
A Analysis of algorithm under conditions of Theorem 3.1

Here we recall some basic setup introduced in the sketch of analysis in Section 3.3. Recall the
singular value decomposition of X\ is

X\ = [U V ]


D⇤

S 0
0 0

�
[U V ]

>
, (A.1)

where U 2 Rd⇥r, V 2 Rd⇥d�r, D⇤
S 2 Rr⇥r. U and V has orthonormal columns and U>V = 0.

The i-th largest singular values of X\ is denoted as �i. Thus, �1 and �r are the largest and smallest
diagonal entries of D⇤

S respectively. Since X\ is assumed to have rank r, we have �r+1 = �r+2 =
. . . = �d = 0. The condition number is defined to be  = �1

�r
. Since union of column space of U and

V spans the whole space, for any Ft 2 Rd⇥r, we can write
Ft = USt + V Tt, (A.2)

where St = U>Ft 2 Rr⇥k and Tt = V >Ft 2 R(d�r)⇥k.

We now formalize the idea of closeness of subgradient dynamics to its smooth counter part described
in Section 3.3. By assumption (iii) in Theorem 3.1, the RDPP holds with parameters (k + r,

q
1
2⇡ �)

and � = c
3

p
k

for some small constant c depending on c3 in Theorem 3.1. Since the RDPP holds, let

�t =
⌘t (FtF>

t �X\)

kFtF>
t �X\kF

, Dt 2 D(FtF
>
t �X\), (A.3)

we have
��⌘tDt � �t(FtF

>
t �X\)

��
F,k+r

 ⌘t

r
1

2⇡
� (A.4)

 ⌘t (FtF
>
t �X\)� (A.5)

= ��tkFtF
>
t �X\kF. (A.6)

Define the following shorthand �t,

�t =
⌘t
�t
Dt � (FtF

>
t �X\). (A.7)

Then (A.4) becomes

k�tk  �kFtF
>
t �X\kF

(a)
 �

p
k + r

��FtF
>
t �X\

�� . (A.8)

Here step (a) is because FtF>
t �X\ has rank no more than k + r.

Using that fact that the subgradient we used in algorithm 3.1 can be written as gt = DtFt, we have

Ft+1 = Ft � �t(FtF
>
t �X\)Ft + �t�tFt. (A.9)

Note that if we ignore the error term �t�tFt in (A.9), the update equation becomes

F̃t+1 = Ft � �t
�
FtF

>
t �X\

�
Ft. (A.10)

This update is the update of gradient descent for the smooth function f̃(F ) = 1
4kFF>

�X\k
2
F with

stepsize �t. We will refer (A.10) as the “population-level” update and we will leverage the properties
of this update throughout the analysis. We are now ready to start our full analysis of the subgradient
dynamics. We first characterize the initialization quality in terms of S and T .
Proposition A.1 (Initialization quality). Under the condition on F0 sated in (3.3) of Theorem 3.1,
we have

�r(S0) �

p
✏�r
2

, (A.11)

kT0k  min{
�r

200
p
�1

,

p
✏�r
40

}, (A.12)

kS0k  2
p
�1, (A.13)

4 kT0k
2
 0.001�r(S0)

�r
p
�1

. (A.14)
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In the analysis, we denote �r(S0) by ⇢ and let c⇢ = min{ �r
200

p
�1⇢

, 1
20}. Then we have

�r(S0) = ⇢ �

p
✏�r
2

(A.15)

kT0k  c⇢⇢ (A.16)
kS0k  2

p
�1. (A.17)

The parameters satisfy 4(c⇢⇢)2  0.001⇢ �rp
�1

and c⇢⇢  min{0.1
p
�1,

�r
200

p
�1
} = �r

200
p
�1

, which
will be applied multiple times in the following analysis.

The next proposition illustrates the evolution of St and Tt.
Proposition A.2 (Updates of St, Tt). For any t � 0, we have

St+1 = St � �t
�
StS

>
t St + StT

>
t Tt �D⇤

SSt

�
+ �tU

>�tFt, (A.18)

Tt+1 = Tt � �t
�
TtT

>
t Tt + TtS

>
t St

�
+ �tV

>�tFt. (A.19)

We introduce notations

Mt(St) = St � �t
�
StS

>
t St + StT

>
t Tt �D⇤

SSt

�
(A.20)

Nt(Tt) = Tt � �t
�
TtT

>
t Tt + TtS

>
t St

�
. (A.21)

They are "population-level" updates for St and Tt.
Proposition A.3 (Uniform upper bound). Suppose �t satisfies �t 

0.01
�1

for all t � 0 and
(50

p
k�)

1
3 

c⇢⇢
2
p
�1

= �r
400�1

, we have

kTtk  c⇢⇢  0.1
p
�r  0.1

p
�1 (A.22)

kStk  2
p
�1 (A.23)

for all t � 0.

The analysis of algorithm consists of three stages:

• In stage 1, we show at �r(St) increases geometrically to level
p

�r
2 by time T

0
1 , then

��StS>
t �D⇤

S

�� will decrease geometrically to 100(c⇢⇢)
2�1

�r
( �r

100 )by T1. The iterate will
then enter a good region.

• In stage 2, we show that Dt = max{
��StS>

t �D⇤
S

�� ,
��StT>

t

��} decreases geometrically
if it is bigger than 10�

p
2k�1, which is the computational threshold. In other words,��StS>

t �D⇤
S

�� decrease to a 100(c⇢⇢)
2�1

�r
geometrically, and this will happen by T2.

• In stage 3, after T2, Et = max{
��StS>

t �D⇤
S

�� ,
��StT>

t

�� ,
��TtT>

t

��} converges to 0 sublin-
early.

In the above statement,

T
0
1 =

⇠
log

✓p
�r

p
2⇢

◆
/ log

✓
1 +

c��2
r

6�2
1

◆⇡
, (A.24)

T1 = T
0
1 +

2

666

log( 20(c⇢⇢)
2

�r
)

log
⇣
1� c��2

r

2�2
1

⌘

3

777
(A.25)

and

T2 = T1 +

2

666

log
⇣

1000�
p
k�1

�r

⌘

log
⇣
1� c��2

r

6�2
1

⌘

3

777
. (A.26)

Stage 1 consists of all the iterations up to time T1. Stage 2 consists of all the iterations between T1+1
and T2. Stage 3 consists of all the iterations afterwards.
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A.1 Analysis of Mt(St) and Nt(Tt).

In this sections we prove some facts about Mt(St) and Nt(Tt) that will be useful in the analysis.
Proposition A.4. Suppose �t  min{ 0.01

�1
, 0.01�r

�2
1

}, kStk  2
p
�1, �r(St) �

p
�r
2 and kTtk 

0.1
p
�r, we have the following:

1.
��Mt(St)Mt(St)> �D⇤

S

��  (1� 3�t�r

4 )
��StS>

t �D⇤
S

��+ 3�t
��StT>

t

��2.

Suppose �t  0.01
�1

, kStk  2
p
�1, and kTtk  0.1

p
�r, we have the following:

2.
��Nt(Tt)Nt(Tt)>

��  kTtk
2 (1� 3�t

2 kTtk
2) =

��TtT>
t

�� �1� 3�t
2

��TtT>
t

���.

Furthermore, suppose �t 
0.01
�1

, kStk  2
p
�1, �r(St) �

p
�r
2 , kTtk  0.1

p
�r, and��StS>

t �D⇤
S

�� 
�r
10 , we have same inequalities as 1, 2 and

3.
��Mt(St)Nt(Tt)>

��  (1� �t�r

3 )
��StT>

t

��.

Proposition A.5. Suppose �t  0.01
�1

, kStk  2
p
�1, �r(St) �

p
�r
2 and kTtk  0.1

p
�r, we have

the following:

1.
��D⇤

S �Mt(St)S>
t

�� 
�
1� ��r

2

� ��D⇤
S � StS>

t

��+ �t
��StT>

t

��2.

2.
��Mt(St)T>

t

��  2
��StT>

t

��.

3.
��Nt(Tt)S>

t

�� 
��TtS>

t

��.

4.
��Nt(Tt)T>

t

��  kTtk
2 (1� �t kTtk

2) =
��TtT>

t

�� �1� �t
��TtT>

t

��� .

A.2 Analysis of Stage 1

The following proposition characterize the evolution of �r(St). In stage one, we start with a
initialization satisfies conditions in Proposition A.1.
Proposition A.6. Suppose there is some constant c� > 0 such that the parameters satisfy c��r

�2
1



�t  min{ 1
100�1

, �r

100�2
1
} = �r

100�2
1

, (50
p
k�)

1
3 

c⇢⇢
2
p
�1

= �r
400�1

, we have

�r(St) � min

⇢
(1 +

�2
rc�
6�2

1

)t�r(S0),

r
�r
2

�
(A.27)

for all t � 0. In particular, we have

�r(ST 0
1
+ t) �

r
�r
2
. (A.28)

for all t � 0.

Next, we show that
��StS>

t �D⇤
S

�� decays geometrically to 100(c⇢⇢)
2�1

�r
.

Proposition A.7. Suppose there is some constant c� > 0 such that the parameters satisfy c��r

�2
1



�t  min{ 1
100�1

, �r

100�2
1
} = �r

100�2
1

, (50
p
k�)

1
3 

c⇢⇢
2
p
�1

, we have for any t � 0, we have

��ST1+tS
>
T1+t �D⇤

S

��  max{5�1(1�
c��2

r

2�2
1

)t,
100(c⇢⇢)2�1

�r
}. (A.29)

In particular, for T1 = T
0
1 +

2

666
log(

20(c⇢⇢)2

�r
)

log

✓
1� c��2

r
2�2

1

◆

3

777
, we have

��StS
>
t �D⇤

S

�� 
100(c⇢⇢)2�1

�r


�r
100

, 8t � T1. (A.30)
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When t = T1, by Proposition A.7,
��D⇤

S � ST1S
>
T1

�� 
�r
100

. (A.31)

By Proposition A.3 and our assumption that c⇢⇢ 
�r

200
p
�1

,

kST1TT1k  2(c⇢⇢)
p
�1 

�r
100

. (A.32)

Combining, we obtain
DT1 

�r
100

. (A.33)

A.3 Analysis of Stage 2

Recall
Dt = max{

��StS
>
t �D⇤

S

�� ,
��StT

>
t

��}. (A.34)

We show that Dt decreases to 10�
p
k + r�1 geometrically after T1.

Proposition A.8. Suppose there is some constant c� > 0 such that the parameters satisfy c��r

�2
1



�t 
0.01
�1

, �
p
k + r 

0.001�r
�1

. Also, we suppose kTtk  0.1
p
�r for all t. If for some T1 > 0,

DT1  max{
�r
100

, 10�
p
k + r�1} =

�r
100

, (A.35)

then for any t � 0, we have

DT1+t  max

(✓
1�

c��2
r

6�2
1

◆t

·
�r
100

, 10�
p
k + r�1

)
. (A.36)

In particular, for T2 = T1 +

2

666
log

⇣
1000�

p
k+r�1

�r

⌘

log

✓
1� c��2

r
6�2

1

◆

3

777
, we have

��StS
>
t �D⇤

S

��  10�
p
k + r�1, (A.37)

��StT
>
t

��  10�
p
k + r�1, 8t � T2. (A.38)

A.4 Analysis of Stage 3

Define
Et = max{

��StS
>
t �D⇤

S

�� ,
��StT

>
t

�� ,
��TtT

>
t

��}. (A.39)

We are going to show the sublinear convergence of Et in stage three.

Proposition A.9. Suppose we have �t  0.01
�1

, �
p
k + r 

0.001�r
�1

and Et  0.01�r for some t > 0.
Then we have

Et+1  max{(1�
�t�r
6

)Et, Et(1� �tEt)} = Et(1� �tEt). (A.40)

Indeed, we can prove a better rate if there is no overparametrization.

Proposition A.10. Suppose we have �t 
0.01
�1

, �
p
k + r 

0.001�r
�1

and Et  0.01�r for some
t > 0. If k = r, then we have

Et+1  (1�
�t�r
3

)Et. (A.41)

A.5 Proof of Theorem 3.1

The proof is a combination of all the propositions in this section. First, we show that under suitable
choice of c0 and c3, all the assumptions are satisfied. First, if we take c3 to be small enough, we know
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that (50
p
k�)

1
3 

�r
400�1

holds. Hence, all the conditions related to � are satisfied. Next, by definition,

�t =
⌘t (FtF

>
t �X\)

kFtF>
t �X\kF

. By the second assumption and the assumption on range of  , we know

�t 2 [c1

r
1

2⇡

�r
�2
1

, c2

r
2

⇡

�r
�2
1

]. (A.42)

Since we assumed c2  0.01, so the step size condition �t  �r

100�2
1

is satisfied. Moreover, c� �

c1
q

1
2⇡ . Now, applying theorems for initialization, stage 1 and stage 2, we know that

��ST2S
>
T2

�D⇤
S

��  10�
p
k + r�1 

0.01�2
r

�1
, (A.43)

��ST2T
>
T2

��  10�
p
k + r�1 

0.01�2
r

�1
. (A.44)

In addition, by Proposition A.3, we know
��TT2T

>
T2

�� = kTT2k
2
 (c⇢⇢)

2


0.01�2
r

�1
. (A.45)

Hence, ET2 
0.01�2

r
�1

. Here are two cases:

• k > r, By Proposition A.9 and induction, we know

Et+1  Et(1� �tEt)  Et(1�
c��r
�2
1

Et), 8t � T2. (A.46)

where c1
q

2
⇡  c�  0.01. Define Gt =

c��r

�2
1
Et, then we have G⌧2 < 1 and

Gt+1  Gt(1�Gt), 8t � T2. (A.47)
Taking reciprocal, we obtain

1

Gt+1
�

1

Gt
+

1

1�Gt
�

1

Gt
+ 1, 8t � T2 (A.48)

So we obtain
GT2+t 

1
1

GT2
+ t

, 8t � 0. (A.49)

Plugging in the definition of Gt, we obtain

E⌧2+t 
�2
1

c��r

1
�2
1

c��rET2
+ t


�2
1

c��r

1
100�3

1
c��3

r
+ t

=
�1
c�


100
c�
3 + t


�1
c�



3 + t
. (A.50)

Since c� � c1
q

2
⇡ , we can simply take c5 = 1

4c1

p
⇡
2 , T = T2, apply Lemma I.5, and get

��FT +tF
>
T +t �X\

��  c5�1


3 + t
, 8t � 0. (A.51)

The last thing to justify is T2 . 2 log . Recall

T
0
1 =

⇠
log

✓p
�r

p
2⇢

◆
/ log

✓
1 +

c��2
r

6�2
1

◆⇡
, (A.52)

T1 = T
0
1 +

2

666

log( 20(c⇢⇢)
2

�r
)

log
⇣
1� c��2

r

2�2
1

⌘

3

777
(A.53)

and

T2 = T1 +

2

666

log
⇣

1000�
p
k�1

�r

⌘

log
⇣
1� c��2

r

6�2
1

⌘

3

777
. (A.54)

Simple calculus yield that each integer above is O(2 log ). So the proof is complete in
overspecified case.
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• k = r. By Proposition A.10 and induction, we obtain

Et+1  (1�
�t�r
3

)Et  (1�
c��2

r

�2
1

)Et, 8t � T2. (A.55)

Applying this inequality recursively and noting c� � c1
q

2
⇡ , we obtain

ET2+t  (1�
c��2

r

�2
1

)tET2 

0

@1�
c1
q

2
⇡

2

1

A

t

0.01�r


, 8t � 0. (A.56)

Thus, we can take c6 = 0.01/4, c7 = c1
q

2
⇡ , T = T2, apply Lemma I.5 and get

��FT +tF
>
T +t �X\

�� 
c6�r


⇣
1�

c7
2

⌘t
, 8t � 0. (A.57)

The validity of T is proved in the last part. The proof is complete.

