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ABSTRACT

Noisy linear structural causal models (SCMs) in the presence of confounding
variables are known to be identifiable if all confounding and noise variables are
non-Gaussian and unidentifiable if all are Gaussian. The identifiability when only
some are Gaussian remains unclear. We show that, in the presence of Gaussian
noise, a linear SCM is uniquely identifiable provided that (i) the number of con-
founders is at most the number of the observed variables, (ii) the confounders
do not have a Gaussian component, and (iii) the causal structure of the SCM is
known. If the third condition is relaxed, the SCM becomes finitely identifiable,
belonging to a set of at most n! linear SCMs, where n is the number of observed
variables. The confounders in all of these n! SCMs share the same joint probability
distribution function (PDF), which we obtain analytically. For the case where both
the noise and confounders are Gaussian, we provide further insight into the existing
counter-example-based unidentifiability result and demonstrate that every SCM
with confounders can be represented as an SCM without confounders but with the
same joint PDF.

1 INTRODUCTION

Achieving a desired state in a system requires appropriate interventions, which necessitate a causal
model rather than a purely probabilistic or correlation-based approach. This is because interventional
queries are not always answered by probabilistic models. A Structural Causal Model (SCM) (Peters
et al., 2017) formalizes the common sense intuition of the notion of causality. In its general form, an
SCM consists of a number of random variables, and enforcing each variable to be a deterministic
function of a single noise variable and a subset of the other random variables, known as its causes.
The noise variables are assumed to be disjoint.

An SCM allows systematic answers to observation queries (Spirtes et al., 2000), such as the prob-
ability of X given Y , intervention queries, like the probability of X if Y is intervened upon, and
counterfactual queries, for example, what is the probability of X had Y taken a different value.
However, first the structure of the SCM, namely, the functions assigned to each variable, must be
estimated from data, a task referred to as causal discovery (Chen et al., 2021; Yang et al., 2022;
Xie et al., 2023; Agrawal et al., 2021). The available data are usually limited to observations rather
than interventions due to infeasibility or high costs of experiments. The question then is up to what
extent, an SCM can be estimated from observation data. More specifically, given the joint probability
distribution function (PDF) of the random variables, is it possible to uniquely obtain the functions of
an SCM; namely, is the SCM identifiable (Hyvärinen et al., 2023)?

There is yet another intrinsic challenge in answering the identifiability question: the existence of
confounders, i.e., unobserved variables that affect the considered observed variables in the SCM.
Indeed, it is often the case that several variables have strong associations without any causal re-
lationship, indicating the presence of one or more confounders (Spirtes et al., 2000; Witty et al.,
2021). It is nearly impossible to claim that all causes of a specified process are considered; hence, the
consideration of confounders is inevitable. While there has been some progress on the identifiability
of SCMs in the presence of confounders in the general case where the assigned functions can be
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nonlinear (Shimizu, 2014; Hyvärinen et al., 2023; Wu et al., 2022; Witty et al., 2021; Agrawal et al.,
2021), this problem remains open and challenging due to the information inaccessibility regarding
the confounders and the complexity of the analysis. Thanks to the linearization techniques around the
operating point of a system, the assigned functions are often supposed linear, resulting in a linear
SCM, resulting in the system of equations X := AX + BH + CZ, where random variables X ,
H , Z are the observed variables, confounders, and noise variable, and A, B, C are the coefficient
matrices (Eriksson & Koivunen, 2003). The identifiability of the SCM then reduces to determining
the triple (A,B,C) from the joint PDF of the observed variables P(X).

1.1 RELATED LITERATURE ON LINEAR SCMS

The base of many existing work on the identification of linear SCMs is Independent Component
Analysis (ICA) (Hyvärinen & Oja, 2000) applied to the so-called ICA model where the observed
variables X are assumed to be a linear combination of some independent components, denoted by the
vector S, and are governed by the equation X := AS, where A is known as the mixing matrix. In fact,
ICA is developed based on Darmois-Skitovich Theorem (Pavan & Miranda, 2018). It is proven that a
mixing matrix A for a non-Gaussian ICA model is identifiable up to the permutation and scaling of its
columns. Namely, two mixing matrices A and Ã = AΓmPm may result in the same observation PDF
P(X), where Γm and Pm are scaling and permutation matrices. However, if two mixing matrices A
and Â result in the same P(X) and one column of A is independent of the columns in Â, then at least
one of the sources are Gaussian (Taleb & Jutten, 1999). For the case where the number of sources
exceeds the observable variables, the overcomplete ICA is developed (Podosinnikova et al., 2019).

Clearly, the idea of ICA are also applicable to the framework of SCMs. However, based on the
assumptions and model limitations, researchers are suggesting new algorithms (Xie et al., 2023; Yang
et al., 2022; Salehkaleybar et al., 2020; Adams et al., 2021). In the presence of unobserved variables
(also called latent variables) the identifiability was shown in (Xie et al., 2023) under the assumption
that every latent variable has at least two pure measurement variables (those that do not have an
observable cause and have at most one latent cause). Yang et al. (2022) introduce two different classes
of linear SCMs, i.e., P-SCM and its subset D-P-SCM, in which some latent variables are considered
as noise and influence only one variable. It is proved that in the set of P-SCM, a D-P-SCM is not
identifiable. Under the faithfulness assumption and using ICA, (Salehkaleybar et al., 2020) show
that non-Gaussian noise and confounders, the SCM is unidentifiable but there are a finite number of
SCMs that result in the PDF of the observed variables and that these SCMs can be obtained.

The authors in (Xie et al., 2022) study the identification of Hierarchical Structures, where the observed
variables do not interact and are caused only by the latent variables. Adams et al. (2021) show that
if strong non-redundancy and bottleneck faithfulness hold, the SCM is identifiable up to trivialities.
Giraud & Tsybakov (2012) and Frot et al. (2019) study linear systems with sparsely related observed
variables. Giraud & Tsybakov (2012) estimate the number of latent variables and the conditional
graphical model structure among the observed variables, and Frot et al. (2019) estimate the Markov
equivalence class of the directed acyclic graph over the observed variables.

Moreover, Shimizu et al. (2009); Cai et al. (2019); Xie et al. (2020); Anandkumar et al. (2013)
estimate the causal structures of hidden variables with the assumption that the observable variables
are not caused by each other. Nowzohour et al. (2017) study bow-free graph in which there cannot
be both a directed edge and a bow (confounder) between the same pair of variables. Chen et al.
(2021) consider linear non-Gaussian SCMs in the presence of latent confounders and present hybrid
algorithms to determine unknown causal relations by means of regression, independence tests, Traid
conditions (Cai et al., 2019), and over complete ICA algorithm. Over complete ICA has a closed
form solution for the mixing matrix in specific cases using higher order cumulants (Cai et al., 2023).
Xie et al. (2020) propose a Generalized Independent Noise (GIN) condition to discover the causalities
under the assumption that there is no direct edge between observed variables, which is the same
assumption considered in the structure in (Squires et al., 2022). D’Amour (2019) present examples
in which the system is not identifiable, such as the special case of a Gaussian linear SCM. Li et al.
(2024) provide a sufficient condition for the identifiability of a linear SCM with observed and latent
variables under the faithful assumption. The condition requires having either for each latent variable
one pure child, that is an observed variable that is caused only by that latent variable and itself does
not cause any other variable, or no pure child but a non-Gaussian distribution for a subset of noise
variables.
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1.2 CONTRIBUTION

In this paper, we distinguish between noise, which we assume to be Gaussian and affects only one
observed variable, and confounders, which can be either all Gaussian or all non-Gaussian and can
affect multiple observed variables. Our contribution and distinction from existing work are as follows:

