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Figure 1: Image-GOal Representations (IGOR) based training framework for embodied AI.
IGOR learns a unified latent action space for humans and robots by compressing visual changes
between an image and its goal state on data from both robot and human activities. By labeling latent
actions, IGOR facilitates the learning of foundation policy and world models from internet-scale
human video data, covering a diverse range of embodied AI tasks. With a semantically consistent
latent action space, IGOR enables human-to-robot generalization. The foundation policy model acts
as a high-level controller at the latent action level, which is then integrated with a low-level policy
to achieve effective robot control.

ABSTRACT

We introduce Image-GOal Representations (IGOR), aiming to learn a unified, se-
mantically consistent action space across human and various robots. Through this
unified latent action space, IGOR enables knowledge transfer among large-scale
robot and human activity data. We achieve this by compressing visual changes
between an initial image and its goal state into latent actions. IGOR allows us
to generate latent action labels for internet-scale video data. This unified latent
action space enables the training of foundation policy and world models across a
wide variety of tasks performed by both robots and humans. We demonstrate that:
(1) IGOR learns a semantically consistent action space for both human and robots,
characterizing various possible motions of objects representing the physical inter-
action knowledge; (2) IGOR can “migrate” the movements of the object in the one
video to other videos, even across human and robots, by jointly using the latent
action model and world model; (3) IGOR can learn to align latent actions with
natural language through the foundation policy model, and integrate latent actions
with a low-level policy model to achieve effective robot control. We believe IGOR
opens new possibilities for human-to-robot knowledge transfer and control. See
video demonstrations on our anonymous webpage.
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1 INTRODUCTION

Learning foundation models for embodied AI has been notably constrained by a lack of interaction
data. Unlike text or video data, which are abundantly available, interaction data is much scarcer.
Research efforts have been devoted to creating large-scale interaction dataset, such as Open-X-
Embodiment (Collaboration et al., 2023) and DROID (Khazatsky et al., 2024). Based on multi-task
interaction data, a series of generalist agents (or foundation policy models) have been proposed,
such as RT-1 (Brohan et al., 2022), Robocat (Bousmalis et al., 2023), RT-2 (Brohan et al., 2023),
Octo (Team et al., 2024), and OpenVLA (Kim et al., 2024). However, the volume of interaction
data remains several orders of magnitude smaller than that of internet text or video data. Given that
the success of foundation models relies on scaling up datasets and extracting knowledge from such
large-scale datasets, it is essential to design methods for building embodied AI foundation models
that can effectively utilize internet-scale video data.

Internet-scale video data contains abundant sequential record of human activities and perfect demon-
strations of how human perform various tasks by interacting with the real world. When human brain
extracts information from videos, instead of doing it frame by frame, it modularizes the differences
between frames into a single word such as “move”, “open”, “close”. We refer to these highly com-
pressed, modularized actions as latent actions that are shared across different tasks. The question to
ask here is, is it possible to extract all possible latent actions from video datasets with humans
and robots performing various real embodied AI tasks, and further recover them? While re-
cent works such as Genie (Bruce et al., 2024) and LAPO (Schmidt & Jiang, 2023) made attempts
in recovering such latent actions from videos, they primarily focus on 2D platformer games where
each latent action at corresponds to a specific control button. The action space is highly designed
to fit a specific scenario and incomparable to the complex human and robot action space in various
embodied AI tasks. To take a step further, the question would be, can we learn a unified, semanti-
cally consistent latent action space, allowing the transfer of knowledge across different tasks,
and embodiments including human and various robots?

In this paper, we propose Image-GOal Representations (IGOR), which learns a unified and seman-
tically consistent latent action space shared across different tasks and embodiments, enabling the
knowledge transfer among internet-scale video data. We propose a latent action model designed
to capture robot and human actions across various embodied AI tasks. IGOR compresses the vi-
sual changes between an image and its goal state into latent actions, which are also embeddings of
sub-tasks defined by reaching the goal from the initial image. IGOR is trained by minimizing the
reconstruction loss of the goal state, which is predicted based on the image and the latent action.
The core insight behind IGOR is that if compressed sufficiently, the image-goal pairs with similar
visual changes will have similar embeddings.