B Proof of Propositions

B.1 Proof of Proposition A.1

First, we note that the r-th singular value of c⇤X\ is at least ✏�r. By almost the same proof as
Lemma I.5, we get

max{
��S0S

>
0 � c⇤D⇤

S

�� ,
��S0T

>
0

�� ,
��T0T

>
0

��} 
��F0F

>
0 � c⇤X\

�� 
c̃0✏�r


. (B.1)

We take c̃0 =
�

1
200

�2. By Weyl’s inequality (I.3),

�r(S0S
>
0 ) � �r(c

⇤D⇤
S)�

��S0S
>
0 � c⇤D⇤

S

�� �
c⇤�r
4

�
✏�r
4

. (B.2)

Hence, ⇢ = �r(S0) �
p
✏�r

2 . On the other hand,

kT0k 

r
c̃0✏�r


(B.3)

 min{
�r

200
p
�1

,

p
✏�r
40

}. (B.4)

We can simply assume �1(S0)  2
p
�1. If not so, we can normalize F0 so that �1(S0) = 2

p
�1 and

use normalized F0 as our initialization. By Weyl’s inequality (I.3),
�1(S0S

>
0 )  1.01c⇤�1. (B.5)

Hence, c⇤ � 3. In this case, it is easy to show that ⇢ = �r(S0) �
p
✏�r

2 and kT0k 
�r

200
p
�1

still
holds. Therefore, the initialization quality is proved.

B.2 Proof of Proposition A.2

The algorithm A.9 updates Ft by
Ft+1 = Ft � �t

�
FtF

>
t �X\

�
Ft + �t�tFt. (B.6)

Using the definition of U, V, St, Tt, we have
St+1 = U>Ft+1

= U>Ft � �tU
> �FtF

>
t �X\

�
Ft + �tU

>�tFt

= U>(USt + V Tt)� �tU
> ⇥(USt + V Tt)(USt + V Tt)

>
� UD⇤

SU
>
� V D⇤

TV
>⇤ (USt + V Tt)

+ �tU
>�tFt

(])
= St � �t(StS

>
t St + StT

>
t Tt �D⇤

SSt) + �tU
>�tFt.

Here (]) follows from the fact that U>V = 0 and U, V are orthonormal.
By the same token, we can show

Tt+1 = Tt � �t
�
TtT

>
t Tt + TtS

>
t St

�
+ �tV

>�tFt. (B.7)
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B.3 Proof of Proposition A.3

We prove the proposition by induction. By Proposition A.1, it’s clear that the proposition holds for
t = 0. Suppose for t � 0, we have

kTtk  c⇢⇢  0.1
p
�1 (B.8)

kStk  2
p
�1. (B.9)

By Proposition A.2, we know
St+1 = St � �t(StS

>
t St + StT

>
t Tt �D⇤

SSt) + �tU
>�tFt. (B.10)

Since kTtk  c⇢⇢  0.1
p
�1, kStk  2

p
�1 and our assumption that �t 

0.01
�1

, I � �tS>
t St �

�tT>
t Tt is a PSD matrix. By lemma I.2,

��St

�
I � �tS

>
t St � �tT

>
t Tt

��� 
��St

�
I � �tS

>
t St

���+ �t kStk kTtk
2 (B.11)

= kStk � �t kStk
3 + 0.1�t�

3
2
1 . (B.12)

On the other hand, simple triangle inequality yields
kFtk = kUSt + V Ttk  kStk+ kTtk  3

p
�1. (B.13)

By A.8 and lemma I.4, we get
k�tFtk  k�tk kFtk (B.14)

 3�
1
2
1 �kFtF

>
t �X\kF (B.15)

 3�
1
2
1 �

p
k + r

��FtF
>
t �X\

�� (B.16)

 3�
1
2
1 �

p
k + r

⇣
kFtk

2 + kX\k

⌘
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Combining, we have
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We consider two different cases:

• kStk  1.5
p
�1. By the inequality above, we have
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• 1.5
p
�1 < kStk  2

p
�1. In this case, we have
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The desired bound for St+1 is established. For Tt+1, we note
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>
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>
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We expand Tt+1T>
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By Proposition A.4, we have kZ1k  kTtT>
t k(1 �

3�t
2 kTtT>

t k). By induction hypothesis and
triangle inequality, we have
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and
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By triangle inequality, we have
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We consider two different cases:
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Hence, we proved the inequality for kTt+1k. By induction, the proof is complete.

B.4 Proof of Proposition A.4
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This yields
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and
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We bound each of them separately. For Z1, by triangle inequality,
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The norm of Z2 can be simply bounded by

kZ2k  2�t
��StT

>
t

��2 (B.56)

For Z3, we can split it as
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By triangle inequality and our assumption that kStk  2
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�1, we have
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Here (]) follows from our assumption that kStk  2
p
�1 and kTtk  0.1

p
�r. Combining,
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If we assume
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With this bound, we can do same argument except only with �t  0.01
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to get same bound
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We bound each of them separately. By lemma I.1, we obtain
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Combining, we obtain
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The second inequality follows from the fact that Z5 � 0. In this proof, we only need
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We bound each of them. By our assumption that �r(St) �
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For Z9, we use triangle inequality and get
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In (]), we used the bound that
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B.5 Proof of Proposition A.5

We prove them one by one.
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By triangle inequality, the result follows.
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Triangle inequality yields
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The last inequality follows from our assumption that �t  0.01
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By triangle inequality,
��Nt(TT )S

>
t

�� 

����

✓
1

2
I � �tTtT

>
t

◆
TtS

>
t

����+
����TtS

>
t

✓
1

2
I � �tStS

>
t

◆���� (B.112)


��TtS

>
t

�� . (B.113)

The last inequality follows from the choice of �t and the fact that
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As a result of lemma I.1, we have
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B.6 Proof of Proposition A.6

We prove this proposition by induction. Note that the inequality A.27 holds trivially when s = 0.
Suppose it holds for t � 0. By Proposition A.2, we can write St+1 as
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These two ways of expressing St+1 are crucial to the proof.
For the ease of notation, we introduce some notations. Let

Ht = I � �tStS
>
t + �tD

⇤
S (B.120)

Et = StT
>
t Tt � U>�tFt (B.121)

By Proposition A.3 and our assumption that (50
p
k�)

1
3 

c⇢⇢
2
p
�1

, we have

kEtk  kStk kTtk
2 + k�tFtk (B.122)

 2(c⇢⇢)
2p�1 + 50�

p

k�
3
2
1 (B.123)

 2(c⇢⇢)
2p�1 +

(c⇢⇢)3

8
(B.124)

 3(c⇢⇢)
2p�1. (B.125)

In the last inequality, we used our assumption that c⇢⇢  0.1
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� �t kD⇤

Sk


1

1� 0.04� 0.01
 2. (B.126)

By B.118, we can write
St = H�1

t St+1 + �tH
�1
t Et (B.127)

Plug this in to B.119 and rearrange, we get
�
I � �2tD

⇤
SStS

>
t H�1

t

�
St+1 = (I + �tD

⇤
S)St(I � �tS

>
t St)| {z }

Z1

+ �3tD
⇤
SStS

>
t H�1

t Et � �tEt| {z }
Z2

(B.128)
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Let’s consider the r-th singular value of both sides. For LHS, by lemma I.2 and lemma I.1
�r(
�
I � �2tD

⇤
SStS

>
t H�1

t

�
St+1) 

���I � �2tD
⇤
SStS

>
t H�1

t

����r(St+1) (B.129)


1

1� �2t
��D⇤

SStS>
t H�1

t

���r(St+1) (B.130)


1

1� 8�2t �
2
1

�r(St+1). (B.131)

For RHS, we consider Z1 and Z2 separately. For Z1, by lemma I.2, we have
�r(Z1) � �r(I + �tD

⇤
S) · �r(St(I � �tS

>
t St)) (B.132)

= (1 + �t�r)�r(St)(1� �t�
2
r(St)) (B.133)

For Z2, by triangle inequality,���3tD⇤
SStS

>
t H�1

t Et � �tEt

��  �3t
��D⇤

SStS
>
t H�1

t Et

��+ �t kEtk (B.134)

 (8�3t �
2
1 + �t) kEtk (B.135)

 3(8�3t �
2
1 + �t)(c⇢⇢)

2p�1. (B.136)
Combining, by lemma I.3, we obtain

�r((I + �tD
⇤
S)St(I � �tS

>
t St) + �3tD

⇤
SStS

>
t H�1

t Et � �tEt) (B.137)
� �r (Z1)� �t kEtk � kZ2k (B.138)

� (1 + �t�r)�r(St)(1� �t�
2
r(St))� 3(8�3t �

2
1 + �t)(c⇢⇢)

2p�1. (B.139)
By induction hypothesis, we know �r(St) � ⇢. Note we assumed that 4c2⇢⇢  0.01 �rp

�1
, so we have

3(8�3t �
2
1 + �t)(c⇢⇢)

2p�1  4�t(c⇢⇢)
2p�1  0.01�t�r�r(St) (B.140)

Consequently, we get
�r((I + �tD

⇤
S)St(I � �tS

>
t St) + �3tD

⇤
SStS

>
t H�1

t Et � �tEt) (B.141)

� (1 + �t�r)�r(St)(1� �t�
2
r(St))� 0.01�r�r(St) (B.142)

= �r(St)
�
1 + 0.99�t�r � �t�

2
r(St)� �2t �r�

2
r(St)

�
(B.143)

Combining the LHS and RHS, we finally get
�r(St+1) � (1� 8�2t �

2
1)
�
1 + 0.99�t�r � �t�

2
r(St)� �2t �r�

2
r(St)

�
�r(St) (B.144)

We consider two cases(recall �r = 1
 ):

• �r(St) �
q

3�r
4 . By B.144, we know that

�r(St+1) � (1� 8�2t �
2
1)(1� 5�t�1)�r(St). (B.145)

Here we used Proposition A.3 to bound �r(St) by 2
p
�1. Since �t  0.01

�1
, simple calculation

shows that

�r(St+1) � (1� 8�2t �
2
1)(1� 5�t�1)

r
3�r
4

�

r
�r
2
. (B.146)

• �r(St) <
q

3�r
4 . By B.144 and induction hypothesis, we know

�r(St+1) � (1� 8�2t �
2
1)
�
1 + 0.99�t�r � �t�

2
r(St)� �2t �r�

2
r(St)

�
�r(St) (B.147)

� (1� 8�2t �
2
1)
⇣
1 +

�t�r
5

⌘
�r(St) (B.148)

�

✓
1 +

�t�2
r

6�2
1

◆
�r(St) (B.149)

� min{(1 +
c��2

r

6�2
1

)t+1�r(S0),

r
�r
2
}. (B.150)

We used the bound �t �
c��r

�2
1

in the last inequality.

By induction, we proved inequality A.27 for �r(St). By our choice of T1, it’s easy to verify that

�r(ST1+t) �

r
�r
2
, 8t � 0. (B.151)
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B.7 Proof of Proposition A.7

We prove it by induction. For the ease of notation, we use index t for t � T
0
1 instead of T 0

1 + t. The
inequality A.29 holds for t = T

0
1 by Proposition A.3 and triangle inequality that

��ST1S
>
T1

�D⇤
S

��  kST1k
2 + kD⇤

Sk  5�1. (B.152)

Suppose that A.29 holds for some t � T
0
1 . By Proposition A.2, we have

St+1 = Mt(St) + �tU
>�tFt. (B.153)

As a result,

St+1S
>
t+1 �D⇤

S = Mt(St)Mt(St)
>
�D⇤

S| {z }
Z1

+ �t(U
>�tFtMt(St)

> +Mt(St)F
>
t �>

t U)| {z }
Z2

(B.154)

+ �2tU
>�tFtF

>
t �>

t U| {z }
Z3

(B.155)

By Proposition A.4, we know

kZ1k  (1�
3�t�r
4

)
��StS

>
t �D⇤

S

��+ 3�t
��StT

>
t

��2 (B.156)

(])
 (1�

3�t�r
4

)
��StS

>
t �D⇤

S

��+ 12�t�1(c⇢⇢)
2 (B.157)

Here (]) follows from Proposition A.3.
On the other hand, it’s easy to see kMt(St)k  3

p
�1 by its definition and Proposition A.3. By

triangle inequality,

kZ2k  2�t
��U>�tFtMt(St)

>�� (B.158)
 2�t k�tk kUSt + V Ttk kMt(St)k (B.159)
 18�t k�tk�1 (B.160)
(])
 18�t�

p
k + r

��FtF
>
t �X\

���1 (B.161)
(?)
 270�t�

p

k�2
1 (B.162)

(⇤)
 �t(c⇢⇢)

3p�1 (B.163)

Here (]) follows from A.8, (?) follows from uniform bound kFtk  3
p
�1, and (⇤) follows from the

assumption that (50
p
k�)

1
3 

c⇢⇢
2
p
�1

.
Furthermore,

kZ3k  �2t k�tk
2
kFtk

2 (B.164)

 9�2t (10�
p
k + r)2�3

1 (B.165)

 �2t (c⇢⇢)
6 (B.166)

The last inequality follows simply from our assumption that (50
p
k�)

1
3 

c⇢⇢
2
p
�1

. Combining, we
obtain
��St+1S

>
t+1 �D⇤

S

��  kZ1k+ kZ2k+ kZ3k (B.167)

 (1�
3�t�r
4

)
��StS

>
t �D⇤

S

��+ 12�t(c⇢⇢)
2�1 + �t(c⇢⇢)

3p�1 + �2t (c⇢⇢)
6

(B.168)

 (1�
3�t�r
4

)
��StS

>
t �D⇤

S

��+ 13�t(c⇢⇢)
2�1 (B.169)

In the last inequality, we used c⇢⇢  0.1
p
�1 and �t  0.01

�1
. We consider two cases:
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•
��StS>

t �D⇤
S

�� 
52(c⇢⇢)

2�1

�r
. By above inequality, we simply have

��St+1S
>
t+1 �D⇤

S

�� 
��StS

>
t �D⇤

S

��+ 13�t(c⇢⇢)
2�1 

100(c⇢⇢)2�1
�r

. (B.170)

The last inequality follows from the assumption that �t  0.01
�1


0.01
�r

.