(1) For the case where both the noise and confounders are Gaussian, we show that there are infinitely
many SCMs consistent with the same observed PDF–Theorem 1. This provides further insight into
the existing counter-example-based unidentifiability results (Eriksson & Koivunen, 2004; Hoyer et al.,
2008). (2) We then show that in order for the SCM to be finitely identifiable–that is only a finite
number of SCMs result in the observed PDF–it is sufficient for the confounders to be non-Gaussian
(Theorem 2), not necessarily also the noise as in (Salehkaleybar et al., 2020). The work in (Li et al.,
2024) also allows some noise variables to be Gaussian, however unique identifiability results rely on
restrictive conditions, such as having a generalized pure pair. In contrast, our work demonstrates that
while identifiability may not be unique, it is possible to identify a finite (equivalence) set of causal
structures without relying on extra assumptions. (3) We provide an upper bound on the size of this
finite set in the case of Gaussian noise and non-Gaussian confounders. We provide an algorithm
that given an SCM, obtains all other SCMs in its equivalence set–Algorithm 1–those who share the
same observed PDF as the given SCM. (4) Thanks to the novel approach of using characteristic
functions in this paper, we obtained precisely the PDF of the confounders–(3) in Theorem 2. (5) For
Gaussian noise and non-Gaussian confounders, distinct SCMs within the finite set must have different
causal orders. Thus, unique identifiability would be achieved, should the causal order be specified.
In contrast, as illustrated in (Salehkaleybar et al., 2020), when all variables are non-Gaussian, it is
possible for two SCMs to have the same causal order.

In Section II, we present the problem formulation. Section III addresses Gaussian Structural Causal
Models (SCMs). In Section IV, we examine the identifiability of non-Gaussian SCMs. A compari-
son of identifiability results based on noise and confounder distributions is provided in Section V.
Numerical examples are discussed in Section VI. Finally, Section VII concludes the paper.

2 SYSTEM MODEL AND PRELIMINARIES

2.1 NOTATIONS

Vectors are denoted by an underline, e.g., t. Deterministic variables are lowercase and random
variables are uppercase. Matrices are uppercase and boldface, e.g., A. The notation (·)⊤ represents
the matrix transpose and E[·] denotes the expected value operator. A Gaussian random distribution
with expected value µ and covariance matrix Σ is denoted by N (µ,Σ). Ik is the identity matrix
with dimension k. The component located at the ith row and jth column of matrix M is represented
by Mij . The cardinality of a set X is denoted by |X |.

2.2 PROBLEM FORMULATION

Consider the linear SCM C defined by

X := AX +BH +CZ (1)

where observed vector X ∈ Rn×1 is a vector of zero-mean observed variables Xi, i = 1, . . . , n, with
n ≥ 2, H ∈ Rk×1, k ≥ 0, is a vector of mutually independent zero-mean confounding variables (or
confounders), Z ∈ Rn×1 is a vector of zero-mean mutually independent Gaussian noise variables
with Z ∼ N (01×n, In), A ∈ Rn×n is a matrix with zero diagonal components in which AijAji = 0

due to the casual structure, B ∈ Rn×k, and C ∈ Rn×n is a positive definite diagonal matrix. Without
loss of generality, we assume E[HH⊤] = Ik.

The joint PDF of the observed vector X and confounder vector H are denoted by P(X) and P(H),
respectively. It follows that (1) can be written as

X = MH +QZ (2)

where Q = (In − A)−1C is a positive definite matrix with QijQji = 0 for every i ̸= j, and
M = (In −A)−1B. The parameters in (1) can be derived according to (M ,Q) as follows. C is a
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diagonal matrix where its diagonal elements are equal to the diagonal elements of Q. Then A and
B are computed, respectively, as A = In −CQ−1 and B = M −AM . Thus, an SCM C can be
represented either by the ordered pair C(M ,Q) or ordered triple C(A,B,C).

The SCM induces a (causal) DAG over the observed and confounders, where there is a link from
observed variable Xi (resp. confounder Hi) to observed variable Xj if Aji ̸= 0 (resp. Bji ̸= 0). In
this case, we say that Xi (resp. Hi) causes/influences Xj . The confounders are not linked to each
other.

Remark 1 (Canonical model) The SCM defined by (1) matches the so-called canonical model
in which each confounder is a root variable, i.e., with no parent. For SCMs with non-Gaussian
confounders where the confounders are not root variables, an observationally and causally equivalent
canonical model can be obtained using Algorithm A in (Hoyer et al., 2008) (by skipping step 3 in the
algorithm).

Definition 1 (Informative observable variables) A set of informative observed variables (of size
m) is a set of observed variables corresponding to any m linearly independent rows of matrix M .
The remaining n−m observed variables are called non-informative (with respect to this set).

Definition 2 (Causal (structure) order) A causal order for SCM C denoted by OC is defined as
the topological order of the variables in the induced DAG, that is, an ordering over the observed
variables, i.e., Xi1 ≻ Xi2 . . . ≻ Xin where {Xi1 , . . . , Xin} = {X1, . . . , Xn}, such that there is no
path from Xik+1

to Xik in the induced DAG for every k ∈ {1, 2, . . . , n}.

The causal structure order is not necessarily unique, because the induced DAG may not be connected.
The set OC denotes the set of all possible causal orders for the SCM C.

We use the concept of equality in distribution, denoted as X d
= Y , for random variables X and Y that

have the same distribution (Definition 12). In particular, when X and X ′ are the observed variables
of SCMs C and C′, X d

= X ′ implies that they share the same support and have identical distributions,
i.e., P(X) = P(X ′).

Definition 3 (SCM finite identifiability) SCM C in the form of (1) is finitely identifiable if and only
if there exists a finite number of SCMs C′ such that X d

= X ′ where X and X ′ are the observed
variables in SCMs C and C′. The set of all such SCMs is called the finite equivalence class of SCM C.
The SCMs in this class are said to be equivalent to each other.

Unique identifiability is the same finite identifiability but when the cardinality of the equivalence
class equals one. The following is the equivalent definition used in the literature.

Definition 4 (SCM unique identifiability) SCM C(A,B,C) in the form of (1) is uniquely identifi-
able if and only if for every other SCM C′(A′,B′,C′) it holds that

X
d
= X ′ ⇒ A = A′,B = B′,C = C′.

or equivalently for C(M ,Q) and C′(M ′,Q′),

X
d
= X ′ ⇒M = M ′,Q = Q′,

Correspondingly, we say that SCMs C(A,B,C) and C′(A′,B′,C′) are distinct if (A,B,C) ̸=
(A′,B′,C′) or equivalently, (M ,Q) ̸= (M ′,Q′).

Definition 5 (Dependent random vector) A random vector Y is independent if its entries are mutu-
ally independent; otherwise, Y is dependent.

Refer to Definition 13 and Remarks 5 and 6 in the Appendix for the definition of the characteristic
function (CF) and its fundamental properties.

Definition 6 (Decomposable characteristic function) (Lukacs, 1972) A CF is decomposable if it
can be written as the product of two CF’s such that neither take a degenerate distribution. A
degenerate distribution is a distribution of a constant number with probability one.
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3 LINEAR SCM WITH GAUSSIAN CONFOUNDERS

The SCM defined in (1) with Gaussian confounders is not finitely identifiable, because the noise
variables are also Gaussian. Specifically, each noise variable Zi (for i = 1, . . . , n) can be expressed
as the sum of another noise component Z ′

i and a confounder H ′
i , where H ′

i affects only the observed
variable Xi. This decomposition satisfies E[Z2

i ] = E[Z
′2
i ] + E[H

′2
i ]. Since Z ′

i and H ′
i can have

different variances, there are infinitely many SCMs corresponding to different choices of these
variances. To avoid addressing these trivial cases and provide a meaningful distinction between noise
and confounding variables, we make the following assumption.