We argue that, besides text embeddings for human instruction understanding and im-
age/video embeddings for state understanding, image-goal representations for sub-task un-
derstanding and latent action learning are yet another crucial building blocks, which may
hold great potential for next-level generalization in embodied AI.

With the latent action model, we can transform internet-scale human video data into interaction
data labeled with latent actions, which largely expands the data available to building embodied
AI foundation models. This unified latent action space allows us to train foundation policy and
world models on nearly arbitrary tasks performed by robots and humans. Specifically, we train a
foundation policy model on large-scale video data with text labels. This model uses text to describe
tasks and makes decisions, generating the next latent action to perform. Additionally, we train a
foundation world model on the same dataset, learning to simulate the outcome of executing the
foundation policy model.

We train our models on human video data and robot data with actions removed, with the RT-1
dataset held out for OOD evaluation. First, we evaluate the latent action model qualitatively, and
find that image-goal pairs with similar latent actions have similar visual changes, corresponding to
semantically consistent movements, even on OOD scenarios. Then we evaluate the world model by
extracting latent actions from a video and applying such latent action (or action sequence) to the
initial frames of other videos, generating the rest of frames. We find that, jointly with action model
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Figure 2: We extract latent actions from Image-Goal (I-G) pairs in the solid line boxes, and apply
the latent actions to different initial frames, generating subsequent videos via world model as shown
in the corresponding dashed boxes. The first half illustrates examples from real-world videos with
diverse object categories, while the second half demonstrates generalization from human to robot
arms. Full videos are available on our website.

and world model, IGOR successfully “migrates” the movements of the object in the one video to
other videos, as shown in Figure 2. We also apply different latent actions to the same initial image,
and find that the world model has learned various possible movements of the object in the image,
suggesting that it has absorbed the physical interaction knowledge. For the foundation policy model,
we show its ability in following diverse language instruction via iteratively rollout the foundation
policy and world model using latent actions. We further integrate it with a low-level policy, and
show that IGOR-based policy training can improve performance on Google Robot tasks in low-data
regime with the SIMPLER (Li et al., 2024) simulator.

2 METHODOLOGY

2.1 LATENT ACTION MODEL

The primary objective of the latent action model is to label latent actions from unlabeled open-
domain videos in an unsupervised manner. Given a sequence of video frames o1:t+1, the goal is
to derive the latent action at, which captures the key information describing only the changes that
occur at time step t, removing other redundant information. In contrast to prior works (Schmidt &
Jiang, 2023; Bruce et al., 2024), which primarily focus on 2D platformer games where each latent
action at corresponds to a specific control button, we aim to develop a more generalizable model.
Our model is designed to handle the significantly greater complexity of open-world scenarios, where
latent actions may not correspond to any specific underlying actions. This presents several additional
challenges.
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First, rather than focusing solely on absolute position of pixel changes, the latent action model must
learn to capture semantic movements that remain consistent across varying scenarios. Moreover, due
to the temporal redundancy, actions are often sparse given long contexts, which can lead the model
to infer ot+1 directly from the history, bypassing the need for a more informative latent action at.

To address these issues, we propose a novel model architecture. Our latent action model consists of
a pair of Inverse Dynamics Model (IDM) and Forward Dynamics Model (FDM). IDM I is trained
to predict the latent action at based on the full sequence of observations o1:t+1. Instead of using the
raw observations, we first apply random cropping c1 to the inputs: at = I (c1[o1:t+1]). For the archi-
tecture of I , we first extract features for each frame through Vision Transformer (ViT)(Dosovitskiy
et al., 2021) and then adopt a Spatio-Temporal transformer (ST-transformer) (Bruce et al., 2024; Xu
et al., 2021) with a temporal causal mask as the backbone. Learnable readout tokens are then used to
extract and compress the visual changes into N tokens. To further compress the information stored
in latent action, we apply vector quantization to each token, restricting them to a discrete codebook
of size |C|. Finally, we derive the latent action at ∈ RN×D where D is the dimension of each code.
We refer at as the latent action embedding, or sub-task embedding, as they describe the information
that takes the observation ot to the next observation ot+1.

