
Appendix to: Pushing the limits of fairness
impossibility: Who’s the fairest of them all?

A Mapping from bins to scores

As mentioned, the most straightforward method of applying the score transformation after solving the
optimization problem is to sample from a multinomial distribution. However, this is a less granular
approach as we are assuming that all observations in the bin are indistinguishable. To overcome
this, we recommend the idea proposed in ([? ]) which is a linear projection. This strategy proposes
that if an observation with score s falling into a bin a with upper and lower bounds [al, au] gets
mapped from the random draw into a new bin b1 with bounds [b1l, b1u], then we assign it a linearly
interpolated score given by:

s′ = b1l +
s− al
au − al

(b1u − b1l)

This allows us to maintain rank-ordering of scores that receive the same assignment from a to b.

A more deterministic manner of mapping from bin to score would be to take the expected score
mapping. After solving the optimization problem, we know the transitions probabilities a to {b1, b2,
. . . , bB} (denoted as P (a −→ bi)) based on the optimization variables and from the previous method,
we also know the score assignment if a were moved into bi (denote as si). Hence, a deterministic
map would transform score s to s′ =

∑
i∈B siP (a −→ bi).

B Details on the fractional LP subproblem for bound tightening

We elaborate on the methodology in Section ??. Recall that our goal is to find bounds for:
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We will do this by fixing ḡ and b̄ such that we first tighten bounds for vḡ
b̄

and then use the optimal
solution to tighten bounds for tḡ

b̄
. First, it is easy to see that maximizing/minimizing vḡ

b̄
is an LP as

we have dropped the quadratic constraints, leaving us with a linear objective and linear constraint set.
Now let vḡ∗

b̄,min/max
represent the optimal values of the min/max objective for vḡ

b̄
. We now turn to

bounding tḡ
b̄

which has the same linear constraints but a fractional (nonlinear) objective. To deal with
this, we utilize the Charnes-Cooper transformation ([? ]). Essentially, this reformulation trick handles
the denominator by removing it from the objective and passing it to all constraints while maintaining
linearity. To illustrate this in detail, we first define new optimization variables:

ξ
[g]
bb′ =

x
[g]
bb′∑

b∈B x
[ḡ]
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Using (1), we can express the min/max problem for t[ḡ]
b̄

as problem (2).
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By solving these subproblems and taking the objective value as bounds for t[g]b , we can reduce the
feasible region of the problem and enhance our solutions. The sub-problems are bounded and if any
of them are infeasible, then it also implies that the MFOpt problem is also infeasible as we drop the
PRP constraints in these sub-problems:

C Experiment data descriptions and problem parameters

We use three primary data sources for our experiments, the more recently developed American
Community Survey (ACS) data as well as two more classical datasets, Heart Disease and COMPAS.
We elaborate on each dataset in this section. The ACS data is a dataset made publicly available by
the US Census Bureau. Specifically, Ding et. al [? ] have created an excellent Python package1

that enables users to pull model-ready data (for a requested year and geographic region) for a set of
pre-defined binary classification tasks, such as predicting high income, health insurance coverage,
whether they move or not, among others. The tasks are detailed in the paper and we use all of the
pre-defined tasks without any additional modification except for Employment. We do not use the
Employment task because of the assumption detailed in Section ?? regarding overlap. Experiments
with this task occasionally yielded models that did not have overlap which made this task unsuitable
for demonstrating our methodology. We reiterate that this is not a practical issue if one just ignored
the non-overlapping bins, but requires a lengthy and technical fairness interpretation that we felt were
beyond the purpose of our study. In terms of time and geography, we use 2020 data for all experiments
while the geography varies. In the experiments shown on Table ??, we use the West Coast US states
(California, Oregon, Washington). In ?? we wanted a larger dataset as we required a sufficiently
large testing split, hence we used the West Coast States (’CA’, ’OR’, ’WA’, ’NV’, ’AZ’) with the
"ACS Mobility" dataset and a 60/40 train-test split for the inprocessing comparison and East Coast
States (’ME’,’NH’,’MA’,’RI’, ’CT’,’NY’, ’NJ’, ’DE’,’MD’,’VA’, ’NC’,’SC’,’GA’,’FL’) and same
with the "ACS Poverty" dataset for the postprocessing comparison. There was no particular reason
for selecting these geographies aside from obtaining a large enough sample that we can feasibly run
multiple trials on. Though we are using census data there is no PII information nor any endangerment
to the subjects in the data. However, we note that in practice, it is important to exercise caution and
equity in picking groups to mitigate for, as selective mitigation of favored groups by a malicious
practitioner can result in underperformance for deserving groups.

