
Appendix A Proof of the injectivity of the spatial Radon transform420

We prove that the spatial Radon transform defined with a mapping g(·) :Rd→Rdθ is injective if and only if g(·)421

is injective. In the following contents, we usePk(Rd) to denote a set of Borel probability measures with finite k-th422

moment onRd, and f1≡f2 is used to denote functions f1(·) :X→R and f2(·) :X→R that satisfy f1(x)=f2(x)423

for ∀x∈X , and f1 6≡f2 is used to denote functions f1(·) :X→R and f2(·) :X→R that satisfy f1(x) 6=f2(x)424

for certain x∈X . With a slight abuse of notation, we interchangeably use f1(x)≡f2(x) for ∀x∈X and f1≡f2.425

Proof. By using proof by contradiction, we first prove that if g(·) is injective, the corresponding spatial Radon426

transform is injective. If the spatial Radon transform defined with an injective mapping g(·) :Rd→Rdθ is not427

injective, there exist µ, ν∈Pk(Rd), µ 6≡ν, such thatHpµ(t,θ;g)≡Hpν(t,θ;g) for ∀t∈R and ∀θ∈Sdθ−1, where428

pµ and pν are probability density functions defined on Rd and pµ 6≡pν .429

From Equation (12), for ∀t∈R and ∀θ∈Sdθ−1, the spatial Radon transform can be written as:430

Hpµ(t,θ;g)=Rpµ̂g (t,θ), (20)

Hpν(t,θ;g)=Rpν̂g (t,θ), (21)

where pµ̂g and pν̂g refer to the probability density functions of x̂=g(x) and ŷ=g(y) respectively, where x∼µ431

and y∼ν. From Equations (20) and (21), we knowRpµ̂g (t,θ)≡Rpν̂g (t,θ) for ∀t∈R and ∀θ∈Sdθ−1, which432

implies pµ̂g ≡pν̂g as the Radon transform is injective.433

Since g(·) is injective, for ∀X ⊆ Rd, x ∈ X if and only if x̂ = g(x) ∈ g(X ), which implies434

P (x∈X )=P (x̂∈g(X )), P (y∈X )=P (ŷ∈g(X )). Therefore,435 ∫
g(X )

pµ̂g (x̂)dx̂=

∫
X
pµ(x)dx, (22)∫

g(X )

pν̂g (ŷ)dŷ=

∫
X
pν(y)dy. (23)

Since pµ̂g ≡pν̂g , from Equations (22) and (23):
∫
Xpµ(x)dx=

∫
Xpν(y)dy for ∀X ⊆Rd. Hence, for ∀X ⊆Rd:436 ∫

X

(
pµ(x)−pν(x)

)
dx=0, (24)

which implies pµ ≡ pν , contradicting with the assumption pµ 6≡ pν . Therefore, if Hpµ ≡Hpν , pµ ≡ pν . In437

addition, from the definition of the spatial Radon transform in Equation (11), it is trivial to show that if pµ≡pν ,438

Hpµ(t,θ;g)≡Hpν (t,θ;g). Therefore,Hpµ ≡Hpν if and only if pµ ≡ pν , i.e. the spatial Radon transformH439

defined with an injective mapping g(·) :Rd→Rdθ is injective.440

We now prove that if the spatial Radon transform defined with a mapping g(·) :Rd→Rdθ is injective, g(·) must441

be injective. Again, we use proof by contradiction. If g(·) is not injective, there exist x0,y0∈Rd such that x0 6=y0442

and g(x0)=g(y0). For two Dirac measures µ1 and ν1 which probability density functions are pµ1(x)=δ(x−x0)443

and pν1(y)=δ(y−y0), respectively, we know µ1 6≡ν1 as x0 6=y0.444

We define variables x∼µ1 and y∼ ν1. Then for variables x̂= g(x) and ŷ= g(y), we denote their probability445

density functions by pµ2 and pν2 , respectively. It is trivial to derive446

pµ2(x̂)=δ(x̂−g(x0)), (25)
pν2(ŷ)=δ(ŷ−g(y0)), (26)

which implies pµ2≡pν2 as g(x0)=g(y0).447

From Equations (20), (21), (25) and (26), for ∀t∈R and ∀θ∈Sdθ−1:448

Hpµ1(t,θ;g)=Rpµ2(t,θ),

=Rpν2(t,θ),
=Hpν1(t,θ;g), (27)

which impliesHpµ1 ≡Hpν1 , contradicting with the assumption that the spatial Radon transform is injective.449

