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A ANALYSIS OF STABLEDR

In this section, we show the following performance guarantee for STABLEDR.

Theorem A.l1. For a training data L, a depth bound B, and a parameter ¢ > 0, let w =
STABLEDR(L, B,¢). Then, we have B, [opt,, 5(£)] > (1 — €)optp(L). Moreover, we have

S drv(w,w®) =0 (log76|52|> where w® = A(L®, B, €), and dpy(w,w?) denotes the total
variation distance between (the distributions of) w and w(®.

The first inequality claims that we can achieve a nearly optimal total score using the output decision
rule w. The second inequality claims that the distribution of w does not change significantly when a

data point is removed from the training data. Theorem [A.T]is obtained by combining Lemmas[A.2]
and[A4]

A.1 APPROXIMATION GUARANTEE

First, we show that the selected decision rule does not much deteriorate the total score of an optimal
decision tree.

Lemma A.2. Let w = STABLEDR(L, B, €). Then, we have
]E[Optw,B(c)] > (1 —¢€)optg(L).

Proof. For any c > 0, we have
Prlopt,, g(£) < optg(L) — ]
D peQiopty, p(L)<opt(£)—c XP(A - 0Pty p(L))
- > yea oxp(A - opt, (L))
_ 1920exp(A- (opt(£) — )
Eweg exp(A - opty, (L))
_ 19exp(A- (optp(£) — )

op(h-optg(£) | ep(=A)
Therefore, we have
E[Optw,B(‘C)]
> Prlopt,, g(£) <optg(L) —c]-0
+ Prlopt,, 5(£) > optp(L) — ] - (opt (L) —¢)

> (1— || exp(=Ac)) - (optg(L) — ¢)
> optp (L) — || exp(—=Ac) —c.

By setting ¢ = log || /A and the choice of A, the claim holds. O

A.2 AVERAGE SENSITIVITY

Next, we analyze the average sensitivity of STABLEDR. For notational simplicity, we write opt,,
and opt'? to denote opt,, 5(£) and opt,, (£@), respectively. The following lemma is useful for
our analysis.

Lemma A.3. For any decision rule w € (), we have

Z (opt — opt,, )) < opt,,.

i=1

Similarly, we have

> (opts(£) — optp(£)) < optp(L).

i=1
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Proof. We first consider the first statement. Let ¢ be the optimal decision that attains opt,,. Note
that ¢ has depth B and the root node of ¢ has the decision rule w. Then, we have

n

>~ (ot —optld)) < (56, £) = (9, £0) = > 1) = o]

i=1 i=1 i=1
= s(¢, L) = opt,,.
The second statement follows by a similar argument. O
Lemma A4. Let
w = STABLEDR(L, B, ¢),
w® = STABLEDR (L, B, ¢).

Then, we have

- : log |2

ZdTv(wawm) =0 <Og|> .

i=1 €
Proof. Notice that

n n
Z dry (w,w?) = Z Z maX{O,Pr[w =] — Priw® = w]}
i—1 i=1 peQ
Let A() be )\ used in STABLEDR(L(®, B, ¢). Then we have

maX{O, Prjw = ¢] — Pr[w(i) = ¢]}

exp(A - opt,) exp(A(®) - optEZ))
= max < 0, — . @
> e €XP(A - opty,) Y preq exp(AD -opt,;)

exp(A - opt,,) — exp(A - optf;))
> preq eXp(A - opty,)
exp(A\ - optg)) exp(A® - optgz))
"D preq eXp(A - opty,) - > yreq exp(AD - optg,)) }

4)

+ max {0

where the equality is from the design of the algorithm and the inequality is from the following
inequality
max{0,b —a} < (b— )+ max{0,z —a}

which holds for any x < b.

Let A; 4 and B; ,; denote the first and second terms, respectively, of {@). The following two claims
bound the sums of the first and the second terms over ¢ and .

Claim A.5.

Z Z Aiy < A-optg(L).

i=1 e
Claim A.6.

