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ABSTRACT

Existing image-to-3D creation methods typically split the task into multi-view
image generation and 3D reconstruction, leading to two main limitations: (1) multi-
view bias, where geometric inconsistencies arise because multi-view diffusion
models ensure image-level rather than 3D consistency; (2) misaligned reconstruc-
tion data, since reconstruction models trained on mostly synthetic data misalign
when processing generated multi-view images during inference. To address these
issues, we propose Ouroboros3D, a unified framework that integrates multi-view
generation and 3D reconstruction into a recursive diffusion process. By incorporat-
ing a 3D-aware feedback mechanism, our multi-view diffusion model leverages
the explicit 3D information from the reconstruction results of the previous denois-
ing process as conditions, thus modeling consistency at the 3D geometric level.
Furthermore, through joint training of both the multi-view diffusion and recon-
struction models, we alleviate reconstruction bias due to data misalignment and
enable mutual enhancement within the multi-step recursive process. Experimental
results demonstrate that Ouroboros3D outperforms methods that treat these stages
separately and those that combine them only during inference, achieving superior
multi-view consistency and producing 3D models with higher geometric realism.

1 INTRODUCTION

Creating 3D content from a single image have achieved rapid progress in recent years with the
adoption of large-scale 3D datasets (Deitke et al., 2023; 2024; Wu et al., 2023) and diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020). A body of research (Liu
et al., 2023b; Shi et al., 2023; Liu et al., 2023c; Kwak et al., 2023; Huang et al., 2023; Tang et al.,
2024b; Voleti et al., 2024; Long et al., 2023) has focused on multi-view diffusion models, fine-
tuning pretrained image or video diffusion models on 3D datasets to enable consistent multi-view
synthesis. These methods demonstrate generalizability and produce promising results. Another group
of works (Hong et al., 2023; Tang et al., 2024a; Xu et al., 2024b; Wang et al., 2024; Xu et al., 2024a)
propose generalizable reconstruction models, to generate 3D representation from one or few views in
a feed-forward process, leading to efficient image-to-3D creation.

Since single-view reconstruction models (Hong et al., 2023) trained on 3D datasets (Deitke et al.,
2023; Yu et al., 2023) lack generalizability and often produce blurring at unseen viewpoints, several
works (Li et al., 2023a; Tang et al., 2024a; Wang et al., 2024; Xu et al., 2024a) combine multi-view
diffusion models and feed-forward reconstruction models, so as to extend the reconstruction stage to
sparse-view input, boosting the reconstruction quality. As shown in Fig. 1, these methods split 3D
generation into two stages: multi-view synthesis and 3D reconstruction. By combining generalizable
multi-view diffusion models and robust sparse-view reconstruction models, such pipelines achieve
high-quality image to 3D generation. However, combining the two independently designed models
introduces a significant "data bias" to the reconstruction model. Data bias manifests primarily in two
aspects: (1) Multi-view bias. Multi-view diffusion models achieve consistency at the image level,
not in 3D space, complicating the assurance of geometric consistency. (2) Reconstruction data is
misaligned. Unlike multi-view diffusion models, reconstruction models are trained from scratch on
mostly synthetic data and limited real data. During inference, multi-view images generated by the
previous diffusion model lack geometric consistency and exhibit a more varied data distribution, both
of which affect the reconstruction.
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Figure 1: Concept comparison between Ouroboros3D and previous two-stage methods. Instead
of separating multi-view diffusion model and reconstruction model, our framework involves joint
training and inference of these two models, which are established into a recursive diffusion process.

Recent works have explored several mechanisms to enhance multi-view consistency. Carve3D (Xie
et al., 2024) employs a RL-based fine-tuning algorithm (Black et al., 2023), applying a multi-view
consistency metric to enhance the multi-view image generation. However, the challenge of data
limitation has not been well-addressed, leading to poor reconstruction quality. On the other hand, IM-
3D (Melas-Kyriazi et al., 2024) and VideoMV (Zuo et al., 2024) aggregate the rendered views of the
reconstructed 3D model into multi-view synthesis during inference by adopting re-sampling strategy
in the denoising loop. However, on the overall image-to-3D pipeline, its (a) lacking joint training and
(b) inability to use geometric information hinder its capacity to fully leverage 3D-aware knowledge
and unify the two stages. Moreover, these methods fail to address the "data bias" between multi-view
generation and 3D reconstruction, and the use of biased information from few-shot reconstructed 3D
models can result in multi-view outputs misaligned with the input image (see Fig. 4).

