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ABSTRACT

In cognition theory, human thinking is governed by two systems: the fast and
intuitive System 1 and the slower but more deliberative System 2. Analogously,
Large Language Models (LLMs) can operate in two reasoning modes: outputting
only the solutions (fast mode) or both the reasoning chain and the final solution
(slow mode). We present Dualformer, a single Transformer model that
seamlessly integrates both the fast and slow reasoning modes by training on
randomized reasoning traces, where different parts of the traces are strategically
dropped during training. At inference time, Dualformer can be easily
configured to execute in either fast or slow mode, or automatically decide which
mode to engage (auto mode). It outperforms baselines in both performance and
computational efficiency across all three modes: (1) in slow mode, Dualformer
achieves 97.6% optimal rate on unseen 30 × 30 maze tasks, surpassing the
Searchformer baseline (93.3%) trained on data with complete reasoning
traces, with 45.5% fewer reasoning steps; (2) in fast mode, Dualformer
achieves 80% optimal rate, significantly outperforming the Solution-Only model
trained on solution-only data, which has an optimal rate of only 30%; (3) in auto
mode, Dualformer achieves 96.6% optimal rate with 59.9% fewer steps than
Searchformer. Moreover, Dualformer produces more diverse reasoning
traces than Searchformer. For math reasoning problems, our techniques
have also achieved improved performance with LLM fine-tuning, demonstrating
its generalization beyond task-specific models. We open source our code at
https://github.com/facebookresearch/dualformer.

1 INTRODUCTION

Transformers (Vaswani et al., 2017), the sequence modeling tool that serves as the cornerstone of
foundation models in various domains including Large Language models (LLMs) (Dosovitskiy,
2020; Baevski et al., 2020; Radford et al., 2021; Touvron et al., 2021; Hsu et al., 2021; Touvron et al.,
2023; Dubey et al., 2024), have been widely used in many works to approach reasoning and planning
problems, see e.g., Zhou et al. (2022); Kojima et al. (2022); Pallagani et al. (2022); Valmeekam
et al. (2023a); Chen et al. (2024); Gundawar et al. (2024); Wang & Zhou (2024). Specifically, we
can categorize the reasoning modes of Transformers into fast and slow. In fast mode, a Transformer
will output a final solution without any reasoning steps, whereas the intermediate steps of thinking,
such as a search trace for finding a short path, will be generated along with the plan in slow mode.

The two inference modes share a lot of similarities with the two thinking systems inherent in us (Wason
& Evans, 1974; Kahneman, 2017): an automatic and unconscious System 1 and a controlled and
conscious System 2. More importantly, they come with analogous pros and cons. As discussed in
previous works (Wei et al., 2022; Valmeekam et al., 2023b; Lehnert et al., 2024; Gandhi et al., 2024;
Saha et al., 2024), Transformer models operating in fast mode have a lower computational cost and
allow for a quicker response, yet they fall short in accuracy and optimality compared with slow mode
models (see Figure B.1 for a concrete example). This raises an interesting question:
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Can we integrate both the fast and the slow modes into Transformer-based reason-
ing models, similar to how humans possess two distinct thinking systems, and let
them complement each other?

Multiple approaches have been proposed. A popular paradigm is to start with a pure System 2, and
then fine-tune to make it more efficient like System 1, e.g., to distill System 2 output into System
1 (Yu et al., 2024; Deng et al., 2024), or to improve the reasoning efficiency of existing system 2 by
distillation (Wang et al., 2023; Shridhar et al., 2023) or bootstrapping from symbolic systems (e.g.,
Searchformer (Lehnert et al., 2024), Stream of Search (Gandhi et al., 2024)). However, in these
cases, further fine-tuning is needed, which is computationally expensive, and it is non-trivial to adapt
the resulting system to be more like System 1 or System 2 on the fly. To address this problem, Saha
et al. (2024) design an explicit meta-controller to switch between two different systems.

In this work, we demonstrate a surprising finding: a simple data recipe suffices to achieve on-the-fly
System 1 and System 2 configuration in solving reasoning tasks. The resulting model, Dualformer,
can be easily configured to execute in either fast or slow mode during inference, and determines
which mode to use by itself if not specified. More specifically, to imitate the System 2 reasoning
process, our Transformer is trained on data that contains both the reasoning trace and the final
solution. Leveraging the structure of reasoning steps, we design specific trace dropping strategies
such that the resulting traces resemble the shortcuts taken by System 1 in the thinking process. In
the extreme case, we drop the entire trace and encourage the Transformer to output a final solution
directly, bypassing all the intermediate steps. We randomly choose those structured trace-dropping
strategies at training time. See Section 3 for the details.

We first apply our framework to train an encoder-decoder Transformer model to solve pathfinding
problems, where the trace is generated by the A* search algorithm. We consider two domains: the
Maze navigation and the Sokoban game as in Lehnert et al. (2024), where we use the same tokenization
scheme. Interestingly, we have found that these problems are challenging for state-of-the-art LLMs
like o1-preview and o1-mini, where the output path often breaks into the walls (See Appendix I for an
example). In each reasoning mode, Dualformer outperforms the established baselines, achieving
stronger results in both the solved rate and optimal rate. Moreover, Dualformer significantly
enhances the diversity of the generated plans by identifying a greater variety of unique paths that
reach the goal. Notably, Dualformer is also efficient even when working in slow mode, generating
much shorter reasoning traces than the baseline model. Next, we apply our framework to fine-tune
LLMs for answering math questions. Following Yu et al. (2023), the training examples are taken from
the MATH dataset (Hendrycks et al., 2021) where answers are rewritten by a Llama-3.1-70B-Instruct
model to include detailed intermediate steps. Likewise, the obtained LLMs demonstrate enhanced
efficacy and efficiency.

2 RELATED WORK

Learning to Plan and Reason Tremendous efforts have been made to enhance the capability of
Transformer-based models to plan and reason over a long horizon. Two main types of approaches
have been developed. The first type leverages existing LLMs. For instance, researchers taught LLMs
to call external existing symbolic solvers, such as those found in Ahn et al. (2022); Besta et al. (2024);
Sel et al. (2023); He-Yueya et al. (2023); Liu et al. (2023); Silver et al. (2024). Pallagani et al. (2022;
2024) investigate the fine-tuning of LLMs to use a symbolic solver, (Schick et al.; Hao et al., 2024)
fine-tune LLMs to use external tools, and (Hao et al.) propose to fine-tune LLMs to do reasoning and
planning within a world model. Among them, several works try to integrate System-1 and System-2
thinking into LLM reasoning. Weston & Sukhbaatar (2023) proposed the System 2 Attention (S2A), a
more deliberate attention mechanism aimed at improving the reasoning capabilities of large language
models by reducing their susceptibility to spurious correlations in the context. Yu et al. (2024) distill
System 2 output into a System 1 model, which aims to compile higher-quality outputs from System 2
techniques back into LLM generations without intermediate reasoning token sequences.

The second type aims to train Transformers from scratch to plan and reason independently (Lehnert
et al., 2024; Saha et al., 2024; Gandhi et al., 2024), using task-specific language. Both Lehnert et al.
(2024) and Gandhi et al. (2024) teach LLMs to search by representing the search process in language,
Lehnert et al. (2024) developed Searchformer that is trained to mimic the A* search process
for pathfinding problems. Gandhi et al. (2024) applied their model to the Countdown game. In the
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concurrent work Saha et al. (2024), the authors trained two separate models and manage them by
an external meta-controller. There, one model generates rapid traceless response, while another one
responds slower but with trace. Similarly, (Lin et al., 2023) leverages multiple models to implement
slow and fast thinking using an agent style workflow. Our research is closely related to the above
work, but has some key differences. Unlike Lehnert et al. (2024); Gandhi et al. (2024) which do not
modify the reasoning trace in the training data, our approach involves randomizing the reasoning
trace. Unlike Saha et al. (2024); Lin et al. (2023), we do not use any explicit controller nor use two
networks for each mode. Instead, we integrate both the fast and the slow mode functionalities into a
single model.

Synthetic Data Generation using LLM Large language models (LLMs) have been utilized for
synthetic data generation in various domains. For instance, Wei et al. (2021); Longpre et al. (2023);
Taori et al. (2023) introduced a synthetic instruction dataset by sampling from diverse templates
containing natural language instructions that outline specific tasks. This approach has also been
applied to the visual domain (Liu et al., 2024b;a; Zhu et al., 2023; Brooks et al., 2023; Peng et al.,
2023). To improve the performance of LLM to answer math questions, Yu et al. (2023) developed
a method to rewrite, verify, and augment the original MATH dataset (Hendrycks et al., 2021) using
specialized prompts. Similar methodologies have been further explored in other studies, including
those by Yuan et al. (2023); Luo et al. (2023); Lee et al. (2023); Yue et al. (2023); Tong et al. (2025).

3 STRUCTURED TRACE DROPPING AND RANDOMIZED TRAINING

Our work builds upon the Searchformer work of Lehnert et al. (2024). To perform planning,
we train a Transformer to model a sequence of tokens that sequentially represents the planning task
(prompt), the computation of A* algorithm (trace), and the optimal path (solution) derived. See
Appendix A to the details of our tokenization scheme and example input for a Maze navigation task.

Searchformer has proven efficacy in addressing a variety of complex decision-making tasks.
However, it still suffers from two important limitations. Firstly, the model only operates in slow mode
and outputs lengthy reasoning chains, which significantly increases the inference time. While this
can be reduced by bootstrapping (Lehnert et al., 2024), an iterative refining technique that consists
of cycles of rollouts followed by fine-tuning, such a procedure incurs significant extra demand on
computational resources. Secondly, Searchformer struggles to generate diverse solutions, where
identical rollouts are frequently sampled1. For example, across 1000 30× 30 maze problems we have
tested, Searchformer’s reasoning chain contains more than 1500 tokens on average, and can only
find 7.6 unique feasible paths out of 64 responses (see Section 4.1.2).

To address these challenges, we propose a training framework that utilizes randomized reasoning
traces. Our approach is inspired by two lines of work. First, we have noticed that even though
Searchformer is trained on complete A* search traces, it generates shorter traces that are sketching
the search process. Second, research has shown that humans often rely on shortcuts and patterns when
making decisions, a concept known as System 1 thinking (Kahneman, 2017). These observations,
combined with the success of dropout technique (Hinton, 2012; Srivastava et al., 2014) that randomly
drop units from the neural network during training, motivated us to explore the use of randomized
reasoning traces in our framework, and we aim to simplify the A* search trace by exploiting its
structured elements and selectively dropping certain parts for each training example.

As shown in Figure 3.1, the A* search trace contains both the create and the close clauses, and
each clause includes the node’s coordinates and its (estimated) cost to reach the start and the goal
locations. To derive Dualformer, we exploit the structure of the search trace and drop certain parts
of it for each training example. There are three natural types of dropping:

• D1: drop a close clause

• D2: drop the cost tokens in a clause

• D3: drop a create clause

1We note that the lack of diversity is not due to the limitation of training data. For all our experiments, the
search traces in the training datasets are generated by non-deterministic A* algorithm that randomly breaks cost
ties.
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Structured Trace Dropping Strategies
  LvL 1 = D1          // drop all the close clauses

  LvL 2 = D1 + D2     // drop all the close clauses 
                              + all the cost tokens

  Lvl 3 = D1 + D2 + sampled D3 // Lvl 2 + drop some
                                     create clauses

  Lvl 4 = drop the entire trace

bos
create 0 2 c0 c3 
close  0 2 c0 c3 
create 0 1 c1 c2 
close  0 1 c1 c2 
create 0 0 c2 c1 
create 1 1 c2 c1 
close  0 0 c2 c1 
create 1 0 c3 c0 
close  1 0 c3 c0 

D1 (drop a close clause)

D2 (drop cost tokens in  
    a clause)

D3 (drop a create clause)A
* 
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 T
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Figure 3.1: An illustration of the structured trace dropping strategies, which consists of four levels.
Each level employs a progressively more aggressive dropping approach than the previous one. For an
introduction of trace format, see Appendix A.

Based on them, we develop four levels of dropping strategies, each building upon the previous one.
Specifically,

• Level 1 strategy eliminates all the close clauses from a search trace.

• Level 2 strategy goes further by additionally dropping all the cost tokens.

• Level 3 strategy is even more aggressive. It further randomly drops 30% of the create
clauses.

• Level 4 strategy drops the entire trace.

Figure 3.1 illustrates our strategies using the previously mentioned Maze task. Intuitively, the Level
1 dropping instructs Dualformer to effectively bypass the close-set computation of A* search, the
Level 2 dropping promotes Dualformer to bypass both the close-set and the cost computation.
The Level 3 and Level 4 dropping encourage Dualformer to omit certain or all of the search
steps. As we will show in Section 4, these strategies effectively guide Dualformer in learning
a more concise and efficient search and reasoning process.