Therefore, if the spatial Radon transform is injective, g(·) must be injective. We conclude that the spatial Radon450

transform is injective if and only if the mapping g(·) is an injection.451
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Appendix B Proof of Remark 2452

We provide a proof for the claim in Remark 2 that the spatial Radon transform includes the vanilla Radon transform453

and the polynomial GRT as special cases.454

Proof. Given a probability measure µ ∈ P (Rd) which probability density function is pµ, the spatial Radon455

transform of pµ is defined as:456

Hpµ(t,θ;g)=
∫
Rd
pµ(x)δ(t−〈g(x),θ〉)dx, (28)

where t ∈ R and θ ∈ Sdθ−1 are the parameters of hypersurfaces in Rd. When the mapping g(·) is an identity457

mapping, i.e. g(x)=x for ∀x∈Rd, the spatial Radon transform degenerates to the vanilla Radon transform:458

Hpµ(t,θ;g)=
∫
Rd
pµ(x)δ(t−〈x,θ〉)dx

=Rpµ(t,θ). (29)

[Ehrenpreis, 2003] provides a class of injective GRTs named polynomial GRTs by adopting homogeneous459

polynomial functions with an odd degreem as the defining function:460

Gpµ(t,θ)=
∫
Rd
pµ(x)δ(t−

dα∑
i=1

θix
αi)dx,

s.t.|αi|=m, (30)

where αi=(ηi,1,...,ηi,d)∈Nd, |αi|=
∑d
j=1ηi,j , x

αi =
∏d
j=1x

ηi,j
j for x=(x1,...,xd)∈Rd, dα is the number461

of all possible multi-indices αi that satisfies |αi|=m, and θ=(θ1,...,θdα)∈Sdα−1.462

In spatial Radon transform, for ∀x∈Rd, when the mapping g(·) is defined as:463

g(x)=(xα1 ,...,xαdα ), (31)

the spatial Radon transform is equivalent to the polynomial GRT defined in Equation (30):464

Hpµ(t,θ;g)=
∫
Rd
pµ(x)δ(t−〈g(x),θ〉)dx

=

∫
Rd
pµ(x)δ(t−

dα∑
i=1

θix
αi)dx. (32)

465
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Appendix C Proof of Theorem 1466

We provide a proof that the ASWD defined with a mapping g(·) :Rd→Rdθ is a metric on Pk(Rd), if and only467

if g(·) is injective. In what follows, we denote a set of Borel probability measures with finite k-th moment on468

Rd by Pk(Rd), and use µ,ν∈Pk(Rd) to refer to two probability measures whose probability density functions469

are pµ and pν .470

Proof. Symmetry: Since the k-Wasserstein distance is a metric thus symmetric [Villani, 2008]:471

Wk

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
=Wk

(
Hpν(·,θ;g),Hpµ(·,θ;g)

)
. (33)

Therefore,472

ASWDk(µ,ν;g)=
(∫

Sdθ−1
W k
k

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
dθ

) 1
k

=

(∫
Sdθ−1

W k
k

(
Hpν(·,θ;g),Hpµ(·,θ;g)

)
dθ

) 1
k

=ASWDk(ν,µ;g).

Triangle inequality: Given an injective mapping g(·) :Rd→Rdθ and probability measures µ1, µ2, µ3∈Pk(Rd),473

since the k-Wasserstein distance satisfies the triangle inequality [Villani, 2008], the following inequality holds:474

ASWDk(µ1,µ3;g)=

(∫
Sdθ−1

W k
k

(
Hpµ1(·,θ;g),Hpµ3(·,θ;g)

)
dθ

) 1
k

≤
(∫

Sdθ−1

(
Wk(Hpµ1(·,θ;g),Hpµ2(·,θ;g))

+Wk(Hpµ2(·,θ;g),Hpµ3(·,θ;g))
)k
dθ

) 1
k

≤
(∫

Sdθ−1
W k
k

(
Hpµ1(·,θ;g),Hpµ2(·,θ;g)

)
dθ

) 1
k

+

(∫
Sdθ−1

W k
k

(
Hpµ2(·,θ;g),Hpµ3(·,θ;g)