In this paper, we introduce Ouroboros3D, a novel image-to-3D framework that seamlessly integrates
multi-view generation with 3D reconstruction within a recursive diffusion process, as depicted in
Fig. 2. To facilitate the modeling of multi-view consistency, we propose a 3D-aware feedback
mechanism, where our multi-view diffusion model utilizes 3D-aware maps rendered by the recon-
struction module from the previous timestep as additional conditions during the denoising phase.
Leveraging 3D information from reconstructed representations, our model produces images with
enhanced geometric consistency, thereby reducing the multi-view bias. To address the misaligned
distribution due to training the reconstruction model on mostly synthetic data and limited real data,
we involve joint training of the multi-view diffusion model and reconstruction model. During training,
the reconstruction model utilizes images restored by the diffusion process rather than original images.
This approach not only reduces the data bias of the reconstruction stage, increasing the diversity of the
reconstruction, but also enhances the diffusion model’s capability to generate images better suited for
few-shot reconstruction, making the two stages mutually beneficial in the multi-step iterative diffusion
process. The 3D-aware recursived diffusion, with the integration of the two stages, facilitates adaptive
refinement of outputs through mutual feedback, enhancing inference stability and reducing data bias.

In our experiments, we use the Stable Video Diffusion(SVD) (Blattmann et al., 2023) as the multi-view
generator and the Large Multi-View Gaussian Model (LGM) (Tang et al., 2024a) as the reconstruction
module. Experimental results on the GSO dataset (Downs et al., 2022) show that our framework
outperforms separation of these stages and existing methods (Zuo et al., 2024) that combine the
stages at the inference phase.

Our key contributions are as follows:

• We introduce a image-to-3D creation framework Ouroboros3D, which integrates multi-view gener-
ation and 3D reconstruction into a recursive diffusion process. The framework is highly extensible
and can accommodate various multi-view generation networks and reconstruction networks.

• Ouroboros3D employs a self-conditioning mechanism with 3D-aware feedback, using rendered
maps to guide the multi-view generation, ensuring better geometric consistency and robustness.

• We conducte extensive experiments to demonstrate that Ouroboros3D significantly reduces data
bias and outperforms both the method that separates the two stages and the method that combines
them only at inference time. (Zuo et al., 2024) .
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Figure 2: Overview of 3D-aware recursive diffusion. During multi-view denoising, the diffusion
model uses 3D-aware maps rendered by the reconstruction module at the previous step as conditions.

2 RELATED WORK

Image/Video Diffusion for Multi-view Generation Diffusion models (Rombach et al., 2022;
Saharia et al., 2022; Podell et al., 2023; Sauer et al., 2024; Ho et al., 2022b;a; Singer et al., 2022;
Blattmann et al., 2023; Wang et al., 2023; Hu, 2024; Ma et al., 2024; Brooks et al., 2024) have
demonstrated their powerful generative capabilities in image and video generation fields. Current
research (Liu et al., 2023b; Shi et al., 2023; Liu et al., 2023c; Kwak et al., 2023; Huang et al.,
2023; Tang et al., 2024b; Voleti et al., 2024; Long et al., 2023; Zheng & Vedaldi, 2023) fine-tunes
pretrained image/video diffusion models on 3D datasets like Objaverse (Deitke et al., 2023) and
MVImageNet (Yu et al., 2023). Zero123 (Liu et al., 2023b) introduces relative view condition
to image diffusion models, enabling novel view synthesis from a single image and preserving
generalizability. Based on it, methods like SyncDreamer (Liu et al., 2023c), ConsistNet (Yang et al.,
2023) and EpiDiff (Huang et al., 2023) design attention modules to generate consistent multi-view
images. These methods fine-tuned from image diffusion models produce generally promising results.
By considering multi-view images as consecutive frames of a video (e.g., orbiting camera views), it
naturally leads to the idea of applying video generation models to 3D generation (Voleti et al., 2024).
However, since the diffusion model is not explicitly modeled in 3D space, the generated multi-view
images often struggle to achieve consistent and robust details.

Image to 3D Reconstruction Recently, the task of reconstructing 3D objects has evolved from
traditional multi-view reconstruction methods (Mildenhall et al., 2021; Barron et al., 2021; Müller
et al., 2022; Kerbl et al., 2023) to feed-forward reconstruction models (Hong et al., 2023; Jiang et al.,
2023; Zou et al., 2023; Tang et al., 2024a; Xu et al., 2024b; Wang et al., 2024; Xu et al., 2024a).
Ultilizing one or few shot as input, these highly generalizable reconstruction models synthesize
3D representation, enabling the rapid generation of 3D objects. LRM (Hong et al., 2023) proposes
a transformer-based model to effectively map image tokens to 3D triplanes. Instant3D (Li et al.,
2023a) further extends LRM to sparse-view input, significantly boosting the reconstruction quality.
LGM (Tang et al., 2024a) and GRM (Xu et al., 2024b) replace the triplane representation with 3D
Gaussians (Kerbl et al., 2023) to enjoy its superior rendering efficiency. CRM (Wang et al., 2024)
and InstantMesh (Xu et al., 2024a) optimize on the mesh representation for high-quality geometry
and texture modeling. These reconstrucion models built upon convolutional network architecture or
transformer backbone, have led to efficient image-to-3D creation.