To promote diversity in the training data, we do not perform dropping as a data preprocessing step.
Instead, at training time, for each training example within a batch, we randomly sample the dropping
strategy from a categorical distribution Cat(p0, p1, p2, p3, p4), where p1, . . . , p4 are the probabilities
of performing Level 1-4 droppings, and p0 is the probability of maintaining a complete trace.
This training framework enables Dualformer to learn from multiple reduced traces even for a
single training example, as the same example might appear in multiple batches.

Comparison with Token Masking Curious readers might already be wondering that whether
our training framework resembles the token masking techniques used by famous LLMs including
BERT (Devlin, 2018; Liu, 2019; Song, 2019; Gauthier & Levy, 2019; Sinha et al., 2021; Kitouni
et al., 2024). However, there are significant differences that distinguish our approach from those
masking techniques. First, standard masking techniques usually mask the input tokens of a sequence
uniformly in random. In contrast, our dropping strategies only apply to the search trace. Second,
while masked LLMs generally employ bidirectional attention layers and predict the masked tokens,
Dualformer uses causal attention layers, and our training objective solely focuses on the next token
prediction with the overall goal of improving its reasoning and planning capability. Computationally,
our training procedure is also more efficient. Dropping tokens shortens the input sequence and saves
computation. For example, it takes 30 hours to train Dualformer for the 30× 30 maze task on 8
Tesla V100 32GB GPUs, while it requires 36 hours if we use the full reasoning trace. We defer the
training details to Section 4 and Appendix C.

3.1 CONTROLLABLE GENERATION

One appealing property of Dualformer is that it can be easily prompted to operate in either fast or
slow generation mode at inference time. The control mechanism is extremely simple: we append
bos and a control token to the standard prompt (which includes environment and task description),
where the control token is either plan or create. If we use plan, Dualformer will operate
in fast mode and directly output the plan, bypassing the reasoning steps. On the other hand, if we
inject create after bos, Dualformer will work in slow mode and generate both the reasoning
trace and the final plan. See Appendix D for concrete examples. If we only use the standard prompt,
Dualformer will mimic the dual process of human decision making—depending on the situation,
it generates either types of responses, which correspond to System 1 and System 2 reasoning.
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4 EXPERIMENTS

Our experiments are designed to answer the following questions:

1. Does Dualformer outperform corresponding baselines in fast, slow and auto mode? Does
it generate more diverse plans?

2. In slow and auto model, does Dualformer lead to faster reasoning, i.e., output a shorter
trace?

3. Does the structured trace dropping technique generalize to LLMs trained on natural language
datasets?

We answer questions 1 and 2 in Section 4.1, where we train Transformers to solve Maze navigation
tasks and Sokoban games, similar to Searchformer (Lehnert et al., 2024). To answer questions
3, we fine-tune LLama-3.1-8B and Mistral-7B models to solve math problems in Section 4.2.

4.1 NAVIGATION TASKS: MAZE & SOKOBAN

Following Lehnert et al. (2024), we consider the Maze and the Sokoban tasks and use the same dataset.
Both datasets contain 105 training examples with complete A* search trace. The A* implementation
is non-deterministic where it breaks cost ties randomly and randomizes the order in which child nodes
are expanded. The size of Maze varies from 15× 15 to 30× 30. For all the Maze tasks, we randomly
generate 30%− 50% percentage of wall cells as obstacles, and randomly sample the goal and start
locations. The Sokoban map is of size 7× 7 with randomly placed two docks, two boxes, and the
worker location. We also randomly add two additional wall cells to the interior of the map. For the
detailed map generation procedure and example figures, we refer the readers to Appendix C.1.

We first demonstrate that Dualformer can be explicitly controlled to operate in either fast or slow
mode in Section 3.1. It will only output the final plan in fast mode, while a reasoning trace will be
generated in slow mode. In Section 4.1.1-4.1.2, we compare Dualformer with the corresponding
baselines in each mode, respectively. A variety of metrics, as listed below, are used to systematically
evaluate the performance, including the correctness, optimality and diversity of generated plans,
length of the reasoning trace, etc. Last, we ablate our design choices in Section 4.1.5.

Hyperparameters We instantiate Dualformer using the same encoder-decoder architecture as
in Lehnert et al. (2024). The encoder is an adaptation of the T5 architecture (Raffel et al., 2020) with
rotary embeddings, while the decoder is a GPT style architecture. We employ a model size of 15M
and 46M for the Maze and the Sokoban environments, respectively. All models are trained on 100k
training examples. We trained the model for 4× 105 iterations for the Maze environment and 8× 105

iterations for the Sokoban environment. We defer the details of model architectures and the other
hyperparameters to Appendix C.

We train Dualformer using the structured trace dropping strategies described in Section 3. For
choosing the dropping strategies for each training example, we sweep 3 sets of probabilities (1)
{p0 = 0.45, p1 = p2 = p3 = 1/6, p4 = 0.05}, (2) {p0 = 0.8, p1 = p2 = p3 = p4 = 0.05},
(3){p0 = 0.7, p1 = 0.05, p2 = p3 = 0.1,p4 = 0.05} and choose the set that yields the lowest
validation error. The final choices are (1) for Maze and (3) for Sokoban.

Baselines For the fast mode, our baseline is the Solution-Only model, which uses the same architecture
as Dualformer but trained on sequence data that only include the optimal final solution, without
any reasoning trace. The slow mode baseline is the Complete-Trace model trained on data with
complete A* search traces. It is referred to as the search augmented model in Lehnert et al. (2024),
and is also the base Searchformer model without search dynamics bootstrapping. We will also
compare Dualformer with bootstrapped models in Section 4.1.2. All these models have the same
amount of parameters, 15M for Maze problems and 46M for Sokoban problems.

Metrics We evaluate whether a model generates correct and optimal plans using two metrics: 1-
Solved-64 and 1-Optimal-64. Namely, for each evaluation task (e.g. one maze or one Sokoban game),
we randomly sample 64 responses from a trained model. Each response is parsed and evaluated
regardless of the generated trace part. If any of the 64 plans is correct, i.e. is feasible and reaches
the goal location, this task is labelled as success for the 1-Solved-64 metric. If any of the 64 plans
is optimal, this task is labelled as success for the 1-Optimal-64 metric. We repeat such process
for 1000 unseen evaluation tasks and report the average success rate. To investigate the robustness
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of each method, we also report metrics 3-Solved-64 and 3-Optimal-64 where a task is labelled as
success if at least 3 plans are correct or optimal. Additionally, we consider the Success Weighted by
Cost (SWC) (Wu et al., 2019) that measures the quality of the resulting plans in terms of their costs,
aggregated over individual responses. More precisely: SWC = 1

64

∑64
i=1 I(plan i is correct) · c∗

ci
,

where I is the indicator function, c∗ is the cost of an optimal plan, and ci is the cost of the i-th plan.
Clearly, the higher the SWC score is, the more optimal the resulting plans are. If all the generated
plans are optimal, the SWC score reaches its maximum value 1. Last, to quantify the diversity of the
generated plans, we check the number of unique correct plans out of the 64 responses for each task,
and report the average number across 1000 evaluation tasks.

4.1.1 FAST MODE

Table 4.1 reports the performance of Dualformer and the baseline Solution-Only model on Maze
and Sokoban tasks, respectively. In terms of generating correct and optimal plans, Dualformer
significantly outperforms the baseline in both 1-Solved-64 and 1-Optimal-64 criteria. It also notably
surpasses the baseline in terms of the 3-Solved-64 and 3-Optimal-64 rates, which demonstrates the
robustness of Dualformer in plan generation. In particular, the performance gap increases as the
task difficulty increases. For the largest 30 × 30 Maze, the 1-Optimal-64 rate of Dualformer
is 2.8× that of Solution-Only model, and the 3-Optimal-64 rate is 2.97×. Dualformer also
achieves much higher SWC score than the baseline, which is above 0.9 for every environment. This
demonstrates that each individual plan Dualformer generated is of high quality, whose cost is very
close to the optimal plan.

Dualformer also consistently generates more diverse plans for all the considered problems. In Ap-
pendix E, we show one Maze example and plot the unique correct plans generated by Dualformer
and the baseline model. One interesting observation is that the diversity score of Dualformer,
i.e., the average number of unique correct plans out of 64 responses, increases as the Maze size goes
up. Intuitively, as the Maze becomes larger, there are more possible routes to reach a single goal
location. This suggests that Dualformer learns the Maze structure, while the Solution-Only model
is potentially memorizing the optimal plans as its diversity score is close to 1 for all the Maze sizes.

4.1.2 SLOW MODE

Table 4.2 reports the results when Dualformer operates in slow mode. The corresponding baseline
is the Complete-Trace model, which uses the same architecture and is trained on data with complete
A* search traces. In addition to the metrics reported before, we report the average length of reasoning
traces across the 64 responses, aggregated over all the 1000 evaluation tasks. The results show that
Dualformer achieves both enhanced planning power and reasoning speed. It outperforms the
Complete-Trace model for all the correctness and optimality metrics: solved rates, optimal rates, and
SWC. Moreover, the reasoning trace yielded by Dualformer is notably shorter than the baseline
model. On average, Dualformer reduces the trace length by 49.4% across the five tasks. As
before, Dualformer also generates more diverse plans compared with the baseline. We refer the
readers to Appendix E for concrete examples.

Comparison with Search Dynamics Bootstrapping The Complete-Trace model is the base
Searchformer model in Lehnert et al. (2024), which has also proposed a search dynamics
bootstrapping method to enhance its performance on the Sokoban task, similar to those in Anthony
et al. (2017); Zelikman et al. (2022). After training the Searchformer model, we fine-tune it
on a newly created self-bootstrapped dataset. For each Sokoban game in the original dataset, we
generate 32 responses and include the shortest optimal response into the new dataset. We can
repeat this process multiple times. In this way, the Searchformer learns to generate shorter
responses. Table 4.4 compares Dualformer with Searchformer models fine-tuned up to 3
steps. Dualformer is comparable or better than bootstrapped models in most of the metrics, while
only using fewer than 45.1% reasoning steps. We note that each bootstrapping step requires rollouting
3.2× 106 total responses and extra fine-tuning of 104 iterations, This means, including the 8× 105

pretraining iterations, Searchformer step 3 requires a total of 8.3× 105 training iterations and
9.6 × 106 rollouts, which is expensive in computation. In comparison, Dualformer only needs
a single training stage that consists of 8× 105 iterations, with no additional rollout requirements.
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Method 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC Diversity

Maze 15x15 Dualformer (fast) 91.8 / 87.6 97.1 / 94.8 0.960 9.05
Solution-Only 72.0 / 68.9 82.7 / 80.1 0.610 1.52

Maze 20x20 Dualformer (fast) 90.9 / 84.0 97.0 / 94.0 0.960 17.27
Solution-Only 56.3 / 52.0 71.9 / 67.5 0.690 1.52

Maze 25x25 Dualformer (fast) 83.9 / 72.9 95.5 / 90.6 0.940 21.23
Solution-Only 39.7 / 34.7 60.3 / 55.4 0.570 1.9

Maze 30x30 Dualformer (fast) 80.0 / 66.0 91.8 / 85.7 0.906 18.23
Solution-Only 30.0 / 26.0 54.1 / 47.8 0.500 1.86

Sokoban Dualformer (fast) 97.3 / 94.4 94.8 / 90.0 0.970 4.92
Solution-Only 86.8 / 83.4 92.8 / 90.0 0.919 1.24

Table 4.1: Evaluation performance of fast mode Dualformer. The baseline model is the same
architecture trained on the solution only data.

Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC Diversity

Maze 15 x 15 Dualformer (slow) 278 99.6 / 99.2 99.9 / 99.9 0.999 12.54
Complete-Trace 495 94.6 / 90.1 96.7 / 93.0 0.964 7.60

Maze 20 x 20 Dualformer (slow) 439 98.9 / 97.8 99.9 / 99.7 0.998 18.86
Complete-Trace 851 98.3 / 95.5 98.8 / 93.00 0.987 14.53

Maze 25 x 25 Dualformer (slow) 589 99.9 / 97.2 99.7 / 99.3 0.997 25.05
Complete-Trace 1208 95.2 / 85.7 97.0 / 90.4 0.968 18.85

Maze 30 x 30 Dualformer (slow) 854 97.6 / 93.2 99.5 / 98.2 0.993 25.77
Complete-Trace 1538 93.3 / 82.4 95.9 / 88.1 0.964 7.60

Sokoban
Dualformer (slow) 1482 94.5 / 87.6 97.4 / 94.1 0.970 4.66

Complete-Trace 3600 92.9 / 84.4 94.7 / 89.0 0.944 2.91

Table 4.2: Evaluation performance of slow mode Dualformer. The baseline model is the same
architecture trained on the complete-trace data (Searchformer).

Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC Diversity

Maze 15 x 15
Dualformer (auto) 222 99.7 / 99.4 99.9 / 99.8 0.999 12.52

Complete-Trace 495 94.6 / 90.1 96.7 / 93.0 0.964 7.60
Solution-Only - 72.0 / 68.9 82.7 / 80.1 0.610 1.52

Maze 20 x 20
Dualformer (auto) 351 99.5 / 98.6 99.9 / 99.3 0.997 20.28

Complete-Trace 851 98.3 / 95.5 98.8 / 93.0 0.987 14.53
Solution-Only - 56.3 / 52.0 71.9 / 67.5 0.690 1.52

Maze 25 x 25
Dualformer (auto) 427 98.6 / 96.9 99.8 / 99.0 0.998 24.81

Complete-Trace 1208 95.2 / 85.7 97.0 / 90.4 0.968 18.85
Solution-Only - 39.7 / 34.7 60.3 / 55.4 0.570 1.9

Maze 30 x 30
Dualformer (auto) 617 96.6 / 92.1 98.4 / 97.7 0.989 24.42

Complete-Trace 1538 93.3 / 82.4 95.9 / 88.1 0.964 7.60
Solution-Only - 30.0 / 26.0 54.1 / 47.8 0.500 1.86

Sokoban
Dualformer (auto) 494 94.0 / 90.0 97.4 / 94.7 0.979 4.97

Complete-Trace 3600 92.9 / 84.4 94.7 / 89.0 0.944 2.91
Solution-Only - 86.8 / 83.4 92.8 / 90.0 0.919 1.24

Table 4.3: Evaluation performance of auto mode Dualformer. The baselines are the Solution-Only
and Complete-Trace (Searchformer) models.

Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC Diversity

Dualformer (slow) 1482 94.5 / 87.6 97.4 / 94.1 0.970 4.66
Searchformer Step 1 3785 94.4 / 91.2 95.9 / 92.4 0.957 2.19
Searchformer Step 2 3507 94.9 / 91.5 96.7 / 92.9 0.965 2.27
Searchformer Step 3 3283 94.5 / 91.4 96.6 / 94.4 0.964 2.48

Table 4.4: Performance for the Sokoban game. Searchformer is fine-tuned up to 3 steps using
the search dynamics bootstrapping method.

4.1.3 AUTO MODE: DUAL PROCESS

Instead of controlling the inference mode of Dualformer by injecting a control token after bos,
we can also sample from it directly, allowing it to freely determine the mode of operation, similar to
the dual process of human decision making. We call this auto mode for Dualformer. Table 4.3
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reported the results. The auto mode Dualformer also outperforms both the Complete-Trace and
Solution-Only model for all the tasks we consider.

An interesting question to ask is whether Dualformer
can automatically adjust its operation mode in response
to problem difficulty. To investigate this, we generated
64 auto-mode responses for 1000 unseen mazes with
varying wall densities (between 0.3 and 0.5). We then
analyzed the percentage of slow-mode paths among all
feasible solutions. The results are plotted in Figure 4.1.
As the wall density increases, indicating a (likely) more
challenging maze, the proportion of slow-mode paths
also increases. This could be due to two factors: (1) the
inherent need for slower thinking to solve more difficult
problems, and (2) Dualformer is selecting the slow
mode more frequently. Similarly, we observe that as
the maze size increases, where the problem becomes
harder, Dualformer consistently employs more slow
thinking.

Figure 4.1: The percentage of slow mode
paths (among all the feasible paths it gen-
erates) that Dualformer (auto mode) ac-
tivates in. As the wall density and maze
size, Dualformer engages in slow think-
ing more often.

4.1.4 GENERALIZATION PERFORMANCE

For all the experiments we have presented so far, we test on mazes of the same size and wall density.
It is intriguing to inspect the OOD generalization performance of Dualformer. In this section, we
consider a Dualformer trained on mazes of size 20× 20, where wall density is uniform randomly
sampled between 0.3 and 0.5. At test time, we vary the wall density from 0.1 to 0.6. Table 4.5
presents the slow mode results. We test 50 unseen examples for each case. As the wall density
increases, we expect the maze to become more challenging and the prompt also becomes longer.
Therefore, we can see for in-distribution test cases (wall density 0.3, 0.4, 0.5), Dualformer (slow
mode) achieves approximately 100% optimal rate. Yet when the wall density increases to 0.6, which
is OOD, the performance drops. Interestingly, Dualformer (slow mode) does not solve a single
maze for lower wall densities. Our intuition is that the prompt becomes too short for Dualformer
to generalize. In addition to varying wall densities, we also check the slow mode performance of on
rectangular mazes (e.g., height=20, width=10). As before, our model is trained on 20× 20 mazes.
Table 4.6 shows the results. Surprisingly, Dualformer generalizes for the cases we consider here.

Wall Density 1-Optimal-64 1-Solved-64

0.1 (OOD) 0.0 0.0
0.2 (OOD) 0.0 0.0
0.3 97 100
0.4 100 100
0.5 100 100
0.6 (OOD) 68 72

Table 4.5: Dualformer (slow mode, trained on
20 × 20 mazes) achieves nearly-perfect optimal
rate when the wall density is in distribution, while
the performance drops for OOD values.

Maze Size 1-Optimal-64 1-Solved-64

20× 10 100 100
20× 12 94 95
20× 14 100 100
20× 16 73 73
20× 18 99 100
20× 19 100 100

Table 4.6: Dualformer (slow mode,
trained on 20× 20 mazes) generalizes to rect-
angular mazes.

4.1.5 ABLATION STUDY

As discussed in Section 3, the randomized traces for training Dualformer results from different
trace dropping strategies, and there are numerous ways to combine them. We hereby ablate the
design choices we made. First, to enable execution in both fast and slow modes, a naı̈ve alternative
approach is to train Dualformer using a mixture of solution-only and complete-trace data, i.e.
p1 = p2 = p3 = 0 in our randomization strategy. We refer to such variants as Mix-p models, where
p is the fraction of solution-only data in the training dataset. Note that the Solution-Only model is
essentially a Mix-1 model, and the Complete-Trace model is a Mix-0 model. Below, we compare
Dualformer to Mix-p models for both inference modes. Second, our dropping strategies are
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Method Avg Trace Length 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC Diversity

Maze 15 x 15

Dropping Level 1 396 99.5 / 98.4 99.9 / 99.4 0.998 11.94
Dropping Level 1 + 2 324 98.9 / 98.2 99.7 / 99.1 0.996 11.87
Dropping Level 1 + 2 + 3 287 99.8 / 99.3 100 / 99.9 0.999 12.71
Dualformer (slow) 278 99.6 / 99.2 99.9 / 99.9 0.999 12.54

Maze 20 x 20

Dropping Level 1 563 99.1 / 96.7 99.9 / 97.9 0.996 15.79
Dropping Level 1 + 2 549 98.7 / 96.7 99.2 / 98.5 0.991 17.51
Dropping Level 1 + 2 + 3 542 99.5 / 99.9 100 / 99.7 1.00 19.51
Dualformer (slow) 439 98.9 / 97.8 99.9 / 99.7 0.998 18.86

Maze 25 x 25

Dropping Level 1 735 97.9 / 93.4 99.0 / 97.1 0.989 19.46
Dropping Level 1 + 2 750 99.2 / 96.6 99.8 / 99.1 0.997 23.18
Dropping Level 1 + 2 + 3 594 98.2 / 95.6 99.5 / 98.7 0.994 23.1
Dualformer (slow) 589 99.9 / 97.2 99.7 / 99.3 0.997 25.05

Maze 30 x 30

Dropping Level 1 1183 97.5 / 93.3 98.9 / 97.4 0.988 22.61
Dropping Level 1 + 2 966 98.1 / 93.4 99.6 / 97.7 0.995 25.47
Dropping Level 1 + 2 + 3 759 96.8 / 92.2 99.8 / 98.4 0.996 24.94
Dualformer (slow) 854 97.6 / 93.2 99.5 / 98.2 0.993 25.77

Sokoban

Dropping Level 1 3000 94.2 / 86.6 95.6 / 90.9 0.950 3.90
Dropping Level 1 + 2 2272 93.9 / 86.7 96.5 / 89.8 0.960 4.41
Dropping Level 1 + 2 + 3 1638 95.5 / 90.7 97.7 / 95.0 0.970 4.39
Dualformer (slow) 1482 94.5 / 87.6 97.4 / 94.1 0.970 4.66

Table 4.7: Comparison of different combinations of trace randomization strategies.

structured in a hierarchical manner. For instance, Level 2 dropping is developed based on the Level 1
strategy. We investigate how the performance changes when we halt the process at a specific level.

Comparison with Mix-p Models Figure F.1 compares the 1-Optimal-64 rate of Dualformer
and Mix-p models. We test 8 values of p: 0 (equivalent to the Complete-Trace model),
0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 (equivalent to the Solution-Only model). In both inference modes,
Dualformer beats all the Mix-p models for all the five tasks we consider. In fact, Dualformer
also outperforms Mix-p models in the other metrics we consider too, see Appendix F. In particular,
it is the “fastest” one when operating in slow mode: it generates the shortest reasoning trace.

Combination of Randomization Strategies We compare Dualformer with its variants where we
halt the dropping strategies at specific levels. For the Maze environments, we fix the probability of
using the complete reasoning trace for a training example to be p0 = 0.5 for all the variants and vary
the other probabilities. For the Sokoban environments, we fix the probability of Level 1 dropping to be
p0 = 0.05. Table G.1 lists the probabilities of different dropping strategies we use for all the models,
and Table 4.7 shows the results. It should be noted that the variants cannot operate in fast mode, since
they are not trained on any Level 4 data. Therefore, we only report the slow mode performance. As we
increase the strategy level, the length of the reasoning trace decreases. In regard to the other metrics,
the performance of Level 1+2+3 model and Dualformer are comparable. However, Dualformer
enjoys the advantage of shorter reasoning trace and the capability to function in fast mode.

4.2 APPLICATION TO LLM TRAINING: MATH REASONING

In this section, we show the efficacy of structured trace dropping techniques for training large-scale
LLMs to solve math problems. Particularly, we finetune Llama-3-8B and Mistral-7B models using
a dataset that contains a variety of math questions and answers with detailed reasoning steps, where
we utilize a trace dropping technique that leverages the specific structure of the reasoning trace for
math problems too. We benchmark the resulting models against corresponding base models finetuned
on the dataset directly.

Dataset We evaluate all the models using a dataset named Aug-MATH, which is derived from the
MATH dataset (Hendrycks et al., 2021) that contains 7500 training examples of math questions and so-
lutions, and 5000 testing examples. Following Yu et al. (2023), we query the Llama-3.1-70B-Instruct
model to rewrite the solutions to include more detailed intermediate steps, following a given format.
To encourage the diversity of reasoning traces, we sample 4 LLM responses for each problem using
a temperature of 0.7 and top-p = 0.9. The resulting dataset then contains 30000 training examples
and 5000 testing examples. In Appendix H.1, we show the prompt template that we use for solution
rewriting, and a concrete training example before and after rewriting.

Structured Trace Dropping and Randomization The answer of the math questions rewritten by
Llama-3.1-70B-Instruct contains 6-10 intermediate reasoning steps on average, where every step
might contain multiple sentences. We use a randomized training procedure similar to the framework
proposed in Section 3. For each of the training examples sampled in a batch, we randomly drop
each intermediate reasoning step with probability p. Below, we report the results when varying p.

9



Published as a conference paper at ICLR 2025

Hyperparameters We finetune two base models Mistral-7B and LLama-3-8B for two epochs using
a batch size of 32. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of
8e−6 for the Mistral models, and 5e−6 for the Llama-3 models. Full training details, including how
we select the learning rates and other hyperparameters, are deferred to Appendix C.2. For fine-tuning
the models, we use the same prompt as in Yu et al. (2023), which is displayed in Appendix H.2.

Evaluation Similar to Dualformer, we evaluate the models in both the fast and the slow mode,
where the LLM is required to output the final solution directly or to solve the problem step by
step. Following Yu et al. (2023), we use zero-shot prompting when evaluating the models. See
Appendix H.2 for the prompts we use in each mode. We consider the Greedy@1 metric (Dubey
et al., 2024; Yu et al., 2023), where for each question we generate 1 response using a temperature
of 0 and verify the correctness. We also report the pass@20 metric (Chen et al., 2021), where we
randomly sample 20 responses using a temperature of 0.5. For reference, we also report the results of
fine-tuning those models on the original MATH dataset.

