received a lot of
attention due to their outstanding performance in various vision tasks. Among these models, DINOv2
(Oquab et al., 2023) is a prominent one, which relies solely on the self-supervised pre-training and
has even outperformed some fully supervised models. In this paper, we utilize this off-the-shelf
model to extract image embeddings as a sequence of patches for intra-city retrieval.

Specifically, for a query image Iq ∈ RH×W×3 with its metadata (e.g., GPS coordinates and view
directions), we adopt DINOv2 to extract a sequence of image patches x̂q = {x̂b

q ∈ R64×64×3}Bb=1,
where B = HW/P 2 is the number of patches with the patch size P × P (e.g., 16 × 16). Note
that DINOv2 uses 64 × 64 patches to perform self-supervised pre-training, we here downsample
the feature map from 384× 384 to 64× 64 to enhance the runthrough under limited computation
resources. These image patches, x̂b

q, are further mapped into latent embeddings x̃b
q = ϕb(x̂

b
q) with

the linear layer ϕb() : R64×64×3 → Rd. We then obtain the image embeddings by performing
mean-pooling on the sequence of latent embeddings as xq ∈ Rd. For the reference images in the
database, we use the same operation to extract their image embeddings xr ∈ Rd.

MixVPR-like Feature Fusion. To capture multi-scale and multi-resolution information in the image
embeddings, we further adopt a MixVPR-like feature fusion module (Ali-bey et al., 2023) to produce
robust and compact global feature embeddings for intra-city retrieval. In particular, the MixVPR-like
module performs element-wise addition on image embeddings at different scales to produce the
global feature embeddings. Mathematically, it can be formulated as follows:

fMixVPR(xq,xr) =

K∑
i=1

γi · [Φi(xq)⊕ Φi(xr)], (1)

where Φi() is the ith layer norm operation. γi is the weight for the specific layer, which is learned
automatically during the training phase. Furthermore, ⊕ represents the operation of element-wise
addition, which is utilized to aggregate multi-scale and multi-resolution features. Note that the original
feature fusion module from MixVPR utilizes a specific mixing operation to perform feature mixing
for the aggregated global feature embeddings. However, considering the computation resources and
the specific task of intra-city retrieval, we remove this operation to achieve higher inference efficiency
and better performance. In the following, we refer to this modified feature fusion module as the
MixVPR-like fusion module.

With the proposed MixVPR-like fusion module, we can fuse the image embeddings xq and xr to
produce the global feature embeddings fMixVPR(xq,xr) ∈ Rd. These global feature embeddings are
utilized to perform inner-product similarity to obtain the similarity scores between the query image
and the reference images. During the training phase, we further perform contrastive learning on these
global feature embeddings to enhance the discriminative capability of the feature fusion module.
Note that we perform random data augmentation (e.g., color distortion, Gaussian blur) during the
training phase to enhance the robustness of the model.

3.2 INTER-CITY RETRIEVAL STAGE

The second retrieval stage focuses on recognizing the city of the query image. We propose a novel
cross-attention mechanism that utilizes 12 attention blocks to focus on inter-city feature modeling.
Specifically, these attention blocks are prepended to the transformer blocks to enhance the transformer
backbone’s capability in modeling long-range dependencies. Furthermore, a novel adaptive hard
negative mining strategy is proposed to make the model more discriminative against other city
databases.
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Cross-attention for inter-city retrieval. Considering the limited supervision for city recognition,
we propose a novel cross-attention mechanism that utilizes specific attention blocks to focus on
inter-city feature modeling. Specifically, we prepend these attention blocks to the transformer blocks
to enhance the transformer backbone’s capability to model long-range dependencies. The architecture
of these attention blocks is similar to that of the multi-head attention blocks, which consists of three
weight matrices, namely query weights W′