)
dθ

) 1
k

=ASWDk(µ1,µ2;g)+ASWDk(µ2,µ3;g),

where the second inequality is due to the Minkowski inequality inLk(Sdθ−1).475

Identity of indiscernibles: SinceWk(µ,µ)=0 for ∀µ∈Pk(Rd),we have476

ASWDk(µ,µ;g)=
(∫

Sdθ−1
W k
k

(
Hpµ(·,θ;g),Hpµ(·,θ;g)

)
dθ

) 1
k

=0, (34)

for ∀µ∈Pk(Rd). Conversely, for ∀µ,ν∈Pk(Rd), if ASWDk(µ,ν;g)=0, from the definition of the ASWD:477

ASWDk(µ,ν;g)=
(∫

Sdθ−1
W k
k

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
dθ

) 1
k

=0, (35)

Due to the non-negativity of k-th Wasserstein distance as it is a metric on Pk(Rd) and the continuity of478

Wk(·, ·) on Pk(Rd) [Villani, 2008], Wk

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
= 0 holds for ∀θ ∈ Sdθ−1 if and only if479

Hpµ(·,θ;g)≡Hpν(·,θ;g). Again, given the spatial Radon transform is injective when g(·) is injective (see the480

proof in Appendix A),Hpµ(·,θ;g)≡Hpν(·,θ;g) implies pµ≡pν and µ≡ν if g(·) is injective.481

In addition, if g(·) is not injective, the spatial Radon transform is not injective (see the proof in Appendix A),482

then ∃µ, ν ∈Pk(Rd), µ 6≡ν such thatHpµ(·,θ;g)≡Hpν (·,θ;g), which implies ASWDk(µ,ν;g)=0 for µ 6≡ν.483

Therefore, the ASWD satisfies the identity of indiscernibles if and only if g(·) is injective.484

Non-negativity: The three axioms of a distance metric, i.e. symmetry, triangle inequality, and identity of485

indiscernibles imply the non-negativity of the ASWD. Since the Wasserstein distance is non-negative, for486

∀µ ,ν∈Pk(Rd), it can also be straightforwardly proved the ASWD between µ and ν is non-negative:487

ASWDk(µ,ν;g)=
(∫

Sdθ−1
W k
k

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
dθ

) 1
k

≥
(∫

Sdθ−1
0kdθ

) 1
k

=0. (36)

Therefore, the ASWD is a metric on Pk(Rd) if and only if g(·) is injective.488
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Appendix D Proof of Corollary 1.1489

We prove that the ASWD defined with optimal mappings g∗(·) : Rd → Rdθ is also a met-490

ric on Pk(Rd) when the optimization is confined to the set of bounded and injective functions491

{g(x) : Rd → Rdθ |∃M ∈ R,∀x ∈ Rd, ||g(x)||2 ≤ M}. Recall that given two measures µ, ν ∈ Pk(Rd),492

the ASWD defined with the optimal mapping g∗(·)=argmax
g

(ASWDk(µ,ν;g)) is defined as:493

ASWDk(µ,ν;g∗)=sup
g
{ASWDk(µ,ν;g)}. (37)

Proof. Symmetry: Since the k-Wasserstein distance is a metric thus symmetric [Villani, 2008]:494

Wk

(
Hpµ(·,θ;g∗),Hpν(·,θ;g∗)

)
=Wk

(
Hpν(·,θ;g∗),Hpµ(·,θ;g∗)

)
. (38)

Therefore,495

ASWDk(µ,ν;g∗)=
(∫

Sdθ−1
W k
k

(
Hpµ(·,θ;g∗),Hpν(·,θ;g∗)

)
dθ

) 1
k

=

(∫
Sdθ−1

W k
k

(
Hpν(·,θ;g∗),Hpµ(·,θ;g∗)

)
dθ

) 1
k

=ASWDk(ν,µ;g∗).

Triangle inequality: It is trivial to prove that the ASWD defined in Eq. (37) is finite when the mapping g(·) is496

confined to the set of bounded functions {g(x) :Rd→Rdθ |∃M ∈R,∀x∈Rd,||g(x)||2≤M}. We then prove497

that the the ASWD defined in Eq. (37) satisfies the triangle inequality.498

Denote by µ1, µ2, µ3∈Pk(Rd) three measures, then the following equations hold for the ASWD defined with499

optimal mappings:500

ASWDk(µ1,µ2;g
∗
1)≤

(
ASWDk(µ1,µ3;g

∗
1)
k+ASWDk(µ2,µ3;g

∗
1)
k) 1

k (39)