Pipelines of 3D Generation Early works propose to distill knowledge of image prior to create
3D models via Score Distillation Sampling (SDS) (Poole et al., 2022; Lin et al., 2023; Guo et al.,
2023), limited by the low speed of per-scene optimization. DMV3D (Xu et al., 2023) employs a 3D
reconstruction model as the 2D multi-view denoiser in a multiview diffusion framework, to achieve
generic end-to-end 3D generation. However, it fails to utilize the advanced features of pre-existing
image or video diffusion models, and training from scratch on 3D data limits its generalization.
Several works (Liu et al., 2023c; Huang et al., 2023; Long et al., 2023; Melas-Kyriazi et al., 2024)
fine-tune image diffusion models to generate multi-view images, which are then utilized for 3D
shape and appearance recovery with traditional reconstruction methods (Wang et al., 2021; Kerbl
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Figure 3: Overview of Ouroboros3D. We adopt a video diffusion model as the multi-view generator
by incorporating the input image and relative camera poses. In the denoising sampling loop, we
decode the predicted x̃f

0 to noise-corrupted images, which are then used to recover 3D representation
by a feed-forward reconstruction model. Then the rendered color images and coordinates maps are
encoded and fed into the next denoising step. At inference, the 3D-aware denoising sampling strategy
iteratively refines the images by incorporating feedback from the reconstructed 3D into the denoising
loop, enhancing multi-view consistency and image quality.

et al., 2023). More recently, several works (Li et al., 2023a; Tang et al., 2024a; Wang et al., 2024;
Xu et al., 2024a; Zuo et al., 2024) involve both multi-view diffusion models and feed-forward
reconstruction models in the generation process. Such pipelines attempt to combine the processes into
a cohesive two-stage approach, thus achieving highly generalizable and high-quality single-image to
3D generation. The multi-view diffusion model, lacking explicit 3D modeling, struggles to ensure
strong consistency, resulting in data deviations between the testing and training phases. In contrast,
we propose a unified pipeline that integrates these stages through a self-conditioning mechanism
during training, enhanced by 3D-aware feedback to achieve high consistency.

3 METHOD

Given a single image, Ouroboros3D aims to generate multiview-consistent images with a recon-
structed 3D Gaussion model. To reduce the data bias and improve robustness of the generation, our
framework integrates multi-view synthesis and 3D reconstruction in a recursive diffusion process.
As illustrated in Fig. 3, the proposed framework involves a video diffusion model (SVD (Blattmann
et al., 2023)) as multi-view generator (refer to Section 3.1) and a feed-forward reconstruction model
to recover a 3D Gaussian Splatting (refer to Section 3.2. Moreover, we introduce a self-conditioning
mechanism, feeding the 3D-aware information obtained from the reconstruction module back to
the multi-view generation process (refer to Section 3.3). The 3D-aware recursive diffusion strategy
iteratively refines the multi-view images and the 3d model, enhancing the final production.

3.1 VIDEO DIFFUSION MODEL AS MULTIVIEW GENERATOR

Recent video diffusion models (Voleti et al., 2024; Brooks et al., 2024; Gao et al., 2024) have
demonstrated a remarkable capability to generate 3D-aware videos. We employs the well-known
Stable Video Diffusion (SVD) Model as our multi-view generator, which generates videos from an
image input. Further details about SVD can be found in Appendix A.1. In our framework, we set the
number of the generated frames f to 8.

We enhance the video diffusion model with camera control c to generate images from different
viewpoints. Traditional methods encode camera positions at the frame level, which results in all
pixels within one view sharing the same positional encoding (Liu et al., 2023a; Voleti et al., 2024).
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Building on the innovations of previous work (Huang et al., 2023; Zheng & Vedaldi, 2023), we
integrate the camera condition c into the denoising network by parameterizing the rays r = (o, o× d).
Specifically, we use two-layered MLP to inject Plücker ray embeddings for each latent pixel, enabling
precise positional encoding at the pixel level. This approach allows for more detailed and accurate
3D rendering, as pixel-specific embedding enhances the model’s ability to handle complex variations
in depth and perspective across the video frames.