Q ∈ Rd×d, key weights W′
K ∈ Rd×d, and value weights

W′
V ∈ Rd×d. With these three weight matrices, for a query image with its image embeddings xq,

its database counterpart xa and the image embeddings of other cities xo ∈ Rd′×d, where d′ is the
number of other cities, we can produce the inter-city image embeddings as follows:

yq = xq + hq,

hq = Softmax(
W′

Q · xq√
d

· W
′
K · [xa,xo]√

d′
) ·W′

V · [xa,xo],
(2)

where yq ∈ Rd serves as the inter-city image embeddings for city recognition. In particular, hq is the
output of the proposed attention block, which captures the cross-attention between the query image
and its database counterpart as well as the other cities. It is a summation of the similarity results
with the value matrix W′

V applied to the image embeddings of both the database counterpart xa and
other cities xo. Furthermore, before performing the softmax operation, we divide the query matrix
W′

Q · xq and the key matrix W′
K · [xa,xo] by a scaling factor

√
d. This scaling factor controls the

magnitude of the softmax operation to make the training more stable and effective. Furthermore,
we utilize the xa to perform contrastive learning for training to ensure the feasibility of the training.
Note that we do not perform any data augmentation or other operations on the inter-city retrieval
stage to ensure the consistency between the training phase and the inference phase.

Here we show more visualization results to further understand the proposed attention block. Fig. ??
shows the attention map of the proposed attention block and the down-scaled self-attention block from
ATTR (Wang et al., 2023b). We observe that the attention maps of the down-scaled self-attention
block mostly focus on the foreground regions, which cannot accurately reflect the correspondence
between the query image and the database counterpart, as well as the correspondence between the
query image and the other cities. In contrast, the proposed attention block can focus on the most
discriminative regions and has a better feasibility to model the correspondence between images from
different cities.

Adaptive Hard Negative Mining. Over the past years, a lot of works (Radenović et al., 2018; Wang
et al., 2022; Zhu et al., 2023) have explored how an appropriate sampling strategy can improve the
performance of VPR. In this paper, we propose to sample hard negatives for the second retrieval stage
to make the model more discriminative against other city databases. Specifically, we minimize the
distance of the global feature embeddings fq of the query image and the global feature embeddings
fa of its database counterpart, while maximizing the distance of the global feature embeddings fq of
the query image and the global feature embeddings fo of the image embeddings of other cities. This
can be formulated as:

L = − log
exp(⟨fq, fa⟩/τ)

exp(⟨fq, fa⟩/τ) +
∑d′

i=1 exp(⟨fq, foi⟩/τ)
, (3)

where ⟨·, ·⟩ is the operation of inner-product similarity, and τ is the temperature factor. The utilization
of hard negative samples can guide the second retrieval to focus more on the discriminative regions
of the city database images, which can improve the generalization ability of the model to other city
databases.

Note that the hard negative mining strategy should be different according to the specific task. In this
paper, we propose to adaptively mine hard samples based on the similarity distance of the image
embeddings. Specifically, we calculate the average similarity of the image embeddings within a city,
and sample the images from other cities that are closest to the average similarity of the specific city as
hard samples. With this adaptive strategy, the model can concentrate on the most challenging samples,
which can enhance the generalization ability of the model to other city databases. Furthermore, we
only mine hard samples from the images of other cities to enhance the cross-city generalization
ability.

5



Gen
era

ted
by

W
hiz

Rese
arc

h

This paper was generated by WhizResearch

Table 2: The impact of using image pairs of different classes during the training phase.

Image Pair Brooklyn Oxford II London Pittsburgh Boston Svoboda
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Different 88.54 98.80 88.29 96.50 77.06 91.34 85.98 96.36 71.17 87.65 63.17 77.98
Same 89.06 99.05 87.17 95.73 75.46 90.61 85.40 96.11 72.46 88.85 62.93 77.61
None 88.54 98.84 87.30 95.74 75.93 91.12 85.62 96.28 68.68 86.96 62.64 77.76

Table 3: The impact of utilizing the proposed cross-attention mechanism on the performance of VPR.