≤ASWDk(µ1,µ3;g
∗
1)+ASWDk(µ2,µ3;g

∗
1) (40)

≤sup
g
{ASWDk(µ1,µ3;g)}+sup

g
{ASWDk(µ2,µ3;g)} (41)

=ASWDk(µ1,µ3;g
∗
2)+ASWDk(µ2,µ3;g

∗
3), (42)

where the first two inequalities are from the metric property of the ASWD, and g∗1 , g∗2 , and g∗3 correspond to501

optimal mappings that result in the supremum of ASWDs between µ1 and µ2, µ1 and µ3, µ2 and µ3, respectively.502

Identity of indiscernibles: SinceWk(µ,µ)=0 for ∀µ∈Pk(Rd),we have503

ASWDk(µ,µ;g∗)=
(∫

Sdθ−1
W k
k

(
Hpµ(·,θ;g∗),Hpµ(·,θ;g∗)

)
dθ

) 1
k

=0, (43)

for ∀µ∈Pk(Rd). Conversely, for ∀µ,ν∈Pk(Rd), if ASWDk(µ,ν;g∗)=0, from Eq. (37):504

ASWDk(µ,ν;g∗)=
(∫

Sdθ−1
W k
k

(
Hpµ(·,θ;g∗),Hpν(·,θ;g∗)

)
dθ

) 1
k

=0. (44)

Due to the non-negativity of k-th Wasserstein distance as it is a metric on Pk(Rd) and the continuity of505

Wk(·,·) on Pk(Rd) [Villani, 2008],Wk

(
Hpµ(·,θ;g∗),Hpν(·,θ;g∗)

)
=0 holds for ∀θ∈Sdθ−1, which implies506

Hpµ(·,θ;g∗)≡Hpν(·,θ;g∗) for ∀θ∈Sdθ−1. Therefore, given the spatial Radon transform is injective when g∗(·)507

is injective,Hpµ(·,θ;g∗)≡Hpν(·,θ;g∗) implies pµ≡pν and µ≡ν.508

Non-negativity: Since the Wasserstein distance is non-negative, for ∀µ ,ν ∈Pk(Rd), the ASWD defined with509

optimal mappings g(·) between µ and ν is also non-negative:510

ASWDk(µ,ν;g∗)=
(∫

Sdθ−1
W k
k

(
Hpµ(·,θ;g∗),Hpν(·,θ;g∗)

)
dθ

) 1
k

≥
(∫

Sdθ−1
0kdθ

) 1
k

=0. (45)

Therefore, the ASWD defined in Eq. (37) is non-negative, symmetric, and satisfies the triangle inequality and511

the identity of indiscernibles, i.e. the ASWD defined with optimal mappings g∗(·) is also a metric.512

513
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Appendix E Pseudocode for the empirical version of the ASWD514

Algorithm 1 The augmented sliced Wasserstein distance. All of the for loops can be parallelized.515

Require: Sets of samples {xn∈Rd}Nn=1, {yn∈Rd}Nn=1;516

Require: Randomly initialized injective neural network gω(·) :Rd→Rdθ ;517

Require: Number of projectionsL, hyperparameter λ, learning rate ε, number of iterationsM ;518

1: InitializeD=0,Lλ=0,m=1;519

2: while ω has not converged andm≤M do520

3: Draw a set of samples {θl}Ll=1 from∈Sdθ−1;521

4: for n=1 toN do522

5: Compute gω(xn) and gω(yn);523

6: Calculate the regularization termLλ←Lλ+
λ
N
(||gω(xn)||2+||gω(yn)||2);524

7: end for525

8: for l=1 toL do526

9: Compute β(xn,θl)=〈gω(xn),θl〉, β(yn,θl)=〈gω(yn),θl〉 for each n;527

10: Sort β(xn,θl) and β(yn,θl) in ascending order s.t. β(xIlx[n],θl)≤β(xIlx[n+1],θl) and β(yIly [n],θl)≤
β(yIly [n+1],θl);

528

11: Calculate the ASWD:D←D+( 1
L

∑N
n=1|β(xIlx[n],θl)−β(yIly [n],θl)|k)

