A Analysis of algorithm under conditions of Theorem 3.1

Here we recall some basic setup introduced in the sketch of analysis in Section Recall the

singular value decomposition of X} is

Dy 0
0 0
where U € R¥*" V' € R™4=" D% € R"™". U and V has orthonormal columns and U "V = 0.

The i-th largest singular values of X} is denoted as o;. Thus, o1 and o, are the largest and smallest

diagonal entries of D7 respectively. Since X}, is assumed to have rank r, we have o, = 0,42 =
... = 04 = 0. The condition number is defined to be x = Z*. Since union of column space of U and

X, =[U V][ }[U V], (A.1)

V spans the whole space, for any F; € R%*", we can write
Ft = USt + VTt, (AZ)
where S, = UTF, e R"** and T, = VT F, € RU4=")*F,

We now formalize the idea of closeness of subgradient dynamics to its smooth counter part described
in Section By assumption (iii) in Theorem the RDPP holds with parameters (k + 7, / 56)
and 0 = =7 for some small constant ¢ depending on c3 in Theorem E Since the RDPP holds, let

3V
(B F, — Xp) T
= , Dye D(FF, — Xy), (A.3)
CENRE X e PEE X
we have
/1
-
||T]tDt _’yt(FtFt _Xh)HF,k—&-’r’ S Mt %5 (A4)
< nep(F B, — Xy)0 (A5)
= || FuF, — X p. (A.6)
Define the following shorthand Ay,
A=, — (RFT - X (a7)
t
Then (A.4) becomes
(a)
1A < SIIEF — Xglle < 0VE+7 |[FRE — Xq|. (A.8)

Here step (a) is because I, F,” — X has rank no more than k + r.

Using that fact that the subgradient we used in algorithm [3.1|can be written as g, = D, F;, we have

Fip1 = Fy — w(FiF,| — Xp)Fy + A, (A.9)
Note that if we ignore the error term v, A, F} in (A.9), the update equation becomes
Fo1 = F, — v (RF, — X;) Fy. (A.10)

This update is the update of gradient descent for the smooth function f(F) = L|FFT — X% with
stepsize ;. We will refer (A.10) as the “population-level” update and we will leverage the properties
of this update throughout the analysis. We are now ready to start our full analysis of the subgradient

dynamics. We first characterize the initialization quality in terms of S and 7.

Proposition A.1 (Initialization quality). Under the condition on Fy sated in (3.3) of Theorem|3.1|
we have

o (S0) = Y (A1)
. oy \/€o,
< .
||T0H = I’Illn{ 200@7 40 }7 (A 12)
150l < 2¢/1, (A.13)
4||To|* < 0.0010,(Sp) -2 (A.14)
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In the analysis, we denote 0,.(Sy) by p and let ¢, = min{m, %} Then we have
on(S0) = p = Y (A.15)
I Toll < cop (A.16)
[1Soll < 2v/7. (A17)
The parameters satisfy 4(c,p)? < 0.001/)\}’(%1 and c,p < min{0.1,/07, 206’\7‘/5} = 20(‘)7\"/5, which
will be applied multiple times in the following analysis.
The next proposition illustrates the evolution of S; and 7.
Proposition A.2 (Updates of Sy, T}). For anyt > 0, we have
St+1 = St — Yt (StS;rSt + StTtTTt — DZSt) + ’)/tUTAtFt, (Alg)
Tipr = Tp = 7 (LT T+ ToSTS0) + 73V T A (A.19)
We introduce notations
Mi(St) = S =7 (SeS/] S + ST, Ty — D5S) (A.20)
Ni(T) = Tp = 3 (LT T + T1S/ St) - (A21)

They are "population-level" updates for S; and T3.

Proposition A.3 (Uniform upper bound). Suppose ~; satisfies v, < °2% for all t > 0 and
(50v/kd)s < —20\;% = Jo05 We have

IT:|| < cpp < 0.14/0, < 0.1,/07 (A.22)
[Sell < 2/a1 (A.23)

forallt > 0.
The analysis of algorithm consists of three stages:

* In stage 1, we show at 0,.(S;) increases geometrically to level /% by time 7, then

HStS: — D% will decrease geometrically to %(S {55)by Ti. The iterate will
then enter a good region.

* In stage 2, we show that D, = max{HStStT — Dg” , HStTtTH} decreases geometrically
if it is bigger than 106v/2koq, which is the computational threshold. In other words,

| S¢S, — D%|| decrease to a % geometrically, and this will happen by 7.
* In stage 3, after Tz, By = max{||S.S] — Dg||, ||[S:T,"||,||TvT," ||} converges to 0 sublin-
early.

In the above statement,

;) VOr 0703
T = {log (ﬂp) / log (1 + 602 , (A.24)
[ tog(e?) |
Ti="T + (A.25)

log (10005\/Eal ) T

and
log (1 — cg;;”)

Stage 1 consists of all the iterations up to time 7;. Stage 2 consists of all the iterations between 77 + 1
and 7. Stage 3 consists of all the iterations afterwards.

To=T + (A.26)
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A.1 Analysis of M,(S;) and N;(T}).

In this sections we prove some facts about M, (S;) and N;(1T}) that will be useful in the analysis.

| < 2y/01, 0.(St) > /% and ||T;|| <

Proposition A.4. Suppose v; < min{o&—?l 7 O.(C)Tl%ar
0.1/, we have the following:

1 [MUSIMS)T = D < (1 — 52) 5,87 - D+ 3 ity |
Suppose v < 05‘—?1, |Se]| < 2y/o1, and ||Ty|| < 0.1,/0,, we have the following:
2 WATONUT)T|| < I P (1= 3 1LY = IBTT]| (1= 53 | T ).

[ < 2yo1, 00(S)) =2 V5

we have same mequalltles as 1, 2 and

Furthermore, suppose v; < I < 0.1,/ and

||StS *DSH < T 10°

30 | M(SONU(T) T|| < (1 — 2Z=) ||y ).

Proposition A.5. Suppose ~; < %2 ||St|| < 2y/o1, 0,(S:) = /% and | Ty|| < 0.1\/5,, we have
the following:

1 1Dg ~ M(SOST]| < (1 257) D5 — 5,87 || + 70 i1y

2. || Me(S)T || < 2||SeTyT -

5 M@y < 7S ||

4 MT)T || < TP (=7 1) = || (1= | T ) -

A.2 Analysis of Stage 1

The following proposition characterize the evolution of ,.(S;). In stage one, we start with a
initialization satisfies conditions in Proposition [A.T]

Proposition A.6. Suppose there is some constant c,, > 0 such that the parameters satisfy C;% <
1

. 1 g _ _Op 1 CoP  _
Ve < min{ 5557, 1000§} = 10002 (50Vkd)s < 2ver = 000, We have

o2
o, (Sy) > min {(1 e T g (S0), "2 } (A27)
o1
forallt > 0. In particular, we have
Or
o (ST +1) > ,/?. (A.28)

forallt > 0.

Next, we show that ||St S, — D:“,;H decays geometrically to w.

Proposition A.7. Suppose there is some constant c., > 0 such that the parameters satisfy <25~ <
¥ o7

¢ < min{ 10501, 10(6’;%} = 10002, (50Vkd)3 < f;’i we have for any t > 0, we have

100(c,pp)?oq

2
O
|S73 4457, 1 — D3| < max{501(1 — ; =), b (A.29)
o3 o,
log(2cer)”)
In particular, for Ty = T{ + ——2 |, we have
10g< M)
c L 100(cp)e _
|Ses, — Dg|| <« —22—= < vt > 7. (A.30)

or - 100’
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When ¢ = 77, by Proposition[A.7]

|D5 - s757|| < 5. (A31)
By Propositionand our assumption that c,p < 206‘%,
ISH TR < 2(cop)y/o1 < %. (A32)
Combining, we obtain
D7 < % (A.33)
A.3 Analysis of Stage 2
Recall
Dy = max{||S;S — D3|, ||S:.T,"||}- (A34)

We show that D; decreases to 106v/k + roq geometrically after 7;.

Proposition A.8. Suppose there is some constant c,, > 0 such that the parameters satisfy 5~ <
Y o1

v < 0&—?1, Wk+r< %. Also, we suppose || T¢|| < 0.1 /c. for all t. If for some T; > 0,

g Or
D7—1 SmaX{ﬁ,lOé\/k—FTUl}:ﬁ, (A35)
then for any t > 0, we have
co2\' o
D71+ < max { (1 — ga% ) . 10'0, 106V Ek + rol} ) (A.36)
10g(10005\/m01
In particular, for To = T1 + | ——F——~~ |, we have
log,(lfC >
155, — D§|| < 106Vk + 1oy, (A.37)
19T, || < 100VE + 7oy,  VE>Ts. (A38)
A.4 Analysis of Stage 3
Define
Ey = max{||S:S; — D5 ||, ||S:T." || | 1T, ||} (A39)

We are going to show the sublinear convergence of F; in stage three.
Proposition A.9. Suppose we have v, < %, oVk+r< % and E; < 0.010,. for some t > 0.
Then we have

YtOr

6

Et+1 S max{(l — )Et, Et(]. — ’ytEt)} = Et(]. — ’YtEt). (A40)

Indeed, we can prove a better rate if there is no overparametrization.

Proposition A.10. Suppose we have v; < 0&—?1, WVk+r < %ﬁ” and F; < 0.010, for some
t > 0. If k = r, then we have

oy
i1 < (1- 25)E,. (A41)

A.5 Proof of Theorem 3.1

The proof is a combination of all the propositions in this section. First, we show that under suitable
choice of ¢y and c3, all the assumptions are satisfied. First, if we take c3 to be small enough, we know
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that (50v/% 5) < 1005, holds. Hence, all the conditions related to ¢ are satisfied. Next, by definition,

_ mep(FeF, —Xy)
Tt = R E, - Xn

. By the second assumption and the assumption on range of 1, we know

1 o, 20,
€ la 5= ——]. A42
7€ la 2 0% 62\/202] ( )

Since we assumed co < 0.01, so the step size condition ; < 100 0057 is satisfied. Moreover, ¢, >

c1 % Now, applying theorems for initialization, stage 1 and stage 2, we know that

0.0102
157,87, — Trop < ——r, (A43)
01
0.0102
IS5 TL|| < 105vVE +roy < —2r. (A44)
01
In addition, by Proposition we know
0.0102
RT3 = I1Tn ) < (cp)® < === (A45)
0.0102
Hence, E7, < ——=. Here are two cases:
e k>r,By PropositionMand induction, we know
COp
Et+1 S Et(l — ’YtEt) S Et(l — ’;2 Et)y \V/t Z 7—2 (A46)
1
where cl\/% < ¢y <0.01. Define Gy = Cj;;r E, then we have G, < 1 and
1
Gir1 < Gi(1 = Gy), vVt > Ta. (A4T)
Taking reciprocal, we obtain
1 >1+ 1 >1+1 vt > T (A.43)
Gy~ G 1-G, — G 7 = ’
So we obtain 1
Gyt < ————,  VE>0. (A.49)
o+t
T2
Plugging in the definition of G, we obtain
o? 1 o? 1 o1 K o1 K
Erpp < — <L = < ———. (A50)
B A A A AR T

Since ¢y > ¢; \/g, we can simply take c5 = i V5. T =Tz, apply Lemma and get

T H
|PreeFry — Xy < 5015 V=0 (A51)
The last thing to justify is 72 < k2 log k. Recall
\/O C 0'2
T’z{lo < ) lo <1+ ’*ﬂ A.52
(QO(CpP) ) )
Ti=T + (A.53)

and
log (10005fal)

k’g(l‘ %)

Simple calculus yield that each integer above is O(x? log k). So the proof is complete in
overspecified case.

To=Ti+ (A.54)
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* k = r. By Proposition|A.10|and induction, we obtain

2
YtOr (& g,
VE: < (1 — =5

07

Eiq < (1— VE, Yt > Ts. (A.55)

Applying this inequality recursively and noting ¢, > ¢; \/% , we obtain

t

ey/2\ 001

Brya < (1- 290 )E <(1-—5 HGT,WEO. (A.56)
01

Thus, we can take cg = 0.01/4, ¢; = ¢; \/% T = T2, apply Lemmaand get

|Frobfe - X < “72 (1= %) w0 (A57)

The validity of 7 is proved in the last part. The proof is complete.

B Proof of Propositions

B.1 Proof of Proposition

First, we note that the r-th singular value of c¢* X} is at least eo,.. By almost the same proof as
Lemma|[[.5] we get

COGO'T

max{||SoS; 1} < |FoFy — ¢ Xy < (B.1)
We take ¢q = (%) By Weyl’s inequality (L.3),
(5057 ) > 0,(¢* D) — ||SoSq > > GZT. (B.2)

Hence, p = 0,(S) > ¥57=. On the other hand,

I To|| < \/‘30:7’” (B.3)

Jr
200\ﬁ 0 B4

We can simply assume o1 (Sg) < 2,/07. If not so, we can normalize Fy so that o1(Sp) = 2,/07 and
use normalized Fy as our initialization. By Weyl’s inequality (L.3),

01(S0S, ) < 1.01c¢% 0. (B.5)

Hence, ¢* > 3. In this case, it is easy to show that p = ¢,.(Sp) > Y5 and || Ty <
holds. Therefore, the initialization quality is proved.