Our multi-view diffusion model differs from existing two-stage methods in that it does not inde-
pendently complete all denoising steps. Instead, within the denoising sampling loop, we obtain
the predicted x̃f

0 at each timestep, where f indicates the frame number, which is then utilized for
subsequent 3D reconstruction. The rendered maps are employed as conditions to guide the next
denoising step. At each sampling step,we reparameterize the output from the denoising network Fθ

to transform it into x̃f
0 . we apply the following formula to process the noising images cin(σ)x

f and
the associated noise level cnoise(σ):

x̃f
0 = cskip(σ)x

f + cout(σ)Fθ(cin(σ)x
f ; cnoise(σ)). (1)

where σ indicates the standard deviation of the noise, cskip is a parameter that controls how much of
the original xf

0 is retained. This operation adjusts the output of Fθ to x̃f
0 , which will be decoded into

images and passed to the subsequent 3D reconstruction module.

3.2 FEED-FORWARD RECONSTRUCTION MODEL

In the Ouroboros3D framework, the feed-forward reconstruction model is designed to recover 3D
models from pre-generated multi-view images, which can be images decoded from straightly predicted
x̃f
0 , or completely denoised images. We utilize Large Multi-View Gaussian Model (LGM) (Tang

et al., 2024a) G as our reconstruction module due to its real-time rendering capabilities that benefit
from 3D representation of Gaussian Splatting. This method integrates seamlessly with our jointly
training framework, allowing for quick adaptation and efficient processing.

We pass four specific views from the reparameterized output x̃f
0 to the Large Gaussian Model (LGM)

for 3D Gaussian Splatting reconstruction. To enhance the performance of LGM, particularly its
sensitivity to different noise levels cnoise(σ) and image details, we introduce a zero-initialized time
embedding layer within the original U-Net structure of the LGM. This innovative modification
enables the LGM to dynamically adapt to the diverse outputs that arise at different stages of the
denoising process, thereby substantially improving its capacity to accurately reconstruct 3D content
from images that have undergone partial denoising.

The loss function employed for the fine-tuning of the LGM is articulated as follows:

LG = Lrgb(x0,G(x̃0, cnoise(σ))) + λLLPIPS(x0,G(x̃0, cnoise(σ))). (2)
where we have utilized the mean square error loss Lrgb for the color channel and a VGG-based
perceptual loss LLPIPS for the LPIPS term. In practical applications, the weighting factor λ is
conventionally set to 1.

Additionally, to maintain the model’s reconstruction capability for normal images, we also input the
model without adding noise and calculate the corresponding loss. In this case, we set cnoise(σ) to 0.

3.3 3D-AWARE FEEDBACK MECHANISM

We use a 3D-aware feedback mechanism, as shown in Fig. 3, involving rendered color images
and geometric maps in a denoising loop to enhance multi-view consistency and facilitate cyclic
adaptation. Unlike integrating multi-view generation and 3D reconstruction at the inference stage
using re-sampling strategy (Melas-Kyriazi et al., 2024; Zuo et al., 2024), we jointly to train these
two modules to support more informative feedback. Specifically, in addition to the rendered color
images, our flexible framework is able to derive additional geometric features to guide the generation
process, which brings guidance of more explicit 3D information to multi-view generation. Moreover,
the explicit geometric structure allows it to be adaptable across various network designs.

In practice, we obtain color images and canonical coordinates maps (CCM) (Li et al., 2023b) from the
reconstructed 3D model, and utilize them as condition to guide the next denoising step of multi-view
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generation. We choose CCM over depth or normal maps because CCMs capture global vertex
coordinates normalized across the entire 3D model, unlike depth maps that normalize relative to the
self-view. This operation enables the rendered maps to be characterized as cross-view alignment,
providing the strong guidance of more explicit cross-view geometry relationship. The details of
canonical coordinates maps can be found in Appendix A.2.

To encode color images and coordinates maps into the denoising network of multi-view generation
module, we design two simple and lightweight encoders for color images and coordinates maps
using a series of convolutional neural networks, like T2I-Adapter (Mou et al., 2024). The encoders
are composed of four feature extraction blocks and three downsample blocks to change the feature
resolution, so that the dimension of the encoded features is the same as the intermediate feature in
the encoder of U-Net denoiser. The extracted features from the two conditional modalities are then
added to the U-Net encoder at each scale.

We then introduce the proposed 3D-aware self-conditioning (Chen et al., 2022) strategy for both train-
ing and inference. The original multi-view denoising network Fθ(x;σ) is augmented with 3D-aware
feedback, formulated as Fθ(x;σ,G(x̃0)), where G(x̃0) is the rendered maps of the reconstruction
module.