1
k ;529

12: end for530

13: L←D−Lλ;531

14: Update ω by gradient ascent ω←ω+ε·∇ωL;532

15: ResetD=0,Lλ=0, updatem←m+1;533

16: end while534

17: Draw a set of samples {θl}Ll=1 from∈Sdθ−1;535

18: for n=1 toN do536

19: Compute gω(xn) and gω(yn);537

20: end for538

21: for l=1 toL do539

22: Compute β(xn,θl)=〈gω(xn),θl〉, β(yn,θl)=〈gω(yn),θl〉 for each n;540

23: Sort β(xn,θl) and β(yn,θl) in ascending order s.t. β(xIlx[n],θl)≤ β(xIlx[n+1],θl) and β(yIly [n],θl)≤
β(yIly [n+1],θl);

541

24: Calculate the ASWD:D←D+( 1
L

∑N
n=1|β(xIlx[n],θl)−β(yIly [n],θl)|k)

1
k ;542

25: end for543

26: Output: Augmented sliced Wasserstein distanceD.544
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Appendix F Experimental setups545

F.1 Hyperparameters in the sliced Wasserstein flow experiment546

We randomly generate 500 samples both for target distributions and source distributions. We initialize the source547

distributions µ0 as standard normal distributionsN (0,I), where I is a 2-dimensional identity matrix. We update548

source distributions using Adam optimizer, and set the learning rate=0.002. For all methods, we set the order549

k=2. When testing the ASWD, the number of iterationsM in Algorithm 1 is set to 10. Empirical errors in the550

experiment are found to be not sensitive to the choice of λ in a candidate set of {0.01, 0.05, 0.1, 0.5}. The reported551

results are produced with λ=0.1.552

F.2 Network architecture in the generative modeling experiment553

Denote a convolutional layer whose kernel size is swithC kernels by ConvC(s×s), and a fully-connected layer554

whose input and output layer have s1 and s2 neurons by FC(s1×s2). The network structure used in the generative555

modeling experiment is configured to be the same as described in [Nguyen et al., 2021]:556

hψ : (64×64×3)→Conv64(4×4)→LeakyReLU(0.2)→
Conv128(4×4)→BatchNormalization→LeakyReLU(0.2)→
Conv256(4×4)→BatchNormalization→LeakyReLU(0.2)→

Conv512(4×4)→BatchNormalization→Tanh
Output−−−→(512×4×4)

DΨ :Conv1(4×4)→Sigmoid
Output−−−→(1×1×1)

GΦ :z∈R32→ConvTranspose512(4×4)→
BatchNormalization→ReLU→ConvTranspose256(4×4)→
BatchNormalization→ReLU→ConvTranspose128(4×4)→
BatchNormalization→ReLU→ConvTranspose64(4×4)→
BatchNormalization→ConvTranspose3(4×4)→Tanh

Ouput−−−→(64×64×3)

φ :FC(8192×8192) Output−−−→(8192)-dimensional vector

We train the models with the Adam optimizer, and set the batch size to 512. Following the setup in [Nguyen et al.,557

2021], the learning rate is set to 0.0005 and beta=(0.5, 0.999) for both CIFAR10 dataset and CelebA dataset.558

For all methods, we set the order k to 2. For the ASWD, the number of iterationsM in Algorithm 1 is set to 5.559

The hyperparameter λ is set to 0.5 to introduce slightly larger regularization of the optimization objective due560

to the small output values from the feature layer hψ .561
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Appendix G Additional results in the sliced Wasserstein flow experiment562

G.1 Full experimental results on the sliced Wasserstein experiment563

Figure 4 shows the full experimental results on the sliced Wasserstein flow experiment.
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Figure 4: Full experimental results on the sliced Wasserstein flow example. The first and third columns
are target distributions. The second and fourth columns are log 2-Wasserstein distances between the
target distributions and the source distributions. The horizontal axis shows the number of training
iterations. Solid lines and shaded areas represent the average values and 95% confidence intervals of
log 2-Wasserstein distances over 50 runs.