The Heart Disease Dataset ([? ]) is a publicly available dataset where the task is to predict whether
or not an individual has heart disease. Most applications of this data use the standard processed

1https://github.com/zykls/folktables (MIT License)
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Table 1: Experiment Problem Parameters
# Trials Bins ϵ Max Movement Window Size Solve Time Precision

10 50 0.03 0.5 13 600s 1e-5

Table 2: Comparison with other fairness methods

Method Metric Train
Base Method MF-Opt

Rezaei

AUC 0.7471 ± 0.003 0.6619 ± 0.0022 0.747 ± 0.003
ϵDP 0.0117 ± 0.0014 0.0124 ± 0.0013 0.0088 ± 0.001

ϵEOdds 0.0266 ± 0.007 0.0291 ± 0.0059 0.0167 ± 0.0029
ϵPRP 0.109 ± 0.0145 0.1091 ± 0.0143 0.0986 ± 0.0133

Pleiss

AUC 0.8314 ± 0.0045 0.8145 ± 0.0104 0.8306 ± 0.0044
ϵDP 0.0208 ± 0.0029 0.0145 ± 0.0023 0.0105 ± 0.0008

ϵEOdds 0.0325 ± 0.0062 0.0257 ± 0.005 0.0144 ± 0.0017
ϵPRP 0.1405 ± 0.0214 0.4149 ± 0.1824 0.1319 ± 0.0204

"Cleveland" data and we use sex as the group variable. We could not find a standard and preprocessed
version of this data and did it ourselves by one-hot-encoding categorical variables.

The COMPAS dataset is based on the recidivism study noted in ([? ]). We use the preprocessed
version made available in the publicly available AIF360 package ([? ]) 2 without any additional
modification. In this dataset, the task is to predict whether or not an individual will recidivate and we
use ethnicity as the group variable.

We list the problem parameters used to create the results in Table ?? in Table 1. We use the same
parameters for all tasks. A particular note is that in Table ??, the IPOPT method performs very poorly
compared on the COMPAS and ACS Coverage data. This is because across the 10 trials we ran, the
IPOPT algorithm had frequently failed to converge within the 10-minute time limit for these two
datasets. From the outputs, we saw that convergence failure is accompanied by heavy violation of
the predictive rate parity constraint (demographic parity and equalized odds are still satisfied) and a
high objective value. The exact reason for frequent failure in these two datasets is unclear, however,
we hypothesize that it is due to a relatively high predictive rate parity gap in the data which led
to numeric issues. Such failures were not observed in the IP formulation while both solvers were
provided the exact same problem parameters.

All experiments were run on a MacBook Pro with a 2.4GHz 8-Core Intel Core i9 processor with 32
GB RAM. We did not use the GPU for solving. Data, preprocessing steps, and the random forest
models utilize Python’s scikit-learn ([? ], BDS License) package. The optimization model is coded
through Julia’s JuMP package ([? ] MPL License). We use the Gurobi ([? ] Academic License) and
IPOPT ([? ] Eclipse Public License) solvers for all problems.

Due to lack of space, we only showed the method comparison Table ?? for the testing data. We show
the results on the training data here in Table 2.

D Comparison to other fairness definitions

We compare our bin-wise worst-case fairness definition with other fairness definitions seen in
literature and explain why it does not contradict previous impossibility theorem results. First, since
we are considering score bins, our definition is a generalization of the definitions in ([? ]), ([? ]) and
([? ]), which consider fairness metrics for binary {0, 1} classifiers or assume that there is a threshold

2https://github.com/Trusted-AI/AIF360
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for mapping probabilities to 0,1 outcomes. In these cases, the overall FPR/FNR can be computed and
EOdds refers to the equality of those rates. Our framework is a generalization since the same fairness
metrics for binary classification can be achieved by specifying that all scores be moved into exactly
one of two bins (representing {0,1} predictions) under our framework.