5™ Biy < O\ - opty(£)).

i=1 e

Before proving these claims, we first complete the proof of the lemma assuming them. Combin-
ing (@) and the two claims above, we have

Y drv(w,w@) < O\ - optp(L)) +1=0 <1oge|ﬂ|) . .

i=1
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Theorem [A-T]follows by combining Lemmas[A-2] and [A:4]

Proof of Claim[A.3] We have

EXPO\ Optw) - exp()\ Opt(l)) b [ w . exp()\ Opt( ))
=rrjw = [, S
ZT,WGQ eXp()\ Optw/) exp()\ Optw)

= Prlw = 9] (1 — exp (—)\ - (opt,, — OptEZ))>)

< A Priw = 9](opt,, — optEZ)),

where the inequality is from 1 — e™* < z for any « € R. Therefore, we have

>0 Aiw

i=1 YEN
Z Z exp(A - opt,,) — exp(A - opth))
P fivpers > wren €XP(A - opty,)

i=19eQ
<A Z Prlw = ¢]opt,, (by Lemma[AZ3))
PEN
< A-optg(L)
as desired. O

Proof of Claim[A-6] We first note that

B;y
exp(A - opt( )) exp(A® -opt(i))
= max — @
wa  exp(A - opty) Y pea exp(A@ - opt,)
. 0, exp(\ - opt(z)) exp(A® ooptg))
- e PN opty) 30 cqexp(A - opty,)

(7)
exp(A - opt,,”) )(1—exp( Opt(z)()\ )\(1))))}

Z req €XP(A - opty,
0,Prjw = opt(l)()\ Al ))}

||
/\ —— ,—/R /—/H
o

L) Prlw = ]|A — AD|.

Also, we have

n log\ﬂl _ 1oglﬂ(l)
(4) opt (£ opt 5 (£(Y))
Z‘)\ A <)\Z log|Q\
OPtB([')
log@| _ _logl@] _logl@ _ log|Q
opt (L) optg (L) optgz(LD) optz (L)
= )\Zma log |9 ’ log ||
optg (L) optg (L)
1 1
: log €2 opth)

log || — log | opt5(L) — opt 5(LD)
< =2t =2 1
)\Z log || AZ optB (L)
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— log || — log |€)] "~ opt5(£L) — opt (L) :
<Ay = 277 192 (by opt 5(£1D) > 1)
2T 2T @) Y otz (L)
=0(N), (by Lemmal[A.3))
Combining the two inequalities above, we obtain
n n
SN Biw <30 opty Priw = ¢]|A - AD| = O (A opt (L)) . O
i=11eQ i=1 peQ

B ANALYSIS OF STABLEDT
In this section, we analyze STABLEDT and prove Theorem [4.1]

Proof of the first claim of Theorem[.1] Let L, be the input training data (so that we can use L to
denote other sets).

We prove the following by backward induction on depth.

E[s(STABLEDT’ (L, B, ¢,d), £)] > (1 — €)® “opt 5 (L).
Then, the statement holds by setting d = 0.
The claim clearly holds when d = B because we output the optimal label.

Suppose that the claim holds for depth more than d. Consider a particular call
STABLEDT’ (L, B, ¢, d), and let ¢ denote the output decision tree, let w be the decision rule used in
the root node of ¢, and let £ and L% denote the two training datas obtained from L by splitting it
according to w. Note that these are random variables. Then, we have

Els(¢, £)] = 3 Prlw =] (E[s(sTABLEDT’(zf, B.e,d+1),LY)]
PeQ

+ E[s(STABLEDT’(ﬁ}é, B,e,d+1), Lﬁ)])

> Z Prijw = ] ((1 — )P lopt g4 4 (LY)

PeER
B—d—1 b
+ (1= opty_y 1 (£]))

> (10" Prlw = ] (opty 5_a(£))

PEN
> (1= > Priw = ¢J(1 - e)opt _4(£)
PeN
> (1— )" opty_y(L),

where the first inequality is based on the induction hypothesis and the second to last inequality is
based on Theorem [AT] O

Proof of the second claim of Theoremd.1} For notational simplicity, we drop the arguments B and
e when calling STABLEDT’ (L, B, €, d), because they are fixed in this proof. Additionally, we write
STABLEDT’ instead of STABLEDT".

Let Lo = ((z1,v1),- .-, (Tn,yn)) be the input training data (so that we can use £ to denote other
sets). For a subset £ of Lo andi € {1,2,...,n},let L&) := L\ {(xs, 1)}

For 0 < d < B, let Lg1,...,L4924 be the sets on which STABLEDT’ is called at depth d

(if the number of sets on which STABLEDT’ is called at depth d is less than 2¢, we append
empty sets). We can order them so that STABLEDT’(Lg ;, d) calls STABLEDT (L g41,2j—1,d + 1)
and STABLEDT’(L441,25,d + 1) (if STABLEDT (L4, d) does not make recursive calls, we set
Lit1,2j-1 = Lat1,.25 =0).
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For fixed {Lp,;};, we have

n 29

Z Z dem(STABLEDT (L 4, B), STABLEDT’ (Eg),j, B))

i=1 j=1
n 29 n

< ZZ (@i, yi) € L) =Y (wi,yi) € L] = L]
i=1 j=1 =1

because the output changes only when (x;,y;) € £ and the output change is bounded by one.

