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1 Tactile Sensor Hardware17

1.1 Tactile Sensor Manufactory18

1.1.1 Tactile Sensor Pad Design19

The tactile sensing pads leverage a triple-layer design, where a piezoresistive layer (Velostat) is20

sandwiched between two sets of orthogonally aligned conductive yarns serving as electrodes. During21

the tactile sensor manufacturing, we first align 16 Stainless Thin Conductive Threads on top of22

the Velostat layer and then use high-strength adhesive (3M 468MP) to ensure robust electrical23

contact between the electrodes and the Velostat layer. Additionally, we use adhesive to secure the24

conductive thread connections to the connector. The connector links all the threads to a flexible flat25

cable, allowing the signal to be transmitted to the PCB board. This design makes the wires of our26

tactile sensor highly flexible, facilitating easier installation in various locations, such as the robot27

end-effector, which requires constant movement during manipulation. To ensure the tactile sensor’s28

long-term robustness, we attach a polyimide layer on top of the adhesive. Polyimides are known for29

their thermal stability, good chemical resistance, excellent mechanical properties, and characteristic30
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Figure 1: Tactile Physical Characteristics Evaluation
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Figure 2: Tactile Reading Board Design.
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Figure 3: Tactile Sensor Order Visualization.

orange/yellow color. After completing these steps, we finish aligning the 16 threads for the rows.31

Then, we flip the sensor and align the 16 threads for the columns.32

After obtaining the tactile sensor pad, we attach the sensors to the robot fingers. The order of each33

tactile sensor unit is visualized in Fig. 3. We clearly define the tactile order to ensure that each34

sensor’s position can be accurately calculated, and the tactile signals can correctly correspond to our35

real setting and dataset.36

1.1.2 Reading Board Design37

To ensure easy installation of the tactile reading board in the robot, we have designed it to be as38

compact as possible, as shown in Fig. 2. The tactile reading board measures 45.5 mm × 48.4 mm39

and includes an Arduino. The small size further enhances the scalability of our tactile sensors. We40

use two 8-bit shift registers and one 16-channel analog switch to process the tactile signals, which41

are then input to the Arduino. The ADC in the Arduino converts the analog signals from the tactile42

sensor into digital signals and forwards them to the host via serial communication. We will release a43

comprehensive reading board scheme so that the community can directly order from a PCB supplier44

to easily replicate our tactile sensor.45

1.2 Tactile Hardware Evaluation Experiment46

1.2.1 Physical Characteristics47

To investigate the physical characteristics of our tactile sensors, we designed two experiments. As48

illustrated in Fig. 1, we use a force gauge to apply specific force on the tactile sensor surface. The first49

experiment tests how individual tactile sensor units react to applied force. The second experiment50

aims to test the consistency of the entire sensor pad, showcasing the variance between different51

regions on the tactile sensor pad.52

Individual Sensor Performance. We began by randomly selecting 10 sensors from a total of 25653

sensors in one sensor pad. For each selected sensor, we applied a normal force incrementally, ranging54
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Figure 4: Results of Physical Characteristics Experiments. Part (a) shows the results of individual sensors’
performance according to the force applied to their surface. Part (b) demonstrates the tactile sensor pad’s
consistency under different normal forces. Each heatmap displays the tactile sensor pad’s readings in an 8 × 8
grid, where each number represents the sum of four sensor units. Part (c) presents the results from part (b) in a
single figure, illustrating the mean and standard deviation.

from 0 to 12 N, and recorded the stable tactile reading accordingly. Each sensor generated an average55

of 24 data points. This method allowed us to observe the individual sensor’s response to varying force56

levels and identify its saturation thresholds. As shown in Fig. 4 (a), we plot tactile reading versus57

normal force and identified that the saturation zone begins when the normal force exceeds 9 N. The58

fitting curve for the 10 sensors is depicted in the black line. Additionally, we applied a logarithmic59

scale to the x-axis (normal force), resulting in an approximately linear region for normal forces from60

