
Under review as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS FOR SD2PC

A.1 PSEUDO CODE OF ALGORITHM SD2PC

To eliminate the over-estimation problem of the critic network to improve the algorithm’s performance,
we introduced the double critic network presented in both TD3 and SAC to our SD2PC algorithm.
In our practical SD2PC algorithm we parameterized θQ1, θQ2 for a couple of critic networks, and
θ′Q1, θ

′
Q2 for their target networks. These two networks have their independent training process but

share a target value produced by minimum selection:

JQ(θQi) =
[
Q(s(t), a(t); θQi)−

(
rt + γ min

j={1,2}
Q(s(t), ã(t+ 1); θ′Qj) + αH

)]2
(23)

Which i ∈ {1, 2}, ã(t + 1) generated by equation 8. While evaluating critic values for policy
optimization, we similarly use the minimum value between these two critic networks. The policy loss
function based on the double critic network will come to:

Jπm,n(θπ) = πm(adm,n|s(t); θπ)
(
α log πm(adm,n|s(t); θπ)− min

j={1,2}

1

M
Q(s(t), {adm,n, ãm(t)}; θQj)

)
(24)

With the value and policy loss function in equation 23 and equation 24 replacing equation 10 and
equation 13, we can give out the pseudo-code of our SD2PC algorithm with double critic networks,
for λπ, λQ, λα is the learning rate of the policy network, critic networks, and temperature α.
{s(T), a(T), rT , s(T + 1)} representing for the experiences sampled from the replay buffer:

Algorithm 1 Soft Stochastic Decomposed Discrete Policy-Critic (SD2PC)

Initialize network parameters θπ , θQ1, θQ2, target network parameters θ′π , θ′Q1, θ′Q2

Initialize replay buffer B ← {}, batch size B, temperature α, hyperparameters λπ, λQ, λα, τ, γ
Initialize target entropyH

for t = 0 to T do
Sample an action from policy distribution: a(t) ∼ π(a(t)|s(t); θπ)
Takes action a(t), observes reward rt and next state s(t+ 1)

Store transition experience {s(t), a(t), rt, s(t+ 1)} in B
if Training then

Sample a minibatch of B transitions {s(T), a(T), rT , s(T + 1)} from B
Sample a(T + 1) from π(a(T + 1)|s(T + 1); θ′π)

θQi ← θQi − λQ∇θQiJQ(θQi) For i ∈ {1, 2}
Sample ã(T) from π(ã(T)|s(T); θπ)
θπ ← θπ − λπ∇θπJπ(θπ)
α← α− λα∇αJ(α)
θ′π ← τθπ + (1− τ)θ′π
θ′Q1 ← τθQ1 + (1− τ)θ′Q1

θ′Q2 ← τθQ2 + (1− τ)θ′Q2

end if
end for

A.2 HYPERPARAMETERS FOR SD2PC

The critical parameters for SD2PC, which can significantly influence the algorithm’s performance,
are listed in Table 1 above. These hyperparameters include target entropyH, learning rates, and so
on.

12

Under review as a conference paper at ICLR 2023

Table 1: Hyperparameters of SD2PC

Hyperparameter Definition Value

N discrete actions per dimension 20
H target entropy -1.5
τ stepsize of soft target update 5× 10−3

B batch size 256
max(log α) temperature upper bound 2
min(log α) temperature lower bound -10
λα temperature learning rate 3× 10−4

λπ policy learning rate
3× 10−4 (Humanoid-v2, Ant-v2)
10−3 (other environments)

λQ critic learning rate
3× 10−4 (Humanoid-v2, Ant-v2)
10−3 (other environments)

A.3 NETWORK STRUCTURE OF ALGORITHM SD2PC

As we pointed in Section 3, our decomposed discrete policy network outputs an M ×N matrix, each
row represents an action dimension’s policy. However, it is difficult for a policy network to output a
matrix straightly, so we let the policy network output a 1-dimensional array first, then reshape it to a
2-dimensional matrix. A detailed structure of the policy network can be shown in Figure 7.