Let 0 < d < B. Let wg; and w( ) be the w values used in STABLEDT (L ;,d) and STA-

BLEDT’ (E dj d), respectively. Note that they are random variables. For a rule w, Let £Y 1.2j-1

and L7, 5; be the two sets obtained by partitioning Lg,; according to w. Then for fixed {Lq; }j,
we have

n 29
3" den(STABLEDT (L4, d), STABLEDT (L), d))
i=1 j=1
< ZZ(dTV wdj,wd]) 237d
i=1 j=1

+ E dem(STABLEDT (L1 o, 4, d+ 1), STABLEDT’(E:i{é?_l, d+1))
ors : :

+ E dem(STABLEDT (L1 5, d + 1), STABLEDT’(,C;JI{’%), d+ 1)))
wd, j ’ ’

2d
<(C.oB-d Z log ||
€

j=1
n 29411
+ Z Z E denm(STABLEDT (L1 ;,d + 1), STABLEDT’(ﬁ:j_’{’](-l), d+1))
i=1 j=1 wd.j
(by Lemma [A.T)
€
n 2d+1 4
+ Z Z E dem(STABLEDT (L1 ;,d + 1), STABLEDT’(L’L;if:;l), d+1)),
i=1 j=1 Y

where C' > 0 is some universal constant. By backward induction, we obtain for any d and fixed
{La;};
EF;

n 2%
Z Z dem(STABLEDT (L4 5,d), STABLEDT’ (Lifig, d))
i=1 j=1
log |Q
<C-28(B-d)—— og |
€
for every 0 < d < B. By setting d = 0, we obtain the claim. O

C MISSING PROOFS OF SECTION[3]

In this section, we prove Theorem[5.1] We discuss modifications to STABLEDR and STABLEDT in
Sections[C.1]and respectively.
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Algorithm 4:

Procedure SEEDEDSTABLEDR(L, B, ¢, )

2log|Q| .
A& e-optp (L)’

while true do
Sample w € 2 uniformly at random using 7;
Sample 7 € [0, 1] uniformly at random using 7;
P be the probability of choosing w as given in STABLEDR;
if p,, > 7 then return w;

s Procedure SEEDEDSTABLEDT (L, B, €,d, j, m)

10

11
12

14
15

17

18
19

if |£| <1ord = B then
| return an optimal label for L.

w < SEEDEDSTABLEDR(L, B, ¢, 7);

Partition £ into £ U L according to w;

7y, + (w1, 7s,...) and mp < (72, T4, ...);

o1, + SEEDEDSTABLEDT’ (L, B,e,d + 1,25, 71);

¢Rr < SEEDEDSTABLEDT’(Lp, B,e,d+ 1,2j + 1,7R);

Let ¢,, be the decision tree such that the root node ¢ has rule w and the left and right
children of ¢ are ¢, and ¢, respectively;

return ¢,,.

P;ocedure SEEDEDSTABLEDT(L, B, €, )
| return SEEDEDSTABLEDT (L, B, ¢€,0,1, 7).

C.1 DECISION RULE SELECTION

In STABLEDR, we sampled arule w € €2 by the exponential mechanismMcSherry & Talwar](2007).
To bound the expected deterministic average sensitivity over random bits, we perform the following
rejection sampling. We first sample a rule w €  and threshold 7 € [0, 1] uniformly at random
by using 7. If the threshold 7 is more than the probability p,, that we sample w in the exponential
mechanism, then we output w. Otherwise, we repeat the same process again. The details are given
as SEEDEDSTABLEDR in Algorithm 4]

The following lemma shows that the distributions of STABLEDR and DERANDOMIZEDSTABLEDR
are the same and the derandomized average sensitivity of the latter can be bounded from above by
the average sensitivity of the former.

Lemma C.1. Let
w = STABLEDR’ (L, B, ¢),
w® = STABLEDR’ (L, B, ¢),
wr = DERANDOMIZEDSTABLEDR’ (L, B, €, ),
w!? = DERANDOMIZEDSTABLEDR (£, B, ¢, 7).

Then, the distribution of w and that of w, over T are the same. Moreover for any i € {1,2,...,n},
we have

Prlw, # w®] < 2dpy (w,w™).

s

Proof. The first claim is clear from the design of DERANDOMIZEDSTABLEDR.