Results The results are presented in Table 4.8. We test four values of p: 0.1, 0.2, 0.3 and 0.4. Our
results show that the proposed training strategy makes both LLMs more effective and efficient.
We first inspect the results of the Mistral-7B models. For the slow mode inference, fine-tuning
the model with trace dropping and randomized training improves upon the baseline model that is
directly finetuned on Aug-MATH dataset. The absolute Greedy@1 metric improved by 1.7% when
p = 0.1 (which amounts to 10% relative performance improvement), and 0.9% with p = 0.2 and 0.3,
and 0.1% when p = 0.4. Our models are also outperforming the baseline model for the Pass@20
metric when p = 0.1, 0.2 and 0.3, where the absolute correct rate increases to 61.9%. Under both
evaluation schemes, the average length of the reasoning trace goes down as p goes up. Similarly, for
inference in the fast mode, our models also achieve higher correct rate. A similar trend of performance
improvement also holds for the Llama-3-8B models. Finally, for reader’s reference, we include the
results of both the Mistral-7B and the Llama-3-8B models fine-tuned on the original MATH dataset,
which clearly lags behind2.

Model Dataset & Dropping Prob Greedy@1(%) (slow / fast) Trace Length Pass@20(%) (slow / fast) Trace Length

Mistral-7B

Aug-MATH (baseline) 16.9 / 9.6 527 / - 59.6 / 29.8 521 / -
Aug-MATH (p=0.1) 18.6 / 11.3 508 / - 61.6 / 32.0 479 / -
Aug-MATH (p=0.2) 17.8 / 11.2 477 / - 61.4 / 31.9 470 / -
Aug-MATH (p=0.3) 17.8 / 11.8 497 / - 61.9 / 31.7 466 / -
Aug-MATH (p=0.4) 17.0 / 11.0 434 / - 56.4 / 28.9 397 / -
MATH 13.1 / 8.5 290 / - 53.0 / 29.4 227 / -

Llama-3-8B

Aug-MATH (baseline) 19.7 / 13.1 548 / - 62.7 / 35.6 535 / -
Aug-MATH (p=0.1) 20.1 / 13.3 544 / - 63.4 / 36.2 522 / -
Aug-MATH (p=0.2) 20.5 / 13.8 525 / - 63.9 / 36.7 497 / -
Aug-MATH (p=0.3) 20.5 / 13.5 515 / - 63.4 / 37.5 474 / -
Aug-MATH (p=0.4) 20.4 / 13.5 490 / - 63.4 / 37.2 450 / -
MATH 13.3 / 12.6 432 / - 52.8 / 35.5 332 / -

Table 4.8: The performance of Llama-3 and Mistral models finetuned to solve math problems.

5 CONCLUSION

We present a simple and easy-to-implement framework for training Transformers to solve reasoning
and planning tasks. We carefully probe the structure of the reasoning traces and design corresponding
dropping strategies that imitate the shortcuts in human thinking process. By randomly applying the
dropping strategies to training examples, the resulting model, Dualformer, can be controlled to
execute in either fast or slow reasoning mode, or in auto mode where it decides the mode to engage.
Dualformer achieves enhanced performance for the maze navigation tasks and the Sokoban game,
while reducing the number of reasoning steps required. Remarkably, our approach is not limited to
training task-specific models from scratch. We apply techniques in the same spirit to fine-tune LLMs
to answer math questions and obtain improved performance. Last, the proposed framework also
reduces computation consumption as the input sequences are shortened after trace dropping. Future
work could investigate whether our approach helps models scale, and explore methodologies such
as curriculum learning and hierarchical planning to adapt Dualformer for more complex tasks.

2The trace generated by models trained on MATH is much shorter, because the answers in MATH do not
contain as many intermediate steps as those in Aug-MATH.
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Figure B.1: The left panel plots a path generated by fast-thinking, which is suboptimal. The right
panel plots a optimal path generated by slow-thinking. Cells highlighted in red are the positions
visited by the reasoning trace of slow-thinking mode. Green circle shows a critical cell that needs to
identified for a optimal path yet missed by the fast-thinking.

A PRELIMINARIES

Our work builds upon the work of Lehnert et al. (2024). To perform planning, we train a Transformer
to model a sequence of tokens that sequentially represents the planning task, the computation of
A* algorithm, and the optimal solution derived from the A* search. The tokenization method is
illustrated in Figure A.1. As a toy example, we consider a navigation task in a 3 × 3 Maze where
the goal is to find one shortest path from the start cell to goal cell, without hitting a wall cell. The
A* algorithm has successfully determined an optimal plan. We use a sequence of tokens to express
both the task and the Maze structure, which also serves as the prompt for Dualformer. The
solution is depicted by the plan token sequence that describes the path using coordinates. The A*
algorithm generates a search trace sequence that records the search dynamics performed, displayed
in Figure 3.1. Recall that the A* algorithm is a pathfinding algorithm on a weighted graph. The
create clause adds the node (represented by the subsequent coordinates) into the search frontier,
and the close clause adds the node to the closed set. Each clause, either create or close, is
followed by the tokens x, y, c0, and c1, representing the node’s coordinates, cost-since-start value,
and heuristic values, respectively. For details of A* and the tokenization approach, we refer the
readers to Russell & Norvig (2021) and Lehnert et al. (2024), respectively.
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Figure 3.1: An example Maze problem in 3x3 grid. The prompt summarizes the Maze structure.
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create 0 2 c0 c3 
close  0 2 c0 c3 
create 0 1 c1 c2 
close  0 1 c1 c2 
create 0 0 c2 c1 
create 1 1 c2 c1 
close  0 0 c2 c1 
create 1 0 c3 c0 
close  1 0 c3 c0 
plan   0 2 
plan   0 1 
plan   0 0 
plan   1 0
eos
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Trace Pruning Strategies
LvL 1 = D1         // drop all the close clauses

LvL 2 = D1 + D2    // drop all the close clauses 
                         + all the cost info

Lvl 3 = D1 + D2 + sampled D3 // Lvl 2 + drop some
                                create clauses

Lvl 4 = D4         // drop the entire trace

Figure 3.2: Caption
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Learning to Plan & Reason (Saha et al., 2024) (Lehnert et al., 2024) SearchFormer CoT, etc

Classical Planning Methods

3 RANDOMIZED STRATEGIC TRACE PRUNING

Describe the content of prompt, trace,

xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx
xxxxxx To promote diversity in the reasoning process, we employ the probabilities p1, p2, p3, and p4 to selectively mask
parts of the reasoning trace, as is shown in Figure 3.2. Specifically, p1 corresponds to the probability of masking all
close nodes (effectively bypassing the close-set of A* search), p2 to masking all close nodes plus cost nodes (bypassing
both the close-set and cost computations), p3 to masking all close and cost nodes along with parts of the create nodes
(omitting certain search steps), and p4 to completely masking the entire trace (yielding a solution-only scenario). This
strategy aids the DualFormer in learning a more concise and efficient search and reasoning methodology.

Connection wtih Token Masking

4 EXPERIMENTS

Our experiments are designed to answer the following questions:

1. Does DualFormer integrate both the fast and slow thinking in a controllable manner?

2. In both fast and slow thinking mode, does the planning accuracy of DualFormer outperform corresponding baselines?

3. In the slow thinking model, does DualFormer lead to faster reasoning, i.e., output shorter reasoning trace?

4. Does DualFormer generate more diverse plans in either mode?

5. Does the proposed data augmentation strategy generalize to LLMs trained on natural language datasets?

2

bos
start 0 2
goal 1 0
wall 1 2
wall 2 0
eos

P
ro
m
pt
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n

plan   0 2 
plan   0 1 
plan   0 0 
plan   1 0
eos

Figure A.1: An example Maze navigation task and one optimal plan obtained by the A* algorithm.
The task and the plan are expressed as a prompt token sequence and a plan token sequence.

B COMPARISON OF FAST THINKING AND SLOW THINKING

C NETWORK ARCHITECTURE AND HYPERPARAMETERS

We use the same encoder-decoder Transformer architecture as in Lehnert et al. (2024) for
Dualformer. It first converts each token into a one-hot vector, which is then transformed into a
set of vectors through the embedding layer. The embedding vectors then go through the subsequent
layers shown in Lehnert et al. (2024, Figure 4). We use RoPE embeddings for positional encoding,
and no dropout is used in our architecture.

For the model size, architecture parameters, batch size, we use the same setup as in as (Lehnert et al.,
2024). Specifically, for the Maze tasks, we use a 15M-parameter model which consists of 3 attention
heads and 6 layers with hidden size 64. We optimize the model by the AdamW (Loshchilov & Hutter,
2019) optimizer with learning rate 2.5e-4 and batch size 16, where β0 and β1 set to 0.9 and 0.99,
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respectively. A linear warm-up strategy was employed for the first 2000 gradient updates. Afterward,
we use the cosine learning rate scheduler (Loshchilov & Hutter, 2016).

For the Sokoban tasks, we use a 46M-parameter model which consists of 4 attention heads and 8 layers
with hidden size 96. We use batch size 64 and learning rate 7.5e-5, while the other hyperparameters
are the same as above.

C.1 ENVIRONMENT & DATASET

We used the same dataset as in Lehnert et al. (2024), which is available at https://github.
com/facebookresearch/searchformer. The Maze dataset contains 10M examples and
the Sokoban dataset contains 10M examples and we use the first 100k example sorted in accordance
to their ”id” field in mongodb (following same approach as (Lehnert et al., 2024)). For reader’s
reference, the dataset is generated as follows. For the Maze tasks, 30-50% of the cells were first
randomly designated as walls. Next, a start and a goal location were chosen randomly. Then, the A∗

algorithm was applied to generate an optimal plan. For the Sokoban tasks, we use a 7× 7 grid map
where two wall cells were randomly inserted as obstacles. Moreover, two docks, two boxes, and two
worker locations were placed randomly. Once a game is generated, it is only added to the dataset if it
could be solved by the A∗ algorithm.

Figure C.1: Map of an example Sokoban task in a 7 × 7 grid world, with two boxes and two docks
(figure taken from Lehnert et al. (2024)).The worker needs to push (and not pull) the boxes from the
start locations to the destinations.

bos
worker 2 3
box 2 4
box 3 4
dock 1 3

dock 4 4

wall 0 0
wall 0 1
...

wall 6 6
eos

Prompt

bos
create worker 2 3 box 2 4 box 3 4 c0 c3
close worker 2 3 box 2 4 box 3 4 c0 c3
...

create worker 5 4 box 2 3 c10 c3
close worker 2 1 c12 c0

Trace
(2583 tokens)

plan 2 3
plan 1 3
plan 1 4
plan 1 5
plan 2 5
plan 2 4
plan 3 4
plan 2 4
plan 2 3
plan 2 2
plan 1 2
plan 1 1
plan 2 1
eos

Plan

Figure C.2: Example prompt and response token sequences for the Sokoban task depicted in
Figure C.1 (example taken from (Lehnert et al., 2024)).

C.2 MATH REASONING

We use the implementation provided at https://github.com/meta-llama/
llama-recipes for fine-tuning the models.

We train all the models for 2 epochs, using a batch size of 32. We use the AdamW optimizer with a
learning rate of 5× 10−6 for the Llama model and 8× 10−6 for the Mistral models. The learning
rate is selected as follows. We sweep over 3 values 2× 10−6, 5× 10−6, 8× 10−6 and choose the
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learning rate that yields the lowest validation loss. We then retrain the models using the selected
learning rates on the full training dataset and report the results. We use the default values for the other
hyperparameters. More specifically, we do not use linear rate warmup, weight decay, nor multistep
gradient accumulation. We use betas=(0.9, 0.999), eps=1e− 8, γ = 0.85 (multiplicative step-wise
learning rate decay) for AdamW and “packing” as the batching strategy.
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D CONTROLLABLE GENERATION OF DUALFORMER

Dualformer offers flexible output options for users to choose. In this section, we demonstrate this
by an example navigation task in a 15× 15 maze, see Figure D.1. The start location is (9, 10) and the
goal location is (3, 6). The location coordinates and the maze structure is encoded in the original
prompt below.

Original Prompt

bos, start, 9, 10, goal, 3, 6, wall, 0, 0, wall, 4, 0, wall,
7, 0, wall, 10, 0, wall, 12, 0, wall, 13, 0, wall, 3, 1,
wall, 7, 1, wall, 11, 1, wall, 12, 1, wall, 13, 1, wall, 14,
1, wall, 0, 2, wall, 3, 2, wall, 4, 2, wall, 6, 2, wall, 7,
2, wall, 8, 2, wall, 10, 2, wall, 11, 2, wall, 14, 2, wall,
1, 3, wall, 2, 3, wall, 3, 3, wall, 11, 3, wall, 13, 3, wall,
2, 4, wall, 8, 4, wall, 10, 4, wall, 11, 4, wall, 12, 4,
wall, 14, 4, wall, 3, 5, wall, 4, 5, wall, 5, 5, wall, 7, 5,
wall, 9, 5, wall, 11, 5, wall, 12, 5, wall, 14, 5, wall, 0,
6, wall, 4, 6, wall, 6, 6, wall, 8, 6, wall, 9, 6, wall, 14,
6, wall, 2, 7, wall, 4, 7, wall, 7, 7, wall, 9, 7, wall, 10,
7, wall, 13, 7, wall, 2, 8, wall, 3, 8, wall, 5, 8, wall, 6,
8, wall, 8, 8, wall, 10, 8, wall, 11, 8, wall, 12, 8, wall,
1, 9, wall, 5, 9, wall, 6, 9, wall, 9, 9, wall, 11, 9, wall,
14, 9, wall, 10, 10, wall, 12, 10, wall, 13, 10, wall, 14,
10, wall, 1, 11, wall, 8, 11, wall, 9, 11, wall, 12, 11,
wall, 3, 12, wall, 5, 12, wall, 6, 12, wall, 8, 12, wall,
10, 12, wall, 12, 12, wall, 14, 12, wall, 0, 13, wall, 1, 13,
wall, 3, 13, wall, 8, 13, wall, 12, 13, wall, 13, 13, wall,
14, 13, wall, 0, 14, wall, 1, 14, wall, 2, 14, wall, 6, 14,
wall, 14, 14, eos

To configure Dualformer’s operation mode, we only need to append bos and a control token to
the original prompt. To output solution only (fast mode), we inject plan. On the other hand, we
inject create to let Dualformer output both trace and solution.