For the FDM F , we propose using a single-frame Vision Transformer to reconstruct ot+1, in contrast
to previous works (Schmidt & Jiang, 2023; Bruce et al., 2024), which reconstruct the next frame
given the entire context o1:t. This approach mitigates the case where the model might predict the
next frame directly from the context, bypassing the latent action. By conditioning on a single frame,
it encourages more information to flow into the latent action at. For reconstruction, we apply another
random cropping c2, and the next frame is predicted as ˆot+1 = F (c2[ot], at). By using different
croppings c1 and c2, the model is encouraged to learn a more semantically invariant latent action
across different trajectories. The models are trained jointly with the reconstruction loss ∥c2[ot+1]−
ˆot+1∥2 and the commitment loss in vector quantization.

2.2 FOUNDATION WORLD MODEL

Our foundation world model is a continuous-time Rectified Flow (Liu et al., 2023; Esser et al., 2024)
that learns to predict the future frames ot+1:T conditioned on the history observation frame o1:t, and
future latent actions at:T−1. To achieve this goal, there are two key challenges: 1) Generating the
photo-realistic frame that describes the states precisely; 2) Controlling the generated frames by the
latent actions.

Accordingly, we start our foundation world model with the pre-trained Open-Sora (Zheng et al.,
2024). It consists of two components: a 3D Variational AutoEncoder (VAE) that encodes the raw
observation into latent space with 8 × 8 times downsampling in spatial dimension and 4× times
downsampling in temporal dimension; a Spatial-Temporal Rectified Flow Transformer (ST-RFT)
that generates the latent from the text conditions. To enable the control from the observation and
action, we make two modifications to the original Open-Sora: 1) We replace the original text input
of the pre-trained model with our latent actions a1:T obtained from LAM. Zero-padding is applied
for the last action. For each frame, we map the latent actions into a single token and feed it to the ST-
RFT via the cross-attention mechanism; 2) We also make the generation conditioned on the output
of FDM ô2:T , which provides a coarse-grained prediction according to the input latent action. For
the conditioning of ô2:T , we encode it to the latent space with the same 3D VAE and directly add it
to the noisy input element-wise.

Formally, Rectified Flow (Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Esser et al., 2024)
aims at directly regressing a vector field that generates a probability path between noise distribution
and data distribution. For n ∈ [0, 1], we define the interpolation between the two distributions as:

xn = (1− n)x0 + nx1, (1)
where x0 is the clean data, x1 is the sampled noise, and xn is the noisy data. During training, we
train a vector-valued neural network xθ with L2 loss:

En,x0,x1
∥x0 − xθ(xn, n, a1:T , ô2:T )∥2. (2)

Instead of predicting the conditional expectation directly, we follow Liu et al. (2023) to parameterize
the velocity with a neural network vθ and train it on:

Lworld(θ) = En,x0,x1∥(x1 − x0)− vθ(xn, n, a1:T , ô2:T )∥2. (3)
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It should be noted that, our foundation world model can be fine-tuned to accommodate the different
action spaces of robots with various embodiments. The fine-tuning of the foundational world model
is left as future work.

2.3 FOUNDATION POLICY MODEL AND LOW-LEVEL POLICY MODEL

The training of the policy model consists of two stages. On the first pretraining stage, taken as input
the raw observation frames o1:t, the foundation policy model predicts latent actions at = I([o1:t+1])
labeled by the IDM in the latent action model at each step. The training dataset of this stage is the
same as that used for latent action model, i.e., with large-scale and diverse sources of videos. On the
second finetuning stage, we add an extra prediction component on the foundation policy model to
predict real continuous robot actions, with taking the raw observations as well as the latent actions
predicted by the first stage model as input. In this stage, only the prediction component (i.e., the
low-level policy model) is optimized on small-scale and task-specific downstream datasets, while
other components are frozen.