Assumption 1 Each confounder causes at least two observed variables.

The assumption ensures that every column of matrix B has at least two nonzero entries. The following
theorem shows that even under this assumption, the SCM is not finitely identifiable.

Theorem 1 Under Assumption 1, SCM C defined in (1) with Gaussian confounders is not finitely
identifiable if and only if the observed vector is dependent. Moreover, if the observed vector is
independent, then SCM C is uniquely identifiable.

Proposition 1 SCM C defined in (1) with Gaussian confounders and a dependent observed vector
can be modeled as another SCM without confounders that has the same PDF for the observed
variables and vice versa.

Proposition 1 holds even if SCM C satisfies Assumption 1.

As discussed earlier, Assumption 1 is not restrictive for the sufficiency part of Theorem 1 as each
noise can be decomposed into another noise and a confounder component. This result holds even if
the number of confounders are restricted to be less than the number of observed variables, which is
often assumed in practice.

Proposition 2 SCM C defined in (1) with Gaussian confounders and a dependent observed vector is
not finitely identifiable. The result remains valid if the number of confounders is known to be less
than the number of observed variables.

4 LINEAR SCM WITH NON-GAUSSIAN CONFOUNDERS

We present the sufficient conditions for finite identifiability of the SCMs when the confounders satisfy
the following assumption.

Assumption 2 Confounders Hi, i = 1, . . . , k, are non-constant, non-Gaussian, and cannot be
decomposed into finite random variables where any is Gaussian. In other words, for any Y and Ỹ
for which ϕHi(t) = ϕY (t)ϕỸ (t), neither Y nor Ỹ is Gaussian.

The enumeration of the confounders can be done arbitrarily, as for any enumeration, the columns
of matrix B (resp. M ) can be reordered to maintain the consistency of the product BH (resp.
MH), which encapsulates the confounders’ impact on the observed variables. Therefore, to avoid
complications with confounder enumeration, we assume the following without loss of generality.

Assumption 3 The columns of M are sorted in the ascending lexicographical order.

Assumption 4 The columns of M in (2) are linearly independent.

Intuitively, this assumption means that the confounders’ “impacts” on the observed variables are
independent, and hence, distinguishable. The following is the main result of this section.

Theorem 2 Under Assumptions 2 to 4, an n-dimensional linear SCM C(M ,Q) defined by (2) with
k confounders, 1 ≤ k ≤ n,

1. is finitely identifiable, and the size of the equivalence class is at most n!,
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2. for every SCM C′(M ′,Q′) in this class, it holds that M ′ = M and Q′ = P⊤QpP for
some permutation matrix P where Qp is the lower triangular matrix obtained from the
Cholesky decomposition of PQQ⊤P⊤, and

3. the CF of the confounder vector is the same in all SCMs in the equivalence class and is
given by

ϕH(t) =
ϕX̃

(
(M̃

−1
)⊤t

)
ϕN

(
Q̃

⊤
(M̃

−1
)⊤t

) (3)

where ϕN (t) denotes the CF of a standard k-dimensional Gaussian random variable, and
X̃ is a vector of informative observed variables, whose corresponding rows in M and Q
form the matrices M̃ and Q̃, respectively.

As described in Theorem 2, each matrix P corresponds to an SCM C′ that is equivalent to the SCM
C. In what follows, we examine how matrix P affects the causal structure of SCM C′. To this aim,
consider the following definitions. Due to the uniqueness of the Cholesky decomposition, each
permutation matrix P in Theorem 2 corresponds to exactly one SCM C′. This uniqueness guarantees
the existence of a function that maps P to C′.

Definition 7 Consider an SCM C(M ,Q) with k confounders, where 1 ≤ k ≤ n. Let Assump-
tions 2 to 4 hold. Define the function FC that maps a permutation matrix P to its corresponding
SCM C′ in the finite equivalence class of C, as described in Theorem 2–Part 2, i.e., FC(P ) = C′,
where C′(M ,P⊤QpP ) with Qp being the lower triangular matrix obtained from the Cholesky
decomposition of PQQ⊤P⊤.

Definition 8 The “order” of entries X1, . . . , Xn in a vector X = [X1, . . . , Xn]
⊤ is X1 ≻ . . . ≻ Xn.

The “permutation order”OP (X) for an n×n permutation matrix P represents the order of variables
X in PX .

The following theorem presents the conditions under which the permutation matrix P leads to a new
SCM C′ and subsequently shows how P affects the causal order of C′.

Theorem 3 Consider SCM C(M ,Q) defined by (2) with k confounders, 1 ≤ k ≤ n, and let
Assumptions 2 to 4 hold. Let P be a permutation matrix with permutation order OP (X) and
FC(P ) = C′. Then,

1. C and C′ are distinct SCMs if and only if OP (X) ̸∈ OC; and

2. the permutation order OP (X) is an element of the set OC′ .

For the proof of part (1), we need the following lemma.

Lemma 1 Consider SCM C(M ,Q) defined by (2) with k confounders, 1 ≤ k ≤ n, and let Assump-
tions 2 to 4 hold. Let P be a permutation matrix with permutation order OP (X) and FC(P ) = C′.
Then, C(M ,Q) and C′(M ,Q′) are distinct SCMs (i.e., Q ̸= Q′) if and only if PQP⊤ is a lower
triangular matrix.

Corollary 1 SCM C(M ,Q) defined by (2) satisfying Assumptions 2 to 4 and with k confounders,
1 ≤ k ≤ n, is uniquely identifiable if the causality order is specified.

Definition 9 (Partial causal (structure) order) A partial causal order for SCM C is an order X1 ≻
. . .Xm where X1, . . . ,Xm partition the observed variables {X1, . . . , Xn}, and there is no path from
any node in Xi to a node in Xj in the induced DAG for every i, j ∈ {1, 2, . . . ,m}, i > j.

Corollary 2 Consider SCM C(M ,Q) defined by (2) satisfying Assumptions 2 to 4 with k con-
founders, 1 ≤ k ≤ n. If a partial causal order X1 ≻ . . . ≻ Xm is specified, then the size of the
equivalence class of C is at most

∏m
i=1 |Xi|!.

Define an isolated observed variable as an observed variable that is not caused by any other observed
variable.
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Definition 10 (Isolated observed variable) Given SCM (1), an observed variable Xi is said to be
isolated if the ith row and ith column of A are zero.

The next corollary implies that an SCM is uniquely identifiable if all observed variables are influenced
only by unobserved variables, i.e., confounders and noise.

Corollary 3 SCM C(M ,Q) defined by (2) satisfying Assumptions 2 to 4 and with k confounders,
1 ≤ k ≤ n, is uniquely identifiable if and only if all observed variables are isolated.

Definition 11 (Isolated variable set) Given SCM (1), an observed variable set {Xi1 , . . . , Xim} is
said to be isolated if Aab = Aba = 0 for all a ∈ {i1, . . . , im} and b ̸∈ {i1, . . . , im}.

Corollary 4 Consider SCM C(M ,Q) defined by (2) satisfying Assumptions 2 to 4 and with k
confounders, 1 ≤ k ≤ n. If C consists of isolated variable sets X1, . . . ,Xm, then so is every other
SCM in the equivalence class of C. Moreover, the size of the equivalence class is at most

∏m
i=1 |Xi|!.