D.1 FAST MODE

The modified prompt for fast mode is displayed below. The extra tokens are highlighted in purple.
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Fast Mode Prompt (two extra tokens added to the original)

bos, start, 9, 10, goal, 3, 6, wall, 0, 0, wall, 4, 0, wall,
7, 0, wall, 10, 0, wall, 12, 0, wall, 13, 0, wall, 3, 1,
wall, 7, 1, wall, 11, 1, wall, 12, 1, wall, 13, 1, wall, 14,
1, wall, 0, 2, wall, 3, 2, wall, 4, 2, wall, 6, 2, wall, 7,
2, wall, 8, 2, wall, 10, 2, wall, 11, 2, wall, 14, 2, wall,
1, 3, wall, 2, 3, wall, 3, 3, wall, 11, 3, wall, 13, 3, wall,
2, 4, wall, 8, 4, wall, 10, 4, wall, 11, 4, wall, 12, 4,
wall, 14, 4, wall, 3, 5, wall, 4, 5, wall, 5, 5, wall, 7, 5,
wall, 9, 5, wall, 11, 5, wall, 12, 5, wall, 14, 5, wall, 0,
6, wall, 4, 6, wall, 6, 6, wall, 8, 6, wall, 9, 6, wall, 14,
6, wall, 2, 7, wall, 4, 7, wall, 7, 7, wall, 9, 7, wall, 10,
7, wall, 13, 7, wall, 2, 8, wall, 3, 8, wall, 5, 8, wall, 6,
8, wall, 8, 8, wall, 10, 8, wall, 11, 8, wall, 12, 8, wall,
1, 9, wall, 5, 9, wall, 6, 9, wall, 9, 9, wall, 11, 9, wall,
14, 9, wall, 10, 10, wall, 12, 10, wall, 13, 10, wall, 14,
10, wall, 1, 11, wall, 8, 11, wall, 9, 11, wall, 12, 11,
wall, 3, 12, wall, 5, 12, wall, 6, 12, wall, 8, 12, wall,
10, 12, wall, 12, 12, wall, 14, 12, wall, 0, 13, wall, 1, 13,
wall, 3, 13, wall, 8, 13, wall, 12, 13, wall, 13, 13, wall,
14, 13, wall, 0, 14, wall, 1, 14, wall, 2, 14, wall, 6, 14,
wall, 14, 14, eos, bos, plan

The following box shows the generated tokens, and Figure D.1a plot the corresponding path.

Fast Mode Output

9, 10, plan, 8, 10, plan, 7, 10, plan, 6, 10, plan, 5, 10,
plan, 4, 10, plan, 3, 10, plan, 2, 10, plan, 1, 10, plan, 0,
10, plan, 0, 9, plan, 0, 8, plan, 0, 7, plan, 1, 7, plan, 1,
6, plan, 2, 6, plan, 3, 6, eos

(a) Dualformer operates in fast-mode, directly
outputting the final plan.

(b) Dualformer operates in slow-mode, gener-
ating search traces before the final solution.

Figure D.1: Controllable generation of Dualformer. Paths correspond to the output displayed
in Appendix D. The wall cells are depicted in dark, while the unoccupied cells are shown in gray.
The starting point is marked in green, and the destination point is in red. The final path determined
by the trained model is highlighted in yellow. When Dualformer operates in slow mode, the
corresponding cells explored by the search trace are highlighted in red, visually representing each
step of the search process. The color intensity indicates the total cost value.
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D.2 SLOW MODE

Similarly, we present the modified prompt for slow mode below. Comparing with the fast mode
prompt, the only change is the control token becomes create.

Slow Mode Prompt (two extra tokens added to the original)

bos, start, 9, 10, goal, 3, 6, wall, 0, 0, wall, 4, 0, wall,
7, 0, wall, 10, 0, wall, 12, 0, wall, 13, 0, wall, 3, 1,
wall, 7, 1, wall, 11, 1, wall, 12, 1, wall, 13, 1, wall, 14,
1, wall, 0, 2, wall, 3, 2, wall, 4, 2, wall, 6, 2, wall, 7,
2, wall, 8, 2, wall, 10, 2, wall, 11, 2, wall, 14, 2, wall,
1, 3, wall, 2, 3, wall, 3, 3, wall, 11, 3, wall, 13, 3, wall,
2, 4, wall, 8, 4, wall, 10, 4, wall, 11, 4, wall, 12, 4,
wall, 14, 4, wall, 3, 5, wall, 4, 5, wall, 5, 5, wall, 7, 5,
wall, 9, 5, wall, 11, 5, wall, 12, 5, wall, 14, 5, wall, 0,
6, wall, 4, 6, wall, 6, 6, wall, 8, 6, wall, 9, 6, wall, 14,
6, wall, 2, 7, wall, 4, 7, wall, 7, 7, wall, 9, 7, wall, 10,
7, wall, 13, 7, wall, 2, 8, wall, 3, 8, wall, 5, 8, wall, 6,
8, wall, 8, 8, wall, 10, 8, wall, 11, 8, wall, 12, 8, wall,
1, 9, wall, 5, 9, wall, 6, 9, wall, 9, 9, wall, 11, 9, wall,
14, 9, wall, 10, 10, wall, 12, 10, wall, 13, 10, wall, 14,
10, wall, 1, 11, wall, 8, 11, wall, 9, 11, wall, 12, 11,
wall, 3, 12, wall, 5, 12, wall, 6, 12, wall, 8, 12, wall,
10, 12, wall, 12, 12, wall, 14, 12, wall, 0, 13, wall, 1, 13,
wall, 3, 13, wall, 8, 13, wall, 12, 13, wall, 13, 13, wall,
14, 13, wall, 0, 14, wall, 1, 14, wall, 2, 14, wall, 6, 14,
wall, 14, 14, eos, bos, create

The following box shows the generated output, and Figure D.1b plots the corresponding trace and
final path.

Slow Mode Output

9, 10, c0, c10, create, 8, 10, c1, c9, create, 8, 9, c2, c8,
create, 7, 10, c2, c8, create, 7, 9, c3, c7, create, 7, 8,
c4, c6, create, 6, 10, c3, c7, create, 7, 11, c3, c9, create,
5, 10, c4, c6, create, 6, 11, c4, c8, create, 5, 11, c5,
c7, create, 4, 10, c5, c5, create, 4, 11, c6, c6, create,
3, 10, c6, c4, create, 4, 9, c6, c4, create, 3, 9, c7, c3,
create, 4, 8, c7, c3, create, 2, 10, c7, c5, create, 3, 11,
c7, c5, create, 2, 9, c8, c4, create, 2, 11, c8, c6, create,
1, 10, c8, c6, create, 4, 12, c7, c7, create, 7, 12, c4, c10,
create, 7, 13, c5, c11, create, 0, 10, c9, c7, create, 4,
13, c8, c8, create, 2, 12, c9, c7, create, 7, 14, c6, c12,
create, 6, 13, c6, c10, create, 0, 9, c10, c6, create, 0,
11, c10, c8, create, 0, 8, c11, c5, create, 1, 12, c10, c8,
create, 2, 13, c10, c8, create, 4, 14, c9, c9, create, 5, 13,
c9, c9, create, 0, 7, c12, c4, create, 1, 8, c12, c4, create,
1, 7, c13, c3, create, 5, 13, c7, c9, create, 1, 6, c14, c2,
create, 5, 14, c8, c10, create, 1, 5, c15, c3, create, 2, 6,
c15, c1, create, 2, 5, c16, c2, create, 3, 6, c16, c0, plan,
9, 10, plan, 8, 10, plan, 7, 10, plan, 6, 10, plan, 5, 10,
plan, 4, 10, plan, 3, 10, plan, 2, 10, plan, 1, 10, plan, 0,
10, plan, 0, 9, plan, 0, 8, plan, 0, 7, plan, 1, 7, plan, 1,
6, plan, 2, 6, plan, 3, 6, eos
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E DIVERSITY OF GENERATED PLANS

The Dualformer outperforms baseline models in discovering unique feasible solutions. To illus-
trate this visually, we select one example maze task and generate 64 responses using Dualformer
in fast mode. Figure E.1 plots all the unique feasible paths discovered by fast mode Dualformer
alongside those found by the Solution-Only baseline (64 responses). Dualformer (fast mode)
identified 42 unique feasible paths, while the Solution-Only model only found 3. Similarly, Fig-
ure E.2 compares slow mode Dualformer and the Complete-Trace (Searchformer) baseline.
Dualformer (slow mode) discovered 39 unique feasible paths, whereas the Complete-Trace model
only found 17.
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(a) Unique feasible paths found by the Solution-Only Model

(b) Unique feasible paths found by Dualformer (fast mode)

Figure E.1: Fast mode Dualformer finds more feasible paths than the Solution-Only model.The
wall cells are depicted in dark, while the unoccupied cells are shown in gray. The starting point is
marked in green, and the destination point is in red. The final path determined by the trained model is
highlighted in yellow.
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(a) Unique feasible paths found by the Complete-Trace Model (Searchformer)

(b) Unique feasible paths found by Dualformer (slow mode)

Figure E.2: Slow mode Dualformer finds more feasible paths than the Complete-Trace model
(Searchformer). The wall cells are depicted in dark, while the unoccupied cells are shown in gray.
The starting point is marked in green, and the destination point is in red. The final path determined by
the trained model is highlighted in yellow. The cells explored by the search trace are highlighted in
red, where the color intensity indicates the total cost value. If the generated search trace does not
contain cost values (used in Level 2, 3, 4 dropping, Section 3), the explored cells are indicated in
blue.
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F COMPARISON WITH MIX-p MODELS

(a) Slow mode comparison with Mix-p models.

(b) Fast mode comparison with Mix-p models.

Figure F.1: The 1-Optimal-64 rate of Dualformer and Mix-p models with varying values of
p, where p is the fraction of solution-only data in the corresponding training dataset. The top and
bottom panels plot the results in fast and slow mode, respectively. Dualformer outperforms all the
Mix-p models in both inference modes. The probabilities of different dropping strategies used for
Dualformer is described in the Hyperparameter paragraph, see Section 4.1.
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Method Avg Trace Length 1-Optimal-64/ 5-Optimal-64 1-Solved-64 / 5-Solved-64 SWC Diversity

Maze 15 x 15

Complete-Trace 495 94.6 / 90.1 96.7 /93.0 0.964 7.60
Dualformer (slow) 278 99.6 / 99.2 99.9 / 99.9 0.999 12.54

Mix-5% 506 97.1 / 94.8 97.6 / 96.6 0.98 10.25
Mix-10% 542 99.0 / 97.4 99.4 / 98.7 0.99 11.51
Mix-20% 525 99.1 / 97.7 99.7 / 99.1 1.00 12.10
Mix-40% 556 98.4 / 96.9 99.5 / 98.8 0.99 11.77
Mix-50% 527 94.2 / 92.1 96.7 / 95.0 0.96 10.75
Mix-60% 577 88.1 / 85.6 94.2 / 92.1 0.93 6.48
Mix-80% 540 81.7 / 78.8 89.9 / 88.1 0.88 2.37

Maze 20 x 20

Complete-Trace 851 98.3 / 95.5 98.8 / 93.0 0.987 14.53
Dualformer (slow) 439 98.9 / 97.8 99.9 / 99.7 0.998 18.86

Mix-5% 789 98.6 / 98.1 99.5 / 99.1 0.99 17.71
Mix-10% 866 98.9 / 98.2 99.8 / 99.3 1.00 18.52
Mix-20% 838 97.9 / 95.9 99.4 / 98.6 0.99 17.57
Mix-40% 900 93.5 / 90.4 97.4 / 95.1 0.97 16.51
Mix-50% 905 92.3 / 89.1 96.3 / 94.3 0.96 16.30
Mix-60% 891 72.6 / 67.9 86.5 / 82.7 0.84 3.92
Mix-80% 943 62.4 / 56.4 80.9 / 75.4 0.77 2.62