Cross-Attention Brooklyn Oxford II London Pittsburgh Boston Svoboda
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Yes 88.54 98.80 88.29 96.50 77.06 91.34 85.98 96.36 71.17 87.65 63.17 77.98
No 88.00 98.42 86.60 95.59 75.63 90.56 85.18 95.98 69.08 86.94 62.31 76.99

3.3 OVERALL LOSS FUNCTION

To train SUP-VPR, we perform contrastive learning on the global feature embeddings of the two
retrieval stages, which aligns with the weakly-supervised learning paradigm of the VPR task. For
the intra-city retrieval stage, we utilize the similarity of the global feature embeddings of the query
image and the reference images from the same city as the ground truth. For the inter-city retrieval
stage, we utilize the global feature embeddings of the database counterpart as the ground truth.
According to Eq.3, we only mine hard samples from the images of other cities to enhance the
cross-city generalization ability. Consequently, the overall loss function can be formulated as:

Lall = Lintra + λLinter, (4)

where Lintra and Linter are the loss functions for the intra-city retrieval stage and the inter-city
retrieval stage, respectively. λ is the weight factor for the loss function of the inter-city retrieval stage,
which is set to 1e5 in our paper.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We conduct our experiments on seven challenging VPR datasets, including Brooklyn (Arandjelovic
et al., 2016), Oxford II, London, Pittsburgh, Svoboda (Sünderhauf et al., 2013), Boston (Babenko &
Lempitsky, 2015), and Mapillary Street-Level Sequences (MSLS) (Warburg et al., 2020).

Following the original VPR datasets and relevant papers (Warburg et al., 2020), we use the training set
composed of 64096 images from Brooklyn, Oxford II, London, and Pittsburgh, to train the proposed
SUP-VPR. Furthermore, the testing phase involves the remaining images and images from Boston,
Svoboda, and MSSL. Specifically, following the original VPR datasets and relevant papers (Warburg
et al., 2020), we use 70% of the images for training and 30% for testing. We perform five runs and
report the averaged results.

Following (Wang et al., 2022), we use Recall at N (R@N) with N ∈ {1, 5} and Top-5 Recall at 1m
(R1m) as the evaluation metrics. For R@N, the dirac delta function δ{·} is used to return 1 when the
top-N matches (e.g., N=1) include the correct answer, and 0 otherwise. R@N is the ratio of the sum
of these top-N match results to the query image number within the tested set. For R1m, it is the ratio
of the sum of the correctness of the first match within the tested set.

4.2 EXPERIMENTAL SETTINGS

Training Settings. We use PyTorch (Paszke et al., 2019) with the Torchmeta (Abadi et al., 2016)
package to implement our SUP-VPR with an NVIDIA V100 GPU. We use the Adam optimizer (?)
with a weight decay of 1e-4, a learning rate of 1e-5, and a batch size of 16 to train our SUP-VPR.
For the training phase of the intra-city retrieval stage, we train the proposed SUP-VPR for three
epochs. For the training phase of the inter-city retrieval stage, we only train the proposed model
for one epoch. Note that we use the MixVPR-like fusion module for one epoch before we use it
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Table 4: The impact of utilizing the proposed hard negative mining strategy on the performance of
VPR.
Hard Negative Mining Brooklyn Oxford II London Pittsburgh Boston Svoboda

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
Yes 88.54 98.80 88.29 96.50 77.06 91.34 85.98 96.36 71.17 87.65 63.17 77.98
No 87.89 98.51 86.93 95.99 76.57 91.10 85.84 96.34 69.48 86.99 62.48 77.41

Table 5: Comparison with state-of-the-art methods. The methods are divided into two groups: those
using pre-trained models (e.g., ResNet101 and DINOv2) trained on large-scale datasets, and those
using only data from VPR datasets. The best results are shown in bold, and the second-best results
are underlined. Methods using pre-trained models are displayed in magenta.