1 N to 9 N. The region is highlighted with a blue background, as illustrated in Fig. 4 (a).61

Tactile Sensor Pad Consistency. In the second part of the experiment, we used a 16 × 16 tactile62

sensor pad and divided it into 8× 8 blocks, with each block comprising 4 sensors (2× 2 matrix area).63

Uniform loading was applied across each block using the force gauge with a circular contacting64

area of 176.7 mm2. For each 2 × 2 block, we collected the sum of the four tactile readings from65

individual sensors, enabling us to generate a heat map that visualizes the sensor response under66

specific loading conditions across the entire pad. Four different loading conditions (1 N, 3 N, 5 N,67

and 11 N) were applied to comprehensively assess the overall performance, providing a detailed68

representation of the resolution under varying forces. For each force condition, we measured once69

for each block, resulting in a total of 64 data points per condition. We then generate a heatmap for70

each force condition as shown in Fig. 4 (b). We calculated the mean and standard deviation for these71

data points and removed outliers. Finally, as illustrated in Fig. 4 (c), we generated a box plot from72

4 sets of 64 tactile readings, demonstrating its consistency across the entire sensor and the stable73

functionality of the tactile sensors.74

1.2.2 6-DoF Object Pose Estimation75

In the main paper, we demonstrated the effectiveness of dense, continuous tactile information for fine-76

grained manipulation tasks. To gain a more comprehensive understanding of the information captured77

by our proposed sensors, we conducted additional experiments on 6-DoF object pose estimation.78

These experiments revealed that the sensors embed information about object geometry and local79

contact patterns, which is crucial for manipulation tasks requiring robust and adaptive grasping as80

well as precise in-hand reorientation behavior.81

Specifically, we define the task as estimating the 6-DoF pose of an object using only tactile obser-82

vations, without any visual input. We assume that the object geometry is known and denote its 3D83

point cloud as P obj ∈ RN×3. The tactile observation, obtained by filtering the tactile-based point84

cloud according to the activation value, is denoted as P tactile ∈ RM×3. Our objective is to track the85
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Figure 5: Pose Estimation. In this experiment, we estimate the object pose without vision information. We
can see that our pose estimation becomes more accurate as we have more complete tactile signals. We can also
track the object’s pose as it rotates. Through this estimation, we demonstrate that our hardware can be potentially
used for in-hand pose estimation and other visuotactile tasks.

pose of the object in the 3D space, T ∈ SE(3), where,86

T =

[
R t
0T 1

]
∈ SE(3), (1)

in which the Euclidean group SE(3) := {R, t |R ∈ SO3, t ∈ R3}.87

We solve the pose-tracking problem using particle filtering [1]. We first define our observation88

function P obs = f(T) and then the weighting functions w = g(P obs, P tactile) as follows:89

f(T) = RP obj + t,

g(P obs, P tactile) =
∑

pi∈P tactile

min
pj∈P obs

||pi − pj ||2. (2)

The observation function transforms the object model point cloud using T, while the weighting90

function calculates the distance from the contact points to the observation points. In practice, we91

scale the weights using an exponential function to facilitate convergence. Given the observation and92

weighting functions, we employ a standard particle filter to determine the object’s pose.93

Some example results are shown in Figure 5. Before the right-side robot makes contact with the94

object, we can only rely on the tactile signals from the left-side robot. Therefore, there are a lot of95

plausible solutions. Although our estimated pose is one of the plausible solutions given the one-side96

tactile signal, the estimation is still inaccurate. When the right-side robot contacts the object, our97

estimated pose aligns well with visual observation. Also, when the object is rotating in the hand, the98

object pose is tracked accurately.99

2 Experiment details for Imitation Learning100

2.1 System Overview101

As shown in Fig. 6, We employ a bimanual teleoperation system with three Realsense cameras102

and four tactile sensor pads on four robot fingers. Our tactile signal communication is facilitated103

by a multi-threaded ROS (Robot Operating System) node. This node captures tactile signals and104

publishes them at a frequency of 30 Hz. All data, including that from cameras and tactile sensors, is105

collected through multi-threading. Each data frame received is timestamped, and after an episode is106

completed, we align all data with these timestamps. This synchronization is crucial for maintaining107

the consistency of the multimodal dataset, enabling accurate temporal alignment between tactile108

feedback and visual data. To manage the heavy load of processing frames from three cameras, we109
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Screen for Tactile Feedback