Maze 25 x 25

Complete-Trace 1208 95.2 / 85.7 97.0 / 90.4 0.968 18.85
Dualformer (slow) 589 99.9 / 97.2 99.7 / 99.3 0.997 25.05

Mix-5% 1109 97.9 / 95.3 99.0 / 97.2 0.99 21.00
Mix-10% 1264 98.7 / 96.3 99.5 / 98.0 0.99 22.33
Mix-20% 1283 97.9 / 95.0 99.1 / 97.9 0.99 23.68
Mix-40% 1278 90.8 / 87.4 96.3 / 93.9 0.96 22.30
Mix-50% 1334 81.0 / 75.5 93.3 / 88.9 0.91 18.02
Mix-60% 1266 61.0 / 53.4 80.3 / 74.0 0.77 4.63
Mix-80% 1501 57.2 / 50.3 78.5 / 70.3 0.75 3.76

Maze 30 x 30

Complete-Trace 1538 93.3 / 82.4 95.9 / 88.1 0.964 7.60
Dualformer (slow) 854 97.6 / 93.2 99.5 / 98.2 0.993 25.77

Mix-5% 2022 96.3 / 92.0 98.4 / 96.0 0.98 24.50
Mix-10% 1720 97.7 / 95.0 99.2 / 98.2 0.99 27.17
Mix-20% 1851 95.0 / 91.4 98.3 / 96.2 0.98 25.02
Mix-40% 1854 64.3 / 56.2 83.1 / 76.0 0.81 12.60
Mix-50% 1652 58.0 / 50.8 78.6 / 71.9 0.76 9.66
Mix-60% 1983 43.0 / 35.4 68.4 / 58.1 0.65 3.21
Mix-80% 1648 47.8 / 38.4 71.9 / 61.9 0.68 3.98

Sokoban

Complete-Trace 3600 92.9 / 84.4 94.7 / 89.0 0.944 2.91
Dualformer (slow) 1482 94.5 / 87.6 97.4 / 94.1 0.97 4.66

Mix-5% 3278 85.3 / 72.7 91.0 / 80.9 0.90 3.18
Mix-10% 3402 88.6 / 77.2 94.1 / 87.9 0.93 4.07
Mix-20% 3331 89.0 / 81.3 95.7 / 89.1 0.95 4.22
Mix-40% 3294 92.7 / 86.1 97.1 / 93.1 0.96 4.14
Mix-50% 3202 92.3 / 87.3 96.2 / 93.4 0.96 4.66
Mix-60% 2594 91.1 / 83.2 96.4 / 91.0 0.96 4.48

Table F.1: Comparison of Dualformer and Mix-p models in the slow mode.
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Maze 15x15

Method 1-Optimal-64 / 3-Optimal-64 1-Solved-64 / 3-Solved-64 SWC Diversity
Dualformer (fast) 91.8 / 87.6 97.1 / 94.8 0.960 9.05

Mix-5% 89.8 / 83.2 92.7 / 89.0 0.92 11.72
Mix-10% 80.3 / 75.6 90.5 / 86.9 0.88 7.01
Mix-20% 78.8 / 77.6 87.8 / 86.4 0.86 1.97
Mix-40% 81.2 / 78.8 88.6 / 86.9 0.87 1.73
Mix-50% 79.0 / 76.4 87.7 / 85.8 0.86 1.92
Mix-60% 81.3 / 78.0 89.3 / 87.3 0.88 1.95
Mix-80% 79.8 / 76.6 88.6 / 86.0 0.87 2.12

Solution-Only 72.0 / 68.9 82.7 / 80.1 0.80 1.52

Maze 20x20

Dualformer (fast) 90.9 / 84.0 97.0 / 94.0 0.960 17.27
Mix-5% 86.2 / 74.8 94.0 / 87.7 0.93 15.92
Mix-10% 88.6 / 81.4 95.2 / 91.7 0.94 16.04
Mix-20% 65.2 / 60.5 81.7 / 77.1 0.79 2.72
Mix-40% 63.2 / 59.0 80.4 / 77.2 0.78 2.65
Mix-50% 63.3 / 57.9 79.6 / 76.0 0.77 2.39
Mix-60% 66.8 / 63.6 82.4 / 80.1 0.80 2.50
Mix-80% 56.5 / 51.8 74.5 / 70.2 0.71 2.13

Solution-Only 56.3 / 52.0 71.9 / 67.5 0.69 1.52

Maze 25x25

Dualformer (fast) 83.9 / 72.9 95.5 / 90.6 0.940 21.23
Mix-5% 73.4 / 56.9 87.0 / 77.3 0.85 13.37
Mix-10% 80.2 / 68.0 90.4 / 83.1 0.89 16.19
Mix-20% 64.8 / 57.5 85.0 / 78.0 0.81 10.51
Mix-40% 50.7 / 46.3 73.8 / 68.9 0.69 3.60
Mix-50% 56.5 / 50.8 77.9 / 71.9 0.74 3.15
Mix-60% 53.6 / 48.9 75.9 / 69.8 0.72 3.07
Mix-80% 48.2 / 44.2 69.6 / 64.4 0.66 2.88

Solution-Only 39.7 / 34.7 60.3 /55.4 0.57 1.9

Maze 30x30

Dualformer (fast) 80.0 / 66.0 91.8 / 85.7 0.906 18.23
Mix-5% 66.3 / 46.1 83.6 / 72.0 0.82 11.85
Mix-10% 76.9 / 65.8 90.8 / 84.7 0.89 19.35
Mix-20% 55.4 / 43.5 78.3 / 67.4 0.75 9.97
Mix-40% 43.4 / 37.3 69.7 / 63.2 0.66 3.79
Mix-50% 43.0 / 38.7 68.1 / 62.9 0.64 3.23
Mix-60% 39.2 / 33.8 65.2 / 59.0 0.61 3.09
Mix-80% 38.0 / 32.3 62.2 / 55.5 0.58 2.75

Solution-Only 30.0 / 26.0 54.1 / 47.8 0.50 1.86

Sokoban

Dualformer (fast) 97.3 / 94.4 94.8 / 90.0 0.970 4.92
Mix-5% 84.0 / 73.0 91.0 / 84.0 0.90 4.30
Mix-10% 94.0 / 87.0 97.0 / 94.0 0.97 5.58
Mix-20% 94.0 / 89.0 97.0 / 95.0 0.97 4.10
Mix-40% 96.0 / 93.0 98.0 / 97.0 0.98 4.15
Mix-50% 97.0 / 96.0 99.0 / 98.0 0.99 3.38
Mix-60% 98.0 / 97.0 99.0 / 99.0 0.99 3.25

solution-only 86.8 / 83.4 92.8 / 90.0 0.92 1.24

Table F.2: Comparison of Dualformer and Mix-p models in the fast mode.
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G COMPARISON WITH DIFFERENT RANDOMIZATION STRATEGIES

In Table G.1 below, we show the probabilities of different dropping strategies we use for comparing
different randomization strategies.

Model Probabilities of Dropping Strategies

Maze

Dropping Level 1 p0 = 0.5, p1 = 0.5, p2 = p3 = p4 = 0
Dropping Level 1 + 2 p0 = 0.5, p1 = p2 = 0.25, p3 = p4 = 0
Dropping Level 1 + 2 + 3 p0 = 0.5, p1 = p2 = p3 = 1/6, p4 = 0
Dualformer p0 = 0.45, p1 = p2 = p3 = 1/6, p4 = 0.05

Sokoban

Dropping Level 1 p0 = 0.95, p1 = 0.05, p2 = p3 = p4 = 0
Dropping Level 1 + 2 p0 = 0.85, p1 = 0.05, p2 = 0.1, p3 = p4 = 0
Dropping Level 1 + 2 + 3 p0 = 0.75, p1 = 0.05, p2 = p3 = 0.1, p4 = 0
Dualformer p0 = 0.7, p1 = 0.05, p2 = p3 = 0.1, p4 = 0.05

Table G.1: The probabilities of the dropping strategies used for each model.
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H DETAILS OF THE MATH REASONING EXPERIMENTS

H.1 SOLUTION REWRITING

H.1.1 SOLUTION REWRITING PROMPT

We use the following prompt template for rewriting the solutions via LLama-3.1-70B-Instruct.

Solution Rewriting Prompt

I have a math problem and an initial chain of thought reasoning that needs elaboration. Please
provide a more detailed step-by-step explanation for each part of the reasoning, including
intermediate steps, calculations, and rationales behind each decision. Also, suggest any
additional insights that might be relevant. Problem: {Question}? Current Chain of Thought:
{CoT} The answer is {Final-answer}. Keep the total response less than 2048 tokens. Please
expand on the above reasoning and give detailed reasoning chain and explanation. Write
your answer in this format: ”Here is a detailed step-by-step explanation of the reasoning:
Reasons: <reason step >. eg.Step 1..Step 2...Step 3...Step N... The answer is: <answer >.”
Remember, always conclude with ”\n\nThe answer is: <answer >.”

H.1.2 SOLUTION REWRITING EXAMPLES

Below, we provide an example of a math question along with four generated solutions that have been
rewritten by the Llama-3.1-70B-Instruct model. It is evident from this example that the original math
dataset lacks sufficiently detailed solution steps required to solve the question, such as the formula
for a geometric series.

Original Training Example from MATH

Question

The first term of a geometric sequence is 729, and the 7th term is 64. What is the
positive, real value for the 5th term?

Answer

The only positive, real common ratio for this sequence is 2
3 . Thus, if x is the 5th term,

then
(
2
3

)2
x = 64, so x = 144 .
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Rewritten Answers in Aug-MATH

Llama-3.1-70B-Instruct Rewriting 1

Here is a detailed step-by-step explanation of the reasoning:
\n\nStep 1: Recall the formula for the nth term of a geometric sequence. The nth
term of a geometric sequence is given by the formula: an = ar(n−1), where a is the
first term, r is the common ratio, and n is the term number.
\n\nStep 2: Use the given information to set up an equation. We are given that the
first term (a) is 729 and the 7th term (a7) is 64. We can use this information to set up
an equation using the formula from Step 1: 64 = 729r(7−1).
\n\nStep 3: Simplify the equation. Simplifying the equation from Step 2, we get:
64 = 729r6.
\n\nStep 4: Solve for the common ratio (r). To solve for r, we can divide both sides

of the equation by 729 and take the 6th root of both sides: r =
(

64
729

) 1
6 .

\n\nStep 5: Calculate the value of r. Evaluating the expression from Step 4, we get:

r =
(

64
729

) 1
6 =

(
2
3

)2
= 2

3 .
\n\nStep 6: Use the value of r to find the 5th term. Now that we have the value of r,
we can use the formula from Step 1 to find the 5th term (a5): a5 = 729

(
2
3

)(5−1)
.

\n\nStep 7: Simplify the expression for a5. Simplifying the expression from Step 6,
we get: a5 = 729

(
2
3

)4
= 729

(
16
81

)
= 144.

\n\nThe answer is: 144.

Llama-3.1-70B-Instruct Rewriting 2

Here is a detailed step-by-step explanation of the reasoning:
\n\nStep 1: Understand the problem The problem presents a geometric sequence
with a given first term (729) and a given 7th term (64). We need to find the positive,
real value of the 5th term.
\n\nStep 2: Identify the common ratio Since it’s a geometric sequence, we know that
each term is obtained by multiplying the previous term by a fixed constant, called the
common ratio (r). We need to find this common ratio.
\n\nStep 3: Use the given terms to set up an equation We know that the 7th term
is 64, and the first term is 729. Using the formula for the nth term of a geometric
sequence: an = a1 · rn−1, we can set up the equation: 64 = 729 · r6.
\n\nStep 4: Solve for the common ratio Divide both sides by 729: 64

729 = r6. Take

the 6th root of both sides: r = 6

√
64
729 = 2

3 .
\n\nStep 5: Verify the positive, real common ratio We are told that the only positive,
real common ratio for this sequence is 2

3 . This is indeed true, as the 6th root of 64
729 is

2
3 .
\n\nStep 6: Use the common ratio to find the 5th term Now that we have the common
ratio, we can find the 5th term. Let x be the 5th term. Using the formula for the nth
term: x = 729 ·

(
2
3

)4
.

\n\nStep 7: Simplify the expression x = 729 · 16
81 = 144.

\n\nStep 8: Verify the answer We can verify that
(
2
3

)2
x = 64 indeed holds true for

x = 144. \n\nThe answer is: 144
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Rewritten Answers in Aug-MATH

Llama-3.1-70B Instruct Rewriting 3

Here is a detailed step-by-step explanation of the reasoning: \n\nStep 1: Understand
the problem We are given a geometric sequence with a first term of 729 and a 7th
term of 64. We need to find the positive, real value of the 5th term.
\n\nStep 2: Recall the formula for a geometric sequence A geometric sequence is
defined by the formula: an = a1 · rn−1, where an is the nth term, a1 is the first
term, r is the common ratio, and n is the term number. \n\nStep 3: Use the given
information to set up an equation We know the first term (a1 = 729) and the 7th term
(a7 = 64). We can use this information to set up an equation: 64 = 729 · r7−1, which
simplifies to 64 = 729 · r6.
\n\nStep 4: Solve for the common ratio (r) To find the common ratio, we can divide
both sides of the equation by 729, resulting in 64

729 = r6. Taking the 6th root of both

sides, we get r =
(

64
729

) 1
6 .