5 COMPARISON OF IDENTIFIABILITY RESULTS FOR DIFFERENT NOISE AND
CONFOUNDER DISTRIBUTIONS

Building on the findings of this article and (Pavan & Miranda, 2018), in the following remarks, we
compare the identifiability of SCM C(M ,Q) in different scenarios, depending on whether noise and
confounders follow a Gaussian distribution.

Remark 2 (Unique identifiability) Consider SCM C(M ,Q) with equations defined in 2 and with
k confounders. Then

• Non-Gaussian noise and confounders: SCM C is identifiable up to the permutations of the
matrix [M ,Q] (Pavan & Miranda, 2018), i.e., C is finitely identifiable. Unlike in (Pavan &
Miranda, 2018), the scaling of [M ,Q] changes the observed PDF, because the covariance
matrices are assumed to equal the identity matrix. Also, permutations are acceptable only
if they preserve the structure of the Q matrix, specifically, Qij ·Qji = 0 and Qii ̸= 0 for
i, j ∈ 1, 2, . . . , n, i ̸= j. Now if all “accepteble” permutation matrices result in the same
[M ,Q], SCM C is uniquely identifiable.

• Gaussian noise and non-Gaussian confounders: SCM C is finitely identifiable under
Assumptions 2 to 4 and 1 ≤ k ≤ n. All observed variables being isolated is the necessary
and sufficient condition for unique identifiability.

• Gaussian noise and confounders: SCM C is not finitely identifiable. Under Assumption 1,
observed variables are mutually independent is the necessary and sufficient condition for
unique identifiability.

Suppose the causal order is known, for example, through expert knowledge. Would the SCM then be
identifiable? The following remark answers this question.

Remark 3 (Unique identifiability given the causal order) Consider SCM C(M ,Q) with equa-
tions defined in 2 and with k confounders. Assume that the causal order of SCM C is known.
Then

• Non-Gaussian noise and confounders: SCM C may or may not be uniquely identifiable;
• Gaussian noise and non-Gaussian confounders: SCM C is uniquely identifiable;
• Gaussian noise and confounders: SCM C is not finitely identifiable for dependent observed

variables.

In certain cases, even if the SCM itself is not identifiable, determining the causal order can still be of
value. The following remark outlines the conditions under which this may be possible.

Remark 4 (Identifiability of the causal order) Consider SCM C(M ,Q) with equations defined in
2 and with k confounders. Consider the case where SCM C is not uniquely identifiable. Then for

• Non-Gaussian noise and confounders: The causal order of SCM C may or may not be
unique in its equivalence class;
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• Gaussian noise and non-Gaussian confounders: The causal order of SCM C is not unique
in its equivalence class;

• Gaussian noise and confounders: The causal order of SCM C is not unique in its equiva-
lence class.

The third parts of Remarks 3 and 4 are proven in the appendix. The first parts of the remarks, i.e.,
non-Gaussian noise and confounders, are illustrated by the following SCMs:

[M1,Q1] =

[
1 1 0
1 1 1

]
, [M2,Q2] =

[
1 1 0 0
0 1 1 0
1 1 1 1

]
, [M3,Q3] =

[
1 1 0 0
0 1 1 0
1 1 1 1

]
, [M4,Q4] =

[
0 1 1 0
1 0 1 0
1 1 1 1

]
.

There is no acceptable permutation for [M1,Q1] to result in a new matrix [M ,Q], implying that the
corresponding SCM is uniquely identifiable. For [M2,Q2], the only acceptable permutation is to
swap the first and second columns, which leads to a new SCM but with the same causal order. This
demonstrates two different SCMs with the same PDF and causal order. In the case of [M3,Q3], the
causal order is X1 ≻ X2 ≻ X3. Permuting it to [M4,Q4] is acceptable and results in an SCM with
a new causal order X2 ≻ X1 ≻ X3.

6 FINDING EQUIVALENCE CLASS AND NUMERICAL EXAMPLES

The following algorithm illustrates how an equivalence class is obtained for a specified SCM C(M ,Q)
that satisfies Assumptions 2–4. The computational complexity is dominated by operations on n× n
matrices. The most intensive steps—matrix multiplication (Σ = QQ⊤), Cholesky decomposition of
Σp, and inversion of Q′—each require O(n3) time. Thus, the overall complexity is O(n3).

Algorithm 1: Finding the SCM equivalent to SCM C and corresponding to permutation matrix P

Require: matrices Q, M , and P
M ′ ←M
Σ← QQ⊤

Σp ← PΣP⊤

ΣL
p ← Cholesky decomposition(ΣP )

Q′ ← P⊤ΣL
pP

if Q′ = Q then
print This P does not result in a distinct SCM.

else
C′ ← 0n×n

for i = 1 : n do
C ′

ii ← Q′
ii

end for
A′ ← In −C ′Q′−1

B′ ← (In −A′)M ′

return A′,B′,C ′

end if

In the following, we present two examples. First, we discuss a 2-dimensional SCM, also presented in
(Hoyer et al., 2008; Salehkaleybar et al., 2020), and illustrate the identifiability of the SCM under
different distributions for the noise and confounders.

Example 1 Consider the SCM defined by

C :

{
X1 = H +

√
2Z1,

X2 = H +X1 + Z2,

where E[X2
1 ] = 3, E[X1X2] = 4, and E[X2]

2 = 7, We examine this SCM in three different
scenarios to determine whether there are other SCMs with the same PDF.

(1) All variables are non-Gaussian: Then under the assumption that H ′ = Z1, Z ′
1 = H , and

Z2 = Z ′
2, the following SCM has the same joint PDF over the observed variables:

C′ :

{
X ′

1 =
√
2H ′ + Z ′

1,

X ′
2 = −

√
2H ′ + 2X ′

1 + Z ′
2.

8
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(2) All variables are Gaussian: There are infinite SCMs C′ with the same joint PDF, defined as

C′ :

{
X ′

1 = b1H
′ + a12X

′
2 + c1Z

′
1,

X ′
2 = b2H

′ + a21X
′
1 + c2Z

′
2,

where a12.a21 = 0. For P(X ′) = P(X) to hold, it suffices that either a12 = 0, |b1| <
√
3,

3a21 + b2b1 = 4, and b22 + 3a221 + 2a21b1b2 < 7 or a21 = 0, |b2| <
√
7, 7a12 + b2b1 = 4, and

b21 + 7a212 + 2a12b1b2 < 3. It can be verified that there exist infinitely many parameter values
that satisfy these conditions, implying that there are infinitely many SCMs, confirming Theorem 1.
Moreover, setting a12 = b1 = b2 = 0, a21 = 4/3, results in c21 = 3 and c22 = 5/3. That is, an SCM
without confounders can also be obtained, which is consistent with Proposition 1.

(3) Gaussian noise and non-Gaussian confounders: Let Assumption 2 be in force. Then in view of
Theorem 2, there is at most one other SCM with the same joint PDF, which has a different causal
order X2 ≻ X1, and equals the following (which can be obtained from Algorithm 1):

C′ =

{
X ′

1 = −1/3H ′ + 2/3X ′
2 +

√
2/3Z ′

1,

X ′
2 = 2H ′ +

√
3Z ′

2.

The next example is a 3-dimensional SCM satisfying Assumptions 2–4. The example illustrates given
an SCM C, when a permutation matrix P results in a distinct SCM C′ in the equivalence class of C.

Example 2 Consider the following SCM:

C : X =

[
0 0 0
1 0 0
1 0 0

]
X +

[
1 1 1
1 1 2
−1 2 1

]
H +

2 0 0
0 1 0
0 0

√
3

Z, (4)

M = (I3−A)−1B =

[
1 1 1
2 2 3
0 3 2

]
, Q = (I3−A)−1C =

2 0 0
2 1 0
2 0

√
3

 ,Σ = QQ⊤ =

[
4 4 4
4 5 4
4 4 7

]
.