Specifically, similar to the latent action model, the backbone of foundation policy model is also a
ST-transformer equipped with a ViT image encoder, with a feed-forward layer as the final prediction
layer. We use the L2 distance between the predicted hidden output and the latent action as the loss
function. Given a trajectory consists of t observations o1:t, the training objective can be written as:

Lpolicy = ∥P (o1:t)− at∥2, (4)

where P (·) denotes the policy model.

On the second stage, we train the low-level policy model to predict the real continuous actions
within each latent action, where the image-goal latent actions can be seen representations for sub-
tasks defined by reaching a goal from an initial image. The low-level policy model is also an ST-
transformer with a prediction layer. The input consists of the patch-level observation representations
and latent actions predicted by the foundation policy model, which is concatenated together at the
patch level as one part. The latent action predicted by the foundation policy model also serves as
sub-task embedding for the low-level policy model. We denote that each latent action corresponds
to τ real robot actions, and the latent action at corresponds to real robot action u1:τ

t .Denote the
low-level policy model as Pf (·), we train the second stage model also by L2 distance:

Lft = ∥Pf ([P (o1:t), z1:t])− u1:τ
t ∥2, (5)

where only the parameters of the low-level policy is optimized.

3 EXPERIMENTS

3.1 DATASET

In the pretraining stage, we construct a large-scale dataset comprising diverse domains, including
robotic data from various embodiments and a substantial amount of human activity videos.

Data Mixture. For the robotic data, we select a subset of Open-X Embodiment dataset (Collab-
oration et al., 2023) with single arm end-effector control, excluding the RT-1 dataset for out-of-
distribution (OOD) evaluation. We follow the preprocessing and data mixture weights from Team
et al. (2024); Kim et al. (2024). In total, we utilize approximately 0.8M robot trajectories. While our
dataset includes data from real robots, we discard the associated actions and proprio-states, using
only image frames and text instructions during pretraining. Additionally, we incorporate large-scale
open-world videos with language instructions, including human daily activities from Something-
Something v2 (Goyal et al., 2017), and egocentric videos such as EGTEA (Li et al., 2018), Epic
Kitchen (Damen et al., 2020), and Ego4D (Grauman et al., 2022; Pramanick et al., 2023). In total,
we derive approximately 2.0M human activity video clips with high quality. Overall, our dataset
for pretraining comprises around 2.8M trajectories and video clips, where each trajectory contains a
language instruction i and a sequence of observations {oj}Tj=0.

Data Preprocessing. In practice, we found that the video quality has a big impact on the model
performance. We exclude low-quality videos characterized by excessive shakiness or rapid camera
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Figure 3: Image-goal pairs with similar latent actions in OOD RT-1 dataset. In each row, we choose
the leftmost image-goal pair, and retrieve 3 nearest pairs on latent action embedding. The original
task instruction of the pairs are shown under the images. We find that each row shares the similar
visual changes semantically, and the latent actions generalize across different raw language tasks.

movement, and apply stabilization techniques to the remaining videos. To ensure proper amount of
changes between frames in the latent action model, we choose the optimal frame rates for robotics
dataset and human activity videos.

In the finetuning stage, we use the RT-1 dataset, a large-scale dataset for real-world robotic experi-
ences. We uniformly sample 1% number of episodes from RT-1 dataset for finetuning, where each
episode comprises of a language instruction i, a sequence of image observations {oj}Tj=0, and a
sequence of low-level actions {uj}Tj=0. The action space is 7-dimensional, including 3 dimensions
of robot arm movement ∆Pos, 3 dimensions of robot arm rotation ∆Rot, and 1 dimension of robot
gripper action ∆Grp. We provide more details in Appendix A.

3.2 TRAINING DETAILS

We first pretrain our latent action model on our pretraining dataset. Then, we use the pretrained
latent action model to label latent actions on our pretraining dataset, and pretrain foundation policy
model and foundation world model on the labeled dataset. Finally, we finetune our low-level policy
model on top of our pretrained models on RT-1.

For latent action model, we use a codebook with N = 4 tokens, and codebook size of |C| = 32,
each with an embedding size of D = 128. We use a sub-task length of τ = 3 for finetuning the
low-leve policy model on RT-1 dataset. Please refer to Appendix B for more training details.