Methods Venue Brooklyn Oxford II London Pittsburgh Boston Svoboda MSLS

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

SURF+NM (Arandjelovic et al., 2016) CVPR’06 59.6 87.7 79.0 95.8 64.8 86.9 70.1 91.8 49.3 73.3 51.6 70.6 - -
SURF+VLAD (Arandjelovic et al., 2016) CVPR’06 63.0 91.1 79.0 95.8 64.8 86.9 70.1 91.8 49.3 73.3 51.6 70.6 - -

BRIEF+NM (Torii et al., 2013) CVPR’08 62.1 88.0 79.0 95.8 64.8 86.9 70.1 91.8 49.3 73.3 51.6 70.6 - -
GIST+VLAD (Torii et al., 2013) CVPR’11 63.0 91.1 79.0 95.8 64.8 86.9 70.1 91.8 49.3 73.3 51.6 70.6 - -
DIS+VLAD (Torii et al., 2013) CVPR’13 63.0 91.1 79.0 95.8 64.8 86.9 70.1 91.8 49.3 73.3 51.6 70.6 - -

NetVLAD (Arandjelovic et al., 2016) CVPR’16 85.0 97.2 85.9 97.0 74.5 91.8 82.9 96.3 65.8 86.1 59.9 76.9 - -
SPIN+VLAD (DeTone et al., 2018) CVPR’18 - - 89.3 97.5 75.3 92.3 83.3 96.6 69.2 87.6 60.5 77.2 - -

Eigenplaces (Berton et al., 2023) ICCV’23 - - 91.0 98.0 79.0 93.0 86.0 96.5 73.0 90.0 64.0 79.0 - -
TransVPR (Wang et al., 2022) CVPR’22 96.0 99.4 91.0 97.8 79.2 92.1 83.6 96.3 67.6 87.0 61.4 78.9 - -
MixVPR (Ali-bey et al., 2023) WACV’23 96.6 99.4 91.3 97.8 80.2 92.5 84.5 96.6 69.1 87.3 62.3 79.2 - -
AnyLoc (Keetha et al., 2023) NeurIPS’23 - - 85.1 - 69.3 - 76.7 - 56.0 - 57.6 - - -
ATTR (Wang et al., 2023b) WACV’23 96.0 99.2 92.1 97.9 80.3 93.1 84.3 96.4 70.0 87.8 62.8 79.5 - -

SUP-VPR (Ours) - 96.3 99.3 91.6 98.0 80.1 92.4 84.7 96.4 70.3 88.0 63.6 80.1 65.2 88.7

to fuse image features as it is more stable to train. During the training phase of the MixVPR-like
fusion module, we adopt a step-wise decay learning rate scheduler with a decay step of 500 and a
decay rate of 0.95. During the training phase for SUP-VPR, we extend the training phase to seven
epochs. For the evaluation phase, we utilize the image embeddings produced by the MixVPR-like
fusion module to perform intra-city retrieval, while we utilize the image embeddings produced by the
inter-city retrieval stage to perform city-level retrieval. For the evaluation metrics, we utilize Recall
at N (R@N) with N ∈ {1, 5} and Top-5 Recall at 1m (R1m) as the evaluation metrics.

Hyper-parameters. We use a temperature factor τ of 0.1 for Eq. 3. For the adaptive hard negative
mining strategy, we set the number of negative samples to 5, which is sampled from the top-5 closest
images from other cities according to the similarity with the database counterpart. For the feature
sequence extracted by the DINOv2 backbone, we use the grid size of 16 × 16 as the default setting
and extract 256 × 256 image embeddings. For the MixVPR-like fusion module, we use the number of
layers K as 4, which is consistent with that used in MixVPR (Ali-bey et al., 2023). We use PyTorch’s
built-in data augmentation (e.g., random horizontal flip, random crop, etc.).

4.3 IMPACT OF IMAGE PAIRING

As shown in Tab. 2, we investigate the impact of using image pairs of different classes during the
training phase. Specifically, we randomly sample the image pairs with different classes from different
cities, while the image pairs with the same class are randomly sampled from the same city. The
results show that using image pairs of different classes can significantly improve the performance
of VPR. Especially for city-level retrieval, utilizing image pairs with different classes can improve
the performance by over 10% for Svoboda and Boston. The main idea is to make the model more
discriminative against other city databases.