It follows that Oc = {X1 ≻ X2 ≻ X3, X1 ≻ X3 ≻ X2}. Clearly, Assumptions 3 and 4 hold. Let
Assumption 2 to also be in force. Since n = 3, there are six permutation matrices corresponding to
different causal orders:

P1 =

[
1 0 0
0 1 0
0 0 1

]
,P2 =

[
0 1 0
1 0 0
0 0 1

]
,P3 =

[
0 0 1
0 1 0
1 0 0

]
,P4 =

[
1 0 0
0 0 1
0 1 0

]
,P5 =

[
0 0 1
1 0 0
0 1 0

]
,P6 =

[
0 1 0
0 0 1
1 0 0

]

By applying Algorithm 1 to each permutation matrix, the following results are obtained. The numbers
are rounded to two decimal places:

(1) P1: According to Proposition 3, this permutation matrix implies the permutation order OP1 :
X1 ≻ X2 ≻ X3. The algorithm outputs the same SCM as in (4). This consists with Theorem 3 as
OP1 ∈ OC.

(2) P2 : The corresponding permutation order is OP2 : X2 ≻ X1 ≻ X3. Thus, OP2 ̸∈ OC. The
algorithm outputs the following distinct SCM:

C′
1 : X ′ =

[
0 0.8 0
0 0 0
1 0 0

]
X ′ +

[−0.6 −0.6 1.4
2 2 3
−1 2 1

]
H ′ +

[
0.89 0 0
0 2.24 0
0 0 1.73

]
Z ′.

(3) P3 : The corresponding permutation order is OP3 : X3 ≻ X2 ≻ X1. Thus, OP3 ̸∈ OC. The
algorithm outputs the following distinct SCM:

C′
2 : X ′ =

[
0 0.63 0.21
0 0 0.57
0 0 0

]
X ′ +

[−0.26 −0.89 1.32
2 0.29 1.85
0 3 2

]
H ′ +

[
0.79 0 0
0 1.65 0
0 0 2.65

]
Z ′.

(4) P4 : The corresponding permutation order is OP4 : X1 ≻ X3 ≻ X2. This, OP4 ∈ OC, which
does not result in a distinct SCM.

9
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(5) P5 : The corresponding permutation order is X3 ≻ X1 ≻ X2. Thus, OP5 ̸∈ OC. The algorithm
outputs the following distinct SCM:

C′
3 : X ′ =

[
0 0 0.57
1 0 0
0 0 0

]
X ′ +

[
1 −0.71 −0.14
1 1 2
0 3 2

]
H ′ +

[
1.31 0 0
0 1 0
0 0 2.65

]
Z ′.

(6) P6 : The corresponding permutation order is X2 ≻ X3 ≻ X1. Thus, OP6 ̸∈ OC. The algorithm
outputs the following distinct SCM:

C′
4 : X ′ =

[
0 0.63 0.21
0 0 0
0 0.8 0

]
X ′ +

[−0.26 −0.89 −1.32
2 2 3
−1.6 1.4 −0.4

]
H ′ +

[
0.79 0 0
0 2.24 0
0 0 1.95

]
Z ′.

Therefore, the 3-dimensional SCM in this example is identifiable with an equivalence class size of
five.

7 CONCLUSION

We studied the identifiability of SCMs from observational data, i.e., sampled from P(X), focusing on
scenarios with Gaussian and non-Gaussian noise and confounders. When both noise and confounders
are Gaussian, it is impossible to determine the causal order solely from observational data. This
scenario often results in the existence of infinitely many SCMs with the same causal order and same
PDF of observed variables P(X), confirming that Gaussian SCMs are not finitely identifiable.

In contrast, in scenarios where all variables are non-Gaussian, it was already known from the literature
that the SCM is identifiable up to permutations of the structural matrices [M ,Q] (Pavan & Miranda,
2018; Eriksson & Koivunen, 2004; Tharwat, 2021), resulting in finite identifiability. Depending on
the structure of [M ,Q], the equivalence class may either include a unique SCM, multiple SCMs
with different causal orders, or multiple SCMs sharing the same causal order.

For Gaussian noise and non-Gaussian confounders, we showed that the SCM is finitely identifiable.
More importantly, the SCM is uniquely identifiable once the causal order is known; however,
determining the causal order is not possible unless the observed variables are isolated.

Looking ahead, we acknowledge several assumptions that restrict the scope of this study, such as the
SCM being linear and the confounders lack Gaussian components. Additionally, while we discussed
deriving other SCMs from a known SCM, we did not show how to estimate that “first” SCM from
observational data. Future research should aim to relax these constraints to investigate more realistic
scenarios.
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A APPENDIX

Definition 12 (Equal in distribution) Two real random variables X and Y with the same state
space are equal in the distribution sense, denoted by X d

= Y , if for any measurable set A in the state
space, P (X ∈ A) = P (Y ∈ A).

Definition 13 (Characteristic function) Define ϕX(t) the Characteristic Function (CF) of
(X1, X2, . . . , Xn) as

ϕ(X1,X2,...,Xn)(t1, t2, . . . , tn) = E(X1,X2,...,Xn)

[
exp

(
j(X1t1 +X2t2 + . . .+Xntn)

)]
(5)

where j2 = −1.

Remark 5 The CF of m independent random variables Y1, . . . , Ym can be obtained as the product
of each random variable CF. ϕY (t) =

∏m
i=1 ϕYi(ti).

Remark 6 The CF of the sum of independent random variables Y1, . . . , Ym can be obtained from the
multiplication of their CF’s. Therefore, the CF of S =

∑m
i=1 Yi is obtained as ϕS(t) =

∏m
i=1 ϕYi(t).

12
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Lemma 2 For random vectors X and Y = AX + b (where A is a constant matrix and b a constant
vector), ΦY (t) = exp(jb⊤t)ΦX(A⊤t) where j2 = −1 (Andersen & Sorensen, 1995).

Lemma 3 Every positive definite matrix can be written as the sum of another positive matrix and a
diagonal positive definite matrix.

Proof. Consider a positive definite matrix Σ, and denote its eigenvalues be denoted by λi(Σ) which
are all positive. Choose a positive number d such that

d < min
i=1,2,...,n

λi(Σ).

Form the diagonal matrix D with entries d on the diagonal. Define S = Σ−D. We show that S is
positive definite. First, since Σ is symmetric and D is diagonal, S is also symmetric. To show that S
is positive definite, consider its eigenvalues. Second, the eigenvalues of S are λi(Σ)− d (Horn &
Johnson, 2012). Since d < mini=1,2,...,n λi(Σ), it follows that λi(S) > 0 for all i ∈ {1, 2, . . . , n}.
Thus, S is a positive definite matrix. □

Lemma 4 Let L be the Cholesky factor of a positive definite matrix S. Define matrix B as the
collection of those columns of L that have more than one non-zero element, in an arbitrary order.
Then, S̃ = S −BB⊤ is a non-negative diagonal matrix.

Proof. Let L = [L1, L2, . . . , Ln], where Li denotes the ith column. Then LL⊤ =
∑n

i=1 LiL
⊤
i .