< min{

still

_Oor
200,/01

B.2  Proof of Proposition[A.2]

The algorithm [A.9]updates F} by
Fipi=F—v (FtFtT — X)) Fy + A, (B.6)
Using the definition of U, V, S;, T}, we have
Siy1 =U"Fypq
=U'F, —vwU" (RF, — Xy) Fy + wU A,

=UTUS+VT) —wU' [(USi+VT)(US +VTy)" —UDsUT — VDV (US, + VTy)

+’7tUTAtFt

© S, 1 (SST S, + ST, — D5S,) + U AF,.

Here (#) follows from the fact that U TV = 0 and U, V' are orthonormal.
By the same token, we can show

Ty =T — v (T, T, + T, St) + 7V ' ALF,. (B.7)
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B.3 Proof of Proposition[A.J|

We prove the proposition by induction. By Proposition[A] it’s clear that the proposition holds for
t = 0. Suppose for ¢ > 0, we have

IT2|| < ¢pp < 0.1y/a7 (B.8)
[1S:]] < 2y/a1. (B.9)

By Proposition[A.2] we know

St+1 = St — ’Yt(StStTSt + StTtTTt - DgSt) + ’)/tUTAtFt. (BIO)
Since ||T3|| < ¢pp < 0.1,/071, ||S|| < 2¢/01 and our assumption that v, < %, I—7S'S; —
'ytTtTTt is a PSD matrix. By lemma

HSt (I - ’YtStTSt - ’YtTtTTt)H < ||St (I - ’YtStTSt)H + " HSt” ||TtH2 (B.11)
3
= 1Sl = e 15¢]1* + 01707 - (B.12)
On the other hand, simple triangle inequality yields
1EL] = 1USe + VT < [|Sell + (T2} < 3y/o1. (B.13)
By[A.8]and lemma|[[.4] we get
[AE < Al E (B.14)
< 3070||FiF, — Xy|lr (B.15)
<30fVk+r||FF — X (B.16)
<soiovE+r (IR +11X0) (B.17)
3
< 506V ko? (B.18)
3
<0.102 (B.19)
Combining, we have
ISkl < |8 (I =S St — %I, Ty) || + 7 I D5Sell + e |UT AF| (B.20)
3
<ISel =3 ISP + o1 [1Se]l + 0.2v,07 (B.21)
3
= 1150l (1 + 01 = 150%) + 02300 (.22)

We consider two different cases:

* ||S¢|| < 1.5,/c1. By the inequality above, we have
3
1Se+1]l < IS¢l (1 4+ yo1) + 0.1y:02 < 1.64/01 + 0.2¢/01 < 24/01 (B.23)
e 1.5\/01 < ||S¢|| < 2,/o71. In this case, we have

ISeirll < 11Sell (1 4+ yeo1 — 2.25501) + 027,08 (B.24)
S [Sell (1 = 01) + 0.29001 ||Se | (B.25)
< [1Sell (B.26)
< 2/a;. (B.27)
The desired bound for S;; is established. For T}, 1, we note
Tyog1 = To(I — 3T, Ty — 7S Sy) + vV T AFy. (B.28)
We expand 7417, ; and obtain
T Ty = (NU(T) + 1V T AF)N(TL) + 7V T AF) T (B.29)
SNUTONU(T) T + VI AFEN(T) " + 3N (T AV (B.30)
Z Za
+2VIAFEFAV (B.31)
Z3
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By Proposition we have || Z1]| < ||T.T,7||(1 — 24||T3T," ||). By induction hypothesis and
triangle inequality, we have

1 Za]| < 29506V ko2 | N (T (B.32)
< 27,506V | T (B.33)
and
125 < A2 (505&0?)2 < 0.017,(c,p)". (B.34)
By triangle inequality, we have
T T || < 1 Z0]] + (1 Z2ll + 11 Z]) (B.35)
37t

3
< |TT, (1 = SENTT ) + 29:500VEe 7 | Tyl + 0.019,(cop)* (B.36)

2
We consider two different cases:

]TtTtTH < %. We have

3
| T T || < 1T+ 294500V Eko 2 | Th || + 0.019(cpp)* (B.37)
2 4
S (Cp;) _|_ Vt(CZP) + 0-01’}/t(cpp)4 (B38)
< (cpp)*. (B.39)

¢ < T < ). We e

3"}/15

3
|Tenr T | < ITTN = ST + 29500VEo | Ty +0.019(cop)* (B.40)

3 3
<|ITT | - %(cpp)‘* +29,500VEko P | Ti| +0.017,(cop)*  (B4D)
3 c,p)?
< T = 22 eyt + P 001 ey (B.42)
< |7, |)? (B.43)
< (cpp)*. (B.44)

Hence, we proved the inequality for || 731]|. By induction, the proof is complete.

B.4 Proof of Proposition [A.4]

L [Mu(S)M(S)T = Dg|| < (1 = 2522 |98, — Dl + 37 ||, ||
First, we suppose that we have ~; < min{o&—?l, %}. By definition,

M (Se) = St — % (SeS) Si + S,T,) T — D5Sy) - (B.45)
This yields
Dg — Mt(St)Mt(St)T (B.46)
.
= D%~ [Se— % (557 S, + ST T, — DES)] [0~ (ST S+ ST T, — D5S.)]
(B.47)
=71+ 2y + Zs, (B.48)
where
7y = D — 8,5 —w(Dg — 8:87)9S] — 1SS (D — 5,5,), (B.49)
Zy = 27 ST, TS/, (B.50)
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and
Zy = —v}(SiS; Sy + SiT,) Ty — D5Sy)(S:S Sy + SiT,' T, — D5Sy)T. (B.51)
We bound each of them separately. For Z;, by triangle inequality,

1 1
(D5 — 5:5/) (21 - ’YtStStT> + (21 - ’YtStStT> (D5 — SuS,")

1 1
< H(DE - StStT) (2I - ’YtStStT> H + H <2I - ’YtStStT> (DZ - StStT) H
(B.53)

1221 =

(B.52)

1 1
< (5 —102(Sy)) H StStTH + (5 —707(S4)) ||D§ - StStTH (B.54)
< (1 =m0, ||D5 =SS | (B.55)

The norm of Z5 can be simply bounded by
1Za] < 2, ||S:T)T || (B.56)
For Z3, we can split it as
Z3 = —2(S:S; — D%)S:S, (S:S, — D5)" —~2SyT, T\T,' T, S, (B.57)
— 7 (ST, T (S] SeS; — S, DE) + (SeS, Se — D5Sy) T, TS, ) (B.58)

By triangle inequality and our assumption that ||S;|| < 2/, we have || 5,5,
501. Hence

1Z5] < 207202 ||S0ST — D|| + 0.019%0 || ST || + 242 |58 — Dzl ||S. 777 ||

(B.59)

®

< 200202 ||S,ST — Di|| + 0.0120 ||ST||* + 1200, ||S,:S] — D3| (B.60)

< (200207 + 72010,) ||SeS) — D+ || || (B.61)
20 1 . 2

< (3o 1or + 1ag o) 15688 = D[+ [T | (B.62)

Here (#) follows from our assumption that ||.S;|| < 2,/c7 and ||T|| < 0.1,/7,.. Combining,
we have

D% = Sea1 Sl || S N Zull + 1 Za )| + 11 Zs | (B.63)
21
< (1 —ypo, + ﬁ%ﬁar HDE — StStTH + 2y + ) ||StTtTH2
(B.64)
3Vi0p N
< (1 7;" ) 105 — Su5T || + 3% || 5.7 ||° (B.65)

If we assume HStS — D3 || < Jpandy; < ﬂ instead, the only bound that will change
is

1Z5] < 4204 || 505, — Dgyf +0.01720, ||/ ||° + 292 ||S0ST — D3| |15 ||

(B.66)
< 4o 75 || SiST — 200 || TP + A2oran ||SeST
(B.67)
4 1 T T2
< {10007 *+ g7 ) I15:8 ~ [T " (B.68)

<001

With this bound, we can do same argument except only with ~, to get same bound

3’Yt0-r

HDg_sms;ngQ_ )HDS SsT 4+ 3 |STTIP (B69)
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2 [N(@NUT)T] < TP (1 =7 1T = (||| (1= | 17T
By definition,
Ni(Ty) =Ty — v (TyT, T, + T,S, Sy). (B.70)

Plug this into NV (T;)N;(T;) T, we obtain

NATONAT)T = (T — w(TyT] Ty + TS7 S0)) (T — (TiT, Ty + TS, Sh))

(B.71)
=Zs+ Zs+ Zs (B.72)
where
Zy =TT, — 27T, T, T, T,", (B.73)
Zs = —2vT,S, S,T," +~*T,S,]S,SS,T,", (B.74)
and
Zs = ¢ [IT, (TS, SiT,") + (T:S) ST, ) LT, | (B.75)
We bound each of them separately. By lemma|[[.T} we obtain
1Z4)) < |TZT," = 20T, 1T | (B.76)
< | T (1 =2y | L)) B.77)
= |T)* (1 = 27 | T2|%). (B.78)
On the other hand,
Zs = —2vT;S, SiT," +~2T.S, S:S, S,T, (B.79)
= —2’7tTtS (I ’YtStST)StTT (B80)
< 0. (B.81)
Furthermore,
2
1 Zs| <42 ||S Sel| |1 T2T || (B.82)
< Llnr|’ (B.83)
Combining, we obtain
INUTON(T) || = 124+ Zs + Zo|| (B.84)
<||1Z4 + Zs|| + || Zs || (B.85)
< || Zall + | Zs (B.86)
3
< |z (= S|z (B.87)

The second inequality follows from the fact that Zs < 0. In this proof, we only need
7 < M

M NT)T |02 s
By definition of M (S;), N¢(T%), we have

(St M Tt ( ’Yt StS St —|—StT Tt DSSt)) ( '_Yt(TtT Tt —I—TtS St))

(B.88)
= Z7 + Zs + Zo, (B.89)
where
Zr = (I —%5:57)S:T,, (B.90)
Zs = w(Dg — $:8) ST, (B.91)
and

Zo = =278, T," TyT,” +~72(S: S, Sy + ST, T, — D5S) (T, T, Ty + TS, S¢) . (B.92)

22



We bound each of them. By our assumption that o,.(S;) > /%,

122 < (1 = 225 ST (B.93)
By the assumption that | D% — 5,5/ || < %=,
125l < L2 (IS || (B.94)
For Zy, we use triangle inequality and get
1 Zo|l < ||2veSeT T || + 47 [|(SeS) — D) ST T, || (B.95)
+97|(SeS” = D5)SeS! ST 447 |83 TU T TTT + 5 8.1 )|
(B.96)
& 2o ST 42 O ST |+ 432 S [ | B.97)
i (100) 1577 + 2 (2\/?) 182" | (B.98)
20 s | (B.99)

In (£), we used the bound that || S, 7,7 || < [|S:]| |T3]| < 2427 and | LT, || < &5. (%)
follows from our assumption that v, < —0 . Combining, we obtam

[Me(SONAT) T < 11Z2]l + 11 Zs| + 11 Zo]| (B.100)
<(1 %U’)HStTTH (B.101)

B.5 Proof of Proposition [A.5]

‘We prove them one by one.

L || D = My(S)S] || < (1—222) | D — SuS] ||+74 ||S:T," || By definition of M;(S;),

we know that

M(S)S] — D% = S8 — 7 (S:S, S + S:T,' T, — D5S;)S — D% (B.102)
= (8¢S, — DE)(I —7:5:S, ) — ST, T;.S, . (B.103)

By our assumption that o,.(S;) > /%, we know

[(SeS" = DE)I — 38,80 )|| < (1— =+ HstsT (B.104)
By triangle inequality, the result follows.
2. ||Me(Se)T,T|| < 2||S:T,||- By definition of M (S;), we have
M(S)T," = ST," — (eS| St + ST, T, — D5S,)T," (B.105)

Triangle inequality yields
7 (568 Si + ST Ty = DESOHT || < %(1Sel” + I T2l + D) | ST || (B-106)
< y(4oy +0.010, + 01) || ST, || (B.107)
< ||S:.T|| (B.108)

The last inequality follows from our assumption that v, < 0[',—?1. By triangle inequality again,

we obtain
IMSOTT | < ST + 187y || = 2 ST (B.109
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3. |IWe(T) ST || < ||T2S/ || By definition of NG (T7),
N{(TV)S, =T,8] —yw(TT," Ty + T3S S;) S, (B.110)

1 1
= <21 — %TtTtT> T,S; + TS (21 - %Stsj> (B.111)
By triangle inequality,

HNt(TT)StTH <

1 1
' (21 - %TtTtT> T,S, 1,8, (21 - %Stsj> H (B.112)

<|| TS| (B.113)

il

The last inequality follows from the choice of 7 and the fact that || (31 — v 37,7 || < 3.
1T =S8 < 3

4 [M@)TT|| < IT)PQ = % L)) = |57 (1 — % || |) - By definition of
N;i(Ty), we have

NATHT," = T, — (T, T) + TS, ST, (B.114)
=TT, (I —vT.T,") — v TS] ST, (B.115)
< T, (I —vT:T,") (B.116)
As aresult of lemmalL.1} we have
IN(T)T || < |72 || (1= |7 ) = 1T (= 1T (B.117)

B.6 Proof of Proposition [A.6]

We prove this proposition by induction. Note that the inequality [A.27 holds trivially when s = 0.
Suppose it holds for ¢ > 0. By Proposition we can write Sy as