Figure 7: Details of SD2PC’s decomposed discrete policy network

The structure of SD2PC’s policy network is shown in Figure 8. Though the critic network represents
a continuous state-action value function, we can only get the value of a single action point each time,
represented by the dots on the critic value function presented in Figure 8. Though we need to forward
the critic network for N times for each action dimension’s policy update, the generated values are
isolated from back-propagation. Moreover, the MN values needed by the global policy loss can be
calculated simultaneously in a minibatch, so the computational complexity of the policy update of
SD2PC is still reasonable.

13

Under review as a conference paper at ICLR 2023

Figure 8: Details of SD2PC’s critic network and SD2PC’s policy update. N times of critic’s forward
propagation is needed for a single action dimension’s policy update, and MN times is needed for the
global policy’s update but only consumes limited computational resources.

A.4 ACTION PROBABILITY TRANSFER OF SD2PC

Consider the entropy presented in section 4. It’s a global entropy composed of each action dimension’s
entropyHm:

Hm = − log πm(ãm(t+ 1)|s(t+ 1); θπ) (25a)

H =

M∑
m=1

Hm. (25b)

And the purpose of temperature adjustment in equation 14 is to fix the gap between the expectation
ofHm and target entropyH in each action dimension. In original settings without action probability
transfer, the expectation of E(Hi) is

E(Hm) =

N∑
n=1

−πm(adm,n|s(t); θπ) log πm(adm,n|s(t); θπ) (26)

The value of E(Hm) represents the exploration rate of the discretized stochastic policy. However,
consider two discretized policies with similar distribution but different action fractions N , their
E(Hm) can show distinctive diversities, which may bring difficulties turningH. For example, we set a
continuous stochastic policy parameterized by Gaussian distribution with µ = 0, σ = 0.3 and defined
on [−1, 1]. If we transfer the continuous policy to discrete settings, we can get E(Hm) = −3.78
for N = 100, E(Hm) = −3.09 for N = 50 and E(Hm) = −2.18 for N = 20, which is showed in
Figure 9.

Figure 9: With probability transformation, E(Hm) is less sensitive to discrete actions N

14

Under review as a conference paper at ICLR 2023

In order to address this problem, we mainly considered transforming the discrete policy distributions
to probability densities on continuous action space. In most continuous control tasks, their actions are
clipped to [−1, 1]. If we discretize an action dimension uniformly to N discrete actions, each discrete
action represents a fraction with 2/N length on the continuous action space. Thus, we can transform
the probability πm(adm,n|s(t); θπ) to probability density 2πm(adm,n|s(t); θπ)/N . With probability
transfer, the expectation of E(Hm) is

E(Hm) =

N∑
n=1

−πm(adm,n|s(t); θπ) log
[2
N
πm(adm,n|s(t); θπ)

]
(27)

Reconsidering the example above, with probability transform, we can get E(Hm) = 0.131 for
N = 100, E(Hm) = 0.130 for N = 50 and E(Hm) = 0.122 for N = 20, which is stable to N . So,
the probability transform we presented in SD2PC can effectively reduce the complexity of adjusting
H, which made our algorithm less sensitive to hyperparameters.

A.5 KL DIVERGENCE POLICY LOSS FOR SD2PC

Figure 10: Experimental results of SD2PC-PG with policy loss equation 13 and SD2PC-KL with
policy loss equation 30.

Expect the loss function in equation 12, KL divergence loss function, which shows off in soft RL
methods like SQL Haarnoja et al. (2017) and both the first and the second edition of SAC Haarnoja
et al. (2018a). Especially in SAC, they proposed to update the policy through replacing the old policy
with a new policy πnew, which is based on KL divergence, and guaranteed on policy improvement
compared with the old policy π:

πnew = argmin
π∈Π

DKL

(
π(• |s(t))

∣∣∣∣∣∣∣∣exp
(
Q(s(t), •)

)
Z(s(t))

)
(28)

where Z(s(t)) is set to normalize the distribution. However, if the the policy delivers by neural
networks, one can not replace π by πnew directly. So a policy loss function based on KL divergence
is proposed in SAC’s work replacing equation 28

JπKL(θπ) = DKL

(
π(• |s(t); θπ)

∣∣∣∣∣∣∣∣exp
(
Q(s(t), • ; θQ)