Since we are dealing with binned scores, our fairness definitions more resemble those seen in [? ],
which also has a notion of binned "risk assignments". The critical difference in fairness definitions is
that Kleinberg’s paper utilize the sum of scores in each bin compared against the number of positive
or negative instances. Under this scheme, predictive rate parity refers to having the sum of scores be
equal to the number of positive instances and true positive rate refers to the expected score of the
positive instances in each bin (and analogously with FPR). The key difference is that rather than
the sum of scores, our definitions are based on the expected number of {0,1} instances moved into
each bin, irrespective of the instance’s original scores. As such, we are not faced with the same strict
fairness trade-offs.

E Commentary on other solution methods and solvers

While investigating a solution to our nonconvex problem, we considered another global integer pro-
gramming based approach known as spatial branch and branch (SBB), which relies on a combination
of spatial partitioning and solving local partitions using McCormick relaxations ([? ], [? ]) and other
outer approximation variants ([? ]). In our testing, Gurobi’s nonconvex QCQP solver, which applies
these SBB heuristics, worked remarkably well despite being relatively new and was sometimes able
to beat both the interior point solution and the MIP solution. Open-source solver SCIP ([? ]) also
features a gender nonconvex SBB solver that works reasonably well. However, our main goal was to
provide a widely accessible method of solving the problem to global optimality and as of writing,
there are significantly more developed open-source MILP solvers, such as SCIP, HiGHS ([? ]), and
CBC ([? ]), than SBB solvers. Another reason we opted for the MILP approach is that we saw more
potential in the NMDT reformulation for taking advantage of our reformulation and bound tightening
procedure. Nonetheless, our bound tightening procedure is theoretically beneficial for both methods
and as other open-source algorithms/solvers for SBB become more developed, such as Couenne ([?
]) and Alpine ([? ]), we encourage a future re-evaluation of solution methods and comparisons.

Finally, we note that we chose Gurobi in our experiments for its speed and effectiveness since we
are repeatedly solving many problems. We acknowledge that Gurobi is a very powerful commercial
solver and the results solved over 10 minutes may be worse with open source solvers such as HiGHS
([? ]). Nonetheless, the important fact is that all MIP solvers target the global optimum and hence
even less powerful solvers can yield strong solutions given more time.

F Additional Experiments Using Expected Assignment on Testing Data

We list additional experiments focusing on the performance of our method on the testing data in
Tables 3 to 8. All results are based on 20 trials that are run with a similar procedure in the comparison
section ?? except that we compute the testing metrics based on expected assignment rather than
stochastic assignment (explained below), which we feel better reflects the average performance of
MFOpt. In each trial, we tune a random forest via grid-search, find the base fairness violations, set up
the parameters of MFOpt to reduce the violations by a half, and optimize. Then, we compute the
results (AUC and fairness violations) on the testing data (baseline with no modifications vs. MFOpt)
and show the 1-Standard deviation error margins as well as the p-value corresponds to a one-sided
Wilcoxon signed rank test which evaluates if the distribution of differences of the Base - MFOpt stats
(higher AUC, lower fairness violations) is symmetric around zero (null) or instead favors the base
(alternative).

The major difference in this evaluation compared to the results shown in section ?? is that in section
??, we assign observations to bins in the testing data based on random draws from a multinomial
distribution (explained in Appendix A). However, a single draw per train-test split may not properly
reflect the expected performance of MFOpt, even if we average over 20 trials. Instead, we feel a
more accurate representation of the expected performance is if we apply the expected bin assignment
to obtain the post-movement number of {0, 1} and total samples for each bin in the testing set.
Under this procedure, we do not move individual observations across bins, but rather move all of
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them together. Concretely, suppose that we have optimized parameters (x̂[g]
1b′ , x̂

[g]
2b′ , . . . , x̂

[g]
Bb′), which

represented the probabilities of observations from each bin moving into bin b′. Then we propose that
the number of {1} outcomes at bin b′ after the expected bin assignment procedure is:
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The same computation applies for the expected number of negative samples N̂ [g]
b′− and total samples

N̂
[g]
b′ , which we use to compute the AUC and fairness violations and report in the tables. We find that

across different datasets, the decrease in AUC is miniscule in terms of both absolute amount and
variance (less than 1%). We obviously do not expect better AUC from the MFOpt solution compared
to the unconstrained model and thus this result is remarkable as it indicates that some degree of
fairness can be afforded practically for free under our framework. The second observation is that we
can reduce all three fairness metrics simultaneously and consistently across all datasets, as we find
p-values below 0.05 in all cases. We do observe variance of the PRP violation is relatively higher
than that of DP or EOdds. We noted this in our conclusion Section ?? as an area for future work and
provide some hypotheses for methods that can address this inconsistency. Nonetheless, improving
conflicting definitions of fairness simultaneously is another significant result as it provides empirical
evidence that there is a path forward towards multiple fairness.