Sip1 = (I =SS, +%D%) St — wSiT, Ty + vU T AF, (B.118)
= (I +D%) S(I — 7S] St) + 72 D5SS! Se — wST, T, + WU T AF,  (B.119)

These two ways of expressing Sy are crucial to the proof.
For the ease of notation, we introduce some notations. Let

Hy =1 — %58 +7Dj (B.120)
B, = ST, T, —U"AF, (B.121)
By Propositionand our assumption that (50\/%6)% < 2%, we have

1B < ISell 1T2l” + [| A Fe | (B.122)

< 2epp)2 a1 + 500Vko? (B.123)

2 (Cpp)g
< 2(c,p)*/o1 + e (B.124)
< 3(c,p)*/a1. (B.125)

In the last inequality, we used our assumption that c,p < 0.1,/0;. By lemmal|l.1{and our choice of
~¢, we know H, is invertible and

|1 < ! < ! <2 (B.126)

L=yl [Dgll ~ 1= 004 =001 =
By[B.I18, we can write
Sy = H; 'Sps1 + v Hy ' By (B.127)
Plug this in to[B.T19 and rearrange, we get

(I —92D5SiS H; ') Spvn = (I +7D%) Se(I — S, Se) +~42D5S,S, H ' By — v B,

Z Zs

(B.128)
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Let’s consider the r-th singular value of both sides. For LHS, by lemma and lemmall.

o, (I =4 D5S: ST H ) Sip1) < ||(I = ~42D5S: S Hi ) || 0 (Ses1) (B.129)
1
< =2 |[D5S:5; Hy 1“ o (St41) (B.130)
< ﬁwor(sm)- (B.131)
For RHS, we consider Z; and Z5 separately. For Z1, by lemma we have
0.(Z) > op(I + v D%) - 0,(S: (I — 7.5, Sy)) (B.132)
= (14 v0,)0,.(S)) (1 — 7:02(Sy)) (B.133)
For Z,, by triangle inequality,
142 D5S: S, Hy ' Ey — 1B || < HDzstsT Hy By A+ e || B (B.134)
< (8701 + ) | Bl (B.135)
< 3(8vi0f + Vi) (cop)’ Vot (B.136)
Combining, by lemma|[.3| we obtain
o (I +7D%) Se(I — 7S Sy) + 72 D5S: S H ' Ey — 4 Fy) (B.137)
> 0p (Z1) = v 1Bl — || Z2 || (B.138)
> (1+%00)0r(Se) (1 = 107 (Sh)) — 3(8v/0F + 1) (cop)*V/or. (B.139)
By induction hypothesis, we know o.(S;) > p. Note we assumed that 40123;) <0.01 \‘/7(%, so we have
3(87707 + 1) (cop) Va1 < 4yilcop)®or < 0.01y:0,0,(S;) (B.140)
Consequently, we get
o (I 4 4D%) Se(I —4S1S,) +v2D5S,S] HT ' Ey — 4, Fy) (B.141)
> (1 +v:0,)0,(Se) (1 — 7:02(S;)) — 0.010,.0,(S;) (B.142)
= 0,(5) (1 +0.99v,0, — 102(S;) — VEUrUE(St)) (B.143)
Combining the LHS and RHS, we finally get
0r(Si1) > (1 — 89707) (1 + 0.99v0, — v02(St) — vioro2(Sh)) o(St) (B.144)

‘We consider two cases(recall o, = %).

* 0,.(St) > 4 /37 =, By|B.144} we know that

0r(Sis1) > (1 = 8y20)(1 — 5v,01)0,(Sh). (B.145)
Here we used ProposmonEto bound o,.(S;) by 2,/a7. Since v; < %21, simple calculation

shows that
0r(Sir1) > (1 = 8y203)(1 — 5y,01) \/ >y / (B.146)

» 0,(S;) < 1/2%=. By|B.144 and induction hypothesis, we know
0 (Sey1) > (1= 84707) (14 0.99910, — %07(Si) — v 0r07(S1)) 00(Se)  (B.147)

IS

> (1=8qf0}) (1+25) 0 (8) (B.148)
YO,
(1 + 5 )ar(St) (B.149)
of
> : 'YU t+1 S Or 50
> min{(1 + 607 —— )"0 (S0), —} (B.150)
We used the bound v; > C”‘” in the last inequality.

By induction, we proved inequalitnyor o, (St). By our choice of 71, it’s easy to verify that
or(STiee) 2 4[5 VE2 0, (B.151)
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B.7 Proof of Proposition[A.7]

We prove it by induction. For the ease of notation, we use index ¢ for ¢ > 77 instead of 7 + ¢. The
inequality holds for t = T{ by Proposition and triangle inequality that

15757, = D5|| < IS7|I* + |1 D5 < 501 (B.152)
Suppose that holds for some ¢ > 7;. By Proposition[A.2] we have
Sip1 = My(Sy) + U T ALF,. (B.153)
As aresult,
Si418) 11 — D% = My (Se)My(Se) T — D5+ (U TALFEM(S) T + M (So)F, Al U)
Z1 Z2
(B.154)
+RUTANFFAU (B.155)
Zs3
By Proposition[A.4] we know
3o N 2
121 < (1 — %) 1505, — D[ + 37 ||S: T, || (B.156)
® 3oy T * 2
< (1- T) |5eS — D§|| + 12701 (cpp) (B.157)

Here () follows from Proposition
On the other hand, it’s easy to see [[M;(S;)| < 3./a1 by its definition and Proposition By
triangle inequality,

1Z2]] < 29 |UT AFEM(S)T | (B.158)
< 29 | A [JUS: + VT || | M (Se) | (B.159)
<187 [| Al oy (B.160)
®)
< 187 0Vk + 1 ||FiF, — X[ oy (B.161)
)
< 2707,0Vko? (B.162)
()
< vi(cop)® /o1 (B.163)

Here () follows from|[A.8] (%) follows from uniform bound || F;|| < 3,/07, and () follows from the
assumption that (50\/%6)? < Sef

2 /o1"

Furthermore,
1Zs]] < 272 1A | F2 )1 (B.164)
< 9V (100VE + 7)o (B.165)
<R (epn)® (B.166)
The last inequality follows simply from our assumption that (50\/%(5% < 2%. Combining, we

obtain

1e418% = D[l < 11Zll + 1122l + 113 (B.167)

3’7t Or

< (1= =) 18681 = D] + 12%(cpp)*on + (eon)’ Vor + 17 (cpp)°
(B.168)

3Vi0p .
<(1- 7; )|1S:S, = D[ + 13vi(cpp)?on (B.169)

In the last inequality, we used c,p < 0.1,/ and y; < %. We consider two cases:
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|SeS] — Dgl| < 52(5:;7‘:)201. By above inequality, we simply have

100(c,p)?c
|Se415:1 — D5|| < [|SeS! — D + 137:(cop)?or < %. (B.170)
The last inequality follows from the assumption that v, < 0('7?1 < 0('701 .

S8 — DgH Conse-

|StStT — DgH > %. In this case, 13v;(c,p)?o1 < e

quently,
|Se+1S41 — D5l < (1 - 3%‘”) |SeS," — D3| + %40” |Ses, — Ds||  B.171)
<(1- %2”) 5.5, — Dj| (B.172)
< max{5(1 — ﬁ)t“—ﬂ’, w}. (B.173)

2
2Ul Or

We used the induction hypothesis in the last inequality. By induction, inequality [A.29 is
proved. Moreover, T is the smallest integer such that

5(1 _ C"/Jg )tf'Tl/ < 100(Cpp)201 .

B.174
202 - or ( )

Therefore, the second claim in Proposition[A.7]follows from[A.29)]

B.8 Proof of Proposition [A.8]

We prove it by induction. For the ease of notation, we use index ¢ for ¢ > 77 instead of 7; + t.
When t = 77,[A.36]holds by assumption. Now suppose [A.36|holds for some ¢ > 77. By induction
hypothesis, we have

|8:T,"|| < 0.010,. (B.175)

Moreover,
15eS/ || < ID5N + ||SeS, — Dg|| < 1.0107. (B.176)
Therefore, ||.S;|| < 2,/07. Also,

0(8:8)) > 0, (D) — ||S:S, — D%

| > % (B.177)

Hence, 0,.(S;) > /% and the conditions of Proposition and Proposition are satisfied. We
consider ||St+1StT+1 - DgH and ||St+1T;1 || separately.

1. For ||St+1St—5_1 - ng

, we apply the same idea as proof of Proposition and write
StHStTH — D% = My(S)M(S)T — D — 7 (UTAF,M(Sy) T + My (S)E,TAU)

Zl Z2
(B.178)
+72UTAEFAU (B.179)

Z3
By Proposition [A4] we know

3 r * 2

121 < (1 = =22) [|eST — D3| + 3% |1S:) | (B.180)
3v.0r §

< (1= =2 |18:ST = D3| + 00830, [|S: 7/ | (B.181)
<(1- 37:” +0.037:0,) D, (B.182)
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On the other hand, By triangle inequality,

1 Z2]] < 29 [|UT AcFM(S) 7| (B.183)
<29 | A | USe + VTR | M (Sy) || (B.184)
< 18v:01 || A¢]] (B.185)
®)
< 1801 0Vk + 1| FF, — Xy| (B.186)
(B.187)
Here (f) follows from[A.8] By lemmal[L.5] we see that
|FeF," — Xo|| < [|SeS, — D& + 2||SeT, || + || 7T || (B.188)
30, oy
< B.189
=100 ' 100 ( )
40,
< B.190
< 100 ( )
Hence, we obtain 7
122l < {55000V + ron. (B.191)
Similarly,
1Zall < 7 1A |1 F ) (B.192)
< 90172(5VE+ 1) | R E - X (B.193)
4o,
< 90172(6VE + 1) 180)2 (B.194)
1
< spgnordVE o (B.195)

In the last inequality, we used our assumption that v;o,. < 01 < 0.01 and dvk +r <
0.001. Combining, we obtain

’Ytgr

|Ser184 — D3|l < (1 - 5

)Dy + vi0:0VEk + 1oy (B.196)

We consider two cases:
e D < 30vVk + roi. In this case, we simply have

|Se4151 — D|| < Dy + 3v:0,6VEk + 101 < Dy + 6Vk + 1oy < 106V + roy.

(B.197)
¢ 30vk+roy < Dy <100vVk + roy. In this case, we clearly have
ok + ro1o, < %;r D. (B.198)

Consequently,

Vio e\,
HStHStTH —DEH <(1- Gta:)Dt <max{<1— 7 T> ~16,106\/k+rm}.

602
(B.199)
Here we used the induction hypothesis on D;.
2. For HStHT;l , we can expand it and get
Sea1 Ty = (Me(Sp) + U T AF)N(TL) + 7V T AF) (B.200)
= My(SONU(T) T + U T AFN(Ty) + %My (S)F AV (B.201)
Z4 Zs
+2UTAFFAV. (B.202)
Ze
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By assumption, we have

|58, — D3| < Dy (B.203)

< max{l%), 106VE + ro } (B.204)
Or
<. B.205
< 100 ( )
By Proposition [A4] we know

o, o

124l < (1 = ) [|Sez7 | < (1 = ), (B.206)

On the other hand, it’s easy to see the || M (S;)|| < 3,/o71 and ||N;(T})|| < /o1, by triangle
inequality and the same argument as HStH S,IH — Dg H,

1251 < e CNETINTO)I + [EHIMe (SO (1A (B.207)
< 129401 [|Aq| (B.208)
< 12y 6VEk + 1 ||FFT — Xy | (B.209)
4
< %%arwk +roy. (B.210)

We used HFf/FtT - Xh“ < 7%=, which was proved above. Similar as calculation for

| Si4154,1 — D%||. we have
1
1Zs]) < 5 veordVEFron. (B.211)
Combining, we obtain
[Se1 T ]| < 1Zall + 11251l + 11 Zs | (B.212)
< (1 - %;’“) Dy + 70.0VE + 101 (B.213)

We consider two cases:
e D; < 66vkoy. In this case, we simply have

|Se+1 Tk || < Dy + w0 6VE + roy < Dy + 0Vk + roy < 105vVk + roy.

(B.214)
* 66vVk +roy < Dy <106vk + roy. In this case, we clearly have
ook o < 27D, (B.215)

6
Consequently,

2 t+1—T1
HStJrthTHH <(1- %(),UT)Dt < max { (1 - CVUT) : %, 106V k + rol} .

602
(B.216)
Here we used the induction hypothesis on D;.
Combining, we see that
o2\ o
D;11 < max <1 - 2T> - —Z.,106vVEk + 1oy p . (B.217)
607 10
So the induction step is proved. Note that 75 is chosen to be the smallest integer ¢ that
e o?\" " o
1— = -2 < 100Vk + 1oy, (B.218)
6071 10

the second part of Proposition [A-§] follows.
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B.9 Proof of Proposition[A.9]

The proof is inspired by [15]. By our assumption that E; < 0.01c,, we have
1SS, || < [|S:S,” — Dg|| + I|1D3|l < 1.0101. (B.219)
As aresult, ||S|| < 2,/07. Similarly,

1Tl < \/|TT || < 0.1/, (B.220)

> % (B.221)

o, (S;) > ,/%. (B.222)

Thus, S;,T; satisfy all the conditions in Proposition [A.4] and Proposition [A.3] We will bound
15641581 = D5 ||, (| Seea Tl ||s || Te+1 Ty 1 || separately.