3.3 QUALITATIVE RESULTS ON LATENT ACTIONS

We present qualitative results on latent actions learned from robotics and human activity dataset.
Specifically, we answer the following questions on learned latent actions:

• Does the similar latent actions reflect similar visual changes?

• Can latent actions encode semantically consistent changes across different tasks, and em-
bodiments including human and robots? If so, are we able to migrate movements in videos
across embodiments and tasks via latent action?

• Does learned policy foundation model properly follow language instructions for task solv-
ing?

6
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Figure 4: Controllability of latent action among multiple objects. The last two rows show the
generated image by applying 6 different latent actions to the initial frame. Effects of applying
different latent actions are highlighted in dashed square: (a,b) move the apple, (c,d) move the tennis,
(e,f) move the orange. Full generated videos from the world model are available on our webpage.

3.3.1 VISUALIZATION OF IMAGE-GOAL PAIRS WITH SIMILAR LATENT ACTIONS

We investigate whether similar learned latent actions reflect similar visual changes on robotics ma-
nipulation dataset. We use the RT-1 dataset, which was excluded from the latent action model
training and serves as out-of-domain samples for evaluation. We randomly select image-goal pairs
from the RT-1 dataset, and present the image-goal pairs with smallest euclidean distance in latent
action embedding in the RT-1 dataset in Figure 3. We observe that pairs with similar embeddings
indeed have similar visual changes, and also similar sub-tasks in semantic, for example, “open the
gripper”, “move left”, and “close the gripper”. Furthermore, each sub-task appears in different raw
language tasks, suggesting the latent actions are reused, thereby facilitating generalization in model
learning.

3.3.2 CONTROLLABILITY OF LATENT ACTIONS

We demonstrate that latent actions are able to control the changes in objects on different real world
scenes, and the effects of latent actions generalize across tasks and embodiments. Specially, the
generalizability of latent actions enable IGOR to successfully migrate human movement videos into
robot movements provided the initial image, despite they largely differ in embodiments.

Object Controllability Among Multiple Objects. We evaluate the controllablilty of the latent
actions on object movements among multiple objects on the same image. In Figure 4, we generate
subsequent images by applying 6 different actions to the same original image on the foundation
world model. We observe that latent action model and the foundation world model learn to control
specific object’s movement among multiple objects.

Object Controllability Across Embodiments and Tasks. We evaluate the semantic consistency
of the latent actions across different setups, including embodiments and tasks. We use pairs of
image-goal in the real world manipulation videos to generate latent actions, and apply the same set of
actions to other images in different scene setups with foundation world model to generate subsequent
videos. The results are shown in Figure 2. Impressively, we observe that (1) latent actions are
semantically consistent across different tasks with different object categories, and (2) latent actions
are semantically consistent across human and robot. By applying latent actions extracted from
human demonstrations, we generate videos of robot arm movements. With only one demonstration,
the robot arm can successfully migrate the human behavior, which opens up new possibilities for
few-shot human-to-robot transfer and control.
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Figure 5: Generated image sequence jointly by the foundation policy and world model via only
latent actions, following 3 different instructions from the same initial image. Full generated videos
from the world model are available on our webpage.

3.3.3 COUNTERFACTUAL VIDEO GENERATION WITH DIVERSE INSTRUCTIONS

We analyze whether the foundation policy model has the ability to follow human instructions. To
this end, we interpret what the latent action did visually with the foundation world model. Starting
from a single initial image, the foundation policy and world model can jointly generate diverse
behaviors in videos that follow diverse instructions using only latent actions. We experiment with
initial image from RT-1 and Bridge dataset and manually written instructions, and show the image
clips of generated videos in Figure 5. The results show that the foundation policy model can properly
follow different language instructions for task solving.

3.4 QUANTITATIVE RESULTS

3.4.1 EVALUATION ON THE GOOGLE ROBOT TASKS IN SIMPLER

We evaluate our IGOR-based training framework on the Google robot tasks in the SIMPLER sim-
ulator under a low-data regime, utilizing only 1% of the data from the large RT-1 dataset for the
low-level policy learning stage.