Figure 6: System Overview. We attach four tactile sensors to four robot fingers and install three Realsense
cameras to cover the workspace. All the objects used for the task are shown in the workspace. Additionally, we
install a background screen to display the tactile feedback.

collect data at 10 Hz to ensure consistency. We set a top camera (Realsense 455) to cover the entire110

workspace and positioned two other cameras (Realsense 435) close to the workspace to capture more111

detailed information. When using point cloud data from multiple cameras, we incorporate data from112

all cameras. For the baseline method using a single camera, we use only the top camera.113

We also implement real-time tactile information feedback, as shown in Fig. 6 (a). During data114

collection, tactile signals are visually displayed on the operator’s screen, enabling them to assess the115

adequacy of contact for secure grasping. Additionally, during the policy rollout, this visualization116

helps us see in real-time how tactile information relates to robot motion.117

2.2 Experiment Setup Details118

In this section, we discuss the detailed information of the four tasks described in the main paper.119

Each task consists of four steps, as illustrated in Fig 8. We will discuss the motions and evaluation120

metrics for each step, and highlight how these steps demonstrate the capabilities of our tactile sensors.121

The typical failure cases are shown in Fig. 7 and will be discussed in the following sections.122

2.2.1 Details for the Egg Steaming task123

Step 1: Open Egg Tray. The robot uses its right hand to open the egg tray, which mirrors the common124

scenario where the egg is often occluded by the tray. This realistic setup is maintained to reflect daily125

life, avoiding task simplification. Evaluation Metrics: The robot must open the tray sufficiently to126

allow its fingers to grasp the egg. Failure to open the tray adequately will result in the subsequent127

task failing. The initial position of the egg tray will be randomized within an area of 7-10 cm during128

both data collection and policy rollout.129
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Step 2: Grasp Egg. The robot uses its right hand to grasp the egg in the tray. This motion is complex,130

requiring the robot to slowly increase the force and carefully grasp the egg despite heavy occlusion.131

The robot with a visuo-tactile policy will retry if there is no stable tactile signal in hand, while132

a vision-only policy may proceed to the next goal due to heavy occlusion as shown in Fig. 7 (a).133

Evaluation Metrics: The robot can reattempt to grasp the egg, but the step fails if it moves to the next134

stage without the egg or if the egg falls during the transition from the tray to the steaming machine.135

Additionally, prolonged time spent in the egg tray will also be considered a failure.136

Step 3: Place Egg. The robot needs to safely place the egg in the steaming machine, which already137

contains two eggs. It must avoid causing the other eggs to fall while placing the egg in-hand. This138

step highlights our flexible thin sensor’s capability to perform fine-grained tasks in narrow spaces. As139

the robot hand exits the steaming machine, tactile information ensures there is no contact between140

the egg and the gripper, signaling the robot to proceed to the next stage. In contrast, a vision-only141

policy may cause confusion about whether the robot can move out safely, potentially prolonging its142

stay in the steamer and increasing the risk of dislodging the other eggs. Evaluation Metrics: The143

robot can place the egg anywhere inside the steaming machine, but the step fails if the robot does not144

place the egg in the steaming machine or if it causes the other eggs to fall to the ground.145