Moreover,
UT(StStT) > or(Dg) — HStStT - Dy

‘We obtain

. H5t+1StT+1 - Dg || Simple algebra yields
Si+1S01 — DE = My(Se)My(Sy) T — D+ (U T AFM(S) T + My (S))F,T A U)

Zl ZQ
(B.223)
+~72UTAEFTAU (B.224)
Zs3
By Proposition [A.4] we obtain
30, N 2
121l < (1= Z27) 1857 — Dy + 3% || ST/ | (B.225)
# 3o, .
< (L= =22 [|848,] = D] +0.03v0 || ST, (B.226)
3oy
<(1- Vf +0.03v,0,)Er. (B.227)

In (4), we used our assumption that ||StTtT || < 0.010,. On the other hand, it’s easy to see
M (Sy)|| < 3/o7 by its definition and the fact that ||.S;|| < 2,/c,.. By triangle inequality,

1 Za]l < 29 [|UT AcF M (S0) 7| (B.228)
< 29 [|A US: + VT M (S| (B.229)
< 1801 | A (B.230)
®)
< 18y,000vVk + 1 || B F — Xy| (B.231)
)
< 0.018v0, || P F," — Xy| (B.232)

Here () follows from (%) follows from our assumption that 6v/k + r < %. By
lemmalL.5] we see that

|EET - X < || = D3|+ 2|l |+ [maT]| ®23)
< 4E, (B.234)

Hence, we obtain
| Z2|| < 0.1v0,Ey. (B.235)

Similarly,

1Zs]l <7 A7 1 F ) (B.236)
<902 (VE+ 1) | RE - X (B.237)
< 1440172 (6Vk + )2 E? (B.238)
S 0.1’ytO'TEt. (B239)
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In the last inequality, we used our assumption that 6v/k + r < % <0.001, v, < %
and || E¢|| < 0.010,. Combining, we obtain

1041501 = D|| < 121l + | Za | + 1| Zs]| (B.240)
<(1- Lt;r)Et (B.241)

S; 1 T,% | ||. We can expand it and get
Jr

Sia Ty = (Mi(S) + U T AF)N(Ty) + 3V T AF,)T (B.242)
= My(SONU(TY) T + U T AFEN(T) + v M (SOETATV - (B.243)
Zy Zs
+~2UTAFFTA V. (B.244)
Zs

By Proposition [A.4] we know

_ YtOr
3

On the other hand, we see that || M;(S;)|| < 3y/01 and ||N:(T3)|| < +/o1(by bound
on S; and T; and the update rule), by triangle inequality and the same argument as
[Se418¢41 = D5

_ YtOr

1Z4] < (1 )18 ]| < (1

)E; (B.245)

>

1Zs 1 < e (IF[ IN (TN + (N [Me(SHND A (B.246)
< 12v01 ||A]| (B.247)
< 12y016VEk + 1 || R FT — Xy (B.248)
< 0.05v0, E;. (B.249)
Same as calculation for HSt+1StT+1 — Dgl|, we have
1 Z6]| < 0.170, By (B.250)
Combining, we obtain
ST || < 1 Zall + 11 Z5]| + [ Ze|l (B.251)
< (1 _ %g’“) E,. (B.252)
| Te-+1T," 4 ||- We expand it and obtain
Tia Ty = Ne(Ty) + VT AF)N(Th) + 7V T AF,)T (B.253)
SNUATONUT) T + 7 VT AFN(T) T +wN(T)F AV (B.254)
Z7 ZS
+2VIAFEF AV (B.255)
Zy
By Proposition[A.4]
1Z7)| < ||| (1 = 27 || T ||) < Ee(1 — 27 Ey). (B.256)

The last inequality follows from the fact that 2 — x(1 — 2+,x) is non-decreasing on interval

[0, 4%”] On the other hand,

VIAEN(T) " =VTA(US, + VTON(T) " (B.257)
= VIAUSNA(T)" +VIAVTNS(T)T (B.258)
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By Proposition [A.3] we obtain
[VTAFN(T) || < [[VTAUSNAT) || + [VTAVTN(T) ]| (B259)

< (ISNU(T) T]| + [ TNA(T) T ]) 1A (B.260)
< (ST || + 11T ||) 6VE + 7 || FoFT — Xo| (B.261)
< 8Vk + rE?. (B.262)
< 0.01E? (B.263)

Consequently,
1Zs]] < 29 |V T AFEN(T) || < 0.02vEF. (B.264)

Furthermore,

1Zoll <7 I1FII” (18] (B.265)
<9201 (5VE T 1)? | R - X (B.266)
< 1449201 (6Vk + 1) F? (B.267)
< 0.1vE?. (B.268)

In the last inequality, we used our assumption that 7, < 0.01o; and 5vVE+ 7 < 0.001.
Combining, we obtain

| T T || < Bo(1 = nEy). (B.269)

The result follows.

B.10 Proof of Proposition

The proof of this proposition has lots of overlap with Proposition By our assumption that
E; <0.010,, we have

1SeST || < ||SeS — D3 || + | D%l < 1.010y. (B.270)
As aresult, ||S;|| < 2/07. Similarly,

T < /|| L] < 0.1/, (B.271)

Moreover,
0 (8:5)) 2 0,(D3) - ||S:S) — D3| = 5 (B.272)

We obtain
o, (Sp) > % (B.273)

k)

Thus, S;,T; satisfy all the conditions in Proposition [A-4] and Proposition [A.35] We will bound
15641581 = D3 ||, [|Sesr T[] (| Ten T4 ‘Fseparately. Note that the proof of Proposition
doesn’t use k > r, so it also holds for the case when k = r. So, we already have

|Se185, - Dyl < (1 - 12"

VB (B.274)

and
YtOr

ST 4] < (1= 5B (B.275)

Next, we obtain a better bound for |’Tt+1Tt:—1 || We expand Tt-&-thTs-l and obtain

Ty Ty = NU(Ty) + 7V T AE)NU(T) + 3V T AF)T (B.276)
= M(TONU(T) T + VT AFEN(T) T +uN(T)F AV (B.277)
Z1 Zs
+2VIAEFAV (B.278)
Z3
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By definition,
-/V't(Tt) = Tt — ’Yt(TtTtTTt =+ TtStTSt)
Plug this into NV (T;)N;(T3) T, we obtain
Zy = Ni(T)N(T,) T
T
= (ﬁ — ’yt(TtTtTTt + TtStTSt)) (Tt - "Yt(TtTtTTt + TtStTSt))
= Z4 + Z55

where
Zy =TT, — 2vT\T, T,T," — % TS, ST,
and
Zs = =TS ST, + 4 (LT, Ty + TS, So)(T,T, Ty + TuS) Sy) T

We bound each of them separately. Since k& = r, S’ S; is a r-by-r. Moreover,

(ST S)) = 0,(S)? > 27,

2
By v < 05?1,
HI_'YtStTSt - QWtTtTtTH < ||I—’VtStTStH
YtOr
<1- 5
Consequently,

1Zall = || (I = 7S, St = 2T, T)T, ||
< ||Tt||2 H(I - ’YtStTSt - Q’YtTtTTt)H

YtOr 2
< (=27 ).

In addition,

(B.279)

(B.280)

(B.281)
(B.282)

(B.283)

(B.284)

(B.285)

(B.286)
(B.287)

(B.288)
(B.289)
(B.290)

Zs = — TS, ST + 47 [T (TS S T) + (TuS] ST ) T T, | + 42 T0S) SiSy STy

2
< (= + ogior + 4019 TS ST
=0

Combining, we obtain

IMEDNUT) T < 124l < (1= 255 |1

On the other hand, we see that
and the update rule). As a result,

[VTAEN(T)T|| < 1F N (T A
< (ISl + I1Tell) IN(T) | VR + 7 | B FT — X
<BodvVk+r||BET — Xy

S 120’15\/ k + 7"Et.
Consequently,
[ Zo|l < 2% [|[VTAFN(T) || < 0.03v0,E,
Furthermore,

2 2

125l < 72 1E™ (1Al
2
<o (0Vk +r)? | B ET — Xy

< 1447201 (6Vk + )2 E?
S O.Ol’}ltO'TEt.
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(B.291)

(B.292)
(B.293)

(B.294)

|M(Sy)| < 3y/o71 and ||[Ni(T3)|| < \/o1(by bound on S; and T}

(B.295)
(B.296)
(B.297)
(B.298)

(B.299)

(B.300)
(B.301)

(B.302)
(B.303)



In the last inequality, we used our assumption that v; < 0.01¢7 and dv'k 4+ r < 0.001. Combining,
we obtain

T T || < 1120+ 11 Za ]l + 11 2| (B.304)
<(1- %;T) 7,7 (B.305)

C Proof of RDPP

Throughout this section, we denote
S = {X eS8 | X|p=1}, S, := {X eS8 |X|r=1,rank(X) <r}.

Here we split the Proposition [2.2]into two parts and prove them separately. For the ease of notation,
we use 7 to denote the rank, instead of &’.

Proposition C.1. Assume that the sensing matrix A; g GOE(d), and the corruption is
from model 2. Then RDPP holds with parameters (r,8) and a scaling function ¥(X) =

2
LNz (1 —p+ pEg, ~p, [exp(le&iiué)}) with probability at least 1 — Ce=<™5" | given
dr(log(1)vi

m Z T’( Ogé(45 ) ) .

Proposition C.2. Assume that the sensing matrices { A; }"., have i.i.d. standard Gaussian entries,
and the corruption is from model [I. Moreover, we modify function sign(zx) such that sign(z) =

{-1} x <0
{=1,1} x = 0. Then, RDPP-II holds with parameter (r,6+ 3 %p +3p) and a scaling function

{1} x>0
T\ 10, 1
P(X) = \/g with probability at least 1 —exp(—(pm+d)) —exp(—c'md?), givenm > d(lgg#\/l).

C.1 Proof of Proposition
In the probability bounds that we obtained, the ¢ might be different from bounds to bounds, but they
are all universal constants.

Lemma C.3. Suppose that we are under Model E Then, for every nonzero X € S™? and every
D € D(X), the expectation E [D] is

X 1 <~ /2 2 2
E (D] = Y(X) e where $(X) = - 37 \[r (1= + By, [ e AIXIE]) - Cy
=1

Proof. We may drop the subscript under expectation when the distribution is clear. Firstly, we show
that for any X, Y € S9*4, if s follows distribution P, A is GOE matrix and they are independent,
then

E [sign((A4, X) — s) (4,Y)] = \/ZE [e—szmlx\l%} <”§F : Y> . (C.2)

In this section, sign({A, x) — s) should be thought of as any element chosen from the corresponding
set. There is ambiguity when (A, z) — s = 0, but this happens with probability 0, so it won’t affect
the result. Without loss of generality, we assume || X||r = |Y||r = 1. To leverage the fact that A
is GOE matrix, we denote u = (A, X), v = (4,Y) and p = cov(u,v). Simple calculation yields
u~ N(0,1),v ~ N(0,1) and p = (X,Y"). By coupling, we can write v = pu + /1 — p?w, where
w is another standard Gaussian independent of others. Using the definition of u, v, p, w, we have

E [sign({4, X) — s) (4,Y)] = E [sign(u — s)v] = pE [sign(u — s)u] . (C3)

5Gaussian orthogonal ensemble(GOE): A is symmetric with A;; = A;; ~ N(0, %) fori # j and A;; ~
N(0, 1) independently.
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We continue the above equality using the properties of Gaussian:
+oo

1 2 s 1 2
———e % /2g —/ “/Qd] C4
u e u u e u .
s V2T oo V2T €4
@R, U - w2y 4 L /Qdu] (C.5)
® s V2T '

—s \/
“+oo 1 5
—u /2d
u e U
/s| V2T

+oo 2 2 2
d(—e™ /2)] = \[pIES e /2] (C.7)
/, P e

Here, in the steps (a), we do a change of variable v — —u. In the step (b), we use the fact that
the density of standard Gaussian is symmetric. Recall that p = (X, Y’). Hence, the equation (C.2)
follows from (C.3) - (C.7). Since it holds for all symmetric Y, we obtain

pE [sign(u — s)u] =pE, {

(C.6)

2 —2xpz] X
E [sign((4, X) — 5)4] =/ “E [e 21 HF} X (C.8)
On the other hand, if we apply the above result to the case when s = 0, we get
2 X
E [sign({A, X))A] = = X (C9)
When s;’s are form model [2] by tower property and results above,
E [sign({A;, X) — s;)A;] = E [E[sign((A4;, X) — ;) A; | si]] (C.10)
= (1 —p)E [sign((A4;, X)) Ai] + pEs, ~p, 4, [sign({A4;, X) — s;)A;]
(C.11)
~J%(a- 752/2HX”%D X .
\/;((1 p) + pE [e Xl (C.12)
The lemma follows from the linearity of expectation. O

Lemma C.3|is an analogue of [[13| Lemma 3]. Note that the function 1 is not necessarily the quantity
\/g ((1 —p) +pE [e’sf/z”X“%D ﬁ which appears in [|13, Lemma 3], since the corruptions
are not assumed to be i.i.d in this paper.

Next, we prove a probability bound that holds for any fixed X,Y € S.

Lemma C.4. Under Model 2, there exists a universal constant ¢ such that for any § > 0, X €
S,Y €S, with probablity at most 2e=<m’  the following event happens

ZSIgn (A, X) — 83) (A, Y) — (X)) (X, Y)] > 6, (C.13)

where (X) = L3, (1 —p+ pEs, p, [6_5?/2“)(”%]).