Table 3: ACS West Travel
Metric Base MFOpt Wilcoxon p-value

AUC 0.7439 ± 0.0039 0.7437 ± 0.0039 0.999999
DP 0.0313 ± 0.0057 0.0208 ± 0.0045 0.000001

EOdds 0.0404 ± 0.0055 0.0268 ± 0.0081 0.000001
PRP 0.1743 ± 0.0326 0.1481 ± 0.0306 0.000001

Table 4: ACS West Income
Metric Base MFOpt Wilcoxon p-value

AUC 0.8907 ± 0.0012 0.8902 ± 0.0016 1.000000
DP 0.0172 ± 0.0021 0.0126 ± 0.0019 0.000001

EOdds 0.0362 ± 0.006 0.0231 ± 0.0035 0.000001
PRP 0.1994 ± 0.0745 0.1507 ± 0.0295 0.000024

Table 5: ACS West Mobility
Metric Base MFOpt Wilcoxon p-value

AUC 0.7413 ± 0.0033 0.7412 ± 0.0033 0.999284
DP 0.0183 ± 0.0057 0.0149 ± 0.0033 0.008591

EOdds 0.0469 ± 0.0153 0.0327 ± 0.0068 0.000031
PRP 0.197 ± 0.0318 0.1738 ± 0.0311 0.000024

Table 6: ACS West Insurance
Metric Base MFOpt Wilcoxon p-value

AUC 0.7183 ± 0.0028 0.7182 ± 0.0029 0.999916
DP 0.0603 ± 0.0089 0.0322 ± 0.0041 0.000001

EOdds 0.0676 ± 0.0072 0.0579 ± 0.0062 0.000052
PRP 0.3732 ± 0.11 0.205 ± 0.0446 0.000018
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Table 7: ACS West Poverty
Metric Base MFOpt Wilcoxon p-value

AUC 0.8319 ± 0.0039 0.8316 ± 0.0039 1.000000
DP 0.0246 ± 0.0038 0.0154 ± 0.0017 0.000001

EOdds 0.0396 ± 0.0086 0.0226 ± 0.0024 0.000001
PRP 0.1305 ± 0.0172 0.1173 ± 0.019 0.000018

Table 8: ACS West Public Coverage
Metric Base MFOpt Wilcoxon p-value

AUC 0.7932 ± 0.0016 0.7924 ± 0.0018 1.000000
DP 0.03 ± 0.0041 0.0204 ± 0.0028 0.000001

EOdds 0.0403 ± 0.0061 0.0236 ± 0.0028 0.000001
PRP 0.159 ± 0.0245 0.1443 ± 0.0297 0.029129

G Role of Bins Parameter and Ablation Study

In this section, we first comment on the choice of the number of bins, |B|, as a hyperparameter and
then show results of additional testing with respect to the choice of the bin parameter. In practice,
the choice of |B| should reflect the required bin granularity of the outputs for usage in, for example,
rank-ordering or threshold-based classification. Our work therefore approaches choosing |B| purely
from a computational complexity perspective as the number of optimization variables scales in the
order of O(|G||B|2). We used |B| = 50 across our experiments as we found that this parameter gave
a reasonable degree of granularity in the resulting bins while also being small enough to solve (our
MIP solver could frequently find solutions with <10% optimality gap within 10 minutes). From
a more theoretical perspective, the choice of |B| determines how well we can estimate the score
transformation function, with higher |B| giving us better estimates in the training data. However,
having too few samples within each bin (in the training data) results in low bias but high variance
estimates of the score transformation function and the corresponding performance/fairness metrics,
leading to bad generalization on the testing set. Having too few bins can, on the other hand, lead to
an under-parameterized score transformation function. While it is clear that |B| should scale with
respect to the per-bin sample size, we consider a rigorous analysis of this choice to be out of scope as
a current limitation of our work. We hence recommend choosing |B| in practice based on the desired
granularity of results and/or treating it as a parameter to optimize via cross-validation.