Training Strategy As illustrated in Algorithm 1 of Appendix A.3, the training of the 3D-aware
multi-view generation network involves a probabilistic self-conditioning mechanism. During each
training iteration, the network uses the rendered results from a feed-forward model as self-conditioning
input with a probability of 0.5. Specifically, if the 3D reconstruction result is not used, the input
G(x̃0) is set to 0. This approach ensures balanced learning and prevents the model from over-relying
on the 3D information.

Inference/Sampling Strategy As illustrated in Algorithm 2 of Appendix A.3, the initial condition
G(x̃0) is set to zero. At each subsequent timestep, this condition is updated based on the previous
reconstruction result. This iterative updating process refines the 3D representation, enhancing the
consistency of multi-view images and improving the quality of the reconstructed 3D models.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets We use a filtered subset of the Objaverse (Deitke et al., 2023) dataset to train our model.
Following LGM (Tang et al., 2024a), we implemented a rigorous filtering process to remove bad
models with bad captions or missing texture. It leads to a final set of around 80K 3D objects. We
render 2 16-frame RGBA orbits at 512×512. For each orbit, the cameras are positioned at a randomly
sampled elevation between [-5, 30] degrees. During training, we subsample any 8-frame orbit by
picking any frame in one orbit as the first frame (the conditioning image), and then choose every 2nd
frame after that.

We evaluate the synthesized multi-view images and reconstructed 3D Gaussian Splatting (3DGS)
on the unseen GSO (Downs et al., 2022) dataset. We filter 100 objects to reduce redundancy and
maintain diversity. For each object, we render ground truth orbit videos and pick the first frame as the
conditioning image.

Experimental Settings Our Ouroboros3D is trained for 30,000 iterations using 8 A100 GPUs
with a total batch size of 32. We clip the gradient with a maximum norm of 1.0. We use the AdamW
optimizer with a learning rate of 1× 10−5 and employ FP16 mixed precision with DeepSeed(Rasley
et al., 2020) with Zero-2 for efficient training. At the inference stage, we set the number of sampling
steps as 25, which takes about 20 seconds to generate a 3d model.

Metrics We compare generated multi-view images and rendered views from reconstructed 3DGS
with the ground truth frames, in terms of Learned Perceptual Similarity (LPIPS (Zhang et al., 2018)),
Peak Signal-to-Noise Ratio (PSNR), and Structural SIMilarity (SSIM).

Baselines In terms of multi-view generation, we compare Ouroboros3D with SyncDreamer (Liu
et al., 2023c), SV3D (Voleti et al., 2024), VideoMV (Zuo et al., 2024). For image-to-3D cre-
ation, we adopt feed-forward reconstruction models or pipelines as baseline methods, including

6
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Table 1: Quantitative comparison on the quality of generated multi-view images and 3D representation
for image-to-multiview and image-to-3D tasks.

Method Resolution PSNR↑ SSIM↑ LPIPS↓

Image-to-Multiview

SyncDreamer (Liu et al., 2023c) 256× 256 20.056 0.8163 0.1596
SV3D (Voleti et al., 2024) 576× 576 21.042 0.8497 0.1296

VideoMV (Zuo et al., 2024) 256× 256 18.605 0.8410 0.1548
Ouroboros3D (SVD) 512× 512 21.770 0.8866 0.1093

Image-to-3D

TripoSR (Tochilkin et al., 2024) 256× 256 18.481 0.8506 0.1357
LGM (Tang et al., 2024a) 512× 512 17.716 0.8319 0.1894

VideoMV(GS) (Zuo et al., 2024) 256× 256 18.764 0.8449 0.1569
InstantMesh (NeRF) (Xu et al., 2024a) 512× 512 19.948 0.8727 0.1205

Ouroboros3D (LGM) 512× 512 21.761 0.8894 0.1091

Input SyncDreamer VideoMV SV3D Ouroboros3D (Ours)

Figure 4: Qualitative comparisons of generated multi-view images. Our method achieves better
consistency and quality.

TripoSR (Tochilkin et al., 2024), LGM (Tang et al., 2024a) and InstantMesh (Xu et al., 2024a), where
LGM and InstantMesh adopt two-stage methods to achieve image-to-3D creation.

4.2 COMPARISON WITH EXISTING ALTERNATIVES

Image-to-Multiview generation We compare our method with SyncDreamer (Liu et al., 2023c),
SV3D (Voleti et al., 2024) and VideoMV (Zuo et al., 2024), as shown in Fig. 4. SyncDreamer and
SV3D fine-tune image or video diffusion models on 3D datasets but lack explicit 3D information,
often resulting in blurry textures or inconsistent details. VideoMV aggregates rendered views
from reconstructed 3D models at the inference stage but fails to take into account the "data bias"
between two stages. Although VideoMV improves the multi-view consistency, it introduces biased
information from the reconstruction stage, leading to results that are unaligned with the input image.
Our Ouroboros3D uses joint training of the two stages and uses geometry and appearance feedback
for multi-view generation, generating consistent and high-quality multi-view images.