•
��StS>

t �D⇤
S

�� > 52(c⇢⇢)
2�1

�r
. In this case, 13�t(c⇢⇢)2�1 

�t�r

4

��StS>
t �D⇤

S

��. Conse-
quently,
��St+1S

>
t+1 �D⇤

S

��  (1�
3�t�r
4

)
��StS

>
t �D⇤

S

��+ �t�r
4

��StS
>
t �D⇤

S

�� (B.171)

 (1�
�t�r
2

)
��StS

>
t �D⇤

S

�� (B.172)

 max{5(1�
c��2

r

2�2
1

)t+1�T 0
1 ,

100(c⇢⇢)2�1
�r

}. (B.173)

We used the induction hypothesis in the last inequality. By induction, inequality A.29 is
proved. Moreover, T 0

2 is the smallest integer such that

5(1�
c��2

r

2�2
1

)t�T 0
1 

100(c⇢⇢)2�1
�r

. (B.174)

Therefore, the second claim in Proposition A.7 follows from A.29.

B.8 Proof of Proposition A.8

We prove it by induction. For the ease of notation, we use index t for t � T1 instead of T1 + t.
When t = T1, A.36 holds by assumption. Now suppose A.36 holds for some t � T1. By induction
hypothesis, we have ��StT

>
t

��  0.01�r. (B.175)

Moreover,
��StS

>
t

��  kD⇤
Sk+

��StS
>
t �D⇤

S

��  1.01�1. (B.176)

Therefore, kStk  2
p
�1. Also,

�r(StS
>
t ) � �r(D

⇤
S)�

��StS
>
t �D⇤

S

�� �
�r
2
. (B.177)

Hence, �r(St) �
p

�r
2 and the conditions of Proposition A.4 and Proposition A.5 are satisfied. We

consider
��St+1S>

t+1 �D⇤
S

�� and
��St+1T>

t+1

�� separately.

1. For
��St+1S>

t+1 �D⇤
S

��, we apply the same idea as proof of Proposition A.7 and write

St+1S
>
t+1 �D⇤

S = Mt(St)Mt(St)
>
�D⇤

S| {z }
Z1

� �t(U
>�tFtMt(St)

> +Mt(St)F
>
t �>

t U)| {z }
Z2

(B.178)

+ �2tU
>�tFtF

>
t �>

t U| {z }
Z3

(B.179)

By Proposition A.4, we know

kZ1k  (1�
3�t�r
4

)
��StS

>
t �D⇤

S

��+ 3�t
��StT

>
t

��2 (B.180)

 (1�
3�t�r
4

)
��StS

>
t �D⇤

S

��+ 0.03�t�r
��StT

>
t

�� (B.181)

 (1�
3�t�r
4

+ 0.03�t�r)Dt. (B.182)
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On the other hand, By triangle inequality,

kZ2k  2�t
��U>�tFtMt(St)

>�� (B.183)
 2�t k�tk kUSt + V Ttk kMt(St)k (B.184)
 18�t�1 k�tk (B.185)
(])
 18�t�1�

p
k + r

��FtF
>
t �X\

�� (B.186)
(B.187)

Here (]) follows from A.8. By lemma I.5, we see that
��FtF

>
t �X\

�� 
��StS

>
t �D⇤

S

��+ 2
��StT

>
t

��+
��TtT

>
t

�� (B.188)


3�r
100

+
�r
100

(B.189)


4�r
100

. (B.190)

Hence, we obtain
kZ2k 

72

100
�t�r�

p
k + r�1. (B.191)

Similarly,

kZ3k  �2t k�tk
2
kFtk

2 (B.192)

 9�1�
2
t (�

p
k + r)2

��FtF
>
t �X\

��2 (B.193)

 9�1�
2
t (�

p
k + r)2(

4�r
100

)2 (B.194)


1

100
�t�r�

p
k + r�1. (B.195)

In the last inequality, we used our assumption that �t�r  �t�1  0.01 and �
p
k + r 

0.001. Combining, we obtain
��St+1S

>
t+1 �D⇤

S

��  (1�
�t�r
2

)Dt + �t�r�
p
k + r�1. (B.196)

We consider two cases:
• Dt  3�

p
k + r�1. In this case, we simply have

��St+1S
>
t+1 �D⇤

S

��  Dt + 3�t�r�
p
k + r�1  Dt + �

p
k + r�1  10�

p
k + r�1.

(B.197)

• 3�
p
k + r�1 < Dt  10�

p
k + r�1. In this case, we clearly have

�t�
p
k + r�1�r 

�t�r
3

Dt. (B.198)

Consequently,

��St+1S
>
t+1 �D⇤

S

��  (1�
�t�r
6�1

)Dt  max

(✓
1�

c��2
r

6�2
1

◆t+1�T1

·
�r
10

, 10�
p
k + r�1

)
.

(B.199)

Here we used the induction hypothesis on Dt.
2. For

��St+1T>
t+1

��, we can expand it and get

St+1T
>
t+1 = (Mt(St) + �tU

>�tFt)(Nt(Tt) + �tV
>�tFt)

> (B.200)

= Mt(St)Nt(Tt)
>

| {z }
Z4

+ �tU
>�tFtNt(Tt) + �tMt(St)F

>
t �>

t V| {z }
Z5

(B.201)

+ �2tU
>�tFtF

>
t �>

t V| {z }
Z6

. (B.202)
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By assumption, we have
��StS

>
t �D⇤

S

��  Dt (B.203)

 max{
�r
100

, 10�
p
k + r�1} (B.204)


�r
100

. (B.205)

By Proposition A.4, we know

kZ4k  (1�
�t�r
3

)
��StT

>
t

��  (1�
�t�r
3

)Dt (B.206)

On the other hand, it’s easy to see the kMt(St)k  3
p
�1 and kNt(Tt)k 

p
�1, by triangle

inequality and the same argument as
��St+1S>

t+1 �D⇤
S

��,

kZ5k  �t (kFtk kNt(Tt)k+ kFtk kMt(St)k) k�tk (B.207)
 12�t�1 k�tk (B.208)

 12�t�1�
p
k + r

��FtF
>
t �X\

�� (B.209)


48

100
�t�r�

p
k + r�1. (B.210)

We used
��FtF>

t �X\

�� 
4�r
100 , which was proved above. Similar as calculation for��St+1S>

t+1 �D⇤
S

��, we have

kZ6k 
1

100
�t�r�

p
k + r�1. (B.211)

Combining, we obtain
��St+1T

>
t+1

��  kZ4k+ kZ5k+ kZ6k (B.212)



⇣
1�

�t�r
3

⌘
Dt + �t�r�

p
k + r�1. (B.213)

We consider two cases:
• Dt  6�

p
k�1. In this case, we simply have

��St+1T
>
t+1

��  Dt + �t�r�
p
k + r�1  Dt + �

p
k + r�1  10�

p
k + r�1.

(B.214)

• 6�
p
k + r�1 < Dt  10�

p
k + r�1. In this case, we clearly have

�t�r�
p
k + r�1 

�t�r
6

Dt. (B.215)

Consequently,

��St+1T
>
t+1

��  (1�
�t�r
6

)Dt  max

(✓
1�

c��2
r

6�2
1

◆t+1�T1

·
�r
10

, 10�
p
k + r�1

)
.

(B.216)

Here we used the induction hypothesis on Dt.

Combining, we see that

Dt+1  max

(✓
1�

c��2
r

6�2
1

◆t+1�T1

·
�r
10

, 10�
p
k + r�1

)
. (B.217)

So the induction step is proved. Note that T2 is chosen to be the smallest integer t that
✓
1�

c��2
r

6�2
1

◆t�T1

·
�r
10

 10�
p
k + r�1, (B.218)

the second part of Proposition A.8 follows.
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B.9 Proof of Proposition A.9

The proof is inspired by [15]. By our assumption that Et  0.01�r, we have
��StS

>
t

�� 
��StS

>
t �D⇤

S

��+ kD⇤
Sk  1.01�1. (B.219)

As a result, kStk  2
p
�1. Similarly,

kTtk 

q��TtT>
t

��  0.1
p
�r. (B.220)

Moreover,
�r(StS

>
t ) � �r(D

⇤
S)�

��StS
>
t �D⇤

S

�� �
�r
2
. (B.221)

We obtain

�r(St) �

r
�r
2
. (B.222)

Thus, St, Tt satisfy all the conditions in Proposition A.4 and Proposition A.5. We will bound��St+1S>
t+1 �D⇤

S

��,
��St+1T>

t+1

��,
��Tt+1T>

t+1

�� separately.

•
��St+1S>

t+1 �D⇤
S

��. Simple algebra yields

St+1S
>
t+1 �D⇤

S = Mt(St)Mt(St)
>
�D⇤

S| {z }
Z1

+ �t(U
>�tFtMt(St)

> +Mt(St)F
>
t �>

t U)| {z }
Z2

(B.223)

+ �2tU
>�tFtF

>
t �>

t U| {z }
Z3

(B.224)

By Proposition A.4, we obtain

kZ1k  (1�
3�t�r
4

)
��StS

>
t �D⇤

S

��+ 3�t
��StT

>
t

��2 (B.225)

(])
 (1�

3�t�r
4

)
��StS

>
t �D⇤

S

��+ 0.03�t�r
��StT

>
t

�� (B.226)

 (1�
3�t�r
4

+ 0.03�t�r)Et. (B.227)

In (]), we used our assumption that
��StT>

t

��  0.01�r. On the other hand, it’s easy to see
kMt(St)k  3

p
�1 by its definition and the fact that kStk  2

p
�r. By triangle inequality,

kZ2k  2�t
��U>�tFtMt(St)

>�� (B.228)
 2�t k�tk kUSt + V Ttk kMt(St)k (B.229)
 18�t�1 k�tk (B.230)
(])
 18�t�1�

p
k + r

��FtF
>
t �X\

�� (B.231)
(?)
 0.018�t�r

��FtF
>
t �X\

�� (B.232)

Here (]) follows from A.8. (?) follows from our assumption that �
p
k + r 

0.001�r
�1

. By
lemma I.5, we see that��FtF

>
t �X\

�� 
��StS

>
t �D⇤

S

��+ 2
��StT

>
t

��+
��TtT

>
t

�� (B.233)
 4Et (B.234)

Hence, we obtain
kZ2k  0.1�t�rEt. (B.235)

Similarly,

kZ3k  �2t k�tk
2
kFtk

2 (B.236)

 9�1�
2
t (�

p
k + r)2

��FtF
>
t �X\

��2 (B.237)

 144�1�
2
t (�

p
k + r)2E2

t (B.238)
 0.1�t�rEt. (B.239)
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In the last inequality, we used our assumption that �
p
k + r 

0.001�r
�1

 0.001, �t  0.01
�1

and kEtk  0.01�r. Combining, we obtain
��St+1S

>
t+1 �D⇤

S

��  kZ1k+ kZ2k+ kZ3k (B.240)

 (1�
�t�r
2

)Et (B.241)

•
��St+1T>

t+1

��. We can expand it and get

St+1T
>
t+1 = (Mt(St) + �tU

>�tFt)(Nt(Tt) + �tV
>�tFt)

> (B.242)

= Mt(St)Nt(Tt)
>

| {z }
Z4

+ �tU
>�tFtNt(Tt) + �tMt(St)F

>
t �>

t V| {z }
Z5

(B.243)

+ �2tU
>�tFtF

>
t �>

t V| {z }
Z6

. (B.244)

By Proposition A.4, we know

kZ4k  (1�
�t�r
3

)
��StT

>
t

��  (1�
�t�r
3

)Et (B.245)

On the other hand, we see that kMt(St)k  3
p
�1 and kNt(Tt)k 

p
�1(by bound

on St and Tt and the update rule), by triangle inequality and the same argument as��St+1S>
t+1 �D⇤

S

��,

kZ5k  �t (kFtk kNt(Tt)k+ kFtk kMt(St)k) k�tk (B.246)
 12�t�1 k�tk (B.247)

 12�t�1�
p
k + r

��FtF
>
t �X\

�� (B.248)
 0.05�t�rEt. (B.249)

Same as calculation for
��St+1S>

t+1 �D⇤
S

��, we have

kZ6k  0.1�t�rEt. (B.250)

Combining, we obtain
��St+1T

>
t+1

��  kZ4k+ kZ5k+ kZ6k (B.251)



⇣
1�

�t�r
6

⌘
Et. (B.252)

•
��Tt+1T>

t+1

��. We expand it and obtain

Tt+1T
>
t+1 = (Nt(Tt) + �tV

>�tFt)(Nt(Tt) + �tV
>�tFt)

> (B.253)

 Nt(Tt)Nt(Tt)
>

| {z }
Z7

+ �tV
>�tFtNt(Tt)

> + �tNt(Tt)F
>
t �>

t V| {z }
Z8

(B.254)

+ �2t V
>�tFtF

>
t �>

t V| {z }
Z9

(B.255)

By Proposition A.4,

kZ7k 
��TtT

>
t

�� (1� 2�t
��TtT

>
t

��)  Et(1� 2�tEt). (B.256)

The last inequality follows from the fact that x ! x(1� 2�tx) is non-decreasing on interval
[0, 1

4�t
]. On the other hand,

V >�tFtNt(Tt)
> = V >�t(USt + V Tt)Nt(Tt)

> (B.257)

= V >�tUStNt(Tt)
> + V >�tV TtNt(Tt)

> (B.258)
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By Proposition A.5, we obtain
��V >�tFtNt(Tt)

>�� 
��V >�tUStNt(Tt)

>��+
��V >�tV TtNt(Tt)

>�� (B.259)


���StNt(Tt)

>��+
��TtNt(Tt)

>��� k�tk (B.260)


���StT

>
t

��+
��TtT

>
t

��� �
p
k + r

��FtF
>
t �X\

�� (B.261)

 8�
p
k + rE2

t . (B.262)

 0.01E2
t (B.263)

Consequently,

kZ8k  2�t
��V >�tFtNt(Tt)

>��  0.02�tE
2
t . (B.264)

Furthermore,

kZ9k  �2t kFtk
2
k�tk

2 (B.265)

 9�2t �1(�
p
k + r)2

��FtF
>
t �X\

��2 (B.266)

 144�2t �1(�
p
k + r)2E2

t (B.267)

 0.1�tE
2
t . (B.268)

In the last inequality, we used our assumption that �t  0.01�1 and �
p
k + r  0.001.

Combining, we obtain
��Tt+1T

>
t+1

��  Et(1� �tEt). (B.269)

The result follows.