)
Z(s(t); θQ)

)
. (29)

In algorithms with continuous policies like SAC, the KL divergence in equation 29 can not be
evaluated because we need to cover the entire continuous action space. So in soft RL algorithms with
continuous actions, one can only exploit the practical policy loss function equation 3 to update the
soft policy. In SD2PC with discrete policies, however, it is feasible to cover the entire action space
Ad to evaluate the KL divergence policy loss. By the same consideration with equation 13 to reduce
the computational complexity, we decouple the global KL divergence in equation 29 across action
dimensions to a sum of the single-dimensional KL divergence policy loss functions, which can be
evaluated by covering each dimension’s discrete action sapceAdm

JπKL(θπ) =
1

M

M∑
m=1

DKL

(
π(• |s(t); θπ)

∣∣∣∣∣
∣∣∣∣∣exp

(
1
αMQ(s(t), {• , ãm(t)}; θQ)

)
Z(s(t), ãm(t); θQ)

)
(30)

15

Under review as a conference paper at ICLR 2023

To validate the effectiveness of the KL divergence policy loss function in equation 30 for SD2PC,
we tested our SD2PC method incorporates equation 30 on the MuJoCo continuous control tasks.
Experimental results in Figure 10 shows that our SD2PC with equation 30, which is marked as
SD2PC-KL, performed equivalently to the SD2PC algorithm incorporates with policy loss function
in equation 13. However, consider that equation 13 is easier to be realized, we insist on setting
equation 13 to be the the policy loss function of our algorithm SD2PC.

B IMPLEMENTATION DETAILS FOR D3PC

B.1 EXPLORATION STRATEGY OF D3PC

In RL algorithms with discrete action space and deterministic policies like DQN, we can use ε-greedy
to explore the action space. However, for continuous control tasks, a considerable ε can cause the
high-frequency presence of extreme actions, which leads to unstable performances.

Mentioned that if we use RL algorithms with discrete action space to solve continuous control
problems, we need to transform the output of the discrete action by the policy into continuous
actions to interact with the environment. And for our D3PC algorithm, the transition experience
{s(t), a(t), rt, s(t+ 1)} is used to train the critic network, which implies that the action a(t) in the
transition experience is continuous. So, in D3PC, we can use the Gaussian exploration strategy to first
convert the discrete action into continuous action, and then add a Gaussian exploration noise to it.

However, during our evaluations, we found that with Gaussian Exploration Strategy only, D3PC may
sometimes fall into local optimal in some baseline environments, such as Walker2d-v2, which may
significantly influence the training efficiency of the algorithm. Considering that we can hardly explore
the whole discrete action space through Gaussian exploration noise, in which some of the discrete
actions far from the selected action is unreachable, we have designed a “ε-Gaussian exploration
strategy hybridizing ε-greedy and Gaussian exploration strategy to explore the discrete action space
effectively and stably.

The leading cause of unstable performances when ε-greedy apply to RL algorithms with discrete
action space on continuous control tasks, is that they select a global policy scholastically instead of
action-dimensional policies. In order to utilize ε-greedy stably, we apply ε-greedy independently to
each action dimension, select a random action with probability ε. In that way, there will be only a few
single-dimensional actions chosen randomly by ε-greedy in a single step, which can significantly
eliminate the disturbances of extreme actions.

In our ε-Gaussian exploration strategy, after ε-greedy exploration, we applied a Gaussian exploration
noise on the action of whether it is chosen by ε-greedy or not. We marked the exploration policy of
D3PC with ε-Gaussian as πεG, which is presented in D3PC’s pseudo code. πεG can be expressed as
follows:

am(t) = πε
(
µ(a(t)|s(t); θd)

)
+N (0, σ2) (31a)

a(t) = {a1(t), ..., am(t)} (31b)

in which πε represents the ε-greedy exploration strategy.