Image-to-3D generation We compare our method with TripoSR (Tochilkin et al., 2024),
VideoMV (Zuo et al., 2024), LGM (Tang et al., 2024a) and InstantMesh (Xu et al., 2024a), as
visualized in Fig. 5. TripoSR struggles with high-quality geometry and appearance due to lacking
large pre-trained generative models. VideoMV reconstructs 3DGS from its generated multi-view
images, but its inherent biases in multiview generation can lead to misaligned textures and distorted
geometries. Two-stage methods such as LGM and InstantMesh, which comprise an off-the-shelf
image-to-multiview generation method followed by reconstruction models for the image-to-3D gener-
ation process, often yield incomplete geometry due to the disparity between multiview generation and
3D reconstruction. In contrast, our framework integrates multiview generation and 3D reconstruction,
enhancing each module’s strengths to produce high-quality 3D assets.

Generalizability Ouroboros3D exhibits remarkable generalizability, adept at producing high-
quality 3D models from images that fall outside its training distribution, including real-world images.
This capability is demonstrated in the results shown in Fig. 6 and Fig. 9.
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Input TripoSR LGM VideoMV InstantMesh Ouroboros3D (Ours)

Figure 5: Qualitative comparisons for image-to-3D generation.

Input Rendered from Generated 3DGS Input Rendered from Generated 3DGS

Figure 6: Generalizability of our 3D generation. We can generate high-quality 3D models given
image inputs outside the distribution, including real world images.

4.3 ABLATION STUDY

To assess the effectiveness of our 3D-aware feedback mechanism, we conducted ablation experiments
on the generated 3DGS for different configurations (Fig. 7 and Table 2). We start with a base
framework that does not jointly trains the multi-view generation module and the reconstruction
module, or use feedback mechanism. We then incrementally add components of our proposed
approach. The full model (the last setting) means that we use both geometry and appearance
information as conditions to guide the multi-view generation.

The reconstructed results shown in Fig. 7 demonstrate that, only the coordinates map feedback
produces blurry textures, and only the color map has poor geometric quality in fine details. Our full
setting leads to superior performance in both geometry and texture. Table 2 reports the quantitative
results, which demonstrate significant improvements by enhancing both geometric consistency and
texture details. We also report the absolute distances of performance metrics between the generated
multiviews and 3DGS. It can be observed that our framework reduces the performance difference
between the generated multi-view images and 3D representation, and improves the combined perfor-
mance.

4.4 DISCUSSION

Recursive Generation Process We visualize the reconstructed results at different denoising steps
in Fig. 8. It can be observed that floaters and distorted geometries are generated in the early stages
due to multi-view inconsistency. As the denoising process progresses, these artifacts are significantly
reduced, which is attributed to our recursive diffusion method with the feedback mechanism within
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Table 2: Ablation study of different feedback mechanisms. Results show that our 3D-aware feedback
mechanism lead to superior generalization performance.

CCM Feedback RGB Feedback PSNR↑ SSIM↑ LPIPS↓ ∆PSNR↓ ∆SSIM↓ ∆LPIPS↓
✗ ✗ 20.549 0.8651 0.1183 0.511 0.0094 0.0070
✓ ✗ 21.325 0.8937 0.1092 0.304 0.0036 0.0018
✗ ✓ 21.542 0.8871 0.1103 0.100 0.0101 0.0036
✓ ✓ 21.761 0.9094 0.0991 0.009 0.0028 0.0002

Input no feedbacks + CCM feedback + RGB feedback + CCM&RGB feedback

Figure 7: Qualitative ablation study on the reconstruction results with two types of feedback.

the iterative denoising process. This mechanism not only refines the visual quality by smoothing out
inconsistencies but also enhances the fidelity of the reconstructed geometries and material properties.

Alternative 3D Representations Our model currently utilize 3D Gaussian splatting as the gener-
ated 3D representation, which is not as widely used in the gaming field as meshes. Replacing the
reconstruction module with CRM (Wang et al., 2024) or InstantMesh (Xu et al., 2024a) can enable
our framework to generate meshes from a single image. In addition, experiments on 3D scene dataset
will also be an extension of our framework.

Table 3: Comparison of training speed with the
method of training each module separately. We
show the time it takes to train 1,000 steps.

Setting Training Time (1,000 steps)

SVD 15 min
LGM 10 min
Ouroboros3D 36 min

Table 4: Comparison of inference speed with base-
line methods. We show the time it takes to generate
one sample.