\n\nStep 5: Simplify the common ratio Evaluating the expression, we find that
r = 2

3 .
\n\nStep 6: Use the common ratio to find the 5th term Now that we have the common
ratio, we can use it to find the 5th term. We know that a5 = a1 · r5−1 = 729 ·

(
2
3

)4
.

\n\nStep 7: Simplify the expression for the 5th term Evaluating the expression, we
get a5 = 729 · 16

81 = 144.
\n\nThe answer is: 144.

Llama-3.1-70B-Instruct Rewriting 4

Here is a detailed step-by-step explanation of the reasoning:
Reasons:
\n\nStep 1: The problem provides us with the first term of a geometric sequence,
which is 729, and the 7th term, which is 64. We are asked to find the positive, real
value for the 5th term.
\n\nStep 2: To solve this problem, we need to find the common ratio of the geometric
sequence. We know that the common ratio is the ratio of any term to its previous
term. Let’s denote the common ratio as r.
\n\nStep 3: Using the given information, we can set up an equation to find the
common ratio. Since the 7th term is 64, we can write: 729 · r6 = 64.
\n\nStep 4: Now, we can solve for r by taking the 6th root of both sides of the

equation: r =
(

64
729

) 1
6 .

\n\nStep 5: Simplifying the expression, we get: r =
(
2
3

)2
= 4

9 . However, this is not
the only possible value for the common ratio. We need to check if there are other
positive, real values of r that satisfy the equation.
\n\nStep 6: We can do this by factoring 729 and 64 to see if there are any common
factors that could lead to other possible values of r. Factoring 729, we get: 729 = 36.
Factoring 64, we get: 64 = 26.
\n\nStep 7: Since 729 and 64 have no common factors other than 1, we can conclude
that the only positive, real common ratio for this sequence is indeed

(
2
3

)2
= 4

9 .
\n\nStep 8: Now that we have found the common ratio, we can use it to find the 5th
term of the sequence. Let’s denote the 5th term as x. We know that the 5th term is
obtained by multiplying the 3rd term by the common ratio twice. Since the 3rd term
is 729 ·

(
2
3

)2
= 144, we can write: x = 144 ·

(
2
3

)2
.

\n\nStep 9: Simplifying the expression, we get: x = 144.
\n\nThe answer is: 144.
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H.2 FINE-TUNING AND EVALUATION PROMPTS

We use the following prompt for fine-tuning both the Mistral and the Llama model, following (Yu
et al., 2023).

Fintuning Prompt

<start-header-token>Below is an instruction that describes a task. Write a response that
appropriately completes the request. \n\n ### Instruction:\n{Question} \n\n ### Response:
Let’s think step by step. {CoT steps + final solution}

We use the following prompt for the slow mode evalaution.

Slow Mode Evaluation Prompt

<start-header-token>Below is an instruction that describes a task. Write a response that
appropriately completes the request. \n\n ### Instruction:\n{Question} \n\n ### Response:
Let’s think step by step.

For fast mode evaluation, we force the generation to directly output the final answer by adding the
phrase “The answer is: ”.

Fast Mode Evaluation Prompt

<start-header-token>Below is an instruction that describes a task. Write a response that
appropriately completes the request. \n\n ### Instruction:\n{Question} \n\n ### Response:
\n\nThe answer is:

H.3 EXAMPLE OUTPUTS

We provide a few example math questions and answers randomly sampled from our trained model,
alongside the answers output by the baseline model. Within each answer box, on the left is the
baseline model output (long and lengthy) and on the right is our method output (effective and efficient,
colored in blue).

Question 1

In Pascal’s Triangle, the third row has four elements, and the sum of these elements is 8.
What is the sum of the elements in the tenth row? (Note that we are counting the top row with
a single 1 as the 0th row).
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Answers to Q1

Llama-3-Aug (baseline) Here is a detailed
step-by-step explanation of the reasoning:
• Step 1: Understand the problem and the

given information. We are asked to find
the sum of the elements in the tenth row
of Pascal’s Triangle, given that the third
row has four elements and their sum is 8.

• Step 2: Recall the formula for the sum of
the elements in a row of Pascal’s Triangle.
The sum of the elements in the nth row is
given by the formula:

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+

· · ·+
(
n
n

)
= 2n.

• Step 3: Identify the relationship between
the sum of the elements in a row and the
sum of the elements in the previous row.
Since the sum of the elements in the nth
row is 2n, the sum of the elements in the
(n-1)th row is 2n−1.

• Step 4: Recognize that the sum of the ele-
ments in the third row is 8, which is equal
to 23. This is because the sum of the ele-
ments in the third row is

(
3
0

)
+
(
3
1

)
+
(
3
2

)
=

1+3+3 = 7, and the extra 1 comes from
the top row, which is counted as the 0th
row.

• Step 5: Use the relationship between the
sums of the elements in consecutive rows
to find the sum of the elements in the tenth
row. Since the sum of the elements in
the third row is 23, and the sum of the
elements in the (n-1)th row is 2n−1, we
can set up the equation: 23 = 210−1.

• Step 6: Solve the equation for n. Tak-
ing the logarithm of both sides, we get:
3 log 2 = (10− 1) log 2. Simplifying, we
get: 3 log 2 = 9 log 2, which implies that
log 2 = 0. This is a contradiction, since
log 2 is a positive number.

• Step 7: Conclude that the equation 23 =
210−1 has no solution, and therefore, the
sum of the elements in the tenth row is not
equal to 210−1.

• Step 8: Recognize that the sum of the ele-
ments in the tenth row is still given by the
formula:

(
10
0

)
+
(
10
1

)
+
(
10
2

)
+ · · ·+

(
10
10

)
=

210.
The answer is: 1024.

Llama-3-Aug (p=0.4, ours) Here is a de-
tailed step-by-step explanation of the reason-
ing:

• Step 1: Understand the problem and the
given information. We are asked to find
the sum of the elements in the tenth row of
Pascal’s Triangle, given that the third row
has four elements and their sum is 8.

• Step 2: Recall the properties of Pascal’s
Triangle. The elements in each row of
Pascal’s Triangle are the binomial coeffi-
cients, which represent the number of ways
to choose k items from a set of n items. The
sum of the elements in each row is equal to
2n, where n is the row number.

• Step 3: Identify the relationship between
the sum of the elements in the third row
and the sum of the elements in the tenth
row. Since the sum of the elements in each
row is equal to 2n, we can write the sum
of the elements in the third row as 23 = 8.
Similarly, the sum of the elements in the
tenth row is 210.

• Step 4: Calculate the sum of the elements
in the tenth row. 210 = 1024.

The answer is: 1024.
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Question 2

A juice company sells its product in either a 48-ounce size or a 32-ounce size. It charges
$3.90 for the 48-ounce size. How much should it charge for the smaller size if it wants the
price per ounce to be 25% more than the price per ounce of the larger size?

Answers to Q2

Llama-3-Aug (baseline) Here is a detailed
step-by-step explanation of the reasoning:

• Step 1: Define the problem and the
goal. The juice company wants to
charge a price per ounce for the
smaller size that is 25% more than
the price per ounce of the larger size.
This means that we need to find the
price of the smaller size such that
the price per ounce of the smaller
size is 25% more than the price per
ounce of the larger size.

• Step 2: Calculate the price per
ounce of the larger size. The price
of the larger size is given as $3.90,
and the size is 48 ounces. To find
the price per ounce, we divide the
price by the size: 3.90

48 = 0.08125.
• Step 3: Calculate the price per

ounce of the smaller size. Since the
price per ounce of the smaller size is
25% more than the price per ounce
of the larger size, we multiply the
price per ounce of the larger size by
1.25: 0.08125×1.25 = 0.1015625.

• Step 4: Calculate the price of the
smaller size. To find the price of
the smaller size, we multiply the
price per ounce by the size of the
smaller size, which is 32 ounces:
0.1015625× 32 = 3.245.

• Step 5: Round the price to the near-
est cent. Since the price is given
in cents, we round the price to the
nearest cent, which is $3.25.

The answer is: $3.25.

Llama-3-Aug(p=0.4, ours) Here is a de-
tailed step-by-step explanation of the reason-
ing:

• Step 1: Understand the problem and
the given information. The juice
company sells two sizes of its prod-
uct: a 48-ounce size and a 32-ounce
size. The price per ounce for the
larger size is $3.90/48 = $0.08125.
The company wants the price per
ounce for the smaller size to be
$25% more than the price per ounce
of the larger size.

• Step 2: Calculate the price per
ounce for the smaller size. The
price per ounce for the smaller size
should be 25% more than the price
per ounce of the larger size. There-
fore, we need to multiply the price
per ounce of the larger size by
1 + 0.25 = 1.25. So, the price
per ounce for the smaller size is
$0.08125× 1.25 = $0.1015625.

• Step 3: Calculate the cost of the
smaller size. The cost of the smaller
size is the price per ounce mul-
tiplied by the number of ounces.
Therefore, the cost of the smaller
size is $0.1015625× 32 = $3.25.

The answer is: 3.25.
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I LLM GENERATED SOLUTIONS FOR MAZE

Readers might wonder whether modern state-of-the-art LLMs can effectively solve our maze problem.
To test this, we randomly selected a 30× 30 maze problem and ask the o1-preview model to find the
shortest path. O1-preview is the latest reasoning model by OpenAI which operates in slow mode: it
spends more time thinking before they respond. It turns out that these problems are very challenging
for LLMs. As illustrated in Figure I.1, the path suggested by o1-preview incorrectly traverses through
the maze walls. In contrast, Dualformer correctly identifies one optimal path that follows through
the maze without any errors.

(a) o1-preview (b) o1-mini

(c) Dualformer (slow mode)

Figure I.1: Example 30x30 maze problem. The wall cells are depicted in dark, while the unoccupied
cells are shown in gray. The starting point is marked in green, and the destination point is in red.
The output path is highlighted in yellow. (a) (b) The generated paths provided by o1-preview and
o1-mini incorrectly traverse through walls. (c) Dualformer (slow mode) identifies one optimal
path without any errors. The cells explored by the Dualformer reasoning trace are highlighted
in red, where the color intensity indicates the total cost value.

Below, we also provide the exact prompt we used for o1 models, and their responses.
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Prompt for O1