Proof. We first show that sign((A;, X)—s;) (A;, Y is a sub-Gaussian random variable. Let consider

the Orlicz norm [11] with ¢9(x) = e’ 1. (A;,Y) is standard Gaussian, so it has sub-Gaussian
parameter 1. By property of Orlicz norm, [[(4;,Y)|,, < C for some constant C. Moreover,

|sign({A;, X) — s;)| <1, s0
Isign({As, X) — i) (Ai, V) I, < [{As, V)l < C. (C.14)

By property of Orlicz norm again, we know sign({(A;, X) —s;) (4;,Y) is sub-Gaussian with constant
sub-Gaussian parameter. By Lemma[C.3] we have

S sign (44, X) — 1) (4, Y) | = 6(X) (X, 7). .15)

i=1
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By Chernoff bound, we can find some constant ¢ > 0 such that

1 o .
P ( ~ ;&gn((Ai,X> — ) (A, Y) — (X)) (X, Y)| > 5) (C.16)
< 9¢—emd’ (C.17)
O

Lemma C.4 is an analogue of [13, Lemma 4]. Since the corruptions are not assumed to be i.i.d., the

function 1 is different from the quantity \/% ((1 —p)+pE {e“@?/ 211X “%D ﬁ, which appears

in [[13, Lemma 3]. Moreover, we need to apply a (generalized) Chernoff bound for a sum of random
variables with different sub-Gaussian parameters in the end of our proof rather than a concentration
bound for i.i.d. random variables as done in |13, Lemma 4].

Proof of Proposition|C. 1. Without loss of generality, we only need to prove the bound holds for
all X € S, with high probability. By Lemma [[.8] we can find e-nets S, C S,, S¢1 C S; with

respect to Frobenius norm and satisfy [S. .| < (%)(Qdﬂ)r, Sea| < (%)MH. For any X € S.,,,
define B.(X,¢e) = {X € S,: |X — X|r < €}. Bi(X,e) is defined similarly by B;(X,¢) =
{X € S1: | X — X|lr < ¢}. Then, forany X,Y and X € B,(X,¢), Y € Bi(Y,¢), we have
(X,Y) —(X,Y) =(X,Y —=Y) + (X — X,Y). By bounding the two terms on the RHS of the
previous equality via the Cauchy-Schwarz’s inequality, we have

(X,Y) = (X,Y)] < 2e (C.18)

Let us also decompose the quantity of interest, R := % S sign((Ai, X) — s;) (A4, Y) —
¥(X) (X,Y), into four terms:

R:= ;isign(MmX) = i) (41, Y) = 9(X) (X,Y) (C.19)

= % i sign((As, X) — 1) (45, Y) —(X) (X,Y) (C.20)
= —

+ % Zm: sign((Ai, X) — i) (4, Y) —sign((A;, X) — ;) (4;,Y) (€21
im -

+ % i sign((Ai, X) — ;) (43, Y) —sign((A;, X) — 5i) (4;,Y) (C.22)
im .

+(X)(X,Y) —(X) (X,Y) (C.23)

o

Recall our goal is to give a high probablity bound on sup x5y s, |R|. To achieve this goal, we
use the above decomposition and the triangle inequality, and have the following bound.

sup |R| = sup sup  |R] (C.24)
X€S,,YeS XS, XEB,(X,e)
Y€ES.,1 YEB1(Y,e)

< sup |Ry|+ sup sup  |Rg|+ sup sup  |Rs|+ sup sup  |Ry4] (C.25)

XeSe.r XeS.,» YEB,(Y,e) XeS.,» XeB.(X,e) XeS.,» XeB.(X,e)
Y ESe 1 YESe 1 YeS: Y€ESe,1 YEB (Y,e)
Z1 Zo Zs Zy
By|C.18 and ¥)(X) = ¢(X) < 1, we obtain
Zy < 2e. (C.26)
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Then we hope to bound 7, Z5, Z3 separately. By union bound and Lemma we have Z; < §;
with probability at least 1 — 2[S, .| [Sc.1| e=“™%. On the other hand, by ¢; /£,-rip (L6),

m

Zy < sup 1 > (ALY =Y (C.27)
YESE 1,Y€B1(37 €) m i=1

< = (A, 2)| C.28

s €2

<e <\/§ + (52) (C.29)
m

with probability at least 1 — e~°™%  given m > d.
Moreover, by Cauchy-Schwartz inequality,

Z3 < sup (Tln Z (sign(<Ai,)_(> — ;) —sign((4;, X) — sl)) > sup (;L Z (A;,Y) )

XESEYT i=1 YeS: i=1
XeBr(X,e)
(C.30)
By £o-rip (L7), we know
1 & 2
sup — A Y)Y <146 (C.31)
Yegl m ; < > °

with probability 1 — C exp(—Dm) given m > %2’ log( —)d. Note that sign({A;, X) — s;) =
sign((A;, X) — s) if [{A4;, X — X)| < |(4;, X) —

m

sup 1 Z (sign((A;, X) — s;) —sign((4;, X) — si))2 (C.32)
XeSe,r m =
XEB(X,e)
< sup o =3 1(|(An X — X > (A X) — i) (C.33)
XESE,T mi:l
XeB,-(X,e)
< swp o ST X = XY > 8) +1 ({4 X) —si| <2) (C.34)
X?Bef(f)(r,e) -
4 & _
< sup — 1({A:, Z)| > t)+ sup — 1([(A;, X)) —s;| <t (C.35)
e Z ) > 1) eéﬁrm; (I(4 X) = ss| < #)
Zs Zs

For Z5, we use the simple inequality 1(|(4;, Z)| > t) < {ALZ)] gpq ¢4 /€5-rip (L.6) and obtain

m
A Z
Zs < sup — |< i Z)| (C.36)
Z€eSy, M 13
de x= |(A;, Z)|
< sup — - (C.37)
ZESay m ZZI t
4e(1+ 6
< : ) (C.38)
with probability at least 1 — e—cmdi givenm 2 dr.
For Zg, we firstly use Chernoff’s bound for each fixed X and get
1« . .
EZl (J[{Ai, X) — 55| <t) SE[1 ({41, X) — 85| <t)] + 65 (C.39)
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with probability at least 1 — e“™% . On the other hand, for fixed X € Se,r, (A;, X) is standard
Gaussian. Since the density function of Gaussian is bounded above by i, we always have

E[1([(Ai, X) —si| <1)] S\/%tﬁt. (C.40)
m
Consequently,
72 [(Ai, X) —si| <t) <t+05 (C41)

with probability at least 1 — e C’”‘SS. By union bound, we have
Zo < At + 455 (C.42)
with probability at least 1 — |S, ,| e=emds Combining, we have

sup
X,Y €S,

ZSlgn (As, X) — 8i) (A3, Y) — (X)) (X,Y) (C.43)

i=1
§51+6<\/Z+52>+\/1+63\/46(1t+54)+4t+465+26 (C44)

with probability as least 1 —2 |Se .| [Se 1] e=emdi _e=cmd3 _ (f exp(—Dm)—e =M — [Se.| e=emd3
given m 2 Inax{ 1og( )d dr}. Take 01 = 0,09 = 03 = 04 = 7,55 =62t =06%¢e= 6% we
have

ngn (Ai, X) = 5i) (A, Y) = (X)) (X,Y)
i=1
with probability at least(given m = dr)

9 (r+1)(2d+1) , 9 (2d+1)r .
1-2 ( ) e~m _ ' exp(—D'm) — <> ecmo (C.46)

sup
X,Y€S,

<6 (C.45)

04 04
Given m 2 drd*log (1), we have
9 (r+1)(2d+1) . 9 (2d+1)r .
2 (54> e~ 4 ' exp(—D'm) + ((54> e—cmd (C.47)

< exp (8r(2d +1)log (3) - cm5> + exp <4r(2d +1)log <?) - cm64) (C.48)

< exp(—c'md?) (C.49)
Soif m 2 dré*log (1),

sup Z sign((A;, X) — ;) (43, Y) = 0(X) (X, V)| $ 6 (C.50)
Xe€S, ., YeS i=1
with probability at least 1 — C' exp(—c’ md*). This implies
sup ZSIgn (A5, X) — s) A — (X)X || <0 (C.51)
XeS,

by variational expression of operator norm. The proof is complete since we only need to prove RDPP
for matrices with unit Frobenius norm.

O

Proposition|C.1 is an analogue of 13| Proposition 5]. Note that the function ¢ is different from the
function v in [[13, Proposition 5] as the corruptions are not assumed to be i.i.d. in this paper. Our
proof also deviates from the proof of |13, Proposition 5] in bounding the term Z5, which appears
in (C.35). This term corresponds to the first term on the RHS of the last line of eq. (38) in [13].
In [[13]], this term is bounded by [13, Lemma 8] using empirical processes tools such as Talagrand’s
inequality. Here, we bound the term Z5 using a simple contraction argument (stated as an inline
inequality before (C.36)) and the ¢; /¢5-RIP; see (C.36)-(C.38).
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C.2  Proof of Proposition

We assume for simplicity that prm and (1 — p)m are integers. Note that

1 & X
— ) _sign((4;, X) — si)A; — p(X) (C52)
m ; 1 X1
1 1 2 X
= — sign((A;, X) — s;)A; + — sign({A;, X) — 8;)A; — | ——— C.53
i A X) 00+ LS it X) 0=\ 2 €5
i ¢S
1 1 2 X
= — sign A“X — S; Az—f—f sign Ai,X Ai_ 1-— - C.54
i A X) 00 LS4 XA 0oy P €58
i ¢S
Z1 Z2
2 X
Y e (C.55)
|| X||e
Z3

We bound 71, Zs, Z3 separately.

* For Z;, we observe the following fact: let e; € {—1, 1} be sign variables. For any fixed
{eities 2 icq€idi is a GOE matrix with N(0,pm) diagonal elements and N (0, %)
off-diagonal elements. By lemma[[.10] we have

P ( Z eiAi
i€s

Take t = 2v/pm + d, we obtain

P ( Z eiAi

ics
As a result, by union bound(the union of all the possible signs), with probability at least
1— 2pme—2(pm+d) >1-— e—(pm—i—d)’

> /(v + t)) <e 7 (C.56)

> \/pm(\/a +2¢/pm + d)) < e 2(pmtd) (C.57)

> sign((A;, X) — s:)Ai|| < pm(Vd +2y/pm + d) (C.58)

i€S

for any X. Note also that v/d + 2v/pm + d < 3v/d + 2,/pm, so with probability at least

1 —exp(—(pm + d)),
d
1Z:) < 3¢/ 2L + 2 (C.59)
m

* For Z,, applying Proposition@with zero corruption and the assumption that p < 1, we
obtain that with probability exceeding 1 — exp(—cm(1 — p)6?) > 1 — exp(—c'md?), the
following holds for all matrix X with rank at most r,

for any X.

1 2 X
—_— i A X)A; — | ———| <9, C.60
|(1_p)m%s1gn(< ) AT S (C.60)
T\ 10, 1 T\ 10, 1
given m 2 w. Consequently, given m 2 w, with probability exceed-
ing 1 — exp(—em(1 — p)6?) > 1 — exp(—c'md?),
[ Za]l <6 (C.61)

for any X with rank at most r.
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e For Z3, we have a deterministic bound

2
[ Zs]| < \/;p. (C.62)

1
Combining, we obtain that given m 2> dr(log&ﬂ, then with probability exceeding

1 —exp(—(pm + d)) — exp(—c'mé*),
X d
§3\/Ep+3p+5 (C.63)

1 X[w

Hnl@ > sign((4;, X) = si)A; = $(X)
=1

for any X with rank at most 7.

D Choice of stepsize

First, we present a proposition that is the cornerstone for the choice of stepsize.

Proposition D.1. Fixp € (0,1), € € (0,1). If m > co(e 2 log e 1)drlog d for some large enough
constant cg, then with probability at least 1 — c; exp(—CQmGQ), where c1 and co are some constants,
we have for all symmetric matrix G € R¥® with rank at most r,

& ({[{Ai, G)[}2) € [0y — 2¢, 6, + 2€][|Gr, (D.1)
where £,({|(Ai, G)|}1,) is p-quantile of samples. (see Definition 5.1 in [4)])

Next, we prove a proposition that can be used to estimate |F;F,’ — X*||r and || X*||r under
corruption model [T}

Proposition D.2. Suppose we are under model Eand yi = (4;,G) + s;’s are given. Fix e < 0.1
and corruption probability p < 0.1. Then if m > co(e=?log e~ 1)dr log d for some large enough
constant cg, then with probability at least 1 — ¢ exp(—02m62), where ¢ and co are some constants,
we have for any symmetric matrix G € R**? with rank at most r,

&1 (lwil}iZi) € [0y s 01 4py JIIGIlF (D.2)
Cloy = Llp+e), by + Lp+ |G|, (D.3)

where L > 0 is some universal constant.