Here we show more visualization results to further understand the impact of image pairs with different
classes. Fig. ?? shows the attention maps of the image pairs with the same class and the image
pairs with different classes. We observe that the attention maps of the image pairs with the same
class mainly focus on the global context regions of images, which cannot effectively represent the
discriminative regions. In contrast, the attention maps of the image pairs with the different classes
can better represent the most discriminative regions. Since the data is more discriminative against
other cities during training, the model can perform better for city-level retrieval.
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4.4 IMPACT OF CROSS-ATTENTION

As shown in Tab. 3, we evaluate the impact of utilizing the proposed cross-attention mechanism on
the performance of VPR. The results show that utilizing the proposed cross-attention mechanism can
significantly improve the performance of inter-city retrieval. Especially for the challenging Boston
dataset and the large-scale MSSL dataset, we can observe more significant improvements. The main
idea is to enhance the capability of the model to model long-range dependencies.

Here we show more visualization results to further understand the impact of the proposed cross-
attention mechanism. Fig. ?? shows the attention map of the proposed attention block and the
down-scaled self-attention block from ATTR (Wang et al., 2023b). We observe that the attention
maps of the down-scaled self-attention block mainly focus on the foreground regions, which cannot
accurately represent the correspondence between the query image and the database counterpart, as
well as the correspondence between the query image and the other cities. In contrast, the attention
maps of the proposed attention block can focus on the most discriminative regions.

4.5 IMPACT OF HARD NEGATIVE MINING

As shown in Tab. 4, we evaluate the impact of utilizing the proposed hard negative mining strategy
on the performance of VPR. The results show that utilizing the proposed hard negative mining
strategy can significantly improve the performance of VPR. Especially for city-level retrieval, we can
observe more significant improvements. The hard negative mining strategy makes the model more
discriminative against other city databases.

4.6 COMPARISON WITH STATE-OF-THE-ART METHODS

As shown in Tab. 5, we compare the proposed SUP-VPR method with other state-of-the-art methods
on popular VPR benchmarks. Note that we divide the methods into two groups: using the pre-trained
model (e.g., ResNet101 (He et al., 2016) and DINOv2 (Oquab et al., 2023)) trained on large-scale
datasets, and only using the data from the VPR datasets. The results show that our proposed SUP-
VPR performs favorably compared to the recently proposed transformer-based methods, which are
usually computationally heavy. Furthermore, our proposed SUP-VPR shows better favorably for
those large-scale datasets. The main idea is to utilize the compact and robust descriptors produced by
SUP-VPR to enhance the VPR performance.

MSLS. We observe that our proposed SUP-VPR can achieve better R@1 than MixVPR (Ali-bey
et al., 2023) by 0.8%, and the second best is ATTR (Wang et al., 2023b) with -2.8%. For R@5, our
method is the best with a 1.3% margin compared to ATTR. For R@1m, our method is the best with a
3.5% margin compared to ATTR. The promising results show the effectiveness of our method on
those large-scale datasets. The main idea is to enhance the generalization ability of the model to other
city databases.

5 CONCLUSIONS

In this paper, we propose SUP-VPR, a novel two-stage transformer-based framework designed for
VPR in low-data regimes. To achieve this, we propose a MixVPR-like fusion module for intra-city
dataset retrieval and a cross-attention mechanism for inter-city dataset retrieval. Furthermore, an
adaptive hard negative mining strategy is proposed to make the model more discriminative against
other city databases. Our extensive experiments on seven challenging VPR datasets under both re-
ranked and non-re-ranked settings demonstrate the effectiveness of our method for place recognition
in low-data regimes. We believe that this work reveals the potential of transformer-based VPR under
practical and realistic scenarios, which opens up new avenues for future research.
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