Method Inference time

ImageDream + LGM 1.225s
SV3D + LGM 24.18s
Ouroboros3D 25.19s

Training and Inference Efficiency While
our joint training method enhances model
performance, it also increases computational
demands. Simultaneously training both the
multi-view generation and 3D reconstruction
networks—coupled with the feedback mecha-
nism—requires additional time and GPU mem-
ory. To quantify this, we measured the time
required for 1,000 training steps on an A100
GPU. As shown in Table 3, Ouroboros3D takes
longer to train than the individual components
when trained separately, primarily due to the ex-
tra computations and the need for simultaneous
optimization.

Despite the higher training cost, the inference
efficiency of our method is comparable to that of
the baselines. We evaluated the inference speed
of baseline methods under identical settings to
ensure fairness. The LGM baseline employs
ImageDream (Wang & Shi, 2023) to generate 4
views at 256× 256 resolution, which are then reconstructed into a 3D Gaussian Splatting (3DGS)
representation. In contrast, our Ouroboros3D approach utilizes SVD to generate 8 views at 512×
512 resolution. For a fair comparison, we report the inference time of "SV3D + LGM", where
SV3D (Voleti et al., 2024) is a multi-view generator fine-tuned from SVD. Compared to it, the
additional overhead in our method mainly stems from the feedback mechanism at each step, involving
VAE decoding, 3D reconstruction and conditioning injection. However, the impact on inference speed
is minimal, rendering Ouroboros3D efficient for practical applications once training is complete.
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Input 6 steps 12 steps 18 steps 25 steps

Figure 8: Visualization of the reconstruction results at different denoising steps. In the early stages,
floaters and distorted geometries are generated due to multi-view inconsistency. The quality of
geometry and appearance tends to be higher in denoising process.

Input Rendered from Generated 3DGS Input Rendered from Generated 3DGS

Figure 9: More visualization results of our image-to-3D creation. Our method is able to generate
cohesive objects (e.g. action figures) and geometrically fragmented items (e.g. magic wands). The
inclusion of detailed, delicate structures like the wands highlights the ability of Ouroboros3D to
capture fine-grained geometric complexities, benefiting from its 3D-aware recursive diffusion process.

5 CONCLUSION

In this paper, we introduce Ouroboros3D, a unified framework for single image-to-3D creation that
integrates multi-view image generation and 3D reconstruction in a recursive diffusion process. We In
our framework, these two modules are jointly trained through a self-conditioning mechanism, which
allows them to adapt to the inherent characteristic of each stage, leading to more robust generation. By
establishing a recursive relationship between these two stages through a self-conditioning mechanism,
our approach effectively mitigates the data bias encountered in existing two-stage methods. Exper-
iments demonstrate that Ouroboros3D not only generates consistent and high-quality multi-view
images, but also produces 3D objects with superior geometric consistency and details.
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A APPENDIX

A.1 VIDEO MODEL FINE-TUNING

Based on the approach outlined in (Blattmann et al., 2023), the generation process employs the EDM
framework(Karras et al., 2022). Let pdata(x0) represent the video data distribution, and p(x;σ) be the
distribution obtained by adding Gaussian noise with variance σ2 to the data. For sufficiently large
σmax, p(x;σ2

max) approximates a normal distribution N (0, σ2
max). Diffusion models (DMs) leverage

this property and begin with high variance Gaussian noise, xM ∼ N (0, σ2
max), and then iteratively

denoise the data until reaching σ0 = 0.

In practice, this iterative refinement process can be implemented through the numerical simulation of
the Probability Flow ordinary differential equation (ODE):

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt (3)

where ∇x log p((x;σ) is called as score function.

DM training is to learn a model sθ(x;σ) to approximate the score function ∇x log p((x;σ). The
model can be parameterized as:

∇x log p((x;σ) ≈ sθ((x;σ) =
Dθ(x;σ)− x

σ2
, (4)

where Dθ is a learnable denoiser that aims to predict ground truth x0.

The denoiser Dθ is trained via denoising score matching (DSM):

Ex0∼pdata(x0),(σ,n)∼p(σ,n)

[
λσ∥Dθ(x0 + n;σ)− x0∥22

]
, (5)

where p(σ, n) = p(σ)N (n; 0, σ2), p(σ) is a distribution over noise levels σ, λσ is a weighting
function. The learnable denoiser Dθ is parameterized as:

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)), (6)

where Fθ is the network to be trained.