The following proposition can be used to estimate ||F;F,” — X*|r and || X *||r under corruption
model 2}

Proposition D.3. Suppose we are under model [Z]and y; = (A;, G) + s;’s are given. Fix corruption
probability p < 0.5. Let € = 0‘53_p. Then if m > codrlogd for some large enough constant c
depending on p, then with probability at least 1 — c; exp(—czme2), where c¢1 and co are some

constants, we have for all symmetric matrix G € R4 with rank at most r,

f% (lyil}izy) € [9‘*5%791_”%]||G||F~ (D.4)

D.1 Proof of Proposition [D.1]
The proof is modified from Proposition 5.1 in [4]. We first note (4;, G) ~ N (0, ||G||%) and
Op(IN(0, |GI[E)) = 6, - |Gl (D.5)

Here 6,,(|N(0,||G||%)|) denote the p-quantile of folded N (0, || G||%). It suffices to prove the bound
for all symmetric matrices that have rank at most 7 and unit Frobenius norm. For each fixed symmetric
Gy with |Gy ||r = 1, we know from Lemma .9 that

& ({I(As, G)[HL) € [0p — €,0p + €] (D.6)
with probability at least 1 — 2 exp(—cme?) for some constant ¢ that depends on p. Next, we extend

this result to all symmetric matrices with rank at most 7 via a covering argument. Let S, ,. be a
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T-net for all symmetric matrices with rank at most r and unit Frobenius norm. By Lemma
2d+1 . . .
1S .| < (%)T( ") Tuking union bound, we obtain

& ({[(Ai Go)[}ith) € [0p —€,0, +¢,  VGo €S-, (D.7)
with probability at least 1 — 2 (2)r(2d+1) exp(—cme?). Set 7 = €/(21/d(d + m)). Under this event
and the event that

_Inax lAillr < 24/d(d+ m), (D.3)

,,,,,,

which holds with probability at least 1 — m exp(—d(d+m)/2) by LemmalL.12] for any rank-r matrix
G with ||G||r = 1, there exists Gy € S, such that |G — Gyl|p < 7, and
1€ ({[{A4i, G)IH21) = & ({[{Ai, Go)lH2y)l <= _max (A, G)| = [{Ai, Go) (D.9)

yeey M

< max |(4;,G—Go)| (D.10)

i=1,2,....,m

< [[Go = Glls _max_|Aifln (D.11)
< 7124/d(d+m) (D.12)
<e (D.13)

The first inequality follows from Lemma|[.13] Combining with (D.6), we obtain that for all symmetric
with rank at most  and unit Frobenius norm,

& ({[{Ai, G)[}Ly) € [6p — 2¢,6p + 2¢]. (D.14)

The rest of the proof is to show that the above bound holds with probability at least 1—c; exp(—came?)
for some constants ¢; and cy which follows exactly the same argument as proof of Proposition 5.2
in [4].

D.2  Proof of Proposition [D.2]

Let §; = (A;, G) be clean samples. By lemmal[.14] we have
& (i) € 16 (A1) - €3 (L) (D.15)

Moreover, applying Proposition|[D.1|to (§1_, ({[7:[}i%1) , 5) and (€14, ({15:[}i21) . 5) » we know
that if m > (¢ 2loge~!)drlogd, the we can find constants ¢, co that with probability at least
1 — ¢y exp(—came?),

& {Imil}i) 2 01 MIGlr,  &a4p (11121 <014, NIGllr (D.16)
holds for any symmetric matrix G with rank at most . Combining, we obtain
&3 () € 193y 03 4prJIG - (D.17)

In addition, we easily see that p — 6, is a Lipschitz function with some universal Lipschitz constant
L in interval [0.3,0.7]. As a result,

03— 031y JIGllE © [0} = L+ €),04 + L(p + )]Gl (D.18)
We are done.

D.3  Proof of Proposition [D.3]

Let z; be the indicator random variable that

b= {(1) s; is drawn from some corruption distribution P; _ (D.19)

SiZO

Under corruption model([T, z;’s are i.i.d. Bernoulli random variables with parameter p. By standard
Chernoff inequality, we obtain

P <Z 2 — pm > 0'53_ pm) =P <Z 2 — pm > em) (D.20)
i=1 =1

< exp(—me?/2). (D.21)

41



Therefore, with probability at least 1 — exp(—me?/2), the corruption fraction is less than p + 0. 5 =P,

Let §; = (A;, G) be clean samples. By Lemmal|l.14] we have
&1 (QlyiliZy) € (€3 _pvae (10:l}1i21), €1 4y oe ({GHZ DN Gl (D.22)

In addition, applying Proposition[D.1 to (@ p_o s—p ({|7:|}i%1), 5) and (§%+p+o.537p {17il}iz1), 5)
, we know that(e = O'E’T_p) ifm > (e ?loge” )dr log d 2 drlogd, the we can find constants ¢y, ¢o
that with probability at least 1 — ¢; exp(—come?),

€y ose ({BIH2) > 05, v [IGllr, (D.23)
€y sprnss (1) < 0y pyose IGr (D.24)

holds for any symmetric matrix G with rank at most r. Plug in € = 0'53_p , we obtain
s ({Iil}s) € [Bosee, 0,05 Glle (D.25)

for any symmetric G’ with rank at most r with the desired probability.

E Proof of Initialization

Throughout this section, we denote
= {X eS| X|lp =1}, Sr = {X €S8P | X||p = 1,rank(X) < r}.

Recall that, we construct the matrix

1 m
= — ) sign(y,)A
m <
i=1
Based on this, we consider its eigen decomposition
D = UsU"

Let Ei be the top k& x k submatrix of 3, whose diagonal entries correspond to k largest eigenvalues

of ¥ with negative values replaced by 0. Accordingly, we let U, € R?** be the submatrix of U,
formed by its leftmost £ columns. Then we cook up a key ingredient of initialization:

B = Uy(zk)Y2

In the following, we show that the initialization is close to the ground truth solution.

Proposition E.1 (random corruption). Let Fyy be the output of Algorithm|l. Fix constant co < 0.1.
For Modellé]wzth a fixed p < 0.5 and m > c1drr*(log k + log ) log d. Then

|FoFy —c*Xyl| < coor/t. (E.1)

\90 o 0.5
holds for c* € [, /5" - \/> 1791 - ] w.p. at least 1 — c3 exp(—<4™), where the constants
2

c1, C2, c3 depend only on p and Co.

Proof. By Lemma with § = % -2~ and Proposition[D.3] we know that there exists
L_0.5-p 01K

constants ¢y, co, c3 depending on p and co such that whenever m > c;drr*(log k + log ) log d, then

with probability at least 1 — ¢ exp(—<3*), we have
Co Op
BBT — (X)X, /|| X < E.2
IBBT - s/ IXule| < 52 €2)
and
0, ({1} € [Bos,0, 0]l Xslle. (E.3)
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Combing with the fact that 1)(X}) € [ / \/7 we obtain

Ex({lyil}izy) Ex({lyil}izy)
| i e R (E4)
< Co o %({|92|}z 1) (E.5)
91_0.5;13 (F) Ulﬁf 6‘%
0 0.5—p
Co O 1—=—="
< S| X, E.
- 91 0.5—p(F)U I{\/F 9% ” h”F (E.6)
E.7
< Jm\[\[o'l (E.7)
< ¢oo /K. (E.8)
1 ({lvs [ }iZ ) (Xy)
Let ¢, = 2({|9y% JXnH)F : , clearly we have
1
S [(1 —p)90.537p (F),91_0.537p (F)] C [590.537;7 (F)701_0.537p (F)} (E9)
The result follows. O

Lemma E.1 (random corrpution). Suppose we are under model |2 with fixed p < 0.5, and we are
d(log(%)\/l)

given § < Then we have universal constants c1, ca, cs such that whenever m > ¢y —5

10k f B
with probability at least 1 — co exp(—c3md?), we have Xo = BB satisfying the following

1Xo = X|| < 36, (E.10)

where X = 16(X3) X /| Xyllp, and $(X) = £ 501 (/2 (1= p 4 pBa, [exp(=5752)])-

Proof. By Lemma we know that with probability at least 1 — C exp(—c'md?),
|D-X|| <o (E.11)

Here ¢’ and C' are some universal constants. On the other hand, ¥(X}) > (1 — \/7 \/ 5 SO

>\ 5= 277 = f ﬁ - \/;. nd our assumption that § < W’ we know that
the top r eigenvalues of D are positive. Let C' be the best symmetric rank 7 approximation of D with

Ar(C) > 0 and

Up = [Ur Uil (E.12)
then we can write
BB = C+ U, S Ul,, (E.13)
where X, = diag((A\r+1(D)) 4, -+, (Ax(D))+). Then we have
IBBT = X|| < [IC = X[l + Skl (E.14)
Finally, given that C' is the best symmetric rank-r approximation of D, we have
IC =Dl £ 0r11(D) = |oy11(D) —0ra(X)] < [[D-X|| < 4, (E.15)
where for the equality, we used the fact that o,.;1(X) = 0. Combining, we obtain
[c-X|| < |C-D|+]|D-X| < 24 (E.16)
and
ISk—ll < |[D-X| <& (E17)
Therefore, we have
|BBT — X|| < 3§ (E.18)

with probability at least 1 — C exp(—c'md?), given m > w O
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Lemma E.2 (perturbation bound under random corruption). For any 6 > 0, whenever m 2,
d(log(%)\/l)
——52—=, we have

|D—-X|| <9 (E.19)

holds with probability at least 1 — C exp(—c'md?). Here, X = (Xy)Xy/|| Xt|p, and ¢, and

C > 0 are some positive numerical constants.

Proof. Without loss of generality, we assume || Xy||[p = 1. First, we prove ||[D — X|| < 4 by

invoking Lemma [C.4| then follow by a union bound. For each Y € Sy, let By(Y,e) = {Z €
Si1:|1Z-Y||r <¢€}. By Lemma@ we can always find an e-net S, ; C S; with respect to Frobenius

2d+1
(5™

norm and satisfy [S, 1| < . Based on the e-net and triangle inequality, one has

_ 1 &K .
|D—-X|| = sup | D sign((A, Xi) + 1) (43, Y) — (Xy) (X, Y) (E.20)
51 i=1
1 o~ .
= sup sup |— Z&gn((Ai,Xh) +5;) (A, Y) —p(Xy) (X, Y) (E21)
YESGJ YEBl(Y,E) i=1
1 & _ _
< sup |— > sign((Ai, Xp) + ) (Ai, V) — (Xy) (X, Y) (E.22)
YESe 1 i=1
Z1
1 - : .
+ sup  sup |— ngn((Ai,Xh) +5:) (A, Y) —sign((A;, Xy) + s4) (43, Y)
YeES 1 YEB (Vo) | 14
Za
(E23)
+ sup sup  [U(Xy) (X, Y) — (X)) (X5, V)| (E.24)
V€S, 1 YEB1(Y,e)
Z3
Since (X ) = ¢(X) < 1, we obtain
Zs < | Xy [lpllY = Y]r < e (E.25)

Then we hope to bound Z3, Z5 separately. By union bound and Lemma @, we have Z; < § with
probability at least 1 — 2.5, 1| e=°m%* _On the other hand, by 1 /¢5-rip (L6),

1 & -
Zy < sup — E A Y =Y (E.26)
? VeS.1,YEB1(Y,e) T i3 ’< >’
1 m
< — Ay Z E.27
,e;telgzm;:lK )| (E.27)

<e <\/§ + 1) (E.28)
Vs

with probability at least 1 — e~ ", given m 2, d.

Combining, we have
||DX||§51+6<\/E+1>+6 (E29)

with probability as least 1 —2 [ S, 1| e=emd® _e=em givenm > d. Take § = 0/3,e = 6/10, we have

|D-X[[ <9 (E.30)
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with probability at least(given m = d)

(2d+1) .
1-2 <950> e emIT _ gmem (E.31)
Given m 2 M we have
(2d+1)
90 i .
2 (5> e=emd® | g—em (E32)
90 )
<exp|((2d+1)log 5 cmd” | + exp(—cm) (E.33)
< exp(—c'md?) (E.34)
fe) 1
Soif m > 1E3).
|D-X| <6 (E.35)
with probability at least 1 — C exp(—c'md?). O

Proposition E. 2 (arbitrary corruption). Let Fyy be the output of Algorithm|l. Fix constant ¢y < 0.1.
f where ¢y depends only on c, there exist constants ¢y, ca, cs depending

only on cq such that whenever m > cidrr?logd(log k + log 1), we have
|FoF) — ¢ Xyl| < coor /. (E.36)

with probability at least 1 — c; exp(—c3-1.) — exp(—(pm + d)). Here c* = 1.

coblL
Proof. Taking ¢ = ;7% in Proposition where L is a universal constant doesn’t depend on
anything from Proposition|D.2} we know that with probability at least 1 — ¢5 exp(—cg 2t)

& ({lyil}ity) € (01 — L(p +€), 01 + L(p + )| Xz I, (E.37)
given m > cydrr? log dlog k. Here cs, cg, c7 are constants depending only on cq. Given & = o

the above inclusion implies that

- S {lwl)|  Lp+e _ (E38)
[ Xy [lw 02 0r = 2k% '
Take § = 120(3:_/: o \f in lemma , we know that with probability at least 1 —cg exp(—cg 71> ) —

exp(—(pm + d)) for constants cg, ¢y depending only on ¢y,

BT\ 150 <

given m > drk*(log k + log 7). The above inequality implies that

\[ r (E.39)

21+ )Ulfff

n L 2
% {|y1|}n T %({‘QJ} ) 1+9% Con/ = oy
BB = =X e0 = T 1 Xl (E.40)
V20 1 X[ JZ2 S o
™ 2
< CO; (EA1)
O
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Combining, we can find some constants cy, ¢ca, c3 depending only on ¢y such that whenever m >
crdri* log d(log & + log ), then with probability at least 1 — ¢ exp(—c3 25 ) — exp(—(pm + d)) ,

Wyl

V20

1
2 et

- X, (E.42)

01 ({lysl Y2 1) 01 ({[yal }i21) Xy 01 ({lyil}i2q)
< Qs LA e Sl B VG AL SAE S VAR (E.43)
\fgl ([ X llp0 1 [R€]/j g
coor  L(p+e)
< popte (E.44)
2K 9%
< Q% (E.45)
K

Lemma E.3 (arbitrary corrpution). Suppose we are given 6 < 5= f Suppose we are under
model |: with fixed p < §/10. Then we have universal constants ¢y, cs,c3 such that whenever

m = c %, with probability at least 1 — c5 exp(—c3md?) — exp(—(pm + d)), we have
Xo = BB satisfying the following

|Xo - X|| < 6, (E.46)

where X = %/J(Xu)Xh/”XH

m 782
poand (X) = L300 /2 (1 — P+ PR p, [eXp(72H?;H%)D'

d(lmgéi)w), we know that with probability at least 1 —

Proof. By Lemma given m > ¢
exp(—(pm + d)) — exp(—comd?), )
|D—X|| <20 (B47)

On the other hand, ¥(X;) > (1 — p) \[ \F, $0 A\ ( = sl = ‘/%%ﬁ' B

Lemmal|l.3/and our assumption that § < 15~ \/;, we know that the top r eigenvalues of D are positive.