Since S is positive definite, all diagonal entries of L are non-zero. Now, let T denote the indices
of the columns with more than one non-zero elements. Then BB⊤ =

∑
i∈T LiL

⊤
i . Consequently,

S̃ = LL⊤ −BB⊤ =
∑

j ̸∈T LjL
⊤
j . Since each column Lj , j ̸∈ T , has exactly one non-zero entry,

located at the jth row, LjL
⊤
j is a matrix with all zero entries except for the jth column and row, which

is a positive entry. Thus, the summation of LjL
⊤
j , j ̸∈ T , is a non-negative diagonal matrix. □

Proof of Theorem 1: Consider the covariance matrix of the observed vector, denoted by Σ =
E[XX⊤]. Being positive definite, Σ can be decomposed as Σ = D + S, where D is a positive
definite diagonal matrix and S is a positive definite matrix, according to Lemma 3.

(sufficiency) The dependent observed vector implies that Σ is not diagonal. Thus, S cannot be
diagonal. Consider an arbitrary ϵ ∈ R that meets two conditions: (i) 0 < ϵ < mini=1,...,n(Dii) and
(ii) S + ϵIn is not a diagonal matrix. Define SCM Cϵ as

Xϵ = BϵHϵ +CϵZϵ.

where Cϵ and Bϵ are defined as follows. Let Lϵ denote the Cholesky factor of S + ϵIn. The matrix
Bϵ is formed by selecting all columns of Lϵ that have at least two non-zero elements. Let m be the
number of such columns in Lϵ, implying that each confounder causes at least two observed variables
in Cϵ. Then the dimension of Bϵ is n×m where m is not necessarily the same as k, the number
of confounders in C. Due to non-diagonality of S + ϵIn, it follows that 1 ≤ m, which guarantees
the existence of Bϵ. Define S̃ϵ = S + ϵIn −Bϵ(Bϵ)⊤. It is easy to verify that S̃ϵ is a diagonal
matrix with non-negative entries (Lemma 4). Therefore, the matrix D+ S̃ϵ − ϵIn is positive definite
diagonal matrix due to the upper bound on ϵ. Define Cϵ as the Cholesky factor of D + S̃ϵ − ϵIn.

Now we show that the covariance of observed vector under C′ is the same as that under C. Given
the independence of the noise vector Z and the confounder vector H , the covariance matrix of the
observed vector Σϵ = E[Xϵ(Xϵ)⊤] equals

Σϵ = Bϵ(Bϵ)⊤ +Cϵ(Cϵ)⊤

= Bϵ(Bϵ)⊤ + (D + S̃ϵ − ϵIn)

= Bϵ(Bϵ)⊤ + (D + S −Bϵ(Bϵ)⊤) (6)
= Σ (7)

where (6) follows from the definition of S̃ϵ. As X and Xϵ are zero-mean Gaussian random variables,
the equality of their covariance matrices implies that Xϵ d

= X . This completes the proof as there are
infinitely many ϵ that meets the aforementioned two conditions.
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(necessity) If the observed vector X in the SCM C(A,B,C) is independent, then the covariance
matrix Σ of X is diagonal. This implies that A is a zero matrix. Similarly, Assumption 1 implies
that B is a zero matrix. Hence, C can be uniquely identified as the Cholesky factor of Σ. □

Proof of Proposition 1. Denote SCM C by C(M ,Q). Consider confounder-free SCM C′(0,Q′)
where Q′ is the Cholesky factor of MM⊤ +QQ⊤, i.e.,

Q′Q′⊤ = MM⊤ +QQ⊤. (8)

On the other hand, According to (2) and Given the independence of noise and confounder case, the
covariance matrix of the observed variables in C equals MM⊤ +QQ⊤, and equals Q′Q′⊤ in C′.
In view of (8), the two covariance matrices match, implying equivalence in distribution of X and
X ′ as they are zero-mean Gaussian variables, completing the proof. A second proof is provided in
the following, by considering a Gaussian SCM C′ in the form of (1) (rather than (2)) and obtaining
(A′,0,C′) for C′. To prove the converse of proposition, we can follow the proof of the sufficiency
of Theorem 1 by letting M = 0.

□

Second proof of Proposition 1: Consider SCM C(A,B,C). Without loss of generality assume
that matrix A is lower triangular as this can be obtained by re-ordering the observed variables. we
prove the proposition for B ̸= 0. Consider the following Gaussian SCM, denoted by C′(A′,0,C ′),
without confounder variables:

X ′ := A′X ′ +C ′Z ′,

where A′ is a lower triangular matrix with zero diagonal entries whose entries below the main
diagonal in the (i+ 1)th row equals A′i+1 = Σi+1(Σii)−1 for i ≥ 1, where

Σii = E[[X1, . . . , Xi]
⊤[X1, . . . , Xi]], Σi+1 = E[Xi+1[X1, . . . , Xi]]. (9)

Due to the dependency among the observed variables, E[XX⊤] is not diagonal. Consequently, the
matrix A′ is non-zero. Also, let C ′ be a diagonal matrix whose diagonal entries are defined as
follows for i ≥ 1:

C ′
i+1,i+1 = E[X2

i+1]− (Σi+1)(Σii)−1(Σi+1)⊤, (10)

and C ′
11 = E(X2

1 ). Due to the Cauchy inequality (Tripathi, 1999), C ′
i+1,i+1 is positive, and therefore,

SCM C ′ is well-defined. Let Σ′ denote the covariance matrix of X ′ under SCM C′. We show by
induction on i that Σ′nn = Σnn. For i = 1, Σ11 = Σ′11. For every j ≤ i, we assume Σjj = Σ′jj .
Then, for i+ 1, it holds that

Σ′i+1 = E[X ′
i+1[X

′
1, . . . , X

′
i]]

= E[A′i+1[X ′
1, . . . , X

′
i]
⊤[X ′

1, . . . , X
′
i]] + Ci+1,i+1E[Z ′

i+1[X
′
1, . . . , X

′
i]]

(a)
= A′i+1Σ′ii + 0

(b)
= Σi+1(Σii)−1Σii (11)

= Σi+1, (12)

where (a) holds due to the fact that X ′
1, . . . , X

′
i depend only on Z ′

1, . . . , Z
′
i which are independent

of Z ′
i+1 by definition and therefore, E

[
Z ′
i+1[X

′
1, . . . , X

′
i]

]
= 0, Also, (b) is due to the induction

assumption. Therefore, Σ′i+1 = Σi+1. Now, we prove that E[X ′2
i+1] = E[X2

i+1] for i = 1, . . . , n:

E[X ′2
i+1] = E

[
(A′i+1[X ′

1, . . . , X
′
i]
⊤ + C ′

i+1,i+1Z
′
i+1)

2

]
= A′i+1Σ′iiA′i+1⊤ + E[C ′2

i+1,i+1]

= (Σi+1)(Σii)−1(Σi+1)⊤ + E[X2
i+1]− (Σi+1)(Σii)−1(Σi+1)⊤

= E[X2
i+1]. (13)

Thus, (12) and (13) imply Σ′i+1,i+1 = Σi+1,i+1, which completes the induction step. Therefore,
Σ′nn = Σnn. On the other hand, Gaussian variables X and X ′ are defined as zero mean. Hence,
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the mean and covariance matrices of the observed variables under SCM C′ match those under C,
implying X ′ d

= X . □

Proof of Proposition 2: In the proof of Theorem 1, under Assumption 1, we showed the existence of
a vector H ∈ Rm, where m represents the number of columns in Lϵ with more than one non-zero
entry. Matrix Lϵ was derived from the Cholesky decomposition. On the other hand, being lower
triangular, every Cholesky factor admits at most n− 1 columns with more than one non-zero entry.
Consequently, all SCMs considered in this proof satisfy m < n, indicating that the SCM is not
identifiable even when the number of confounders is less than the number of observed variables.