We sample log σ ∼ N (Pmean, P
2
std), with Pmean = 1.0 and Pstd = 1.6. Then we obtain all the

parameters as follows:

cin =
1√

σ2 + 1
(7)

cout =
−σ√
σ2 + 1

(8)

cskip(σ) =
1

σ2 + 1
(9)

cnoise(σ) = 0.25 log σ (10)

λ(σ) =
1 + σ2

σ2
(11)

We fine-tune the network backbone Fθ on multi-view images of size 512× 512. During training, for
each instance in the dataset, we uniformly sample 8 views and choose the first view as the input view.
view images of size 512× 512.
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Figure 10: The projection process of coordinates map.

A.2 CANONICAL COORDINATES MAP

For control networks (Zhang et al., 2023; Mou et al., 2024) of image diffusion models, the
conditional maps like depth maps need to be normalized to [0, 1], typically using the formula:
(p− pmean)/(pmax − pmin). For multi-view generation, each view performs a normalize operation
on itself, which results in a scale ambiguity. At the same time, the depth map is relative to a certain
view, and the correlation between the depth values is not significant across views.

To avoid the above issues caused by self-normalization, we use canonical coordinate maps (CCM).
Coordinate maps transform the depth value d to a common world coordinate system using the
camera’s intrinsic and extrinsic parameters, represented as (X,Y, Z). The transformation formula is:(

X
Y
Z

)
= K−1 ·

(
u
v
1

)
· d

where (u, v) are the pixel coordinates, d is the corresponding depth value, and K is the camera
intrinsic matrix. Then the coordinate values of all views will be multiplied by a global scale and
added an offset value to convert to the range of 0 to 1. This representation makes the correlation
between different views more significant and is helpful for multi-view generation.

A.3 ALGORITHM

Algorithm 1 Training
Input: x, cond_image, cameras, timestep
Output: loss
// Returns the loss on a training example x. Details about EDM are omitted here.
begin

noise← Sample from Normal Distribution
noisy_x← Add_Noise(x, noise, timestep)
pred_x← F (noisy_x, cond_image, timestep, cameras)
pred_i← VAE_Decoder(pred_x)
self_cond← G(pred_i, cameras, timestep)
if Random_Uniform(0, 1) > 0.5 then

pred_x← F(noisy_x, cond_image, timestep, cameras, self_cond)
end
loss_mv←MSE_Loss(pred_x, x)
loss_recon←MSE_Loss(self_cond, x) + LPIPS_Loss(self_cond, x)
loss← loss_mv + loss_recon
return loss

end
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Algorithm 2 Inference
Input: cond_image, cameras, timesteps
Output: images, 3d_model
// Generate multi-view images and 3D model from a condition image.
begin

self_cond← None
x_t← Sample from Normal Distribution
foreach timestep in timesteps do

pred_x← F (x_t, cond_image, timestep, cameras, self_cond)
pred_i← VAE_Decoder(pred_x)
self_cond← G(pred_i, cameras, timestep)

end
return pred_i, self_cond

end

A.4 3D-AWARE FEEDBACK

3x3 Conv

ReLU

3x3 Conv

+

Figure 11: Architecture of the residual
block used in the feedback stage.

Table 5: The detailed structure of all layers in the
feedback injection network.

Input inp ∈ R3×512×512

PixelUnshuffle (Shi et al., 2016) 192× 64× 64
ResBlock ×3 320× 64× 64
ResBlock ×3 640× 32× 32
ResBlock ×3 1280× 16× 16
ResBlock ×3 1280× 8× 8

With reference to Section 3.3 in the main paper, Fig. 11 and Table 5 provide a detailed illustration of
the feedback injection netwrok. We use two networks to inject the coordinates map and RGB texture
map feedback into the score function. Each network consists of four feature extraction blocks and
three downsample blocks to adjust the feature resolution. The reconstruction coordinates map and
RGB texture map initially have a resolution of 512× 512. We employ the pixel unshuffle operation
to downsample these maps to 64× 64.

At each scale, three residual blocks(He et al., 2016) are used to extract the multi-scale feedback
features, denoted as FP = {F 1

p , F
2
p , F

3
p , F

4
p } and FT = {F 1

t , F
2
t , F

3
t , F

4
t } for the coordinates

map and RGB texture map, respectively. These feedback features match the intermediate features
Fenc = {F 1

enc, F
2
enc, F

3
enc, F

4
enc} in the encoder of the UNet denoiser. The feedback features FP and

FT are added to the intermediate features Fenc at each scale as described by the following equations:

Fp = F0(P ) (12)

Ft = F1(T ) (13)

Fi
enc = Fi

enc + Fi
p + Fi

t, i ∈ {1, 2, 3, 4} (14)

where P represents the coordinates map feedback input, and T represents the RGB texture feedback
input. F0 and F1 denote the functions of the feedback inject network applied to the coordinates map
and RGB texture map, respectively.
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