B.10 Proof of Proposition A.10

The proof of this proposition has lots of overlap with Proposition A.9. By our assumption that
Et  0.01�r, we have

��StS
>
t

�� 
��StS

>
t �D⇤

S

��+ kD⇤
Sk  1.01�1. (B.270)

As a result, kStk  2
p
�1. Similarly,

kTtk 

q��TtT>
t

��  0.1
p
�r. (B.271)

Moreover,
�r(StS

>
t ) � �r(D

⇤
S)�

��StS
>
t �D⇤

S

�� �
�r
2
. (B.272)

We obtain

�r(St) �

r
�r
2
. (B.273)

Thus, St, Tt satisfy all the conditions in Proposition A.4 and Proposition A.5. We will bound��St+1S>
t+1 �D⇤

S

��,
��St+1T>

t+1

��,
��Tt+1T>

t+1

�� separately. Note that the proof of Proposition A.9
doesn’t use k > r, so it also holds for the case when k = r. So, we already have

��St+1S
>
t+1 �D⇤

S

��  (1�
�t�r
2

)Et (B.274)

and ��St+1T
>
t+1

��  (1�
�t�r
3

)Et. (B.275)

Next, we obtain a better bound for
��Tt+1T>

t+1

��. We expand Tt+1T>
t+1 and obtain

Tt+1T
>
t+1 = (Nt(Tt) + �tV

>�tFt)(Nt(Tt) + �tV
>�tFt)

> (B.276)

= Nt(Tt)Nt(Tt)
>

| {z }
Z1

+ �tV
>�tFtNt(Tt)

> + �tNt(Tt)F
>
t �>

t V| {z }
Z2

(B.277)

+ �2t V
>�tFtF

>
t �>

t V| {z }
Z3

(B.278)
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By definition,
Nt(Tt) = Tt � �t(TtT

>
t Tt + TtS

>
t St). (B.279)

Plug this into Nt(Tt)Nt(Tt)>, we obtain

Z1 = Nt(Tt)Nt(Tt)
> (B.280)

=
�
Tt � �t(TtT

>
t Tt + TtS

>
t St)

� �
Tt � �t(TtT

>
t Tt + TtS

>
t St)

�>
(B.281)

= Z4 + Z5, (B.282)

where
Z4 = TtT

>
t � 2�tTtT

>
t TtT

>
t � �tTtS

>
t StT

>
t (B.283)

and
Z5 = ��tTtS

>
t StT

>
t + �2t (TtT

>
t Tt + TtS

>
t St)(TtT

>
t Tt + TtS

>
t St)

>. (B.284)
We bound each of them separately. Since k = r, S>

t St is a r-by-r. Moreover,

�r(S
>
t St) = �r(St)

2
�
�r
2
, (B.285)

By �t  0.01
�1

,
��I � �tS

>
t St � 2�tTtT

>
t

�� 
��I � �tS

>
t St

�� (B.286)

 1�
�t�r
2

. (B.287)

Consequently,

kZ4k =
��Tt(I � �tS

>
t St � 2�tT

>
t Tt)T

>
t

�� (B.288)

 kTtk
2 ��(I � �tS

>
t St � 2�tT

>
t Tt)

�� (B.289)

 (1�
�t�r
2

) kTtk
2 . (B.290)

In addition,

Z5 = ��tTtS
>
t StT

>
t + �2t

⇥
TtT

>
t

�
TtS

>
t StT

>
t

�
+
�
TtS

>
t StT

>
t

�
TtT

>
t

⇤
+ �2t TtS

>
t StS

>
t StT

>
t

(B.291)

� (��t +
2

100
�2t �r + 4�1�

2
t )TtS

>
t StT

>
t (B.292)

� 0 (B.293)

Combining, we obtain
��Nt(Tt)Nt(Tt)

>��  kZ4k  (1�
�t�r
2

)
��TtT

>
t

�� . (B.294)

On the other hand, we see that kMt(St)k  3
p
�1 and kNt(Tt)k 

p
�1(by bound on St and Tt

and the update rule). As a result,
��V >�tFtNt(Tt)

>��  kFtk kNt(Tt)k k�tk (B.295)

 (kStk+ kTtk) kNt(Tt)k �
p
k + r

��FtF
>
t �X\

�� (B.296)

 3�1�
p
k + r

��FtF
>
t �X\

�� . (B.297)

 12�1�
p
k + rEt. (B.298)

Consequently,

kZ2k  2�t
��V >�tFtNt(Tt)

>��  0.03�t�rEt (B.299)

Furthermore,

kZ3k  �2t kFtk
2
k�tk

2 (B.300)

 9�2t �1(�
p
k + r)2

��FtF
>
t �X\

��2 (B.301)

 144�2t �1(�
p
k + r)2E2

t (B.302)
 0.01�t�rEt. (B.303)
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In the last inequality, we used our assumption that �t  0.01�1 and �
p
k + r  0.001. Combining,

we obtain
��Tt+1T

>
t+1

��  kZ1k+ kZ2k+ kZ3k (B.304)

 (1�
�t�r
3

)
��TtT

>
t

�� (B.305)

C Proof of RDPP

Throughout this section, we denote

S := {X 2 S
d⇥d : kXkF = 1}, Sr := {X 2 S

d⇥d : kXkF = 1, rank(X)  r}.

Here we split the Proposition 2.2 into two parts and prove them separately. For the ease of notation,
we use r to denote the rank, instead of k0.

Proposition C.1. Assume that the sensing matrix Ai
i.i.d.
⇠ GOE(d),15 and the corruption is

from model 2. Then RDPP holds with parameters (r, �) and a scaling function  (X) =
1
m

Pm
i=1

q
2
⇡

⇣
1� p+ pEsi⇠Pi

h
exp(� s2i

2kXk2
F
)
i⌘

with probability at least 1 � Ce�cm�4 , given

m & dr(log( 1
� )_1)

�4 .
Proposition C.2. Assume that the sensing matrices {Ai}

m
i=1 have i.i.d. standard Gaussian entries,

and the corruption is from model 1. Moreover, we modify function sign(x) such that sign(x) =8
<

:

{�1} x < 0
{�1, 1} x = 0
{1} x > 0

. Then, RDPP-II holds with parameter (r, �+3
q

dp
m +3p) and a scaling function

 (X) =
q

2
⇡ with probability at least 1�exp(�(pm+d))�exp(�c0m�4), given m & dr(log( 1

� )_1)
�4 .

C.1 Proof of Proposition C.1

In the probability bounds that we obtained, the c might be different from bounds to bounds, but they
are all universal constants.
Lemma C.3. Suppose that we are under Model 2. Then, for every nonzero X 2 Sd⇥d, and every
D 2 D(X), the expectation E [D] is

E [D] =  (X)
X

kXkF
, where  (X) =

1

m

mX

i=1

r
2

⇡

⇣
1� p+ pEsi⇠Pi

h
e�s2i /2kXk2

F

i⌘
. (C.1)

Proof. We may drop the subscript under expectation when the distribution is clear. Firstly, we show
that for any X,Y 2 Sd⇥d, if s follows distribution P, A is GOE matrix and they are independent,
then

E [sign(hA,Xi � s) hA, Y i] =

r
2

⇡
E
h
e�s2/2kXk2

F

i⌧ X

kXkF
, Y

�
. (C.2)

In this section, sign(hA, xi � s) should be thought of as any element chosen from the corresponding
set. There is ambiguity when hA, xi � s = 0, but this happens with probability 0, so it won’t affect
the result. Without loss of generality, we assume kXkF = kY kF = 1. To leverage the fact that A
is GOE matrix, we denote u = hA,Xi, v = hA, Y i and ⇢ = cov(u, v). Simple calculation yields
u ⇠ N(0, 1), v ⇠ N(0, 1) and ⇢ = hX,Y i. By coupling, we can write v = ⇢u+

p
1� ⇢2w, where

w is another standard Gaussian independent of others. Using the definition of u, v, ⇢, w, we have

E [sign(hA,Xi � s) hA, Y i] = E [sign(u� s)v] = ⇢E [sign(u� s)u] . (C.3)

15Gaussian orthogonal ensemble(GOE): A is symmetric with Aij = Aji ⇠ N(0, 1
2 ) for i 6= j and Aii ⇠

N(0, 1) independently.
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We continue the above equality using the properties of Gaussian:

⇢E [sign(u� s)u] =⇢Es

Z +1

s
u

1
p
2⇡

e�u2/2du�

Z s

�1
u

1
p
2⇡

e�u2/2du

�
(C.4)

(a)
=⇢Es

Z +1

s
u

1
p
2⇡

e�u2/2du+

Z +1

�s
u

1
p
2⇡

e�u2/2du

�
(C.5)

(b)
=2⇢Es

"Z +1

|s|
u

1
p
2⇡

e�u2/2du

#
(C.6)

=

r
2

⇡
⇢Es

"Z +1

|s|
d(�e�u2/2)

#
=

r
2

⇡
⇢Es

h
e�s2/2

i
. (C.7)

Here, in the steps (a), we do a change of variable u 7! �u. In the step (b), we use the fact that
the density of standard Gaussian is symmetric. Recall that ⇢ = hX,Y i. Hence, the equation (C.2)
follows from (C.3) - (C.7). Since it holds for all symmetric Y , we obtain

E [sign(hA,Xi � s)A] =

r
2

⇡
E
h
e�s2/2kXk2

F

i X

kXkF
. (C.8)

On the other hand, if we apply the above result to the case when s ⌘ 0, we get

E [sign(hA,Xi)A] =

r
2

⇡

X

kXkF
. (C.9)

When si’s are form model 2, by tower property and results above,
E [sign(hAi, Xi � si)Ai] = E [E[sign(hAi, Xi � si)Ai | si]] (C.10)

= (1� p)E [sign(hAi, Xi)Ai] + pEsi⇠Pi,Ai [sign(hAi, Xi � si)Ai]
(C.11)

=

r
2

⇡

⇣
(1� p) + pE

h
e�s2/2kXk2

F

i⌘ X

kXkF
(C.12)

The lemma follows from the linearity of expectation.

Lemma C.3 is an analogue of [13, Lemma 3]. Note that the function  is not necessarily the quantityq
2
⇡

⇣
(1� p) + pE

h
e�s2i /2kXk2

F

i⌘
X

kXkF
, which appears in [13, Lemma 3], since the corruptions

are not assumed to be i.i.d in this paper.

Next, we prove a probability bound that holds for any fixed X,Y 2 S.
Lemma C.4. Under Model 2, there exists a universal constant c such that for any � > 0, X 2

S, Y 2 S, with probablity at most 2e�cm�2 , the following event happens
�����
1

m

mX

i=1

sign (hAi, Xi � si) hAi, Y i �  (X) hX,Y i

����� > �, (C.13)

where  (X) = 1
m

Pm
i=1

q
2
⇡

⇣
1� p+ pEsi⇠Pi

h
e�s2i /2kXk2

F

i⌘
.

Proof. We first show that sign(hAi, Xi�si) hAi, Y i is a sub-Gaussian random variable. Let consider
the Orlicz norm [11] with  2(x) = ex

2

� 1. hAi, Y i is standard Gaussian, so it has sub-Gaussian
parameter 1. By property of Orlicz norm, khAi, Y ik 2

 C for some constant C. Moreover,
|sign(hAi, Xi � si)|  1, so

ksign(hAi, Xi � si) hAi, Y ik 2
 khAi, Y ik 2

 C. (C.14)

By property of Orlicz norm again, we know sign(hAi, Xi�si) hAi, Y i is sub-Gaussian with constant
sub-Gaussian parameter. By Lemma C.3, we have

E
"
1

m

mX

i=1

sign (hAi, Xi � si) hAi, Y i

#
=  (X) hX,Y i . (C.15)
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By Chernoff bound, we can find some constant c > 0 such that

P

 �����
1

m

mX

i=1

sign (hAi, Xi � si) hAi, Y i �  (X) hX,Y i

����� � �

!
(C.16)

 2e�cm�2 (C.17)

Lemma C.4 is an analogue of [13, Lemma 4]. Since the corruptions are not assumed to be i.i.d., the
function  is different from the quantity

q
2
⇡

⇣
(1� p) + pE

h
e�s2i /2kXk2

F

i⌘
X

kXkF
, which appears

in [13, Lemma 3]. Moreover, we need to apply a (generalized) Chernoff bound for a sum of random
variables with different sub-Gaussian parameters in the end of our proof rather than a concentration
bound for i.i.d. random variables as done in [13, Lemma 4].

Proof of Proposition C.1. Without loss of generality, we only need to prove the bound holds for
all X 2 Sr with high probability. By Lemma I.8, we can find ✏-nets S✏,r ⇢ Sr, S✏,1 ⇢ S1 with
respect to Frobenius norm and satisfy |S✏,r| 

�
9
✏

�(2d+1)r, |S✏,1| 
�
9
✏

�2d+1. For any X̄ 2 S✏,r,
define Br(X̄, ✏) = {X 2 Sr : kX � X̄kF  ✏}. B1(X̄, ✏) is defined similarly by B1(X̄, ✏) =
{X 2 S1 : kX � X̄kF  ✏}. Then, for any X̄, Ȳ and X 2 Br(X̄, ✏), Y 2 B1(Ȳ , ✏), we have
hX,Y i �

⌦
X̄, Ȳ

↵
=
⌦
X,Y � Ȳ

↵
+
⌦
X � X̄, Ȳ

↵
. By bounding the two terms on the RHS of the

previous equality via the Cauchy-Schwarz’s inequality, we have
��hX,Y i �

⌦
X̄, Ȳ

↵��  2✏. (C.18)

Let us also decompose the quantity of interest, R := 1
m

Pm
i=1 sign(hAi, Xi � si) hAi, Y i �

 (X) hX,Y i, into four terms:

R : =
1

m

mX

i=1

sign(hAi, Xi � si) hAi, Y i �  (X) hX,Y i (C.19)

=
1

m

mX

i=1

sign(
⌦
Ai, X̄

↵
� si)

⌦
Ai, Ȳ

↵
�  (X̄)

⌦
X̄, Ȳ

↵

| {z }
=:R1

(C.20)

+
1

m

mX

i=1

sign(
⌦
Ai, X̄

↵
� si) hAi, Y i � sign(

⌦
Ai, X̄

↵
� si)

⌦
Ai, Ȳ

↵

| {z }
=:R2

(C.21)

+
1

m

mX

i=1

sign(hAi, Xi � si) hAi, Y i � sign(
⌦
Ai, X̄

↵
� si) hAi, Y i

| {z }
=:R3

(C.22)

+ (X̄)
⌦
X̄, Ȳ

↵
�  (X) hX,Y i

| {z }
=:R4

(C.23)

Recall our goal is to give a high probablity bound on supX2Sr,Y 2S1 |R|. To achieve this goal, we
use the above decomposition and the triangle inequality, and have the following bound.

sup
X2Sr,Y 2S1

|R| = sup
X̄2S✏,r
Ȳ 2S✏,1

sup
X2Br(X̄,✏)
Y 2B1(Ȳ ,✏)

|R| (C.24)

 sup
X̄2S✏,r
Ȳ 2S✏,1

|R1|

| {z }
Z1

+ sup
X̄2S✏,r
Ȳ 2S✏,1

sup
Y 2Br(Ȳ ,✏)

|R2|

| {z }
Z2

+ sup
X̄2S✏,r
Y 2S1

sup
X2Br(X̄,✏)

|R3|

| {z }
Z3

+ sup
X̄2S✏,r
Ȳ 2S✏,1

sup
X2Br(X̄,✏)
Y 2B1(Ȳ ,✏)

|R4|

| {z }
Z4

(C.25)

By C.18 and  (X) =  (X̄)  1, we obtain

Z4  2✏. (C.26)
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Then we hope to bound Z1, Z2, Z3 separately. By union bound and Lemma C.4, we have Z1  �1
with probability at least 1� 2 |S✏,r| |S✏,1| e�cm�21 . On the other hand, by `1/`2-rip (I.6),

Z2  sup
Ȳ 2S✏,1,Y 2B1(Ȳ ,✏)

1

m

mX

i=1

��⌦Ai, Y � Ȳ
↵�� (C.27)

 ✏ sup
Z2S2

1

m

mX

i=1

|hAi, Zi| (C.28)

 ✏

 r
2

⇡
+ �2

!
(C.29)

with probability at least 1� e�cm�22 , given m & d.
Moreover, by Cauchy-Schwartz inequality,

Z3  sup
X̄2S✏,r

X2Br(X̄,✏)

 
1

m

mX

i=1

�
sign(

⌦
Ai, X̄

↵
� si)� sign(hAi, Xi � si)

�2
! 1

2

sup
Y 2S1

 
1

m

mX

i=1

hAi, Y i
2

! 1
2

.