B.2 PSEUDO CODE OF ALGORITHM D3PC

Similar to SD2PC, we present double critic net work in D3PC to eliminate the over-estimation
problem. With double critic networks and their parametersθQ1, θQ2, the value loss of D3PC becomes

JQ(θQi) =
[
Q(s(t), a(t); θQi)−

(
rt + γ min

j={1,2}
Q(s(t), µ(s(t+ 1); θ′d); θ

′
Qj)
)]2

(32)

And the deterministic policy loss under double critic networks

Jdm,n(θd) =
(
Qd(s(t), a

d
m,n; θd)− min

j={1,2}
Q(s(t), {adm,n, µm(s(t); θd)}; θQj)

)2

(33)

With the value and policy loss function in equation 32 and equation 33 replacing equation 20 and
equation 18, we can give out the pseudo code of double critic D3PC with λd, λQ the learning rate of
the decomposed Q network and the critic networks

16

Under review as a conference paper at ICLR 2023

Algorithm 2 Deterministic Decomposed Discrete Policy-Critic (D3PC)

Initialize network parameters θd, θQ1, θQ2, target network parameters θ′d, θ′Q1, θ′Q2

Initialize replay buffer B ← {}, batch size B, hyperparameters λd, λQ, τ, γ
Initialize exploration rate σ, ε

for t = 0 to T do
Sample an action by ε-Gaussian: a(t) ∼ πεG(a(t)|s(t); θd)
Takes action a(t), observes reward rt and next state s(t+ 1)

Store transition experience {s(t), a(t), rt, s(t+ 1)} in B
if Training then

Sample a minibatch of B transitions {s(T), a(T), rT , s(T + 1)} from B
θQi ← θQi − λQ∇θQiJQ(θQi) For i ∈ {1, 2}
ãT = µ(ãT |s(T); θd)
θd ← θd − λd∇θdJd(θd)
θ′d ← τθd + (1− τ)θ′d
θ′Q1 ← τθQ1 + (1− τ)θ′Q1

θ′Q2 ← τθQ2 + (1− τ)θ′Q2

end if
end for

B.3 HYPERPARAMETERS OF D3PC

Table 2: Hyperparameters of D3PC

Hyperparameter Definition Value

N discrete actions per dimension 20
ε random exploration rate 0.05
σ Gaussian exploration noise 0.05
τ stepsize of soft target update 5× 10−3

B batch size 256

λd discrete Q learning rate
3× 10−4 (Humanoid-v2, Ant-v2)
10−3 (other environments)

λQ critic learning rate
3× 10−4 (Humanoid-v2, Ant-v2)
10−3 (other environments)

B.4 NETWORK STRUCTURE OF D3PC

The structure of D3PC’s critic network is the same as SD3PC’s critic, which presents above in Figure
8. And for D3PC’s decomposed Q network, its structure is similar to SD2PC’s policy network in
Figure 7 which have two hidden layers. The main distinction is that D3PC’s policy matrix outputs
straightly without softmax regularization because the discrete Q value is defined on [−∞,∞].

17

Under review as a conference paper at ICLR 2023

C IMPLEMENTATION DETAILS FOR QPC

C.1 PSEUDO CODE OF QPC

With the introduction of double critic networks, Qd and Qp are presented in equation 21a are defined
as follows

Q′d = min
j={1,2}

Q(s(t+ 1), µ(s(t+ 1); θ′d); θ
′
Qj) (34a)

Q′p = min
j={1,2}

Q(s(t+ 1), µp(s(t+ 1), θ′p); θ
′
Qj). (34b)

And the value loss function for Q1, Q2

JQ(θQi) =
[
Q(s(t), a(t); θQi)− (rt + γQ′dp)

]2 for i ∈ {1, 2} (35)

In QPC, we apply the delayed policy updates in TD3 Fujimoto et al. (2018) to our continuous policy
network, which updates θp once every h step. As we mentioned in Section 6 we set the initial steps of
QPC to Tβ = 1× 105 with β fixed to 1, and a decay rate β− = 1− 5× 106 to smoothly transform β
to βmin = 0.5.

with equation 35 replacing equation 21b, pseudo-code of QPC is presented as follows, with λd, λp
and λQ the learning rate of decomposed Q network, continuous policy network, and critic networks,
and Jp(θp) the same format with equation 2

Algorithm 3 Q-policy-Critic (QPC)