Here’s the generated 30x30 maze along with Locations of Walls: (1, 0), (4, 0), (5, 0), (7, 0), (9, 0), (10, 0), (13, 0), (15, 0), (17, 0), (18, 0), (24, 0), (25, 0),
(29, 0), (0, 1), (1, 1), (8, 1), (10, 1), (15, 1), (28, 1), (0, 2), (1, 2), (3, 2), (4, 2), (8, 2), (10, 2), (12, 2), (13, 2), (16, 2), (17, 2), (23, 2), (25, 2), (26, 2), (29, 2),
(3, 3), (7, 3), (9, 3), (12, 3), (20, 3), (21, 3), (22, 3), (23, 3), (25, 3), (27, 3), (28, 3), (5, 4), (9, 4), (13, 4), (16, 4), (19, 4), (20, 4), (25, 4), (29, 4), (4, 5), (9,
5), (13, 5), (15, 5), (18, 5), (20, 5), (23, 5), (24, 5), (27, 5), (28, 5), (3, 6), (7, 6), (10, 6), (11, 6), (12, 6), (17, 6), (18, 6), (24, 6), (25, 6), (3, 7), (5, 7), (8, 7),
(11, 7), (13, 7), (14, 7), (19, 7), (22, 7), (25, 7), (27, 7), (4, 8), (8, 8), (10, 8), (13, 8), (14, 8), (16, 8), (18, 8), (19, 8), (3, 9), (4, 9), (5, 9), (10, 9), (12, 9), (13,
9), (22, 9), (26, 9), (28, 9), (4, 10), (5, 10), (7, 10), (13, 10), (14, 10), (15, 10), (18, 10), (23, 10), (25, 10), (28, 10), (0, 11), (3, 11), (5, 11), (6, 11), (7, 11),
(11, 11), (13, 11), (18, 11), (22, 11), (25, 11), (26, 11), (27, 11), (0, 12), (2, 12), (4, 12), (6, 12), (13, 12), (19, 12), (20, 12), (24, 12), (27, 12), (0, 13), (1,
13), (2, 13), (4, 13), (5, 13), (14, 13), (15, 13), (19, 13), (20, 13), (24, 13), (25, 13), (27, 13), (28, 13), (11, 14), (12, 14), (14, 14), (24, 14), (29, 14), (1, 15),
(2, 15), (13, 15), (17, 15), (20, 15), (22, 15), (23, 15), (25, 15), (26, 15), (27, 15), (4, 16), (10, 16), (18, 16), (20, 16), (1, 17), (4, 17), (5, 17), (10, 17), (13,
17), (14, 17), (15, 17), (6, 13), (3, 18), (4, 18), (8, 18), (10, 18), (11, 18), (12, 18), (14, 18), (16, 18), (19, 18), (20, 18), (21, 18), (26, 18), (5, 19), (9, 19),
(19, 19), (20, 19), (22, 19), (23, 19), (3, 20), (4, 20), (8, 20), (12, 20), (14, 20), (16, 20), (17, 20), (22, 20), (23, 20), (25, 20), (26, 20), (28, 20), (29, 20), (7,
21), (8, 21), (9, 21), (10, 21), (11, 21), (13, 21), (15, 21), (17, 21), (20, 21), (25, 21), (26, 21), (1, 22), (3, 22), (6, 22), (9, 22), (10, 22), (11, 22), (12, 22),
(13, 22), (16, 22), (20, 22), (29, 22), (6, 23), (10, 23), (11, 23), (12, 23), (18, 23), (19, 23), (21, 23), (25, 23), (28, 23), (0, 24), (5, 24), (8, 24), (9, 24), (17,
24), (20, 24), (23, 24), (28, 24), (29, 24), (3, 25), (5, 25), (6, 25), (10, 25), (22, 25), (25, 25), (26, 25), (0, 26), (10, 26), (11, 26), (12, 26), (14, 26), (15, 26),
(19, 26), (20, 26), (25, 26), (26, 26), (1, 27), (2, 27), (6, 27), (11, 27), (13, 27), (15, 27), (16, 27), (20, 27), (22, 27), (23, 27), (24, 27), (25, 27), (27, 27), (1,
28), (5, 28), (8, 28), (12, 28), (13, 28), (14, 28), (17, 28), (25, 28), (29, 28), (0, 29), (2, 29), (3, 29), (4, 29), (7, 29), (8, 29), (10, 29), (13, 29), (15, 29), (16,
29), (19, 29), (21, 29) Start Location: (29,7). End Location: (27,29).
Could you solve this? Give me the optimal path in (x,y)
Example 1: Locations of Walls: (0, 4), (0, 5), (0, 8) (1, 0), (1, 3), (1, 6) (3, 1) (4, 0), (4, 1), (4, 3), (4, 5), (4, 9) (5, 6), (5, 8) (6, 1), (6, 2), (6, 4), (6, 9) (7, 9)
(8, 4), (8, 5), (8, 9) (9, 1). Start Location: (0, 0). End Location: (9, 9). Optimal Path: (0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3,
7), (4, 7), (5, 7), (6, 7), (6, 8), (7, 8), (8, 8), (9, 8), (9, 9)
Example 2: Locations of Walls: (0, 3) (0, 6) (1, 1) (1, 4) (1,7) (3, 4) (4, 2) (4, 6) (5, 0) (5, 4) (5, 6) (6, 6) (6,7 (6, 8) (6, 9) (7, 3) (7, 6) (8, 0) (8, 4) (9, 1).
Start Location: (0, 0). End Location: (9, 9). Optimal Path: (0, 0) (0, 1) (0, 2) (1, 2) (1, 3) (2, 3) (2, 4) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5) (7, 5) (8, 5) (8, 6) (8, 7)
(8,8) (8, 9) (9,9)
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O1 Response

Thought for 81 seconds
Mapping out the maze
I’m analyzing the maze dimensions, identifying wall locations, start, and end points. The goal is to determine the shortest path, considering the maze’s
constraints.
Navigating the grid
I’m mapping out a 30x30 grid to represent the maze. Using zero for open spaces and one for walls, I’ll utilize BFS to find the shortest path to (27,29).
Mapping wall positions
I’m identifying wall coordinates for a 30x30 grid, setting grid[y][x] to 1 at each specified location. This helps in visualizing the grid and understanding wall
placements.
Setting up the grid
I’m setting up a 30x30 grid for the BFS algorithm to find the shortest path. The walls and start/end locations are marked, and I’m initializing the grid and
queue for BFS exploration.
Mapping valid moves
I initialize the queue with the start position and set up tracking for visited positions and predecessors. Then, I use BFS to explore and validate neighboring
positions, noting predecessors for potential path reconstruction.
Assessing potential moves
I’m verifying the possible moves from (29,7) by checking (29,6), (29,8), and (28,7) for boundaries, walls, and visit status, then adding them to the queue.
Navigating the queue
I’m working through neighbors of (29,6), checking bounds and walls. Adding viable positions to the queue, updating predecessors as needed. Progressing
one step at a time.
Evaluating queue options
I’m digging into the grid evaluation, validating neighbors, adding them to the queue, and marking them as visited. This thorough approach helps in
assessing potential moves effectively.
Assessing possibilities
Starting with (29,5), none of its neighbors lead to further progress due to walls or out-of-bounds locations.
Inspecting potential movements
Checking (27,6) for walls. Marking as visited and updating predecessors. Moving to (29,10) and (28,9) next.
Assessing adjacent spaces
I’m thinking through the neighbors of each grid cell, distinguishing between walls and open spaces. Adding new valid coordinates to the queue for further
exploration.
Evaluating options
I’m evaluating neighbors of current coordinates to see if any of them are walls, and if they aren’t, I add them to the queue and mark them as visited.
Navigating the grid
I’m tracking the current position and examining neighboring cells. Walls block some paths, while open cells are queued for visiting next. This approach
helps avoid revisiting cells.
Charting the path
Navigating the queue, I identify adjacent spots, checking for walls. Each step marks neighbors as visited and records a predecessor. Progress is steady as
the path unfolds.
Navigating walls
I’m updating neighbors and checking the queue for walls. If clear, I add the next step. This process allows movement and exploration, gradually revealing
progress.
Mapping the journey
I’m planning to trace a path from (29,7) to (27,29) in a maze. Avoiding walls and aiming for the shortest route, the BFS algorithm will be used.
Mapping the path
I’m noting that the shortest path in the maze is from (29,7) to (29,29), then to (27,29), while avoiding walls at y=29.
CHUNK: Assessing obstacles along x=29 Noticing wall obstructions at coordinates (29,0), (29,2), (29,4), (29,14), (29,20), (29,24), and (29,29), with no
walls at (27,29) or (28,29). Noticing walls block movement at y=29 on x=29.
Identifying wall positions
Mapping out wall locations between y=7 and y=29 along x=28. Key walls identified at y=1, y=5, y=7, y=9, y=10, y=12, y=13, y=20, y=23, and y=24.
Planning the route
OK, let me see. Nomad is thinking of moving along x=28, navigating around clogged sections, and expanding to x=27 or x=26 to find the optimal path.
Situated in a difficult spot
OK, let me see. The path forward is blocked by walls at (29,14) and (28,13), so movement is restricted to (29,13) and back to (29,12).
Assessing path constraints
I’m noting that movement is hindered by walls at various coordinates, such as (28,12) and (27,12). Progress is restricted in specific directions.
Charting the course
Stuck at (28,11), occupying (28,10) and (28,12). Moving left seems advisable, so ascending through (27,10) and (26,10) might be beneficial.
Sure, I’d be happy to help solve the maze and provide the optimal path from the start location (29,7)(29, 7)(29,7) to the end location (27,29)(27, 29)(27,29).
To solve this maze, we’ll perform a breadth-first search (BFS) algorithm, which is ideal for finding the shortest path in an unweighted grid like a maze.
Here’s how we can proceed:
Represent the Maze: Create a 30x30 grid where each cell corresponds to a coordinate (x,y)(x, y)(x,y). Mark the walls in the grid based on the provided wall
locations.
Initialize BFS:
Start Point: (29,7)(29, 7)(29,7) End Point: (27,29)(27, 29)(27,29) Queue: Initialize with the start point. Visited Set: Keep track of visited cells to avoid
revisiting them. Parent Map: Keep track of the path by recording the parent of each visited cell.
Perform BFS:
While the queue is not empty:
Dequeue the first cell. If it’s the end point, reconstruct the path using the parent map. Otherwise, explore its neighboring cells (up, down, left, right) if they
are within bounds, not a wall, and not visited.
Reconstruct the Path:
Starting from the end point, backtrack using the parent map to reconstruct the optimal path to the start point.
After performing the BFS algorithm, we find the following optimal path:
Optimal Path:
(29, 7) (28, 7) (27, 7) (26, 7) (26, 8) (26, 9) (26, 10) (26, 11) (26, 12) (26, 13) (26, 14) (26, 15) (26, 16) (26, 17) (26, 18) (26, 19) (26, 20) (26, 21) (26, 22)
(26, 23) (26, 24) (26, 25) (26, 26) (26, 27) (26, 28) (27, 28) (27, 29)
Explanation:
From the start point (29,7)(29, 7)(29,7), we move left to (28,7)(28, 7)(28,7) and continue to (27,7)(27, 7)(27,7) and (26,7)(26, 7)(26,7). We then move
down from (26,7)(26, 7)(26,7) to (26,28)(26, 28)(26,28), avoiding walls and obstacles. Finally, we move right to (27,28)(27, 28)(27,28) and then up to the
end point (27,29)(27, 29)(27,29).
This path avoids all walls and provides the shortest route from the start to the end location.
Note: This path assumes there are no walls blocking the route along the cells specified. If there are walls that prevent this direct path, adjustments would
need to be made by navigating around the obstacles, but BFS ensures the shortest path is found given the maze configuration.
If you have any questions or need further clarification, feel free to ask!
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O1-mini’s Response

Thought for a few seconds
Scoping the task
I’m beginning to see that the maze is a 30x30 grid with listed walls. Using BFS or A*, I’ll trace the shortest path from start to end.
Crafting the BFS approach
I’m working through the optimal path in a 30x30 grid with walls, ensuring accuracy and recommending a pathfinding algorithm for efficiency.
To solve the 30x30 maze you’ve provided, we’ll use the **Breadth-First Search (BFS)** algorithm to find the shortest path from the **Start Location**
‘(29,7)‘ to the **End Location** ‘(27,29)‘. Here’s a step-by-step breakdown of the solution:
Step 1: Represent the Maze
First, we’ll represent the maze as a 30x30 grid where each cell can be either open or a wall. The walls are provided as a list of coordinates.
Step 2: Initialize BFS
We’ll start BFS from the **Start Location** ‘(29,7)‘ and explore all possible moves (up, down, left, right) while avoiding walls and already visited cells.
Step 3: Perform BFS to Find the Shortest Path
By systematically exploring the maze, BFS ensures that the first time we reach the **End Location**, we’ve taken the shortest possible path.
Step 4: Trace Back the Path
Once the **End Location** is reached, we’ll backtrack to determine the optimal path taken.
Optimal Path from ‘(29,7)‘ to ‘(27,29)‘
After processing the maze, the optimal path is as follows:
“‘ (29,7) → (28,7) → (27,7) → (26,7) → (25,7) → (25,8) → (25,9) → (25,10) → (25,11) → (25,12) → (25,13) → (25,14) → (25,15) → (25,16) →
(25,17) → (25,18) → (25,19) → (25,20) → (25,21) → (25,22) → (25,23) → (25,24) → (25,25) → (25,26) → (25,27) → (26,27) → (27,27) →
(27,28) → (27,29) “‘
Detailed Path Coordinates
Here is the complete list of coordinates for the optimal path:
1. **Start:** ‘(29,7)‘ 2. ‘(28,7)‘ 3. ‘(27,7)‘ 4. ‘(26,7)‘ 5. ‘(25,7)‘ 6. ‘(25,8)‘ 7. ‘(25,9)‘ 8. ‘(25,10)‘ 9. ‘(25,11)‘ 10. ‘(25,12)‘ 11. ‘(25,13)‘ 12. ‘(25,14)‘
13. ‘(25,15)‘ 14. ‘(25,16)‘ 15. ‘(25,17)‘ 16. ‘(25,18)‘ 17. ‘(25,19)‘ 18. ‘(25,20)‘ 19. ‘(25,21)‘ 20. ‘(25,22)‘ 21. ‘(25,23)‘ 22. ‘(25,24)‘ 23. ‘(25,25)‘ 24.
‘(25,26)‘ 25. ‘(25,27)‘ 26. ‘(26,27)‘ 27. ‘(27,27)‘ 28. ‘(27,28)‘ 29. **End:** ‘(27,29)‘
Visualization
For better understanding, here’s a simplified visualization of the path on the grid:
“‘ Start (29,7) — v (28,7) → (27,7) → ... → (27,29) End “‘
Conclusion
The BFS algorithm efficiently finds the shortest path in the maze, ensuring that the path listed above is optimal. If you have any further questions or need
assistance with another maze, feel free to ask!
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