Now, if Assumption 1 is violated, there exists a confounder-free SCM equivalent to SCM C. By
decomposing n− 1 Gaussian noise of this SCM into two subcomponents, one for the confounder,
one for the noise variable – which can happen by infinitely different ways– a new equivalent SCM
with n− 1 Gaussian confounders is generated. □

For the proof of Theorem 2, we need the following lemmas.

Lemma 5 (based on (Pavan & Miranda, 2018), Theorem 3) Let U1, U2, . . . , Un be real and mu-
tually independent random variables. Define V1 and V2 as two real random variables, each equal to
a linear combination of U1, U2, . . . , Un in distribution sense,{

V1
d
= a1U1 + . . .+ anUn,

V2
d
= b1U1 + . . .+ bnUn,

(14)

where ai and bi for i = 1, . . . , n are real constants. If V1 and V2 are independent, then for each index
i such that aibi ̸= 0, it follows that Ui must be either a constant or a Gaussian random variable.

Proof of Lemma 5: This lemma is similar to Theorem 3 in (Pavan & Miranda, 2018) with the key
difference that the theorem assumed equality rather than equality in distribution sense. There, using
the equality, ΦV1,V2

(t1, t2) =
∏n

i=1 ΦUi
(t1ai + t2bi) is concluded in the beginning of the proof,

where ΦV1,V2
(t1, t2) is the joint CF of V1 and V2, and ΦUi

(t) is the CF of Ui. Here, we can conclude
the same using the equality in distribution and the independence of Ui’s. Therefore, the rest of the
proof of this lemma follows the same arguments as those in Theorem 3 in (Pavan & Miranda, 2018).
□

Lemma 6 Let U be a vector of m mutually independent random variables, none of which are
Gaussian or constant, with covariance matrix Im. Let V be a vector of n mutually independent
random variables with covariance matrix In. If V d

= RU , then R ∈ Rn×m has orthogonal rows,
and each column of R has at most one non-zero entry.

Proof of Lemma 6: Given V
d
= RU , we have E[V V ⊤] = RE[UU⊤]R⊤. Since V and U have

identity covariance matrices, RR⊤ = In. Thus, R has orthogonal rows. Now, to show that each
column of R has at most one non-zero entry, we proceed by contradiction. Suppose that there
exists a column of R, say the jth, with at least two non-zero entries. Then Uj appears in the linear
combinations of at least two independent random variables in V . This contradicts Lemma 5, as then
Uj must be Gaussian or constant. □

Lemma 7 Let Σ ∈ Rn×n be a positive definite matrix. There are at most n! different matrices Q
such that Σ = QQ⊤ where QijQji = 0 for every i, j ∈ {1, 2, . . . , n}, i ̸= j. For every matrix
Q, there exists a permutation matrix P such that Q = P⊤QpP where Qp is the lower triangular
matrix obtained by the Cholesky decomposition of PΣP⊤.

Proof of Lemma 7: Due to the structure of Q, there is a permutation matrix P that reshapes Q as a
lower triangular matrix denoted by Qp, i.e., Qp = PQP⊤. Due to the fact that P⊤P = In, we
have Q = P⊤QpP , which in view of Σ = QQ⊤ yields:

Σ = QQ⊤

⇒ Σ = P⊤QpQ
⊤
pP

⇒ PΣP⊤ = QpQ
⊤
p
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The last equality is the Cholesky decomposition of PΣP⊤ since Qp is a lower triangular matrix.
The Cholesky decomposition for real-valued positive-definite matrices is unique (Golub & Van Loan,
1996). Therefore, corresponding to every permutation matrix P , there is a unique Cholesky factor of
PΣP⊤ or equivalently a unique Qp = PQP⊤. Given that there are n! permutation matrices P ,
there are n! matrices Q = P⊤QpP satisfying Σ = QQ⊤, although some may be identical. Hence,
there are at most n! distinct matrices Q satisfying Σ = QQ⊤. □

Proof of Theorem 2: Consider the following two SCMs C and C′ where X
d
= X ′.

C : X = MH +QZ, C′ : X ′ = M ′H ′ +Q′Z ′. (15)

Without loss of generality, we consider the causal structure order X1 ≻ X2 ≻ . . . Xn for SCM
C. Therefore, Q is a lower triangular matrix. The proof consists of two steps. First, we show that
M = M ′. Second, we show the existence of at most n! noise matrices Q′.

Step 1. Due to Assumption 4, the rank of matrix M is k. Therefore, for an arbitrary mth row of M ,
there are k − 1 other rows that together with row m, form a full-rank k × k sub-matrix denoted M̃ .
Denote the vector of variables corresponding to these rows by X̃ , which form an informative variable
set. The equality P(X) = P(X ′) implies ϕX(t) = ϕX′(t), where t = [t1, t2, . . . , tn]

⊤, because two
random variables have the same CF if and only if they have the same PDF. Now, considering Remark
6 and the independence of noise and confounders, we have:

ϕMH(t)ϕQZ(t) = ϕM ′H′(t)ϕQ′Z′(t). (16)

Due to Assumption 2, the non-Gaussian (resp. Gaussian) components on both sides must match.
Thus,

ϕMH(t) = ϕM ′H′(t). (17)

Constraining this equation to the informative observed variables X̃ yields ϕM̃H(t) = ϕ
M̃ ′H′(t).

This is equivalent to ϕH(M̃
⊤
t) = ϕH′(M̃ ′⊤t), due to Lemma 2. For an arbitrary value of w ∈ Rk,

set t = (M̃
⊤
)−1w. Therefore,

ϕH(M̃
⊤
(M̃

⊤
)−1w) = ϕH′(M̃

′⊤
(M̃

⊤
)−1w)

⇒ ϕH(w) = ϕH′(M̃
′⊤
(M̃

⊤
)−1w) (18)

⇒ H
d
= M̃

−1
M̃ ′H ′.

Define R ∈ Rk×k′
as R = M̃

−1
M̃ ′. In view of (1) and Assumption 2, the conditions of Lemma

6 are met for V = H and U = H ′. Thus, R is full row rank, implying that k′ ≥ k. Now we
show that k′ = k. According to the definition of R, M̃ ′ = M̃R, which in view of (18) results in
ΦH(w) = ΦH′(Rw). Thus, R is independent of row m, resulting in M ′ = MR as row m was
arbitrary. Now, if k′ > k, the columns of R are linearly dependent. Since M ′ = MR, the columns
of M ′ are also linearly dependent, which contradicts Assumption 4. Thus, k′ = k. Hence, R is a
permutation matrix as it is full rank with orthogonal rows and each of its columns have at most one
none-zero entry. On the other hand, Assumption 3 implies that both M and M are lexicographically
sorted. Hence, R is the identity matrix and M ′ = M .

Step 2. In view of (16), Assumption 2 implies

ϕQZ(t) = ϕQ′Z′(t) (19)

where Z and Z ′ are zero-mean Gaussian random vectors of the same dimension n. Therefore, (19) is
equivalent to the covariance matrices Σ = QQ⊤ and Σ′ = Q′Q′⊤ being equal, i.e., Σ = Σ′. Now,
it follows from the definition of SCMs (see (1) and (2)) that Σ and Σ′ are positive definite matrices.
Moreover, Q as well as Q′ satisfy QijQji = 0 and Q′

ijQ
′
ji = 0 for every i, j ∈ {1, 2, . . . , n}, i ̸= j.

Therefore, according to Lemma 7, there are at most n! possible Q′ matrices.