Initialize network parameters θd, θp, θQ1, θQ2, target network parameters θ′d, θ′Q1, θ′Q2, θ′p
Initialize replay buffer B ← {}, batch size B, hyperparameters λd, λp, λQ, τ, γ, h
Initialize exploration rate σ, ε,
Initialize β = 1, β−, Tβ

for t = 0 to T do
Sample action from Q network by ε-Gaussian: a(t) ∼ πεG(a(t)|s(t); θd)
Sample action from the continuous policy : ap(t) = µp(s(t); θp) +N (0, σ2)

a(t)← βa(t) + (1− β)a(t)
Takes action a(t), observes reward rt and next state s(t+ 1)

Store transition experience {s(t), a(t), rt, s(t+ 1)} in B
if Training then

Sample a minibatch of B transitions {s(T), a(T), rT , s(T + 1)} from B
Generate Q′v , Q′p
Q′vp = βQ′v + (1− β)Q′p
θQi ← θQi − λQ∇θQiJQ(θQi) For i ∈ {1, 2}
ãT = µ(ãT |s(T); θd)
θd ← θd − λd∇θdJd(θd)
if t mod h then

θp ← θp − λp∇θpJp(θp)
θ′p ← τθp + (1− τ)θ′p

end if
θ′Q1 ← τθQ1 + (1− τ)θ′Q1

θ′Q2 ← τθQ2 + (1− τ)θ′Q2

if t > Tβ then
β ← (β − βmin) • β− + βmin

end if
end if

end for

18

Under review as a conference paper at ICLR 2023

C.2 HYPERPARAMETERS OF QPC

Table 3: Hyperparameters for QPC

Hyperparameter Definition Value

N discrete actions per dimension 20
ε random exploration rate 0.05
σ Gaussian exploration noise 0.05
τ stepsize of soft target update 5× 10−3

B batch size 256
Tβ initial steps 2× 105

β− decay rate of β 1− 5× 10−6

βmin minimum value of β 0.5
h policy delay 2

λd decomposed Q learning rate
3× 10−4 (Humanoid-v2, Ant-v2)
10−3 (other environments)

λp continuous policy learning rate
3× 10−4 (Humanoid-v2, Ant-v2)
10−3 (other environments)

λQ critic learning rate
3× 10−4 (Humanoid-v2, Ant-v2)
10−3 (other environments)

C.3 DETAILS OF THE CONCEPTUAL ALGORITHMS

Algorithm 4 conceptual Algorithm D3PC-CA

Initialize network parameters θd, θp, θQ1, θQ2, target network parameters θ′d, θ′Q1, θ′Q2, θ′p
Initialize replay buffer B ← {}, batch size B, hyperparameters λd, λp, λQ, τ, γ, h
Initialize exploration rate σ, ε,

for t = 0 to T do
if Evaluation then

Sample action from the continuous policy : a(t) = µp(s(t); θp)

else
Sample action from Q network by ε-Gaussian: a(t) = πεG(a(t)|s(t); θd) +N (0, σ2)

end if
Takes action a(t), observes reward rt and next state s(t+ 1)

Store transition experience {s(t), a(t), rt, s(t+ 1)} in B
if Training then

Sample a minibatch of B transitions {s(T), a(T), rT , s(T + 1)} from B
θQi ← θQi − λQ∇θQiJQ(θQi) For i ∈ {1, 2}
ãT = µ(ãT |s(T); θd)
θd ← θd − λd∇θdJd(θd)
if t mod h then

θp ← θp − λp∇θpJp(θp)
θ′p ← τθp + (1− τ)θ′p

end if
θ′d ← τθd + (1− τ)θ′d
θ′Q1 ← τθQ1 + (1− τ)θ′Q1

θ′Q2 ← τθQ2 + (1− τ)θ′Q2

end if
end for

19

Under review as a conference paper at ICLR 2023

In Section 6, we presents two conceptual algorithms: D3PC-continuous actor(D3PC-CA) and TD3-
decomposed Q net (TD3-DQ) to explore the possibility of using D3PC’s critic network to fit a
continuous policy or utilizing TD3’s critic network to train a decomposed discrete policy. Essentially,
D3PC-CA can be regarded as QPC with β = 0 and presents the continuous policy during evaluation.
We give out D3PC-CA’S pseudo-code in Algorithm 4.