(C.30)
By `2-rip (I.7), we know

sup
Y 2S1

1

m

mX

i=1

hAi, Y i
2
 1 + �3 (C.31)

with probability 1 � C exp(�Dm) given m & 1
�23

log( 1
�3
)d. Note that sign(

⌦
Ai, X̄

↵
� si) =

sign(hAi, Xi � si) if
��⌦Ai, X � X̄

↵�� 
��⌦Ai, X̄

↵
� si

��, as a result, for any t > 0,

sup
X̄2S✏,r

X2Br(X̄,✏)
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⌦
Ai, X̄

↵
� si)� sign(hAi, Xi � si)

�2 (C.32)

 sup
X̄2S✏,r

X2Br(X̄,✏)
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↵
� si

��� (C.33)

 sup
X̄2S✏,r

X2Br(X̄,✏)
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↵
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(C.34)

 sup
Z2✏S2r

4

m

mX

i=1

1 (|hAi, Zi| � t)

| {z }
Z5

+ sup
X̄2S✏,r
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1
���⌦Ai, X̄

↵
� si

��  t
�

| {z }
Z6

(C.35)

For Z5, we use the simple inequality 1(|hAi, Zi| � t)  |hAi,Zi|
t and `1/`2-rip (I.6) and obtain

Z5  sup
Z2✏S2r

4

m

mX

i=1

|hAi, Zi|

t
(C.36)

 sup
Z2S2r

4✏

m

mX

i=1

|hAi, Zi|

t
(C.37)


4✏(1 + �4)

t
(C.38)

with probability at least 1� e�cm�24 given m & dr.
For Z6, we firstly use Chernoff’s bound for each fixed X̄ and get

1

m

mX

i=1

1
���⌦Ai, X̄

↵
� si

��  t
�
 E

⇥
1
���⌦Ai, X̄

↵
� si

��  t
�⇤

+ �5 (C.39)
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with probability at least 1 � ecm�
2
5 . On the other hand, for fixed X̄ 2 S✏,r,

⌦
Ai, X̄

↵
is standard

Gaussian. Since the density function of Gaussian is bounded above by 1
2⇡ , we always have

E
⇥
1
���⌦Ai, X̄

↵
� si

��  t
�⇤


2

p
2⇡

t  t. (C.40)

Consequently,
1

m

mX

i=1

1
���⌦Ai, X̄

↵
� si

��  t
�
 t+ �5 (C.41)

with probability at least 1� e�cm�25 . By union bound, we have
Z6  4t+ 4�5 (C.42)

with probability at least 1� |S✏,r| e�cm�25 . Combining, we have

sup
X,Y 2Sr

�����
1

m

mX

i=1

sign(hAi, Xi � si) hAi, Y i �  (X) hX,Y i

����� (C.43)

 �1 + ✏

 r
2

⇡
+ �2

!
+
p
1 + �3

r
4✏(1 + �4)

t
+ 4t+ 4�5 + 2✏ (C.44)

with probability as least 1�2 |S✏,r| |S✏,1| e�cm�21�e�cm�22�C exp(�Dm)�e�cm�24�|S✏,r| e�cm�25 ,
given m & max{ 1

�23
log
⇣

1
�3

⌘
d, dr}. Take �1 = �, �2 = �3 = �4 = 1

2 , �5 = �2, t = �2, ✏ = �4, we
have

sup
X,Y 2Sr

�����
1

m

mX

i=1

sign(hAi, Xi � si) hAi, Y i �  (X) hX,Y i

����� . � (C.45)

with probability at least(given m & dr)
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� C 0 exp(�D0m)�

✓
9

�4

◆(2d+1)r

e�cm�4 (C.46)

Given m & dr�4 log
�
1
�

�
, we have
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✓
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✓
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✓
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◆
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◆
+ exp

✓
4r(2d+ 1) log

✓
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�

◆
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(C.48)

. exp(�c0m�4) (C.49)

So if m & dr�4 log
�
1
�

�
,

sup
X2Sr,Y 2S1

�����
1

m

mX

i=1

sign(hAi, Xi � si) hAi, Y i �  (X) hX,Y i

����� . � (C.50)

with probability at least 1� C exp(�c0m�4). This implies

sup
X2Sr

�����
1

m

mX

i=1

sign(hAi, Xi � si)Ai �  (X)X

����� . � (C.51)

by variational expression of operator norm. The proof is complete since we only need to prove RDPP
for matrices with unit Frobenius norm.

Proposition C.1 is an analogue of [13, Proposition 5]. Note that the function  is different from the
function  in [13, Proposition 5] as the corruptions are not assumed to be i.i.d. in this paper. Our
proof also deviates from the proof of [13, Proposition 5] in bounding the term Z5, which appears
in (C.35). This term corresponds to the first term on the RHS of the last line of eq. (38) in [13].
In [13], this term is bounded by [13, Lemma 8] using empirical processes tools such as Talagrand’s
inequality. Here, we bound the term Z5 using a simple contraction argument (stated as an inline
inequality before (C.36)) and the `1/`2-RIP; see (C.36)-(C.38).
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C.2 Proof of Proposition C.2

We assume for simplicity that pm and (1� p)m are integers. Note that

1

m

mX

i=1

sign(hAi, Xi � si)Ai �  (X)
X

kXkF
(C.52)

=
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sign(hAi, Xi � si)Ai +
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i/2S

sign(hAi, Xi � si)Ai �

r
2

⇡

X

kXkF
(C.53)
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m

X

i2S

sign(hAi, Xi � si)Ai

| {z }
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+
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sign(hAi, Xi)Ai � (1� p)
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⇡

X

kXkF

| {z }
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(C.54)

� p

r
2

⇡

X

kXkF| {z }
Z3

(C.55)

We bound Z1, Z2, Z3 separately.

• For Z1, we observe the following fact: let ei 2 {�1, 1} be sign variables. For any fixed
{ei}i2S ,

P
i2S eiAi is a GOE matrix with N(0, pm) diagonal elements and N(0, pm

2 )
off-diagonal elements. By lemma I.10, we have

P

 �����
X

i2S

eiAi

����� �
p
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p

d+ t)

!
 e�

t2

2 . (C.56)

Take t = 2
p
pm+ d, we obtain
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 �����
X

i2S

eiAi

����� �
p
pm(

p

d+ 2
p
pm+ d)

!
 e�2(pm+d). (C.57)

As a result, by union bound(the union of all the possible signs), with probability at least
1� 2pme�2(pm+d)

� 1� e�(pm+d),
�����
X

i2S

sign(hAi, Xi � si)Ai

����� 
p
pm(

p

d+ 2
p
pm+ d) (C.58)

for any X . Note also that
p
d+ 2

p
pm+ d  3

p
d+ 2

p
pm, so with probability at least

1� exp(�(pm+ d)),

kZ1k  3

r
dp

m
+ 2p (C.59)

for any X .
• For Z2, applying Proposition C.1 with zero corruption and the assumption that p < 1

2 , we
obtain that with probability exceeding 1� exp(�cm(1� p)�2) � 1� exp(�c0m�4), the
following holds for all matrix X with rank at most r,

�����
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(1� p)m

X

i/2S

sign(hAi, Xi)Ai �

r
2

⇡

X

kXkF

�����  �, (C.60)

given m & dr(log( 1
� )_1)

�4 . Consequently, given m & dr(log( 1
� )_1)

�4 , with probability exceed-
ing 1� exp(�cm(1� p)�2) � 1� exp(�c0m�4),

kZ2k  � (C.61)

for any X with rank at most r.
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• For Z3, we have a deterministic bound

kZ3k 

r
2

⇡
p. (C.62)

Combining, we obtain that given m & dr(log( 1
� )_1)

�4 , then with probability exceeding
1� exp(�(pm+ d))� exp(�c0m�4),

�����
1

m

mX

i=1

sign(hAi, Xi � si)Ai �  (X)
X

kXkF

�����  3

r
dp

m
+ 3p+ � (C.63)

for any X with rank at most r.

D Choice of stepsize

First, we present a proposition that is the cornerstone for the choice of stepsize.
Proposition D.1. Fix p 2 (0, 1), ✏ 2 (0, 1). If m � c0(✏�2 log ✏�1)dr log d for some large enough
constant c0, then with probability at least 1� c1 exp(�c2m✏2), where c1 and c2 are some constants,
we have for all symmetric matrix G 2 Rd⇥d with rank at most r,

⇠p ({|hAi, Gi|}
m
i=1) 2 [✓p � 2✏, ✓p + 2✏]kGkF, (D.1)

where ⇠p({|hAi, Gi|}
m
i=1) is p-quantile of samples. (see Definition 5.1 in [4])

Next, we prove a proposition that can be used to estimate kFtF>
t � X⇤

kF and kX⇤
kF under

corruption model 1.
Proposition D.2. Suppose we are under model 1 and yi = hAi, Gi + si’s are given. Fix ✏ < 0.1
and corruption probability p < 0.1. Then if m � c0(✏�2 log ✏�1)dr log d for some large enough
constant c0, then with probability at least 1� c1 exp(�c2m✏2), where c1 and c2 are some constants,
we have for any symmetric matrix G 2 Rd⇥d with rank at most r,

⇠ 1
2
({|yi|}

m
i=1) 2 [✓ 1

2�p�✏, ✓ 1
2+p+✏]kGkF (D.2)

⇢ [✓ 1
2
� L(p+ ✏), ✓ 1

2
+ L(p+ ✏)]kGkF, (D.3)

where L > 0 is some universal constant.

The following proposition can be used to estimate kFtF>
t � X⇤

kF and kX⇤
kF under corruption

model 2.
Proposition D.3. Suppose we are under model 2 and yi = hAi, Gi+ si’s are given. Fix corruption
probability p < 0.5. Let ✏ = 0.5�p

3 . Then if m � c0dr log d for some large enough constant c0
depending on p, then with probability at least 1 � c1 exp(�c2m✏2), where c1 and c2 are some
constants, we have for all symmetric matrix G 2 Rd⇥d with rank at most r,

⇠ 1
2
({|yi|}

m
i=1) 2 [✓ 0.5�p

3
, ✓1� 0.5�p

3
]kGkF. (D.4)

D.1 Proof of Proposition D.1

The proof is modified from Proposition 5.1 in [4]. We first note hAi, Gi ⇠ N(0, kGk
2
F) and

✓p(|N(0, kGk
2
F)|) = ✓p · kGkF. (D.5)

Here ✓p(|N(0, kGk
2
F)|) denote the p-quantile of folded N(0, kGk

2
F). It suffices to prove the bound

for all symmetric matrices that have rank at most r and unit Frobenius norm. For each fixed symmetric
G0 with kG0kF = 1, we know from Lemma I.9 that

⇠p ({|hAi, Gi|}
m
i=1) 2 [✓p � ✏, ✓p + ✏] (D.6)

with probability at least 1� 2 exp(�cm✏2) for some constant c that depends on p. Next, we extend
this result to all symmetric matrices with rank at most r via a covering argument. Let S⌧,r be a
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⌧ -net for all symmetric matrices with rank at most r and unit Frobenius norm. By Lemma I.8,
|S⌧,r| 

�
9
⌧

�r(2d+1). Taking union bound, we obtain

⇠p ({|hAi, G0i|}
m
i=1) 2 [✓p � ✏, ✓p + ✏], 8G0 2 S⌧,r (D.7)

with probability at least 1� 2
�
9
⌧

�r(2d+1)
exp(�cm✏2). Set ⌧ = ✏/(2

p
d(d+m)). Under this event

and the event that
max

i=1,2,...,m
kAikF  2

p
d(d+m), (D.8)

which holds with probability at least 1�m exp(�d(d+m)/2) by Lemma I.12, for any rank-r matrix
G with kGkF = 1, there exists G0 2 S⌧,r such that kG�G0kF  ⌧ , and

|⇠p ({|hAi, Gi|}
m
i=1)� ⇠p ({|hAi, G0i|}

m
i=1)|  max

i=1,2,...,m
||hAi, Gi|� |hAi, G0i|| (D.9)

 max
i=1,2,...,m

|hAi, G�G0i| (D.10)

 kG0 �GkF max
i=1,2,...,m

kAikF (D.11)

 ⌧2
p
d(d+m) (D.12)

 ✏. (D.13)
The first inequality follows from Lemma I.13. Combining with (D.6), we obtain that for all symmetric
with rank at most r and unit Frobenius norm,

⇠p ({|hAi, Gi|}
m
i=1) 2 [✓p � 2✏, ✓p + 2✏]. (D.14)

The rest of the proof is to show that the above bound holds with probability at least 1�c1 exp(�c2m✏2)
for some constants c1 and c2 which follows exactly the same argument as proof of Proposition 5.2
in [4].

D.2 Proof of Proposition D.2

Let ỹi = hAi, Gi be clean samples. By lemma I.14, we have
⇠ 1

2
({|yi|}

m
i=1) 2 [⇠ 1

2�p ({|ỹi|}
m
i=1) , ⇠ 1

2+p ({|ỹi|}
m
i=1)]. (D.15)

Moreover, applying Proposition D.1 to (⇠ 1
2�p ({|ỹi|}

m
i=1) ,

✏
2 ) and (⇠ 1

2+p ({|ỹi|}
m
i=1) ,

✏
2 ) , we know

that if m & (✏�2 log ✏�1)dr log d, the we can find constants c1, c2 that with probability at least
1� c1 exp(�c2m✏2),

⇠ 1
2�p ({|ỹi|}

m
i=1) � ✓ 1

2�p�✏kGkF, ⇠ 1
2+p ({|ỹi|}

m
i=1)  ✓ 1

2+p�✏kGkF (D.16)

holds for any symmetric matrix G with rank at most r. Combining, we obtain
⇠ 1

2
({|yi|}

m
i=1) 2 [✓ 1

2�p�✏, ✓ 1
2+p+✏]kGkF. (D.17)

In addition, we easily see that p ! ✓p is a Lipschitz function with some universal Lipschitz constant
L in interval [0.3, 0.7]. As a result,

[✓ 1
2�p�✏, ✓ 1

2+p+✏]kGkF ⇢ [✓ 1
2
� L(p+ ✏), ✓ 1

2
+ L(p+ ✏)]kGkF. (D.18)

We are done.