Step 4: Cover the Steaming Machine. The robot needs to use its left hand to grasp the cover of the146

steaming machine and place it safely inside. This task is challenging due to the unique shape of the147

steaming machine’s handle, as shown in Fig. 7 (a). The robot must apply a precise amount of force to148

the handle: sufficient to lift it but not so much that the cover flips and falls to the ground. The robot149

must apply a precise amount of force to the handle: sufficient to lift it but not so much that the cover150

flips and falls to the ground. This step showcases how our tactile sensor enables the robot to perform151

fine-grained grasping manipulations, similar to a human’s ability to apply suitable and stable force to152

grasp objects. Evaluation Metrics: The robot is allowed multiple attempts to grasp the cover. The153

task is considered successful if the cover is securely placed on the steaming machine. It is considered154

a failure if the cover flips or falls during the process.155

2.2.2 Details for the Fruit Preparation Task156

Step 1: Grasp and Place the Plate. The robot needs to use its left hand to grasp and place the plate157

on the table. This step introduces additional randomization and variance due to the varying positions158

of the plates, increasing the task’s complexity. Evaluation Metrics: The task is considered successful159

if the robot grasps the plate and places it on the table.160

Step 2: Open Plastic Bag. The robot needs to use its two hands to cooperate together to open the161

bag. The plastic bag is transparent and usually adds additional noise to the point cloud. Evaluation162

Metrics: The task is considered successful if the robot opens the bag wide enough for the gripper to163

get in.164

Step 3: Grasp the fruit. The robot needs to use its right hand to get inside the plastic bag and grasp165

the fruit. This step is the most important and difficult in this task. First, as shown in Fig. 8(Task166

2: Fruit Preparation), the robot and manipulated objects are highly occluded in the bag, making167

it impossible for visual information to observe critical details. Our visuo-tactile policy will grasp168

multiple times until there is stable tactile information to secure the grapes, while a vision-only policy169

typically attempts the motion once regardless of the presence of grapes, making the grasping success a170

random event. Second, the grapes are usually clustered together, requiring the robot to apply suitable171

force to avoid damaging the fruit. Our visuo-tactile policy can successfully grasp single or multiple172

grapes from the bag, while a vision-only policy may break the grapes when the robot grasps multiple173

grapes (as shown in Fig. 7 (b)). since it aligns the gripper joint states instead of using force-related174

information. Third, this task also showcases our sensors’ human-like dexterous manipulation; our175

tactile-integrated gripper is thin enough to get into the gaps between grapes, making it easier to176

grasp the grapes in a cluster. Evaluation Metrics: The task is considered successful when the robot177

successfully grasps the fruit out of the plastic bag. The task is considered a failure if the robot breaks178

the grapes or moves to the next stage without the grapes. The policy also fails if the robot stays in179
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Typical Failure Cases of Baselines
 (We visualize tactile signals in the screen no matter if tactile modality in the observation)
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Figure 7: Failure Cases. We present typical failure cases of the baseline method for all four tasks and analyze
the reasons for these failures to highlight the complexity of the tasks and the importance of tactile feedback
during these steps.

the bag for a long time without moving, which usually happens with the vision-only policy that is180

confused about the states of the objects and the robot end-effector under high occlusion.181

Step 4: Place grape. The robot needs to place the grapes on the plate. The task may fail if the robot182

uses too much force to grasp the grapes, causing them to stick in the gripper and resulting in failure.183

Evaluation Metrics: The task is considered successful if the robot successfully places the grapes on184

the plate and returns to the initial position.185

2.2.3 Details for the Hex Key Collection Task186

Step 1: Right Hand Grasp. The robot needs to use its right hand to grasp the tail of the hex key187

and lift it stably to the middle of the air. The initial position of the hex key is tricky, but it reflects188

a common daily life scenario where only the tail of the hex key is accessible, requiring additional189

adjustments to insert the hex key properly. A typical failure case of baselines, shown in Fig. 7 (c),190

occurs when the robot does not secure a stable grasp, resulting in significant slippage during the191

lifting process. Even if the hex key remains in-hand, this slippage can cause subsequent task failures.192

One observation during the experiment is the consistent small slippage during the first grasp, leading193

to variations in the hex key’s in-hand pose, which adds complexity to the following steps. Evaluation194

Metrics: The robot successfully grasps the hex key without significant slippage.195