For TD3-DQ, it can be regarded as QPC with β = 1, or TD3 with a decomposed Q network training
alone, optimizing itself with TD3’s critic providing evaluations. To give credible results, we present
TD3’s target policy smoothness in TD3-DQ. TD3-DQ’s pseudo-code is in Algorithm 5.

Algorithm 5 conceptual Algorithm TD3-DQ

Initialize network parameters θd, θp, θQ1, θQ2, target network parameters θ′d, θ′Q1, θ′Q2,θ′p
Initialize replay buffer B ← {}, batch size B, hyperparameters λd, λp, λQ, τ, γ, h
Initialize Gaussian exploration noise σ, target policy smoothness σ′

for t = 0 to T do
if Evaluation then

Gets an action from the Q network: a(t) = µ(a(t)|s(t); θd)
else

Gets an action from the continuous policy : a(t) = µp(s(t); θp) +N (0, σ2)

end if
Takes action a(t), observes reward rt and next state s(t+ 1)

Store transition experiences {s(t), a(t), rt, s(t+ 1)} in B
if Training then

Sample a minibatch of B transitions {s(T), a(T), rT , s(T + 1)} from B
Get the target action a(T +∞) = µp(s(T); θp) +N (0, σ′2)

θQi ← θQi − λQ∇θQiJQ(θQi) For i ∈ {1, 2}
ãT = µ(ã(T)|s(T); θd)
θd ← θd − λd∇θdJd(θd)
if t mod h then

θp ← θp − λp∇θpJp(θp)
θ′p ← τθp + (1− τ)θ′p

end if
θ′d ← τθd + (1− τ)θ′d
θ′Q1 ← τθQ1 + (1− τ)θ′Q1

θ′Q2 ← τθQ2 + (1− τ)θ′Q2

end if
end for

20

Under review as a conference paper at ICLR 2023

D CONTINUOUS CONTROL TASKS BASED ON MUJOCO ENVIRONMENTS

The continuous control tasks, which are utilized to evaluate our algorithms, are based on the MuJoCo
physics engine and OpenAI Gym benchmark suite. These tasks are summarized in Fig.11, which
both own high-dimensional continuous state space, like humanoid-v2 with 376 continuous states
and Ant-v2 with 111 continuous states. As to the actions, some of these tasks own high-dimensional
continuous action space, which is set to evaluate the effectiveness of our algorithms in handling
high-dimensional continuous actions. For some other tasks like InvertedDoublePendulum-v2 with
only one continuous action dimension, evaluations of our proposed algorithms in these environments
proved that our algorithms perform well in simple environments. Attributes of all the six continuous
control tasks are listed in Table.4.

Table 4: Attributes of the baseline environments

Environment State dimension Action dimension with termination

Hopper-v2 11 3 True
Walker2d-v2 17 6 True
HalfCheetah-v2 17 6 False
Ant-v2 111 8 True
Humanoid-v2 376 17 True
InvertedDoublePendulum-v2 11 1 True

Figure 11: MuJoCo continuous control tasks. Top: Hopper-v2, Walker2d-v2, HalfCheetah-v2;
Bottom: Ant-v2, Humanoid-v2, InvertedDoublePendulum-v2

21

Under review as a conference paper at ICLR 2023

E ADDITIONAL EXPERIMENTS

E.1 STUDIES ON THE ACCURACY OF ACTION DISCRETIZATION

In our algorithms with decomposed discrete policies, we need to discretize each continuous action
space into N discrete actions before the training process. However, the quantity of N may influence
the algorithm’s training efficiency. In this section, we evaluated our algorithm SD2PC on several
baseline environments with N = 10, 20, or 50. Experimental results show that higher N may lead to
more effective performances. In contrast, if a small N presents in our algorithms which indicates the
action discretization accuracy is low, the algorithm may be failed to update an effective policy. Our
algorithms, including SD2PC and D3PC, can inherit some relatively high N and not lead to training
failures. However, if our algorithms incorporate an excessive N , the policy network that owns MN
output neurons may become hard to train. What’s more, higher N indicates higher computational
complexity.