564

G.2 Ablation study565

In this ablation study, we compare ASWDs constructed by different mappings to GSWDs with different566

predefined defining functions, and investigate the effects of the optimization and injectivity of the adopted567

mapping gω(·) used in the ASWDs. In what follows, “ASWD-vanilla" is used to denote ASWDs that employ568

randomly initialized neural network φω(·) to parameterize the injective mapping gω(·) = [·,φω(·)], i.e. the569

mapping gω(·) is not optimized in the ASWD-vanilla and the results of ASWD-vanilla reported in Figure 5 are570

obtained by slicing with random hypersurfaces. Furthermore, the “ASWD-non-injective" refers to ASWDs that571

do not use the injectivity trick, i.e. the mapping gω(·)=φω(·) is not guaranteed to be injective. In addition, the572

“ASWD-vanilla-non-injective" adopts both setups in the “ASWD-vanilla" and "ASWD-non-injective", resulting573

in a random non-injective mapping gω(·). The reported experiment results in this ablation study is calculated574

over 50 runs, and the neural network φω(·) is reinitialized randomly in each run.575
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Figure 5: Ablation study on the impact from injective neural networks and the optimization of
hypersurfaces on the ASWD. ASWDs with different mappings are compared to GSWDs with different
defining functions. The first and third columns show target distributions. The second and fourth
columns plot log 2-Wasserstein distances between the target distributions and the source distributions.
In the second and fourth columns, the horizontal axis shows the number of training iterations. Solid
lines and shaded areas represent the average values and 95% confidence intervals of log 2-Wasserstein
distances over 50 runs.

From Figure 5, it can be observed that the ASWD-vanilla shows comparable performance to GSWDs defined576

by polynomial and circular defining functions, which implies GSWDs with predefined defining functions are577

as uninformative as slicing distributions with random hypersurfaces constructed by the ASWD. In GSWDs,578

the hypersurfaces are predefined and cannot be optimized since they are determined by the functional forms579

of the defining functions. On the contrary, we found that the optimization of hypersurfaces in the ASWD580

framework can help improve the performance of the slice-based Wasserstein distance. As in Figure 5, the581

ASWD and the ASWD-non-injective present significantly better performance than methods that do not optimize582

their hypersurfaces (ASWD-vanilla, ASWD-vanilla-non-injective, and GSWDs). In terms of the impact of the583

injectivity of the mapping gω , in this experiment, the ASWD-vanilla exhibits smaller 2-Wasserstein distances584

than the ASWD-vanilla-non-injective in all tested distributions, and the ASWD leads to more stable training585

than the ASWD-non-injective. Therefore, the injectivity of the mapping gω(·) does not only guarantee the ASWD586

to be a valid distance metric as proved in Section 3, but also better empirical performance in this experiment setup.587
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Appendix H Additional results in the generative modeling experiment588

H.1 Sampels of generated images of CIFAR10 and CelebA datasets589

(a) CelebA (L=10) (b) CelebA (L=100) (c) CelebA (L=1000)

(d) CIFAR10 (L=10) (e) CIFAR10 (L=100) (f) CIFAR10 (L=1000)

Figure 6: Visualized experimental results of the ASWD on CelebA and CIFAR10 dataset with 10, 100,
1000 projections. The first row shows randomly selected samples of generated CelebA images, the
second row shows randomly selected samples of generated CIFAR10 images.

H.2 Experiment results on MNIST dataset590

In the generative modelling experiment on the MNIST dataset, we train a generator by minimizing different591

slice-based Wasserstein metrics, including the ASWD, the DSWD, the GSWD (circular), and the SWD. Denote592

byGΦ the generator, the training objective of the experiment can be formulated as [Bernton et al., 2019]:593

min
Φ

Ex∼pr,z∼pz [SWD(x,GΦ(z))], (46)

where pz and pr are the prior of latent variable z and the real data distribution, respectively. In other words,594

the SWD, or other slice-based Wasserstein metrics, can be considered as a discriminator in this framework.595

By replacing the SWD with the ASWD, the DSWD, and the GSWD, we compare the performance of learned596

generative models trained with different metrics. In this experiment, different methods are compared using597

different number of projections L={10,1000}. The 2-Wasserstein distance and the SWD between generated598

images and real images are used as metrics for evaluating performances of different generative models. The599

experiment results are presented in Figure 7.600

It can be observed from Figure 7 that the ASWD outperforms all the other methods regarding both the601

2-Wasserstein distance and the SWD between generated and real images. In particular, the generative model602

trained with the ASWD produces smaller 2-Wasserstein distances within less iteration, which implies the603

generated images are of higher quality and the ASWD leads to higher convergence rates of generative models.604

In addition, the ASWD shows that it is able to generate higher quality images than the SWD and the GSWD with605

1000 projections using only as less as 10 projections. In other words, the ASWD has higher projection efficiency606

than the other slice-based Wasserstein metrics. The ASWD also has the smallest SWD distance as shown in Figure607