Step 2: Left Hand Grasp. The robot needs to use its left hand to grasp the head of the hex key to196

ensure the following adjustment step. Evaluation Metrics: The robot left hand successfully grasp the197

hex key.198

Step 3: In-hand Adjustment. The robot’s left and right hands need to cooperate to adjust the hex key’s199

position so that it is in a ready pose for the following insertion. Our goal is to adjust the hex key to be200

perpendicular to the robot’s fingers, making the subsequent insertion task easier. The vision-only201

policy usually fails to adjust the position correctly, shown in Fig 7(c), making the following insertion202

impossible. Evaluation Metrics: The robot’s two arms must cooperate to adjust the hex key’s pose.203

The final pose should have a sufficiently long tail, and the hex key should be almost perpendicular to204

the robot’s fingers.205

Step 4: Insertion. This step is complex because the pose of the hex key in hand varies, even if the206

robot successfully adjusts the hex key’s position in the last step. A successful policy can implicitly207

reference the hex key’s position in hand and make the necessary adjustments for insertion. Evaluation208

Metrics: The robot successfully inserts the hex key into the hole rather than placing it on the table or209

getting stuck during the insertion process.210
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(a) Open Egg Tray (b) Grasp Egg (c) Place Egg (d) Cover the Steaming MachineInit State

Task 1: Egg Steaming

(a) Grasp and Place Plate (b) Open Plastic Bag (c) Grasp Grape (d) Place GrapeInit State

Task 2: Fruit Preparation

(a) Right Hand Grasp (b) Left Hand Grasp (c) Adjust and Rotate (d) InsertionInit State

Task 3: Hex Key Collection

Init State (Sandwich Serving) (a) Grasp Serving Spoon (b) Tilt Pot (c) Get Fried Egg (d) Replace Fried Egg

Task 4: Sandwich Serving
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Figure 8: Quantative Result of Tactile Representation. Here we showcase a total of four tasks. For each task,
the first row presents the real image. In the second row, we visualize our visuo-tactile points in a unified 3D
space to demonstrate how tactile points can infer spatial relationships between objects and contact areas. The
third row provides a 2D image to clearly visualize the tactile signals.
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2.2.4 Details for the Sandwich Serving Task211

Step 1: Grasp Serving Spoon. The robot needs to use its right hand to grasp the spoon and lift it into212

the air. Evaluation Metrics: The spoon is successfully lifted into the air with minimal slippage.213

Step 2: Tilt Pot. In order to successfully obtain the egg in the next step, the robot’s left hand needs to214

grasp the pot’s handle and tilt the pot. The gripper should not exert excessive force to ensure that215

the handle does not rotate within the robot’s hand. Evaluation Metrics: The robot’s left hand must216

successfully grasp the handle and then tilt it to a certain angle.217

Step 3: Get Fried Egg. The robot’s two hands need to cooperate to retrieve the fried egg. The right218

hand will use the spoon to reach the bottom of the pot and maneuver beneath the egg. During this219

process, the spoon will passively rotate in the hand. Our visuo-tactile policy can explicitly track220

the states of the spoon, while the baseline policy often fails due to the spoon’s rotation in the hand.221

Evaluation Metrics: The robot successfully retrieves the fried egg with the spoon.222

Step 4: Replace Fried Egg. The robot needs to move the spoon to the top of the bread and tilt it to223

place the egg on the bread. A typical failure occurs when the robot does not perform a successful tilt224

motion due to changes in the spoon’s position within the hand. Our visuo-tactile policy can account225

for these changes and adjust the motion accordingly. Evaluation Metrics: The robot successfully226

places the fried egg on top of the bread.227

2.3 Learning Details228

We use Pointnet++ as the learning backbone. we employ hierarchical feature extraction and processing229

for point cloud data. We use three set abstraction layers: the first set abstraction layer processes 64230

points with a 0.04 radius and 16 samples using a multi-layer perceptron (MLP) with layers [64, 64,231

128]; the second set abstraction layer processes 16 points with a 0.08 radius and 32 samples using232

an MLP with layers [128, 128, 256]; the third set abstraction layer serves as a global abstraction233

layer with an MLP of [256, 512, 1024]. For further feature processing, we use fully connected layers:234

the first fully connected layer transforms 1024 features to 512, and the second fully connected layer235

reduces 512 features to 256. We disable batch normalization layers.236
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