D.3 Proof of Proposition D.3

Let zi be the indicator random variable that

zi =

⇢
1 si is drawn from some corruption distribution Pi

0 si = 0
. (D.19)

Under corruption model 1, zi’s are i.i.d. Bernoulli random variables with parameter p. By standard
Chernoff inequality, we obtain

P

 
mX

i=1

zi � pm �
0.5� p

3
m

!
= P

 
mX

i=1

zi � pm � ✏m

!
(D.20)

 exp(�m✏2/2). (D.21)
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Therefore, with probability at least 1� exp(�m✏2/2), the corruption fraction is less than p+ 0.5�p
3 .

Let ỹi = hAi, Gi be clean samples. By Lemma I.14, we have

⇠ 1
2
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m
i=1) 2 [⇠ 1

2�p� 0.5�p
3
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m
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3
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m
i=1)]kGkF. (D.22)

In addition, applying Proposition D.1 to (⇠ 1
2�p� 0.5�p

3
({|ỹi|}mi=1),

✏
2 ) and (⇠ 1

2+p+ 0.5�p
3

({|ỹi|}mi=1),
✏
2 )

, we know that(✏ = 0.5�p
3 ) if m & (✏�2 log ✏�1)dr log d & dr log d, the we can find constants c1, c2

that with probability at least 1� c1 exp(�c2m✏2),
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3
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m
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3 �✏kGkF, (D.23)

⇠ 1
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3
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m
i=1)  ✓ 1

2+p+ 0.5�p
3 +✏kGkF (D.24)

holds for any symmetric matrix G with rank at most r. Plug in ✏ = 0.5�p
3 , we obtain

⇠ 1
2
({|yi|}

m
i=1) 2 [✓ 0.5�p

3
, ✓1� 0.5�p

3
]kGkF (D.25)

for any symmetric G with rank at most r with the desired probability.

E Proof of Initialization

Throughout this section, we denote

S := {X 2 S
d⇥d : kXkF = 1}, Sr := {X 2 S

d⇥d : kXkF = 1, rank(X)  r}.

Recall that, we construct the matrix

D =
1

m

mX

i=1

sign(yi)Ai.

Based on this, we consider its eigen decomposition

D = U⌃U>

Let ⌃k
+ be the top k ⇥ k submatrix of ⌃, whose diagonal entries correspond to k largest eigenvalues

of ⌃ with negative values replaced by 0. Accordingly, we let Uk 2 Rd⇥k be the submatrix of U ,
formed by its leftmost k columns. Then we cook up a key ingredient of initialization:

B = Uk(⌃
k
+)

1/2.

In the following, we show that the initialization is close to the ground truth solution.
Proposition E.1 (random corruption). Let F0 be the output of Algorithm 1. Fix constant c0 < 0.1.
For Model 2 with a fixed p < 0.5 and m � c1dr4(log + log r) log d. Then

kF0F
>
0 � c⇤X\k  c0�r/. (E.1)
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i
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4r ), where the constants

c1, c2, c3 depend only on p and c0.

Proof. By Lemma E.1 with � = c0
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3

�r

�1
p
r

and Proposition D.3, we know that there exists

constants c1, c2, c3 depending on p and c0 such that whenever m � c1dr4(log + log r) log d, then
with probability at least 1� c2 exp(�

c3m
4r ), we have
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and
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2
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3
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Combing with the fact that  (X\) 2 [
q

1
2⇡ ,
q

2
⇡ ], we obtain
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Let c⇤ =
⇠ 1
2
({|yi|}m

i=1) (X\)
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2
kX\kF

, clearly we have

c⇤ 2 [(1� p)✓ 0.5�p
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3

(F )] ⇢ [
1

2
✓ 0.5�p

3
(F ), ✓1� 0.5�p

3
(F )]. (E.9)

The result follows.

Lemma E.1 (random corrpution). Suppose we are under model 2 with fixed p < 0.5, and we are

given �  1
10

p
r

. Then we have universal constants c1, c2, c3 such that whenever m � c1
d(log( 1

� )_1)
�2 ,

with probability at least 1� c2 exp(�c3m�2), we have X̃0 = BB> satisfying the following

kX̃0 � X̄k  3�, (E.10)

where X̄ =  (X\)X\/kX\kF , and  (X) = 1
m

Pm
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q
2
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⇣
1� p+ pEsi⇠Pi

h
exp(� s2i

2kXk2
F
)
i⌘

.

Proof. By Lemma E.2, we know that with probability at least 1� C exp(�c0m�2),
��D � X̄

��  �. (E.11)

Here c0 and C are some universal constants. On the other hand,  (X\) � (1� p)
q

2
⇡ �

q
1
2⇡ , so

�r(X̄) �
q

1
2⇡

�r

�1
p
r
=
q

1
2⇡

1

p
r

. By Lemma I.3 and our assumption that �  1
10

p
r

, we know that
the top r eigenvalues of D are positive. Let C be the best symmetric rank r approximation of D with
�r(C) > 0 and

Uk = [Ur Uk�r] , (E.12)
then we can write

BB> = C + Uk�r⌃k�rU
>
k�r, (E.13)

where ⌃k�r = diag((�r+1(D))+, · · · , (�k(D))+). Then we have

kBB>
� X̄k  kC � X̄k + k⌃k�rk. (E.14)

Finally, given that C is the best symmetric rank-r approximation of D, we have
kC �Dk  �r+1(D) =

���r+1(D)� �r+1(X̄)
�� 

��D � X̄
��  �, (E.15)

where for the equality, we used the fact that �r+1(X̄) = 0. Combining, we obtain
��C � X̄

��  kC �Dk+
��D � X̄

��  2�, (E.16)
and

k⌃k�rk 
��D � X̄

��  �. (E.17)
Therefore, we have

��BB>
� X̄

��  3� (E.18)

with probability at least 1� C exp(�c0m�2), given m & d(log( 1
� )_1)
�2 .
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Lemma E.2 (perturbation bound under random corruption). For any � > 0, whenever m &
d(log( 1

� )_1)
�2 , we have

��D � X̄
��  � (E.19)

holds with probability at least 1 � C exp(�c0m�2). Here, X̄ =  (X\)X\/kX\kF , and c0, and
C > 0 are some positive numerical constants.

Proof. Without loss of generality, we assume kX\kF = 1. First, we prove
��D � X̄

��  � by
invoking Lemma C.4, then follow by a union bound. For each Y 2 S1, let B1(Ȳ , ✏) = {Z 2

S1 : kZ� Ȳ kF  ✏}. By Lemma I.8, we can always find an ✏-net S✏,1 ⇢ S1 with respect to Frobenius
norm and satisfy |S✏,1| 

�
9
✏

�2d+1. Based on the ✏-net and triangle inequality, one has

��D � X̄
�� = sup

Y 2S1

�����
1

m

mX

i=1

sign(hAi, X\i+ si) hAi, Y i �  (X\) hX\, Y i

����� (E.20)

= sup
Ȳ 2S✏,1

sup
Y 2B1(Ȳ ,✏)

�����
1

m

mX

i=1

sign(hAi, X\i+ si) hAi, Y i �  (X\) hX\, Y i

����� (E.21)

 sup
Ȳ 2S✏,1

�����
1

m

mX

i=1

sign(hAi, X\i+ si)
⌦
Ai, Ȳ

↵
�  (X\)

⌦
X\, Ȳ

↵
�����

| {z }
Z1

(E.22)

+ sup
Ȳ 2S✏,1

sup
Y 2Br(Ȳ ,✏)

�����
1

m

mX

i=1

sign(hAi, X\i+ si) hAi, Y i � sign(hAi, X\i+ si)
⌦
Ai, Ȳ

↵
�����

| {z }
Z2

(E.23)
+ sup

Ȳ 2S✏,1
sup

Y 2B1(Ȳ ,✏)

�� (X\)
⌦
X\, Ȳ

↵
�  (X\) hX\, Y i

��

| {z }
Z3

(E.24)

Since  (X) =  (X̄)  1, we obtain

Z3  kX\kFkȲ � Y kF  ✏. (E.25)

Then we hope to bound Z1, Z2 separately. By union bound and Lemma C.4, we have Z1  �̃ with
probability at least 1� 2 |S✏,1| e�cm�̃2 . On the other hand, by `1/`2-rip (I.6),

Z2  sup
Ȳ 2S✏,1,Y 2B1(Ȳ ,✏)

1

m

mX

i=1

��⌦Ai, Y � Ȳ
↵�� (E.26)

 ✏ sup
Z2S2

1

m

mX

i=1

|hAi, Zi| (E.27)

 ✏

 r
2

⇡
+ 1

!
(E.28)

with probability at least 1� e�cm, given m & d.
Combining, we have

��D � X̄
��  �1 + ✏

 r
2

⇡
+ 1

!
+ ✏ (E.29)

with probability as least 1�2 |S✏,1| e�cm�̃2
� e�cm, given m & d. Take �̃ = �/3, ✏ = �/10, we have
��D � X̄

��  � (E.30)
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with probability at least(given m & d)

1� 2

✓
90

�

◆(2d+1)

e�cm�2
� e�cm (E.31)

Given m & d(log( 1
� )_1)
�2 , we have

2

✓
90

�

◆(2d+1)

e�cm�2 + e�cm (E.32)

. exp

✓
(2d+ 1) log

✓
90

�

◆
� cm�2

◆
+ exp(�cm) (E.33)

. exp(�c0m�2) (E.34)

So if m & d log( 1
� )

�2 , ��D � X̄
��  � (E.35)

with probability at least 1� C exp(�c0m�2).

Proposition E.2 (arbitrary corruption). Let F0 be the output of Algorithm 1. Fix constant c0 < 0.1.
For model 1 with p 

c̃0
2

p
r

where c̃0 depends only on c0, there exist constants c1, c2, c3 depending
only on c0 such that whenever m � c1dr2 log d(log + log r), we have

kF0F
>
0 � c⇤X\k  c0�r/. (E.36)

with probability at least 1� c2 exp(�c3
m
4r )� exp(�(pm+ d)). Here c⇤ = 1.

Proof. Taking ✏ =
c0✓ 1

2
4L2 in Proposition D.2, where L is a universal constant doesn’t depend on

anything from Proposition D.2, we know that with probability at least 1� c5 exp(�c6
m
4 )

⇠ 1
2
({|yi|}

m
i=1) 2 [✓ 1

2
� L(p+ ✏), ✓ 1

2
+ L(p+ ✏)]kX\kF, (E.37)

given m � c7dr4 log d log . Here c5, c6, c7 are constants depending only on c0. Given c̃0 = c0
4L ,

the above inclusion implies that
�����1�

⇠ 1
2
({|yi|}mi=1)

kX\kF✓ 1
2

����� 
L(p+ ✏)

✓ 1
2


c0
22

. (E.38)

Take � = c0
p

2
⇡

12(1+ L
✓ 1
2

)
�r

�1
p
r

in lemma E.3, we know that with probability at least 1�c8 exp(�c9
m
4r )�

exp(�(pm+ d)) for constants c8, c9 depending only on c0,

�����BB>
�

r
2

⇡
X\/kX\kF

����� 

c0
q

2
⇡

2(1 + L
✓ 1

2

)

�r
�1

p
r
, (E.39)

given m & dr4(log + log r). The above inequality implies that
������

✓ 1
2
({|yi|}mi=1)q

2
⇡ ✓ 1

2

BB>
�
✓ 1

2
({|yi|}mi=1)X\

kX\kF✓ 1
2

������


1 + L
✓ 1

2q
2
⇡

c0
q

2
⇡

2(1 + L
✓ 1

2

)

�r
�1

p
r
kX\kF (E.40)


c0�r
2

. (E.41)
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Combining, we can find some constants c1, c2, c3 depending only on c0 such that whenever m �

c1dr4 log d(log + log r), then with probability at least 1� c2 exp(�c3
m
4r )� exp(�(pm+ d)) ,

������

✓ 1
2
({|yi|}mi=1)q

2
⇡ ✓ 1

2

BB>
�X\

������
(E.42)



������

✓ 1
2
({|yi|}mi=1)q

2
⇡ ✓ 1

2

BB>
�
✓ 1

2
({|yi|}mi=1)X\

kX\kF✓ 1
2

������
+

�����

 
1�

✓ 1
2
({|yi|}mi=1)

kX\kF✓ 1
2

!
X\

����� (E.43)


c0�r
2

+
L(p+ ✏)

✓ 1
2

�1 (E.44)


c0�r


. (E.45)

Lemma E.3 (arbitrary corrpution). Suppose we are given � 
1

10
p
r

. Suppose we are under
model 1 with fixed p < �/10. Then we have universal constants c1, c2, c3 such that whenever

m � c1
d(log( 1

� )_1)
�2 , with probability at least 1 � c2 exp(�c3m�2) � exp(�(pm + d)), we have

X̃0 = BB> satisfying the following

kX̃0 � X̄k  6�, (E.46)

where X̄ =  (X\)X\/kX\kF , and  (X) = 1
m

Pm
i=1

q
2
⇡

⇣
1� p+ pEsi⇠Pi

h
exp(� s2i

2kXk2
F
)
i⌘

.

Proof. By Lemma E.4, given m � c1
d(log( 1

� )_1)
�2 , we know that with probability at least 1 �

exp(�(pm+ d))� exp(�c2m�2), ��D � X̄
��  2�. (E.47)

On the other hand,  (X\) � (1 � p)
q

2
⇡ �

q
1
2⇡ , so �r(X̄) �

q
1
2⇡

�r

�1
p
r
=
q

1
2⇡

1

p
r

. By
Lemma I.3 and our assumption that �  1

10
p
r

, we know that the top r eigenvalues of D are positive.
Let C be the best symmetric rank r approximation of D with �r(C) > 0 and

Uk = [Ur Uk�r] , (E.48)

then we can write

BB> = C + Uk�r⌃k�rU
>
k�r, (E.49)

where ⌃k�r = diag((�r+1(D))+, · · · , (�k(D))+). Then we have

kBB>
� X̄k  kC � X̄k + k⌃k�rk. (E.50)

Finally, given that C is the best symmetric rank-r approximation of D, we have

kC �Dk  �r+1(D) =
���r+1(D)� �r+1(X̄)

�� 
��D � X̄

��  2�, (E.51)

where for the equality, we used the fact that �r+1(X̄) = 0. Combining, we obtain
��C � X̄

��  kC �Dk+
��D � X̄

��  4�, (E.52)

and

k⌃k�rk 
��D � X̄

��  2�. (E.53)

Therefore, we have
��BB>

� X̄
��  6� (E.54)

with probability at least 1� exp(�(pm+ d))� exp(�c2m�2), given m � c1
d(log( 1

� )_1)
�2 .
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Lemma E.4 (perturbation bound under arbitrary corruption). Given a fixed constant � > 0. Suppose
the measurements Ai’s are i.i.d. GOE, si’s are from model 1 with fixed p  �/10. There exist uni-

versal constants c1 and c2 such that whenever m � c1
d(log( 1

� )_1)
�2 , with probability with probability

at least 1 � exp(�(pm + d)) � exp(�c2m�2), we have D = 1
m

Pm
i=1 sign(yi)Ai. satisfying the

following

kD � X̄k  2�, (E.55)

where X̄ =
q

2
⇡X\/kX\kF .