Let C be the best symmetric rank r approximation of D with A,.(C) > 0 and
U, = [Ur U], (E.48)
then we can write
BB" = C+ U2 U/, (E.49)
where X, = diag(Ar41(D))+, -, (A&(D))4). Then we have
IBBT = X|| < |C = X|| + [Sp-r. (E.50)
Finally, given that C is the best symmetric rank-r approximation of D, we have
IC = D| < 0/41(D) = |or41(D) =01 (X)| < ||D =X < 26, (E51)

where for the equality, we used the fact that o, 1(X) = 0. Combining, we obtain

[C-X|| < |C-D|+|D-X| < 4, (E.52)
and
[Se—r|l < [|[D-X| < 26. (E.53)
Therefore, we have
|BB" - X|| < 66 (E.54)

og(L
with probability at least 1 — exp(—(pm + d)) — exp(—camd?), given m > clw. O

46



Lemma E.4 (perturbation bound under arbitrary corruption). Given a fixed constant 6 > 0. Suppose
the measurements A;’s are i.i.d. GOE, s;’s are from modeleithﬁxedp < 6/10. There exist uni-

I
versal constants ¢ and co such that whenever m > c1 d(k)g((57§)v1)’ with probability with probability
at least 1 — exp(—(pm + d)) — exp(—camd?), we have D = L 3" sign(y;)A;. satisfying the
following

ID - X|| < 26, (E.55)

where X = \[2X,/| Xz | .

Proof. Let S be the set of indices that the corresponding observations are corrupted. We assume for
simplicity that prm and (1 — p)m are integers. Note that

_ 1 ™ 2 Xu
DX =— sign({A;, X;) + si)A; — /= (E.56)
2 “ ™ [ Xl
1 1 2 Xy
m; gn((Ai, Xp) + s:) mZ gn((A;, Xp)) A
% ¢S
1 1 2 X,
= — sign A“X + S; Al—i-f sign A“X Ai_ 1-— \/>
1 st ) s S st X, 1y 2
% ¢S
7 Za
(E.58)
2 Xy
—py/ = - (E.59)
7 || Xlle
Z.
3

We bound 71, Zs, Z3 separately.

* For Z;, we observe the following fact: let e; € {—1, 1} be sign variables. For any fixed
{eities, 2 icg€idi is a GOE matrix with N(0,pm) diagonal elements and N (0, Z5*)
off-diagonal elements. By lemma([l.10] we have

P ( Z eiAi
€S

Take t = 2v/pm + d, we obtain

P ( Z eiAi

i€s
As a result, by union bound(the union of all the possible signs), with probability at least
1 — 2pme—2(pm-+d) >1— e—(l)m-i-d)’

> /(v + t)) <e 7. (E.60)

> /pm(Vd + 2/pm + d)) < e 2pmtd) (E.61)

> sign((Ay, Xi) — si)As|| < pm(Vd + 24/pm + d). (E.62)

i€S

Note also that v/d+2v/pm + d < 3v/d+2,/pm, so with probability at least 1 —exp(—(pm+

d)),
dp
1Z1]] <34/ — 4+ 2p (E.63)
m
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* For Z,, by the proof of Lemma@ with zero corruption and the assumption that p < 1, we
obtain that with probability exceeding 1 — exp(—cm(1 — p)6?) > 1 — exp(—c'md?), the
following holds,

1 2 Xy
—— > sign((4;, Xp)A; — 1/ —
(1—p)m % h ™ [ X;lle

<4, (E.64)

og(+ . og(+ . o .
given m 2, w. Consequently, given m 2 d(lggiﬁ)w), with probability exceeding
1 —exp(—cm(1 — p)§?) > 1 — exp(—c'md?),

1Z2]| < 6 (E.65)
for any X with rank at most r.

e For Z3, we have a deterministic bound

2
123 < \[rp' (E.66)

.. . . d(log(%)Vv1
Combining, we obtain that given m 2> %

exp(—(pm + d)) — exp(—c'md?),

og(L
Take § = 350\” and let m 2> w

, then with probability exceeding 1 —

< 3\/dj+3p+5. (E.67)
m

, we know that if p < §/10, we have

Xy
| Xelle

% D sign((Ai, Xi) — si) Ai — (Xy)

i=1

1 « X,
— E sign((A;, Xy) — 8;)A; — Y(Xy)——|| <26 (E.68)
Hmil gn((4; h> i) Ai —( h)”XhHFH
with probability at least 1 — exp(—(pm + d)) — exp(—c'md?).
O

F Proof of Theorem

Here we prove the identifiability result in Section[2]

Proof. Using Lemma we know that the ¢; /¢o-RIP conditions holds for .A: for some universal
¢ > 0, with probability at least 1 — exp(—cmd?), there holds.

1 2
Lo, -2 11,

Now for any subset L. C {1,...,m}, we can define Ay, as [A(X)]; = (4;,X)ifi € L and 0
otherwise. Then if the size of L satisfies that |L| > Cd(r + k) log d for some universal constant,
using LemmalL.6again, we have with probability at least 1 — exp(—c|L|62), there holds

1 2
7] AL, = \/;”XF

Note that the above holds for each fixed L. If we choose S to be the set of indices of nonzero s;.
Using Bernstein’s inequality, we know with probability at least 1 — exp(—ce2m(1 — p)), |L| >
(1 —€)(1 — p)m. Due to our model assumptions, S is independent of .A. Hence, the above displayed
inequality does hold for L = S¢ with probability at least 1 — exp(—cy (€ + §2)m(1 — p)).

<S|X||p, VX €RY:rank(X) < k4.

<S|X||p, VX €RY:rank(X) < k4,
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Let us assume the above two displayed inequalities, the second one with L = S¢ in the following
derivation. Let F' is optimal for (1.2). Starting from the optimality of F' and X}, has rank r < k, we
have

0> — [JAFFT) =y, - o I40%) —yll,

1 1
= — A(FFT = Xy) = s, = — sl

= A (FFT = X)), + o [[As(FFT = X9) = s, = sl
> [ As (FET - %3], - %H[Aswwxmnl
= 2 [ s (FFT = X)], - [AFFT - X3

Y

(2(1 —p)(1—¢) (ﬂ—é) - <\/f+5>) [FFT = X[

Hence so long as 2(1—p)(1—¢) (\/g - 5) - (\/g + 6) > 0, we know FF'T = X;. The condition
2(1—p)(1 —¢) (\/g - 5) - (\/g + 5) > 0 is satisfied with probability at least 1 — exp(—c'm)
and m > C'(r + k)dlog d for some ¢’ and C’ depending on p.

O

G Results under better initialization

As indicated in remarks under Theorem we can show that the sample complexity for provable
convergence is indeed O(dk*k*(log k + log k) log d, given p < %\/F in either model. The proof
consists of two theorems stated below.

Theorem G.1. Suppose the following conditions hold:
(i) Suppose Fy satisfies

T
[FoFy — Xpll < coor (G.1)
for small sufficiently small universal constant cg.
1 Tt
(ii) The stepsize satisfies 0 < o < TFF —XilIr < £ - 2 for some small numerical constants

c1 <cg <0.0landallt > 0.
(iii) (r + k,8)-RDPP holds for {A;,s;}", with § < T and a scaling function 1 €

[, / %, \/g] . Here cg is some sufficiently small universal constant.

Then, we have a sublinear convergence in the sense that for any t > 0,

|FRF — Xy < eson

K+t
Moreover, if k = r, then under the same set of condition, we have convergence at a linear rate

1B BT = X| < oo (1- C—;)t Vi > 0,

Here c5, cg and c7 are universal constants.

Proof. Take ¢y = 0.01 and c3 = 0.001. Next, by definition, v, = % By the second
assumption and the assumption on range of ¢, we know
1 2
) (G.2)
27 oy
Since we assumed ¢ < 0.01, so the stepsize condition v, < %91 01 is satisfied. Hence, both Proposi-

tion[A.9]and Proposition hold for ¢ = 0. We consider two cases separately.
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s k> r, By Proposition|A.9|and induction, we know

C
Ei1 < E(1 —yEy) < E(1— ?:Et)’ vt > 0. (G.3)

where cl\/g < ¢, £0.01. Define G; = %Et, then we have Go < 1 and

Git1 < Gi(1 = Gy), vt > 0. (G.4)
Taking reciprocal, we obtain
1 1 1 1

> 4 —— > _—_ 41, Vt>0. G5
Gt+1 Gt ]._Gt Gt ( )

So we obtain

1
Gt < ——, vt > 0. (G.6)
o+t
Plugging in the definition of G, we obtain
o1 1 o1 1 o1 1 op 1
E. i< — — = — — . G.7
2+t—cwcj]{:0+t_c716007;1+t CV%KJ+t_C,Y/{—|—t (G.7)
Since ¢, > ¢4 \/g , we can simply take c5 = i \/f , apply Lemma and get
T
|EF" — X < 01— V0. (G.8)
So the proof is complete in overspecified case.
e k = r. By Proposition and induction, we obtain
B <(1-2p, <0-27E, vt >o. (G.9)
01
Applying this inequality recursively and noting ¢, > ¢; \/g , we obtain
t
2
CyOp Cl\/;
Ernu<(1-25'E,<|1- 0.010,,Vt > 0. (G.10)
g1 K
Thus, we can take cg = 0.01/4, ¢; = ¢; \/g , apply Lemmaand get
T cr\*
|F.FT = X,|| < eso, (1 — ;) . w0 (G.11)
The proof is complete. ]

Theorem G.2. Suppose under either Modelor@ we have m > ¢} dk*k*(log k + log k) log d and

/
p < HC\;E for some constants ¢}, cs depending only on ¢y and c3. Then under both models, with

probability at least 1 — cj exp(—cj 22 ) —exp(—(pm+d)) for some constants ciy, c§ depending only
on ¢y and cs, our subgradient method (3.1) with the initialization in Algorithm|I and the adaptive

/ /
stepsize choice (3.2) with C,; € [7-5—, =Z-] with some universal cf;, c& < 0.001, converges as stated

0101’ 0101
2 2
in Theorem|G.1]

Proof. We can WLOG only prove this for model [T because model 2 can be reduced to model [T
cob
by adding a small failure probability. Taking ¢ = 7 in Proposition where L is a universal

4Lk
constant doesn’t depend on anything from Proposition[D.2] we know that with probability at least
1 — cgexp(—cyr3)

& {lwlhmy) € 03 — L(p+€),05 + L(p+ )| X |, G.12)
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given m > cyydrr?logdlog k. Here cj, cp, c;, are constants depending only on cy. Given cj <
Co 0 1
the above inclusion implies that

v

€1 (lyil}iy) Lip+e) <o
< —. (G.13)

Xz llp61 01 2k

Of O m
Take § = T+ L) ot in lemmalE.3, we know that with probability at least 1—c’; exp(—cjy-12 ) —
01
exp(—(pm + d)) for constants ¢/, ¢}, depending only on ¢y,
BB = [Xh/||XhF < 7[ o (G.14)
2(1+ ) T1/r

given m > ¢} qdrr(log k + log r) with ¢} 5 depending only on ¢g. The above inequality implies that
1+ £ \/E
03 {lyil}iZy) BB Oy @yt Xe|| _ "0 coym

\fel Xkl || T \/g 201+ £ ke f

< CoOr
-2

Combining, we can find some constants ¢} 4, ¢}, ¢} depending only on ¢ such that whenever m >
ch4dri? log d(log k +log ), then with probability at least 1 — ¢} 5 exp(—c} -4 ) — exp(—(pm +d))

[ Xelle (G.15)

(G.16)

b}

0 (i} )

\fel

BB - X, (G.17)

O, () o 0l X 01 ({ui})
BB' — 2— + 1——=—"""1X G.18
T, 1X:l1e0, e, ) G
coor  L(p+e)
< oo (G.20)

- Xy < co o, which is the first condition.
Recall stepsize rule (3.2),

Tay(F) =& ({[{(Ai, FFT) —gil}2)), and 1 = Cyray (Fy). (G21)

By Proposition with same choice of €, we know that with probability at least least 1 —
ci7 eXP(_Cis,%)

Tay(F) €03 — Lp+€),01 + Lip+ | F — Xylle,  VE>0, (G.22)

: / 2 / / / :
given m > clodre®logdlog k. Here ¢}y, clg, c]y are constants depending only on cg. By our
condition on C,, we know

m o) 0] G2

S )
|FiF — Xille o1 o1

Hence, the second condition in Theorem is satisfied.
By Proposition we know that whenever m > chodk?k*(logk + log k) for some constant

depending on ¢z and ¢§ < ¢3/10, (r + k, §)-RDPP holds with § < \/7 and (X \[ with

ca1m

probability at least 1 — exp(—(pm +d)) — exp(— 72 ) for some constant co; dependlng only on c3.
Since all the constants we introduced in this proof depend only on ¢y and c3, so we can combing
them and find desired ¢}, > 1. O
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H RDPP and /; //5-RIP

Recall our definition of (k’, §) RDPP states that for all rank at most &’ matrix X, the following holds:

X

— | <s. (H.1)
[ X e

D(X) := %Zsign((Ai,)Q — s;)A;, and HD(X) —(X)
=1

The (', §) £1/£2-RIP states that for all rank &’ matrix X, the following holds.