7. Although the SWD converges slightly faster than the ASWD in terms of the SWD between fake and real images,608

this is due to the training objective and the evaluated metric are the same for the SWD.609

We also compare the execution time per mini-batch of different methods in Figure 8. We test the SWD by varying610

the number of projections in the set {10, 1000, 10000} and all the other methods in the set {10, 1000}. We611

found that although the SWD requires much fewer computational time than the DSWD and the ASWD, the612

quality of generated data is poor even when the number of projectionsL increases to 10000. The GSWD is also613
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Figure 7: Visualized experimental results of different slice-based Wasserstein metrics on the MNIST
dataset with 10, 1000 projections. (a) Comparison between the SWD, the GSWD, the DSWD, and the
ASWD using the 2-Wasserstein distance between fake and real images as the evaluation metric. (b)
Comparison between the SWD, the GSWD, the DSWD, and the ASWD using the SWD between fake
and real images as the evaluation metric.

computationally efficient when using a 10 projections, but it requires the highest execution time and generates614

the highest 2-Wasserstein distance among all compared methods when the number of projections increases to615

1000. The huge difference in the execution time of the GSWD with 10 and 1000 projections is due to the GSWD616

needs to calculate distance matrices of shapeN×L, whereN andL are the number of samples and projections617

respectively, which is more computationally expensive than calculating inner products when the number of618

projectionsL increases. The DSWD requires a similar computational time as the ASWD in this example, while619

the ASWD generates higher quality images in terms of 2-Wasserstein distances. Randomly selected images620

generated by different slice-based Wasserstein metrics are presented in Figure 9.621
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Figure 8: The execution time and the 2-Wasserstein distance between fake and real images of different
methods. Each dot of the curve of SWD corresponds to the performance of the SWD with the number
of projections L= {10,1000,10000}, in sequence. Each dot of the other curves correspond to the
performance of the other methods with the number of projectionsL={10,1000}, in sequence.
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ASWD-10 SWD-10 DSWD-10 GSWD-10

ASWD-1000 SWD-1000 DSWD-1000 GSWD-1000

Figure 9: Randomly selected samples generated by different metrics, 10 and 1000 refer to the number
of projections.

622

23



Appendix I Sliced Wasserstein autoencoders623

We train an autoencoder using the framework proposed in [Kolouri et al., 2019b], where an encoder and a decoder624

are jointly trained by minimizing the following objective:625

min
φ,ψ

BCE(ψ(φ(x)),x)+SWD(pz,φ(x))+SWD(ψ(φ(x)),x), (47)

where φ is the encoder,ψ is the decoder, pz is the prior distribution of latent variable, and BCE(·,·) is the binary626

cross entropy loss between reconstructed images and real images. We train this model using different slice-based627

Wasserstein metrics, including the ASWD, the DSWD, and SWD. Here we use the ring distribution as the prior628

distribution as shown in Figure 11. We report the binary cross entropy loss during test time and the 2-Wasserstein629

distance between prior and the encoded latent variable φ(x) in Figure 10.630

It can be observed from Figure 10 that the model trained with the ASWD converges faster to the smaller binary631

cross entropy loss than the model trained with the SWD, and has similar convergence behavior as the DSWD.632

In addition, the ASWD also leads to better coverage of the prior distribution as it can be observed from the second633

column of Figure 10 that the ASWD has the smallest 2-Wasserstein distance between the encoded latent variable634

distribution and the prior distribution. The latent spaces generated by different slice-based Wasserstein metrics635

are presented in Figure 11.636

Some MNIST images randomly generated by SWAEs trained with different metrics are given in Figure 12.637
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Figure 10: Convergence behavior of SWAEs trained with different slice-based Wasserstein metrics. (a)
The binary cross entropy loss between the reconstruction and real data. (b) The 2-Wasserstein distance
between the prior distribution pz and the distribution of encoded feature φ(x).
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Figure 11: Comparisons between the encoded latent space generated by different slice-based Wasser-
stein metrics.
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(a) ASWD samples (b) DSWD samples (c) SWD samples

Figure 12: MNIST images randomly generated by SWAEs trained with different metrics.
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Appendix J Color transferring639