Now, we prove the third part of the Theorem. Substituting M̃
−1

M̃ ′ = Ik in (18), ΦH(w) = ΦH′(w).
Additionally, (15) implies that

M̃
−1

X̃ = H + M̃
−1

Q̃Z.
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The proof is complete considering the independence of noise and confounders and according to
Remark 6 and Lemma 2. □

Proof of Lemma 1: The following equations hold:

Q′ = Q

⇔ P⊤QPP = Q (20)

⇔QP = PQP⊤ (21)

⇔ PQP⊤ is a lower triangular matrix (22)

where (20) holds due to Lemma 7, (21) is a result of PP⊤ = In, and (22) holds in the forward
direction since QP is the lower triangular matrix. Now, we prove the reverse direction of (22). It is
clear that (PQP⊤)(PQP⊤)⊤ = PΣP⊤. Therefore, if PQP⊤ is a lower triangular matrix, it is
exactly the result of the Cholesky decomposition of PΣP⊤. According to Lemma 7, QP is also
derived from the Cholesky decomposition of PΣP⊤. Therefore, due to the uniqueness of Cholesky
decomposition, QP = PQP⊤. □

The following result is straightforward.

Lemma 8 Consider a vector of random variables X = [X1, . . . , Xn]
⊤. A Permutation matrix P

has a one-to-one relationship with the permutation order OP (X), i.e, P ↔ OP (X), such that
Pij = 1 if and only if Xj is located at the ith row in PX .

Proof of Theorem 3: (PART 1): C and C′ are distinct SCMs if and only if

PQP⊤ is not a lower triangular matrix (23)

⇔ ∃i, j ∈ {1, 2, . . . , n}; i < j, (PQP⊤)ij ̸= 0 (24)
⇔ ∃i, j, k, l ∈ {1, 2, . . . , n};Pik = 1, Pjl = 1, i < j,Qkl ̸= 0 (25)
⇔ OP ̸∈ OC (26)

where (23) follows from Lemma 1 and (24) follows from the definition of a lower triangular matrix.
The properties of the permutation matrix lead to (25) where in the ith row of P , only one column k is
non-zero and equal to one. To show that (26) holds, note that according to Lemma 8, Pik = 1 and
Pjl = 1 imply that X ′

k and X ′
l are ranked ith and jth, respectively, in the causality order Op. On the

other hand, since i < j, X ′
k precedes X ′

l in OP , i.e., X ′
k ≻ X ′

l . Furthermore, Qkl ̸= 0 indicates that
noise variable Zl appears in the equation of Xk in (2) for SCM C. This implies the causality order
Xl ≻ Xk in every causality order in OC. Therefore, Op ̸∈ OC.

(Part 2) Multiply P in both sides of (2) to obtain

PX = PMH + (PQP⊤)(PZ). (27)

Here, PQP⊤ is not necessarily a lower triangular matrix. Now since SCM C′ shares the same M
and only differs in Q′, it holds that

PX ′ = PMH ′ + (PQ′P⊤)(PZ ′). (28)

Also, from Theorem 2, Q′ = P⊤QpP , yielding

PX ′ = PMH ′ +Qp(PZ ′). (29)

Since Qp is lower triangular, the order defined by PX ′ is a valid causality order of C′. On the other
hand, the order defined by PX ′ is the same as the permutation order OP (X), completing the proof.
□

Proof of Corollary 1: The causality order determines the permutation matrix P uniquely. Conse-
quently, C′ = FC(P ) is determined uniquely by the permutation matrix P . □

Proof of Corollary 2: In view of Theorem 2, Part 2, every SCM in the equivalence class of
C(M ,Q) can be written as C′(M ,P⊤QpP ) with Qp being the lower triangular matrix obtained
from the Cholesky decomposition of PQQ⊤P⊤, for some permutation matrix P . By Theorem
3, the causal order set of each SCM C′(M ,P⊤QpP ) includes the permutation order OP . On the
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other hand, SCM C′ respects the specified partial causal order. Consequently, a valid permutation
matrix P rearranges the rows of the observed variables Xi only within Xi itself. The number of such
permutations, and in turn the size of the equivalence class, is given by

∏m
i=1 |Xi|!. □

Proof of Corollary 3: (sufficiency) Since all observed variables are isolated, matrix Q is diagonal.
Therefore, for any permutation matrix P , matrix PQP⊤ is diagonal, and hence, also lower triangular.
Consequently, for any P , SCMs C and C′ are the same (i.e., Q = Q′) according to Lemma 1, where
FC(P ) = C′. Thus, C is uniquely identifiable. (necessity) Unique identifiability implies that for
every permutation matrix P , Q = Q′ or equivalently PQP⊤, is lower triangular. This implies that
Q must be a diagonal matrix. In other words, all observed variables in C must be isolated. □

Proof of Corollary 4: First, we prove that an isolated set in SCM C is also an isolated set in all other
SCMs in the equivalence class of C. Without loss of generality, let X = {X1, . . . , Xr} be an isolated
variable set for C. In view of Theorem 2, Part 2, every SCM in the equivalence class of C(M ,Q)
can be written as C′(M ,P⊤QpP ) with Qp being the lower triangular matrix obtained from the
Cholesky decomposition of PQQ⊤P⊤, for some permutation matrix P . Now, consider the case
where P takes the block-diagonal form Diag(P1,P2) where P1 is a r × r matrix. According to
Definition 11, matrix Q is block diagonal, and we have Σ = QQ⊤ = Diag(Σ1,Σ2) as a block-
diagonal matrix, where Σ1 and Σ2 represent the blocks corresponding to the isolated set and the
remaining variables, respectively. Clearly, PΣP⊤ remains block diagonal matrix. This implies that
the Cholesky decomposition factor Qp and Q′ = P⊤QP are also block diagonal. Therefore, the
variable set X is isolated in every SCM C′. Let C be the set of all such SCMs C′ whose permutation
matrix P are block-diagonal. Now, consider the case where P does not take the aforementioned
block-diagonal form. Then it can be shown that there exists an SCM C′ ∈ C whose causality order
set includes the permutation order OP . Thus, according to Theorem 3, no new SCM arises from
this permutation. Hence, C is the equivalence class of C. It follows that if C consists of several
isolated variable sets X1, . . . ,Xm, all of which will be isolated in every SCM of the equivalence class.
Moreover, each of these SCMs correspond to a permutation matrix P in the block diagonal form
Diag(P1, . . . ,Pm) where Pi is a |Xi| × |Xi| permutation matrix, for all i = 1, . . . ,m. On the other
hand, there are at most s! permutation matrices of dimension s× s. This completes the proof. □

Proof of Remark 3-Part 3: According to the proof of Theorem 1, when the observed vector
is dependent, there exist infinitely many SCMs (M ϵ,Qϵ) whose observed variables are equal in
distribution with those of SCM C. Since Qϵ is a lower triangular matrix, the causality orders of all
these SCMs are identical. □

Proof of Remark 4-Part 3: We provide two SCMs C′(0,Q′) and C′′(0,Q′′) that are in the equiv-
alence class of SCM C but have different causal orders. We choose Q′ as the Choleskey factor of
Σ = QQ⊤. Hence, Q′ is a lower triangular but not diagonal matrix, indicating dependence among
the observed variables. Consequently, there exists a permutation matrix P such that PQ′P⊤ is not a
lower triangular matrix. Define Q′′ = P⊤QpP where Qp is the lower triangular matrix obtained
by the Cholesky decomposition of PΣP⊤ (see according to Lemma 7). Now, in view of Lemma 7,
Σ = Q′′Q′′⊤, which according to Σ = Q′Q′⊤ implies that C′ and C′′ are in the same equivalence
class as SCM C. On the other hand, based on the proof of Lemma 1, Q′′ ̸= Q′ as PQ′P⊤ is not a
lower triangular matrix. Then, similar to the proof of Theorem 3, it can be shown that C′ and C′′ have
different causality orders. □
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