To run an experiment to study the effects of changing |B|, we must first define |B|-agnostic metrics to
evaluate the post-processing output in terms of performance and fairness. The primary difficulty is
that since fairness is defined on a bin-wise basis, evaluating the worst-case violation for example using
|B| = 10 is not comparable to |B| = 50. Hence, we do the following: First, after optimizing for x[g]∗

bb ,
we apply the linear interpolation based mapping as described in Appendix A so that we have new
scores s′. To compare the accuracy across different |B|, we compute the ROC and precision-recall
(PR) AUC based on s′. To compare the fairness, we discretize s′ in 100 bins (regardless of which
|B| we used) and compute the worst case violation for each fainess metric across all 100 bins. The
reason we use 100 bins to assess fairness is that we specifically use a large dataset (500k+ instances
in both training and testing) to obtain more granular metrics. To generate the results, we use the
ACS Income data as presented in previous sections. The difference is that we now use data across
all states to obtain a large sample for a single random 60/40 train-test split, each with over 500k
samples. Following the procedure from before, we train and tune a random forest model, score the
training and testing data, and proceed with our evaluation methodology. Since the linear interpolation
mapping methodology utilizes stochastic draws, we sample 300 draws per bin and compute the 1
standard-deviation errors shown in the tables.

Table 9 shows the performance metrics across different |B|, where we show the average metric and
1-standard deviation error margins. We observe that performance is very similar across the different
choices, but is maximized at the higher bin counts of of 50-60. The performance also appears to
plateau beyond a certain point, suggesting that it is not necessary to select a large |B| for performance
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purposes. Interestingly, we also see that the solutions are near-optimal based on the optimality gap.
This shows that although the number of variables scales with |B|, it does not necessarily preclude us
from high quality solutions. On the contrary, the optimality gap for lower bin ranges such as 25 is
larger with lower performance. This could be due to the fact that since we are optimizing over the
same ϵ fairness criteria, having fewer degrees of freedom with smaller bins makes it more difficult to
find feasible solutions.

Table 10 shows the results for fairness, where we show the average worst fairness violation and
the 1-standard deviation error margins. The story is less clear from this angle but we emphasize
that training the problem for different |B| ≠ 100 bins using the same ϵ parameters and evaluating
it on |B| = 100 for fairness is an unintended method of using our framework which we are only
doing to have comparable results for the ablation study. Here, we see that the average metrics are
similar for different parameters with |B| = 40 having the best overall result. Demographic parity
violation is surprisingly minimized at |B| = 30 in this example, but given the other fairness and
performance metrics |B| = 40 appears to be the best choice. Under this method of evaluation, the
fairness parameters do not appear to be very sensitive to the choice of |B|.

Table 9: Bin Ablation Study (Performance) - ACS Income
Num. Bins Optimality Gap ROC AUC PR AUC

25 0.1483 0.8712 ± 0.0001 0.7933 ± 0.0002
30 0.0672 0.8733 ± 0.0 0.7969 ± 0.0002
35 0.0326 0.8739 ± 0.0 0.7981 ± 0.0002
40 0.0095 0.874 ± 0.0 0.8001 ± 0.0001
45 0.0096 0.8742 ± 0.0 0.8 ± 0.0001
50 0.0144 0.8743 ± 0.0 0.8002 ± 0.0001
55 0.0150 0.8742 ± 0.0 0.8005 ± 0.0001
60 0.0212 0.8743 ± 0.0 0.8011 ± 0.0001

Table 10: Bin Ablation Study (Fairness) - ACS Income
Num Bins Demographic Parity Equalized Odds Predictive Rate Parity

25 0.0174 ± 0.0004 0.0224 ± 0.0008 0.1447 ± 0.013
30 0.0144 ± 0.0004 0.0206 ± 0.0005 0.1702 ± 0.0101
35 0.0177 ± 0.0003 0.0235 ± 0.0019 0.1535 ± 0.0149
40 0.0179 ± 0.0004 0.0195 ± 0.0005 0.1295 ± 0.013
45 0.0174 ± 0.0003 0.0234 ± 0.0008 0.1406 ± 0.0182
50 0.0215 ± 0.0003 0.0239 ± 0.0004 0.1456 ± 0.0143
55 0.0165 ± 0.0004 0.021 ± 0.0006 0.1323 ± 0.0127
60 0.0179 ± 0.0004 0.0237 ± 0.0007 0.1503 ± 0.0178
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