Proof. Let S be the set of indices that the corresponding observations are corrupted. We assume for
simplicity that pm and (1� p)m are integers. Note that

D � X̄ =
1

m

mX

i=1

sign(hAi, X\i+ si)Ai �

r
2

⇡

X\

kX\kF
(E.56)

=
1

m

X

i2S

sign(hAi, X\i+ si)Ai +
1

m

X

i/2S

sign(hAi, X\i)Ai �

r
2

⇡

X\

kX\kF
(E.57)

=
1

m

X

i2S

sign(hAi, X\i+ si)Ai

| {z }
Z1

+
1

m

X

i/2S

sign(hAi, X\i)Ai � (1� p)

r
2

⇡

X\

kX\kF

| {z }
Z2

(E.58)

� p

r
2

⇡

X\

kX\kF| {z }
Z3

(E.59)

We bound Z1, Z2, Z3 separately.

• For Z1, we observe the following fact: let ei 2 {�1, 1} be sign variables. For any fixed
{ei}i2S ,

P
i2S eiAi is a GOE matrix with N(0, pm) diagonal elements and N(0, pm

2 )
off-diagonal elements. By lemma I.10, we have

P

 �����
X

i2S

eiAi

����� �
p
pm(

p

d+ t)

!
 e�

t2

2 . (E.60)

Take t = 2
p
pm+ d, we obtain

P

 �����
X

i2S

eiAi

����� �
p
pm(

p

d+ 2
p
pm+ d)

!
 e�2(pm+d). (E.61)

As a result, by union bound(the union of all the possible signs), with probability at least
1� 2pme�2(pm+d)

� 1� e�(pm+d),
�����
X

i2S

sign(hAi, X\i � si)Ai

����� 
p
pm(

p

d+ 2
p

pm+ d). (E.62)

Note also that
p
d+2

p
pm+ d  3

p
d+2

p
pm, so with probability at least 1�exp(�(pm+

d)),

kZ1k  3

r
dp

m
+ 2p (E.63)

for any X .
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• For Z2, by the proof of Lemma E.2 with zero corruption and the assumption that p < 1
2 , we

obtain that with probability exceeding 1� exp(�cm(1� p)�2) � 1� exp(�c0m�2), the
following holds,

�����
1

(1� p)m

X

i/2S

sign(hAi, X\i)Ai �

r
2

⇡

X\

kX\kF

�����  �, (E.64)

given m & d(log( 1
� )_1)
�2 . Consequently, given m & d(log( 1

� )_1)
�2 , with probability exceeding

1� exp(�cm(1� p)�2) � 1� exp(�c0m�2),

kZ2k  � (E.65)

for any X with rank at most r.

• For Z3, we have a deterministic bound

kZ3k 

r
2

⇡
p. (E.66)

Combining, we obtain that given m & d(log( 1
� )_1)
�2 , then with probability exceeding 1 �

exp(�(pm+ d))� exp(�c0m�2),
�����
1

m

mX

i=1

sign(hAi, X\i � si)Ai �  (X\)
X\

kX\kF

�����  3

r
dp

m
+ 3p+ �. (E.67)

Take � = c0
3

p
r

and let m & d(log( 1
� )_1)
�2 , we know that if p  �/10, we have

�����
1

m

mX

i=1

sign(hAi, X\i � si)Ai �  (X\)
X\

kX\kF

�����  2� (E.68)

with probability at least 1� exp(�(pm+ d))� exp(�c0m�2).

F Proof of Theorem 2.3

Here we prove the identifiability result in Section 2.

Proof. Using Lemma I.6, we know that the `1/`2-RIP conditions holds for A: for some universal
c > 0, with probability at least 1� exp(�cm�2), there holds.

�����
1

m
kA(X)k1 �

r
2

⇡
kXkF

�����  � kXkF , 8X 2 Rd⇥d : rank(X)  k + r.

Now for any subset L ⇢ {1, . . . ,m}, we can define AL as [A(X)]i = hAi, Xi if i 2 L and 0
otherwise. Then if the size of L satisfies that |L| � Cd(r + k) log d for some universal constant,
using Lemma I.6 again, we have with probability at least 1� exp(�c|L|�2), there holds

�����
1

|L|
kAL(X)k1 �

r
2

⇡
kXkF

�����  � kXkF , 8X 2 Rd⇥d : rank(X)  k + r,

Note that the above holds for each fixed L. If we choose S to be the set of indices of nonzero si.
Using Bernstein’s inequality, we know with probability at least 1 � exp(�c✏2m(1 � p)), |L| �
(1� ✏)(1� p)m. Due to our model assumptions, S is independent of A. Hence, the above displayed
inequality does hold for L = Sc with probability at least 1� exp(�c1(✏2 + �2)m(1� p)).
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Let us assume the above two displayed inequalities, the second one with L = Sc in the following
derivation. Let F is optimal for (1.2). Starting from the optimality of F and X\ has rank r  k, we
have

0 �
1

m

��A(FF>)� y
��
1
�

1

m
kA(X\)� yk1

=
1

m

��A(FF>
�X\)� s

��
1
�

1

m
ksk1

=
1

m

��⇥ASc(FF>
�X\)

⇤��
1
+

1

m

��⇥AS(FF>
�X\)

⇤
� s
��
1
�

1

m
ksk1

�
1

m

��⇥ASc(FF>
�X\)

⇤��
1
�

1

m

��⇥AS(FF>
�X\)

⇤��
1

=
2

m

��⇥ASc(FF>
�X\)

⇤��
1
�

1

m

��A(FF>
�X\)

��
1

�

 
2(1� p)(1� ✏)

 r
2

⇡
� �

!
�

 r
2

⇡
+ �

!!
��FF>

�X\

��
F
.

Hence so long as 2(1�p)(1�✏)
⇣q

2
⇡ � �

⌘
�

⇣q
2
⇡ + �

⌘
> 0, we know FF> = X\. The condition

2(1� p)(1� ✏)
⇣q

2
⇡ � �

⌘
�

⇣q
2
⇡ + �

⌘
> 0 is satisfied with probability at least 1� exp(�c0m)

and m � C 0(r + k)d log d for some c0 and C 0 depending on p.

G Results under better initialization

As indicated in remarks under Theorem 3.2, we can show that the sample complexity for provable
convergence is indeed O(dk34(log  + log k) log d, given p . 1


p
r

in either model. The proof
consists of two theorems stated below.
Theorem G.1. Suppose the following conditions hold:

(i) Suppose F0 satisfies

kF0F
>
0 �X\k  c0�r (G.1)

for small sufficiently small universal constant c0.
(ii) The stepsize satisfies 0 < c1

�1


⌘t
kFtF>

t �X\kF


c2
�1

for some small numerical constants
c1 < c2  0.01 and all t � 0.

(iii) (r + k, �)-RDPP holds for {Ai, si}mi=1 with � 
c3


p
k+r

and a scaling function  2

⇥q
1
2⇡ ,
q

2
⇡

⇤
. Here c3 is some sufficiently small universal constant.

Then, we have a sublinear convergence in the sense that for any t � 0,
��FtF

>
t �X\

��  c5�1
1

+ t
.

Moreover, if k = r, then under the same set of condition, we have convergence at a linear rate
��FtF

>
t �X\

��  c6�r
⇣
1�

c7


⌘t
, 8t � 0.

Here c5, c6 and c7 are universal constants.

Proof. Take c0 = 0.01 and c3 = 0.001. Next, by definition, �t =
⌘t (FtF

>
t �X\)

kFtF>
t �X\kF

. By the second
assumption and the assumption on range of  , we know

�t 2 [

r
1

2⇡

c1
�1

,

r
2

⇡

c2
�1

]. (G.2)

Since we assumed c2  0.01, so the stepsize condition �t  0.01
�1

is satisfied. Hence, both Proposi-
tion A.9 and Proposition A.10 hold for t = 0. We consider two cases separately.
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• k > r, By Proposition A.9 and induction, we know

Et+1  Et(1� �tEt)  Et(1�
c�
�1

Et), 8t � 0. (G.3)

where c1
q

2
⇡  c�  0.01. Define Gt =

c�
�1
Et, then we have G0 < 1 and

Gt+1  Gt(1�Gt), 8t � 0. (G.4)

Taking reciprocal, we obtain

1

Gt+1
�

1

Gt
+

1

1�Gt
�

1

Gt
+ 1, 8t � 0. (G.5)

So we obtain
Gt 

1
1
G0

+ t
, 8t � 0. (G.6)

Plugging in the definition of Gt, we obtain

E⌧2+t 
�1
c�

1
�1

c�E0
+ t


�1
c�

1
100�1
c��r

+ t
=
�1
c�

1
100
c�
+ t


�1
c�

1

+ t
. (G.7)

Since c� � c1
q

2
⇡ , we can simply take c5 = 1

4c1

p
⇡
2 , apply Lemma I.5, and get

��FtF
>
t �X\

��  c5�1
1

+ t
, 8t � 0. (G.8)

So the proof is complete in overspecified case.

• k = r. By Proposition A.10 and induction, we obtain

Et+1  (1�
�t�r
3

)Et  (1�
c��r
�1

)Et, 8t � 0. (G.9)

Applying this inequality recursively and noting c� � c1
q

2
⇡ , we obtain

ET2+t  (1�
c��r
�1

)tET2 

0

@1�
c1
q

2
⇡



1

A

t

0.01�r, 8t � 0. (G.10)

Thus, we can take c6 = 0.01/4, c7 = c1
q

2
⇡ , apply Lemma I.5 and get

��FtF
>
t �X\

��  c6�r
⇣
1�

c7


⌘t
, 8t � 0. (G.11)

The proof is complete.

Theorem G.2. Suppose under either Model 1 or 2, we have m � c01dk
24(log + log k) log d and

p 
c02

p
k

for some constants c01, c
0
2 depending only on c0 and c3. Then under both models, with

probability at least 1�c04 exp(�c05
m

k24 )�exp(�(pm+d)) for some constants c04, c05 depending only
on c0 and c3, our subgradient method (3.1) with the initialization in Algorithm 1 and the adaptive
stepsize choice (3.2) with C⌘ 2 [ c06

✓ 1
2
�1
, c07
✓ 1

2
�1
] with some universal c06, c07  0.001, converges as stated

in Theorem G.1.

Proof. We can WLOG only prove this for model 1 because model 2 can be reduced to model 1

by adding a small failure probability. Taking ✏ =
c0✓ 1

2
4L in Proposition D.2, where L is a universal

constant doesn’t depend on anything from Proposition D.2, we know that with probability at least
1� c08 exp(�c09

m
2 )

⇠ 1
2
({|yi|}

m
i=1) 2 [✓ 1

2
� L(p+ ✏), ✓ 1

2
+ L(p+ ✏)]kX\kF, (G.12)
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given m � c010dr
2 log d log . Here c08, c

0
9, c

0
10 are constants depending only on c0. Given c02 

c0✓ 1
2

4L , the above inclusion implies that
�����1�

⇠ 1
2
({|yi|}mi=1)

kX\kF✓ 1
2

����� 
L(p+ ✏)

✓ 1
2


c0
2

. (G.13)

Take � = c0
p

2
⇡

12(1+ L
✓ 1
2

)
�r

�1
p
r

in lemma E.3, we know that with probability at least 1�c011 exp(�c012
m
2r )�

exp(�(pm+ d)) for constants c011, c012 depending only on c0,
�����BB>

�

r
2

⇡
X\/kX\kF

����� 

c0
q

2
⇡

2(1 + L
✓ 1

2

)

�r
�1

p
r
, (G.14)

given m � c013dr(log + log r) with c013 depending only on c0. The above inequality implies that
������

✓ 1
2
({|yi|}mi=1)q

2
⇡ ✓ 1

2

BB>
�
✓ 1

2
({|yi|}mi=1)X\

kX\kF✓ 1
2

������


1 + L
✓ 1

2q
2
⇡

c0
q

2
⇡

2(1 + L
✓ 1

2

)

�r
�1

p
r
kX\kF (G.15)


c0�r
2

. (G.16)

Combining, we can find some constants c014, c015, c016 depending only on c0 such that whenever m �

c014dr
2 log d(log +log r), then with probability at least 1� c015 exp(�c016

m
4r )� exp(�(pm+d))

,
������

✓ 1
2
({|yi|}mi=1)q

2
⇡ ✓ 1

2

BB>
�X\

������
(G.17)



������

✓ 1
2
({|yi|}mi=1)q

2
⇡ ✓ 1

2

BB>
�
✓ 1

2
({|yi|}mi=1)X\

kX\kF✓ 1
2

������
+

�����

 
1�

✓ 1
2
({|yi|}mi=1)

kX\kF✓ 1
2

!
X\

����� (G.18)


c0�r
2

+
L(p+ ✏)

✓ 1
2

�1 (G.19)

 c0�r. (G.20)

Thus,
��F0F>

0 �X\

��  c0�r, which is the first condition.
Recall stepsize rule (3.2),

⌧A,y(F ) = ⇠ 1
2

�
{|
⌦
Ai, FF>↵

� yi|}
m
i=1

�
, and ⌘t = C⌘⌧A,y(Ft). (G.21)

By Proposition D.2, with same choice of ✏, we know that with probability at least least 1 �

c017 exp(�c018
m
2 )

⌧A,y(Ft) 2 [✓ 1
2
� L(p+ ✏), ✓ 1

2
+ L(p+ ✏)]kFtF

>
t �X\kF, 8t � 0, (G.22)

given m � c019dr
2 log d log . Here c017, c

0
18, c

0
19 are constants depending only on c0. By our

condition on C⌘ , we know

⌘t
kFtF>

t �X\kF
2


c06(1�

c0
2 )

�1
,
c07(1 +

c0
2 )

�1

�
(G.23)

Hence, the second condition in Theorem G.1 is satisfied.
By Proposition 2.2, we know that whenever m & c020dk

24(log k + log ) for some constant

depending on c3 and c02  c3/10, (r + k, �)-RDPP holds with �  c3

p
k+r

and  (X) =
q

2
⇡ with

probability at least 1� exp(�(pm+ d))� exp(� c21m
k24 ) for some constant c21 depending only on c3.