Color transferring can be formulated as an optimal transport problem [Bonneel et al., 2015; Radon, 1917]. In this640

task, the color palette of a source image is transferred to that of a target image, while keeping the content of source641

image unchanged. To achieve this, the optimal transport can be used to find the alignment between image pixels by642

calculating the optimal mapping of color palettes. In this experiment, instead of solving the optimal mapping in the643

original space, we first project the distribution onto one-dimensional spaces and average the alignment between one-644

dimensional samples as an approximation of the optimal mapping in the original space. After obtaining the approxi-645

mation, we replace pixels of the source image with the averaged corresponding pixels in the target image. To reduce646

the computational cost, we utilize the approach proposed in [Muzellec and Cuturi, 2019], where the K-means algo-647

rithm is used to cluster the pixels of both source and target images, and then we implement color transfer for the quan-648

tized images whose pixels are consist of the centers of 3000 clusters rather than the original source and target images.649

We present the results of color transferring in Figure 13. It can be observed that the ASWD and the DSWD650

produce sharper images than the SWD, we conjecture that is because the ASWD and the DSWD can generate651

better alignment of pixels. The Max-SWD has the highest contrast among all methods, but this is due to it only652

uses a single projection to obtain the transport mapping, thus there is no need to average different pixels from653

the target image. A disadvantage of the Max-SWD is that the transferred images generated by Max-SWD is not654

smooth enough and do not look realistic. The ASWD can generate smooth and realistic images than the SWD655

and the Max-SWD, even when the number of projections is as small as 10.656

26



Source Target

SW n=10 SW n=100 ASW n=10 ASW n=100 MaxSW DSW n=10 DSW n=100

(a)
Source Target

SW n=10 SW n=100 ASW n=10 ASW n=100 MaxSW DSW n=10 DSW n=100

(b)
Source Target
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(c)
Source Target
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(d)

Figure 13: Top rows are source images and target images, lower rows show transferred
images obtained by using different methods with different number of projections. Source
and target images are from [Bonneel et al., 2015] and https://github.com/chia56028/
Color-Transfer-between-Imageshttps://github.com/chia56028/Color-Transfer-between-
Images.
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Appendix K Sliced Wasserstein barycenter657

Sliced Wasserstein distances can also be applied in the barycenter calculation and shape interpolation [Bonneel658

et al., 2015]. Here we compare barycenters produced by different slice-based Wasserstein metrics, including the659

GSWD (circular and polynomial), the ASWD, the SWD, and the DSWD. Specifically, we compute barycenters660

of different shapes consisting of point clouds, as shown in Figure 14. Each object in Figure 14 corresponds to661

a specific barycenter with different weights.662

Formally, a sliced-Wasserstein barycenter of objects µ = {µ1,µ2, ··· ,µN ∈ Pk(Rd)} assigned with weights663

w=[w1,w2,···,wN ∈R] is defined as:664

Bar(µ,w)= argmin
µ∈Pk(Rd)

N∑
i=1

wiSWD(µ,µi). (48)

In this experiment, we setN =3 and compute barycenters corresponding to different weights. The results are665

given in Figure 14.666

From Figure 14, it can be observed that the ASWD produces similar barycenters as that of the SWD, which are667

sharper than the DSWD, and more meaningful than the GSWD (polynomial). The flexibility of the injective668

neural networks g(·) and its optimization in the ASWD can be potentially combined with specific requirements669

in particular tasks to generate calibrated barycenters - we leave this as a future research direction.670

(a) ASWD barycenters (b) GSWD (circular) barycenters (c) GSWD (polynomial) barycenters

(d) DSWD barycenters (e) SWD barycenters

Figure 14: Sliced Wasserstein barycenters generated by the ASWD, the GSWD, the DSWD, and the
SWD.
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Appendix L Societal impacts671

Research on comparing samples drawn from two probability distributions is inherently theoretical; it is also672

a fundamental topic in statistics and machine learning with a broad spectrum of downstream applications. In673

particular, our work has its root in the optimal transport theory and can be incorporated in a wide range of674

applications including computer vision (image retrieval and generation), natural language processing (alignment675

of word embedding for machine translation) and economics (resource allocation). Hence, this work developed676

a foundational tool with long-term societal and economic impact; the exact impact will be determined by the677

particular downstream applications. For example, the proposed distance metric can be used in machine translation678

to foster greater cross-cultural communication or employed in generative models to create new images or sound679

as a creativity tool; but it may also be used to produce ‘fake’ images for potentially harmful purposes. Those680

specific applications and their risk mitigation strategies are active research areas and out of the scope of this work,681

since this paper focuses on the theoretical and algorithmic development of a computational statistics tool.682
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