<\/Z - 6) IXlle < = 37 1¢4s, X)) < <\/Z +5> Xl (H2)

We shall utilize the following top &’ Frobenius norm: for an matrix Y € R4*¢

:
o) =
i=1

Here 0;(Y") is the i-th largest singular value of Y. The second variational characterization can be
proved by considering the orthogonal projection of the rank &’ singular vector space of Y and its
complement.

1Yl x = sup Y, 7).

rank(Z) <k’ || Z]lr =1

Now suppose there holds the (%', \ﬁ) RDPP with corruption always 0 and scale function being \/> .
Then we have

) (a)‘ X
> |ID(X) = ¥(X) 5
Vi [ X| e
o || 1 o= . 2 X
= ||— sign({A;, X))A; — | ———
HmZ (e XA = e
(C) 1 m 2 X
> |— > sign((4;, X))A; — [18%
f Z w1 X[e "

(H.3)
@ 1 1 : 2 X
= sup — sign({4;, X))A; — /| ———,Y
VE' rank(Y)<k’,||Y|r<1 <m Z ( ) ™ || X||e

e 1 2 X X
9 L (LS g xpas— 25 X
NG < > =X X1

(o )

Here in the step (a), we use the definition of RDPP. In the step (b), we use the assumption on s; = 0
always and ¢ = \/g . In (¢), we use the relationship between operator norm and top k' Frobenius

norm. In step (d), we use the variational characterization of top k&’ Frobenius norm. In step (e), we
use the fact that X is rank at most k. The above derivation completes one side of the ¢; /¢5-RIP. The

other side can be proved by taking Y = ~TXTe XH in the above step (e).

I Auxiliary Lemmas

This section contains lemmas that will be useful in the proof.
Lemma L.1. Let A be an n x n symmetric matrix. Suppose that | A|| < 2 , the largest singular
value and the smallest singular value of A(I — nA) are 01(A) — noi(A) and 0,,(A) — no2,(A).

Proof. Let U AUX be the SVD of A. Simple algebra shows that
A(I—nA)=Ux (24 —nX%) Uy (L1
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This is exactly the SVD of A (I —nA). Let g(x) = x — na®. By taking derivative, g is monotone
. . . . 1 . . .

increasing in interval [—oo, %} Since the singular values of A(I — nA) are exactly the singular
values of A mapped by g, the result follows. O

1
3
the smallest singular value of A(I — nAT A) are o1(A) — no(A) and 0,,(A) — nol,(A).

Lemma L2. Let A be an m X n matrix. Suppose that ||A| < , the largest singular value and

Proof. Let UaX 4V, be the SVD of A. Simple algebra shows that
A(I-nATA) =Ua (Sa—nZ3%) V4. 12)
This is exactly the SVD of A (I — nATA). Let g(x) = x —na®. By taking derivative, g is monotone

increasing in interval [— / %, A /é] Since the singular values of A(I — nAT A) are exactly the
singular values of A mapped by g, the result follows. O

Lemma L1. Let A be an n x n matrix such that || A|| < 1. Then I 4+ A is invertible and

I+ a7 < —2

_— 1.3
S To(4] (-

Proof. Since ||A|| < 1, the matrix B = Y _.° (—1)"A" is well defined and indeed B is the inverse of
I + A. By continuity, subaddivity and submultiplicativity of operator norm,

o0 o0
I+~ =Bl <> (A < D14l = oAl (L4)
i=0 i=0
O
Lemma 1.2. Let A be an r X r matrix and B be an r X k matrix. Then
o-(AB) < |A|| o-(B). 15)
Proof. For any r x k matrix C, the variational expression of r-th singular value is
C,
o, (C)= sup inf €] (L6)
subspace SCRF iis ||.’L‘||
dim(S)=r
Applying this variational result twice, we obtain
AB
or(AB) = sup it 1257 L7)
subspace SCR* ii‘g ”‘TH
dim(S)=r
All||B
< s inf I IHII l (L8)
subspace SCRF ?:,E €
dilrl(%):r 270
= [[Allor(B). (19)
O
Lemma 1.3 (Weyl’s Inequality). Let A and B be any m x n matrices. Then
0;(A—B)<|A- B, V1 <4 < min{m,n}. (I.10)
When both A and B are symmetric matrices, the singular value can be replaced by eigenvalue.
Lemma L.4. Let A be any m x n matrix with rank r. Then
IA < [[Alle < v/ [IA]- (L11)

Proof. Let 01 > 09 > ... > o, > 0 be singular values of A. Then we know || 4| = o1 and
|Allr = \/>_:_, o7. The result follows from Cauchy’s inequality. O
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Lemma L5. Let F} be the iterates defined by algorithm[3.1} Then we have
|FFT = Xo|| <||SeS) — Dg|| + 2|81, || + |77 |- (L12)
Moreover,

max{[|SeS," = D[, ST (| [T} < (| R = X (L13)

Proof. Recall that Fy = US; + V'T; and X = UD;UT, so we have

FF, — X, = (US +VT)(US; + VT;)T —UD} (1.14)
=U(S:S, —DyU" +USV," VI +VT,S;U" + VI,T, V" (1.15)
By triangle inequality and the fact that ||U|| = ||V'|| = 1, we obtain
|EFT - Xg|| < ||SeS] — Dg|| + 2||S.T || + I T T3] - (L.16)
For the second statement, we observe
HStS’tT —-Dill= sup 2T (StStT - D3z (I.17)
TERT,||z]|=1
< sup y'U (StS,;r — Dg) U'y (1.18)
yeR, |ly||l=1

The last inequality follows from the fact that for any 2z € R”, we can find a y € R such that
UTy =z and ||y|| = ||z|. Indeed, we can simply take y = Uz. On the other hand,

sup  y' U (S,S] —D5)UTy=||U(S:S] —De)YT|| (1.19)
yER?, ||lz||=1
<[|SeS," — Dg||, (1.20)
so actually we have equality
sup  a’ (StStT — D)z = sup y'U (StStT — DY) U'y. (I.21)
zER™,[|lz]|=1 yERY, [ly|l=1

Clearly, the sup can be attained, let y, = argmaxyeRd,HyH:lyTU (StStT — Dg) UTy. Then we
claim that y, must lie in the column space of U. If not so, we can always take the projection of y.
onto the column space of U and normalize it, which will give a larger objective value, contradiction.
As a result, VTy* = 0 and we obtain

|55, — Ds|| = 4! U(S:S, — DUy (1.22)
=y, (RF, - X3)y. (1.23)
< ||RE - Xq|- (1.24)

We can apply the same argument to get || S, T} || < ||F,F," — Xy || and || LT, || < || BFT — X5 |-
[

Lemma 1.6 (¢1/¢5-RIP, [5, Proposition 1 1). Let r > 1 be given, suppose sensing matrices {A; }" 4
have i.i.d. standard Gaussian entries with m 2 dr. Then for any 0 < § < \/g there exists a

universal constant ¢ > 0, such that with probability exceeding 1 — exp(—cmd?), we have

2 1 & 2
(\/;—5> [ X]lF < g;KAuX)I < (\/;+5> | X || (1.25)

for any rank 2r-matrix X.

Lemma 1.7 (¢2-RIP, [39, Theorem 2.3]). Fix 0 < § < 1, suppose that sensing matrices {A;}" 4
have i.i.d. standard Gaussian entries with m 2 6% log (%) dr. Then with probability exceeding
1 — Cexp (—Dm), we have
(1= 8)lIXIIE <li<z4' X)? < (14 8)IIXII3 (1.26)
F = m p (X = F .

for any rank-r matrix X. Here C, D are universal constants.
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Proof. This lemma is not exactly as Theorem 2.3 in [39] stated, but it’s straight forward from the
proof of this theorem. All we need to note in that paper is that the sample complexity we need is

m 2, @, where c is the constant defined in Theorem 2.3 [39] for ¢ chosen to be §. By standard
concentration, ¢ < 6% and the result follows. O

Lemma L8 (Covering number for symmetric low rank matrices). LetS, = {X € S¥¢: rank(X) <
r, || X||p = 1}. Then, there exists an e-net S, , with respect to the Frobenius norm satisfying

|SE’T‘ S (%) (2d+1)7"

Proof. The proof is the same as the proof of lemma 3.1 in [39], except that we will do eigenvalue
decomposition, instead of SVD. O

Lemma 1.9 ( [4, Lemma A.1]). Suppose F'(-) is cumulative distribution function with continuous
density function f(-). Assume the samples {x;}" | are i.i.d. drawn from f. Let0 < p < 1. If
1< f(0) < Lforall@in{0: |0 — 0, < e}, then

10p({zi}i21) = Op(F)| <€ (1.27)

holds with probability at least 1 — 2 exp(—2me?1?). Here 0,({x;}™ ) and 0,,(F) are p-quantiles of
samples and distribution F' (see Definition 5.1 in [4]])

Lemma 1.10 (Concentration of operator norm). Let A be a d-by-d GOE matrix having N(0,1)
diagonal elements and N (0, %) off-diagonal elements. Then we have

E[|A]] < Vd (1.28)
and )
P(|AI-E[JA]>t) <e 7. (1.29)

Proof. We will use the following two facts [11]):

1. For a d-by-d matrix B with i.i.d. N(0,1) entries,
E[||B|] < 2Vd. (1.30)

2. Suppose f is L-Lipschitz(with respect to the Euclidean norm) function and « is a standard
normal vector, then

P(f(a)—E[f(a)] >t) <e 2T. (L31)

.
Now we can prove the lemma. Firstly, we note that A has the same distribution as % where B
has i.i.d. standard normal entries. By the first fact, we obtain

IB] +[|B"]
4

E[JAll <E < V. (1.32)

On the other hand, || A|| can be written as a function of {A;;} and {v/24;;};<;, which are i.i.d.
standard normal random variables. Simple algebra yields that this function is 1-Lipschitz. By the
second fact,

P (l14] = Vd+1) < P(|A] > E[JA]] +1) (133)
<e 7 (1.34)
O

Lemma I.11 (Concentration for x? distribution). Let Y ~ x2(n) be a x? random variable. Then we
have

<P(Y'2(1%—2v5?%2Aﬁ0 < exp(—An/2). (L35)

Proof. 1t follows from standard sub-exponential concentration inequality and the fact that the square
of a standard normal random variable is sub-exponential [11]. O
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Lemma 112 ( [4, Lemma A.8]). Suppose A; € R4*%’s are independnet GOE sensing matrices
having N(0,1) diagonal elements and N (0, %) off-diagonal elements, for i = 1,2,...,m and

m > d. Then
max || Aillr < 2v/d(d+m) (1.36)

i=1,2,...,
holds with probability exceeding 1 — m exp(—d(d + m)/2).

Proof. Let A be a GOE sensing matrix described in this lemma, and A;; be the ij-th entry of A.

Since 4 .,
AR =A% +2) A% =) A%+ (V24,)% (L37)
i=1 i<j i=1 i<j
we see that || A[|Z is a x?(d(d + 1)/2) random variable. By Lemmall.11] we have
P <||A||% > (1 +2ﬁ+2A) d2) < exp(—Ad2/2) (1.38)
forany A > 0. Take A = UHT’” > 2. Simple calculus shows 2\ > 2v/X + 1. Thus, we obtain
P ([|A|% = 4d(d+m)) < exp(—d(d + m)/2). (1.39)
Therefore, the proof is completed by applying the union bound. O
Lemma L.13 ( [4, Lemma A.2]). Given vectors x = [x1,2,...,2,] and y = [y1,Y2, ..., Yn). We
reorder them so that
vy <z <. STy, and  yay < yY@e) < - < Y- (1.40)
Then
|zt = Yo | < e — vl » Vk=1,2,...,n. (L41)

Lemma .14 ( [4, Lemma A.3]). Consider corrupted samples y; = (A;, X y) + S; and clean samples
U= (A, Xy), i =1,2,....om Ifu < % is the fraction of samples that are corrupted by outliers,
for p < p <1— pu, we have

Op—n({1:}i21) < Op({lwil }iZ1) < Oprn({13:1}721) (142)
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