Now we see the second claim. Let Z = 3, . exp(A - opty, 5(L)) and let AR > peq eXP(A -
optd,’B(E(i))). For w € Q, we let p, = exp(\ - opt, 5(L£))/Z. For w € Q, we let pg) =

exp(A - opt,, p(L£"))/Z®, and for w € Q\ 2, we let p) = 0. Then, we have

Prlw, # w(] < Z Pr[min{pl/,’pz(z)} <7< maX{pw,pg)}]
PeQ
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= Z [P —p,(l;)| = 2dry (w, w®). O
PEN

By the analysis of STABLEDR and Lemma|C. 1} we obtain the following:

Theorem C.2. Let w, = SEEDEDSTABLEDR(L, B,e,m). We have Ex[opt, p(L)] >
(1 — €)optg(L).  Moreover for w® = SEEDEDSTABLEDR (L), B, ¢, ), we have

Ex [Z?:l dDT(W”’wg))] =0 (%)

C.2 DECISION TREE CONSTRUCTION

We now explain the modification to STABLEDT. Let Ly 1, ..., L4 24 be the sets on which our al-
gorithm is called at depth d as defined in the proof in Section [B| Then, we want to make sure that
the same random bits are used when processing particular £, ; no matter whether the input training
datais £ or £ (1 <i < n). To this end, at each node in the decision tree, we split the random bits
m = (71, ma,...)into rp, = (w1, 7s,...) and mg = (ma, M4, . . .), and then pass 77, and 7 on to the
nodes for L4125 and Lg41,2j41, respectively. See Algorithm E]for details.

We replace Theorem[A.T|with Theorem|[C.2]in the proof of Theorem[.1] and we obtain Theorem[5.1]

D ADDITIONAL RESULTS

D.1 DETAILED RESULTS IN SECTION[7.2]

In Section[7.2] we reported the trends of average sensitivity and accuracies over e on small datasets,
breast cancer and diabetes. Here, we show the detailed results (i) with error bars, and (ii) with a
relaxed version of the tree distance. For (i), in addition to the average results, we also show their
variations. More specifically, we report the 25 and 75 percentiles of the results over 10 random
realizations of the sampled training data. For (ii), we adopt a relaxed version of the tree distance in
Algorithm[5] In the original tree distance in Algorithm[2] we regarded that two trees are (completely)
different when their top rules are different (Line[6). In the relaxed version in Algorithm[5] we regard
that two trees are completely different only when the features used in the top rules are different.
With this relaxation, we regard two subtrees with similar top rules such as w : v — 1[u; < 1.0] and
w' i u s 1wy < 1.01] as identical.

Algorithm 5:

Procedure DISTANCE’ (¢, ¢')
Let ¢t and ¢’ be the root nodes of ¢ and ¢, respectively;
Let w.feature be the feature used in w;
if both t and t' are leaves then
| return 0 if y; = y;» and 2 otherwise.

else if either t or t' is a leaf then return |¢| + |¢'|;

else if w;. feature # wy. feature then return |¢| + |¢'[;

else
Let ¢1,, ¢ r be the decision trees rooted at the left and right children of ¢, respectively;
Let ¢, ¢, be the decision trees rooted at the left and right children of ¢/, respectively;
return DISTANCE’ (¢1,, ¢ ) + DISTANCE’ (¢r, ¢p)-

Figures [5]and[6] show the detailed results on breast cancer and diabetes, respectively. In the figures,
we show the 25 and 75 percentiles using colored shades. The figures named Sensitivity and Sen-
sitivity’ are the average sensitivity computed using the original distance and the relaxed distance,
respectively.

The figures confirm that the decrease of the average sensitivity for e > 0.1 will be sufficiently sig-
nificant, in particular for the number of data removal m = 1% and 10%. The figures on Sensitivity
and Sensitivity’ also confirm that the average sensitivity measured by using the original tree distance
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and the relaxed tree distance are almost identical, implying the choice of the tree distance will only
have negligible impacts to the results.
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Figure 5: Detailed results on average sensitivity and accuracy of the trained trees over different e on
breast cancer. The figures named Sensitivity and Sensitivity’ are the average sensitivity computed
using the original distance and the relaxed distance, respectively.

D.

2 TEST ACCURACY

For the experiments in Section |7} Figure [/| shows the trade-off curves between average sensitivity
and test accuracy when € is changed.
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Figure 6: Detailed results on average sensitivity and accuracy of the trained trees over different € on
diabetes. The figures named Sensitivity and Sensitivity” are the average sensitivity computed using
the original distance and the relaxed distance, respectively.
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Figure 7: Trade-off curves between average sensitivity and test accuracy when € is changed. We
varied the number of training data points to be removed from one to 30% of the sampled training
data. White markers denote the results for the greedy tree learning.
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