Since all the constants we introduced in this proof depend only on c0 and c3, so we can combing
them and find desired c0i, i � 1.
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H RDPP and `1/`2-RIP

Recall our definition of (k0, �) RDPP states that for all rank at most k0 matrix X , the following holds:

D(X) :=
1

m

mX

i=1

sign(hAi, Xi � si)Ai, and
����D(X)�  (X)

X

kXkF

����  �. (H.1)

The (k0, �) `1/`2-RIP states that for all rank k0 matrix X , the following holds.
 r

2

⇡
� �

!
kXkF 

1

m

mX

i=1

|hAi, Xi| 

 r
2

⇡
+ �

!
kXkF. (H.2)

We shall utilize the following top k0 Frobenius norm: for an matrix Y 2 Rd⇥d

kY kF,k0 :=

vuut
k0X

i=1

�2
i (Y ) = sup

rank(Z)k0,kZkF=1
hY, Zi .

Here �i(Y ) is the i-th largest singular value of Y . The second variational characterization can be
proved by considering the orthogonal projection of the rank k0 singular vector space of Y and its
complement.

Now suppose there holds the (k0, �p
k0 ) RDPP with corruption always 0 and scale function being

q
2
⇡ .

Then we have
�

p
k0

(a)
�

����D(X)�  (X)
X

kXkF

����

(b)
=

�����
1

m

mX

i=1

sign(hAi, Xi)Ai �

r
2

⇡

X

kXkF

�����

(c)
�

1
p
k0
k
1

m

mX

i=1

sign(hAi, Xi)Ai �

r
2

⇡

X

kXkF
kF,k0

(d)
=

1
p
k0

sup
rank(Y )k0,kY kF1

*
1

m

mX

i=1

sign(hAi, Xi)Ai �

r
2

⇡

X

kXkF
, Y

+

(e)
�

1
p
k0

*
1

m

mX

i=1

sign(hAi, Xi)Ai �

r
2

⇡

X

kXkF
,

X

kXkF

+

=
1

p
k0

 
1

m

mX

i=1

|hAi, Xi|

kXkF
�

r
2

⇡

!
.

(H.3)

Here in the step (a), we use the definition of RDPP. In the step (b), we use the assumption on si = 0

always and  =
q

2
⇡ . In (c), we use the relationship between operator norm and top k0 Frobenius

norm. In step (d), we use the variational characterization of top k0 Frobenius norm. In step (e), we
use the fact that X is rank at most k0. The above derivation completes one side of the `1/`2-RIP. The
other side can be proved by taking Y = �

X
kXkF

in the above step (e).

I Auxiliary Lemmas

This section contains lemmas that will be useful in the proof.
Lemma I.1. Let A be an n ⇥ n symmetric matrix. Suppose that kAk 

1
2⌘ , the largest singular

value and the smallest singular value of A(I � ⌘A) are �1(A)� ⌘�2
1(A) and �m(A)� ⌘�2

m(A).

Proof. Let UA⌃AU>
A be the SVD of A. Simple algebra shows that

A (I � ⌘A) = UA

�
⌃A � ⌘⌃2

A

�
U>
A . (I.1)
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This is exactly the SVD of A (I � ⌘A). Let g(x) = x� ⌘x2. By taking derivative, g is monotone
increasing in interval [�1, 1

2⌘ ]. Since the singular values of A(I � ⌘A) are exactly the singular
values of A mapped by g, the result follows.

Lemma I.2. Let A be an m⇥ n matrix. Suppose that kAk 

q
1
3⌘ , the largest singular value and

the smallest singular value of A(I � ⌘A>A) are �1(A)� ⌘�3
1(A) and �m(A)� ⌘�3

m(A).

Proof. Let UA⌃AV >
A be the SVD of A. Simple algebra shows that

A
�
I � ⌘A>A

�
= UA

�
⌃A � ⌘⌃3

A

�
V >
A . (I.2)

This is exactly the SVD of A
�
I � ⌘A>A

�
. Let g(x) = x�⌘x3. By taking derivative, g is monotone

increasing in interval [�
q

1
3⌘ ,
q

1
3⌘ ]. Since the singular values of A(I � ⌘A>A) are exactly the

singular values of A mapped by g, the result follows.

Lemma I.1. Let A be an n⇥ n matrix such that kAk < 1. Then I +A is invertible and
��(I +A)�1

�� 
1

1� kAk
. (I.3)

Proof. Since kAk < 1, the matrix B =
P1

i=0(�1)iAi is well defined and indeed B is the inverse of
I +A. By continuity, subaddivity and submultiplicativity of operator norm,

��(I +A)�1
�� = kBk 

1X

i=0

��Ai
�� 

1X

i=0

kAk
i =

1

1� kAk
. (I.4)

Lemma I.2. Let A be an r ⇥ r matrix and B be an r ⇥ k matrix. Then

�r(AB)  kAk�r(B). (I.5)

Proof. For any r ⇥ k matrix C, the variational expression of r-th singular value is

�r(C) = sup
subspace S⇢Rk

dim(S)=r

inf
x2S
x 6=0

kCxk

kxk
. (I.6)

Applying this variational result twice, we obtain

�r(AB) = sup
subspace S⇢Rk

dim(S)=r

inf
x2S
x 6=0

kABxk

kxk
(I.7)

 sup
subspace S⇢Rk

dim(S)=r

inf
x2S
x 6=0

kAk kBxk

kxk
(I.8)

= kAk�r(B). (I.9)

Lemma I.3 (Weyl’s Inequality). Let A and B be any m⇥ n matrices. Then

�i(A�B)  kA�Bk , 81  i  min{m,n}. (I.10)

When both A and B are symmetric matrices, the singular value can be replaced by eigenvalue.
Lemma I.4. Let A be any m⇥ n matrix with rank r. Then

kAk  kAkF 
p
r kAk . (I.11)

Proof. Let �1 � �2 � . . . � �r > 0 be singular values of A. Then we know kAk = �1 and
kAkF =

pPr
i=1 �

2
i . The result follows from Cauchy’s inequality.
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Lemma I.5. Let Ft be the iterates defined by algorithm 3.1. Then we have
��FtF

>
t �X\

�� 
��StS

>
t �D⇤

S

��+ 2
��StT

>
t

��+
��TtT

>
t

�� . (I.12)

Moreover,
max{

��StS
>
t �D⇤

S

�� ,
��StT

>
t

�� ,
��TtT

>
t

��} 
��FtF

>
t �X\

�� . (I.13)

Proof. Recall that Ft = USt + V Tt and X\ = UD⇤
SU

>, so we have

FtF
>
t �X\ = (USt + V Tt)(USt + V Tt)

>
� UD⇤

S (I.14)

= U(StS
>
t �D⇤

S)U
> + UStV

>
t V > + V TtS

>
t U> + V TtT

>
t V > (I.15)

By triangle inequality and the fact that kUk = kV k = 1, we obtain
��FtF

>
t �X\

�� 
��StS

>
t �D⇤

S

��+ 2
��StT

>
t

��+ kTtTtk . (I.16)

For the second statement, we observe
��StS

>
t �D⇤

S

�� = sup
x2Rr,kxk=1

xT
�
StS

>
t �D⇤

S

�
x (I.17)

 sup
y2Rd,kyk=1

y>U
�
StS

>
t �D⇤

S

�
U>y (I.18)

The last inequality follows from the fact that for any x 2 Rr, we can find a y 2 Rd such that
U>y = x and kyk = kxk. Indeed, we can simply take y = Ux. On the other hand,

sup
y2Rd,kxk=1

y>U
�
StS

>
t �D⇤

S

�
U>y =

��U(StS
>
t �D⇤

S)Y
>�� (I.19)


��StS

>
t �D⇤

S

�� , (I.20)

so actually we have equality

sup
x2Rr,kxk=1

xT
�
StS

>
t �D⇤

S

�
x = sup

y2Rd,kyk=1
y>U

�
StS

>
t �D⇤

S

�
U>y. (I.21)

Clearly, the sup can be attained, let y⇤ = argmaxy2Rd,kyk=1y
>U

�
StS>

t �D⇤
S

�
U>y. Then we

claim that y⇤ must lie in the column space of U . If not so, we can always take the projection of y⇤
onto the column space of U and normalize it, which will give a larger objective value, contradiction.
As a result, V >y⇤ = 0 and we obtain

��StS
>
t �D⇤

S

�� = y>⇤ U(StS
>
t �D⇤

S)U
>y⇤ (I.22)

= y>⇤
�
FtF

>
t �X\

�
y⇤ (I.23)


��FtF

>
t �X\

�� . (I.24)

We can apply the same argument to get
��StT>

t

�� 
��FtF>

t �X\

�� and
��TtT>

t

�� 
��FtF>

t �X\

��.

Lemma I.6 (`1/`2-RIP, [5, Proposition 1 ]). Let r � 1 be given, suppose sensing matrices {Ai}
m
i=1

have i.i.d. standard Gaussian entries with m & dr. Then for any 0 < � <
q

2
⇡ , there exists a

universal constant c > 0, such that with probability exceeding 1� exp(�cm�2), we have
 r

2

⇡
� �

!
kXkF 

1

m

mX

i=1

|hAi, Xi| 

 r
2

⇡
+ �

!
kXkF (I.25)

for any rank 2r-matrix X .
Lemma I.7 (`2-RIP, [39, Theorem 2.3]). Fix 0 < � < 1, suppose that sensing matrices {Ai}

m
i=1

have i.i.d. standard Gaussian entries with m & 1
�2 log

�
1
�

�
dr. Then with probability exceeding

1� C exp (�Dm), we have

(1� �)kXk
2
F 

1

m

mX

i=1

hAi, Xi
2
 (1 + �)kXk

2
F (I.26)

for any rank-r matrix X . Here C,D are universal constants.
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Proof. This lemma is not exactly as Theorem 2.3 in [39] stated, but it’s straight forward from the
proof of this theorem. All we need to note in that paper is that the sample complexity we need is
m & log( 1

� )
c , where c is the constant defined in Theorem 2.3 [39] for t chosen to be �. By standard

concentration, c . 1
�2 and the result follows.

Lemma I.8 (Covering number for symmetric low rank matrices). Let Sr = {X 2 Sd⇥d : rank(X) 
r, kXkF = 1}. Then, there exists an ✏-net S✏,r with respect to the Frobenius norm satisfying
|S✏,r| 

�
9
✏

�(2d+1)r.

Proof. The proof is the same as the proof of lemma 3.1 in [39], except that we will do eigenvalue
decomposition, instead of SVD.

Lemma I.9 ( [4, Lemma A.1]). Suppose F (·) is cumulative distribution function with continuous
density function f(·). Assume the samples {xi}

m
i=1 are i.i.d. drawn from f . Let 0 < p < 1. If

l < f(✓) < L for all ✓ in {✓ : |✓ � ✓p|  ✏}, then

|✓p({xi}
m
i=1)� ✓p(F )| < ✏ (I.27)

holds with probability at least 1� 2 exp(�2m✏2l2). Here ✓p({xi}
m
i=1) and ✓p(F ) are p-quantiles of

samples and distribution F (see Definition 5.1 in [4])
Lemma I.10 (Concentration of operator norm). Let A be a d-by-d GOE matrix having N(0, 1)
diagonal elements and N(0, 1

2 ) off-diagonal elements. Then we have

E [kAk] 
p

d (I.28)

and
P (kAk � E [kAk] � t)  e�

t2

2 . (I.29)

Proof. We will use the following two facts [11]:

1. For a d-by-d matrix B with i.i.d. N(0, 1) entries,

E [kBk]  2
p

d. (I.30)

2. Suppose f is L-Lipschitz(with respect to the Euclidean norm) function and a is a standard
normal vector, then

P (f(a)� E [f(a)] � t)  e�
t2

2L . (I.31)

Now we can prove the lemma. Firstly, we note that A has the same distribution as B+B>

4 where B
has i.i.d. standard normal entries. By the first fact, we obtain

E [kAk]  E
"
kBk+

��B>
��

4

#


p

d. (I.32)

On the other hand, kAk can be written as a function of {Aii} and {
p
2Aij}i<j , which are i.i.d.

standard normal random variables. Simple algebra yields that this function is 1-Lipschitz. By the
second fact,

P
⇣
kAk �

p

d+ t
⌘
 P (kAk � E [kAk] + t) (I.33)

 e�
t2

2 . (I.34)

Lemma I.11 (Concentration for �2 distribution). Let Y ⇠ �2(n) be a �2 random variable. Then we
have

P
⇣
Y � (1 + 2

p

�+ 2�)n
⌘
 exp(��n/2). (I.35)

Proof. It follows from standard sub-exponential concentration inequality and the fact that the square
of a standard normal random variable is sub-exponential [11].
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Lemma I.12 ( [4, Lemma A.8]). Suppose Ai 2 Rd⇥d’s are independnet GOE sensing matrices
having N(0, 1) diagonal elements and N(0, 1

2 ) off-diagonal elements, for i = 1, 2, . . . ,m and
m � d. Then

max
i=1,2,...,m

kAikF  2
p
d(d+m) (I.36)

holds with probability exceeding 1�m exp(�d(d+m)/2).

Proof. Let A be a GOE sensing matrix described in this lemma, and Aij be the ij-th entry of A.
Since

kAk
2
F =

dX

i=1

A2
ii + 2

X

i<j

A2
ij =

dX

i=1

A2
ii +

X

i<j

(
p
2Aij)

2, (I.37)

we see that kAk
2
F is a �2(d(d+ 1)/2) random variable. By Lemma I.11, we have

P
⇣
kAk

2
F �

⇣
1 + 2

p

�+ 2�
⌘
d2
⌘
 exp(��d2/2) (I.38)

for any � > 0. Take � = d+m
d � 2. Simple calculus shows 2� � 2

p
�+ 1. Thus, we obtain

P
�
kAk

2
F � 4d(d+m)

�
 exp(�d(d+m)/2). (I.39)

Therefore, the proof is completed by applying the union bound.

Lemma I.13 ( [4, Lemma A.2]). Given vectors x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn]. We
reorder them so that

x(1)  x(2)  . . .  x(n), and y(1)  y(2)  . . .  y(n). (I.40)

Then
��x(k) � y(k)

��  kx� yk1 , 8k = 1, 2, . . . , n. (I.41)

Lemma I.14 ( [4, Lemma A.3]). Consider corrupted samples yi = hAi, X\i+ si and clean samples
ỹi = hAi, X\i, i = 1, 2, . . . ,m. If µ < 1

2 is the fraction of samples that are corrupted by outliers,
for µ < p < 1� µ, we have

✓p�µ({|ỹi|}
m
i=1)  ✓p({|yi|}

m
i=1)  ✓p+µ({|ỹi|}

m
i=1) (I.42)
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