So, during our evaluations, we usually set N to 20. Evaluation of different action discretization levels
N is showed in Figure 12.

Figure 12: Results for different action discretization levels N .

22

Under review as a conference paper at ICLR 2023

E.2 STUDIES ON SD2PC’S TARGET ENTROPY

In our algorithms with decomposed discrete policies, we need to discretize each continuous action
space into N discrete actions before the training process. However, the quantity of N may influence
the algorithm’s training efficiency. In this section, we evaluated our algorithm SD2PC on several
baseline environments with N = 10, 20, or 50. Experimental results show that higher N may lead to
more effective performances. In contrast, if a small N presents in our algorithms which indicates the
action discretization accuracy is low, the algorithm may be failed to update an effective policy. Our
algorithms, including SD2PC and D3PC, can inherit some relatively high N and not lead to training
failures. However, if our algorithms incorporate an excessive N , the policy network that owns MN
output neurons may become hard to train. What’s more, higher N indicates higher computational
complexity.

Figure 13: Results for different target entropyH in SD2PC.

23

Under review as a conference paper at ICLR 2023

E.3 ABLATION STUDIES ON THE EXPLORATION STRATEGY OF D3PC

In our algorithm D3PC, we present a ε-Gaussian hybrid strategy, which associates ε-greedy and
Gaussian exploration noise to explore the environment. In this section, we set an ablation study
comparing different exploration strategies of D3PC:

ε-greedy exploration, with only an ε = 0.1 to explore the action space

Gaussian exploration strategy, setting a Gaussian exploration noise chich µ = 0 and σ = 0.1

ε-Gaussian exploration strategy, which ε = 0.05 and σ = 0.05

Training curves of different exploration strategies are shown in Figure 14. Although ε-greedy or
Gaussian exploration strategy works well independently in some environments, in other environments,
they may have drawbacks leading to low training efficiency or local optimal problems. In our
algorithm D3PC, we set ε-Gaussian as the exploration strategy. It works well in all of the six
continuous control tasks.

Figure 14: Results for different exploration strategies associated with D3PC: ε-greedy with ε = 0.1,
Gaussian exploration strategy with σ = 0.1, and ε-Gaussian exploration strategy with ε = 0.05 and
σ = 0.05.

24

Under review as a conference paper at ICLR 2023

E.4 SEPERATED EVALUATIONS OF ALGORITHMS WITH STOCHASTIC OR DETERMINISTIC
POLICIES

In this section, we present the baseline evaluation with separation, which compares the deterministic
algorithms, including DDPG, TD3, D3PC, QPC; and the stochastic algorithms, including SAC,
and SD2PC, respectively. Results in Fig. 15 indicate our SD2PC performs similarly to SAC on
Humanoid-v2 but better than SAC in the other tasks. As for the deterministic algorithms, Fig. 16
indicates our QPC performs better than TD3 in all of the six benchmark tasks.

Figure 15: Training curves of the stochastic algorithms, which are averaged over five random seeds.

Figure 16: Training curves of the deterministic algorithms, which are averaged over five random
seeds.

25

	Introduction
	Related work
	Decomposed Discrete Policy-Critic Structure
	Stochastic Soft Decomposed Discrete Policy-Critic
	Deterministic Decomposed Discrete Policy-Critic
	Actor-Critic with Discrete-Continuous Hybrid Policy
	Experiments
	Conclusions
	implementation details for SD2PC
	pseudo code of algorithm SD2PC
	Hyperparameters for SD2PC
	Network structure of algorithm SD2PC
	Action Probability Transfer of SD2PC
	KL divergence policy loss for SD2PC

	Implementation details for D3PC
	Exploration Strategy of D3PC
	Pseudo code of algorithm D3PC
	Hyperparameters of D3PC
	Network structure of D3PC

	Implementation details for QPC
	Pseudo code of QPC
	Hyperparameters of QPC
	Details of the conceptual algorithms

	Continuous Control tasks based on MuJoCo Environments
	Additional experiments
	Studies on the accuracy of action discretization
	Studies on SD2PC's target entropy
	Ablation studies on the exploration strategy of D3PC
	Seperated Evaluations of algorithms with stochastic or deterministic policies