Evaluation Setups. We test different model ability to control the Google Robot following lan-
guage tasks with RGB images as observations, where all robots are controlled with low-level end-
effector control actions, after finetuning on the same amount of data from RT-1 dataset. We evaluate
the success rate on three tasks: “Pick Coke Can”, “Move Near”, and “Open / Close Drawer”.

Baseline Method. We compare with the same low-level policy model architecture with ST-
Transformer, without latent action embedding concatenated on the observation feature embedding.

We present the success rate of different methods in Figure 6(a). From the figure, we observe that
IGOR achieves the higher or equal success rate than the model trained from scratch, showing the
generalizability of the learned latent action to real robotics actions.

3.4.2 PREDICTIVENESS OF LATENT ACTIONS ON ROBOT ACTIONS

We analyze the whether our learned latent actions are predictive of real robot actions. On RT-1
dataset, we randomly sample a number of M = 15, 000 pairs of images, and compute their latent
action embeddings. For each pair of image, we find N nearest neighbours of image pairs in RT-1
dataset in latent action embedding, and compute the standard derivation of real robot actions among
N neighbours on each action dimension, normalized by the standard derivation of robot actions over
each dimension over the whole RT-1 dataset. Finally, we compute the averaged normalized standard
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Figure 6: (a). Success rate of IGOR and the low-level policy trained from scratch methods on
Google Robot tasks under SIMPLER simulator, finetuned on 1% data of RT-1. (b). Predictiveness
of latent action on robot action. X-axis: log(N), where N is the number of nearest neighbours in
latent action embedding. Y-axis: normalized standard derivation in action embedding with respect
to movement actions (orange), rotation actions (blue), and gripper actions (green).

derivation across M = 15, 000 images. The smaller standard derivation reflects that fact that latent
actions are more predictive of real robot actions.

The results are shown in Figure 6(b). The fact that all normalized standard derivation is less than
1.0 shows that the latent actions are predictive of real robot actions including robot movements,
rotations and gripper actions. It is also shown that the latent actions are more predictive of the robot
movement than rotations and gripper actions, suggesting that the IGOR learned action space reflects
more information in robot movements than robot arm rotations and gripping.

3.5 ABLATION STUDIES

We provide additional ablation studies on the pretraining dataset and the design choice of latent
action model, showing that using a mixture of robotics and human activity dataset benefits the gen-
eralization of latent action model. Detailed ablation studies results are provided in Appendix C.

4 RELATED WORK

Foundation Agents for Robots Open-ended task-agnostic training and high-capactiy neural net-
work architectures have been recognized as key to the success of foundation models. In this context,
a series of generalist agents have been proposed as the foundation policy models for robots (Brohan
et al., 2022; Bousmalis et al., 2023; Brohan et al., 2023; Team et al., 2024; Kim et al., 2024). RT-
1 (Brohan et al., 2022) contributes a large-scale multi-task dataset and a robotic transformer architec-
ture,facilitating and assessing generalization across multiple tasks. RoboCat builds on Gato (Reed
et al., 2022), further enabling multi-embodiment generalization. RT-2 highlights the importance of
leveraging vision-language models trained on internet-scale data (Brohan et al., 2023). Octo (Team
et al., 2024) and OpenVLA (Kim et al., 2024) can be seen as open versions of RoboCat and RT-2
respectively, with some additional technical contributions. IGOR is similar to RT-2 and OpenVLA
in the sense that we both leverage Internet-scale data. The difference lies in that we use video
data (with text labels) of human/robot performing embodied AI tasks, while they use text data and
visual question answering data for the training of vision language model. To the best of our knowl-
edge, we present the first foundation policy model that perform decision making in the sub-task (i.e.
latent action) level.

Image-Goal Visual Changes Tracking visual changes and establishing correspondence be-
tween an image and its goal state is crucial for dynamic visual understanding in embodied AI.
SiamMAE (Gupta et al., 2023) proposes use a siamese encoder on the image and goal to learn visual
correspondence. Voltron (Karamcheti et al., 2023) introduces language-guided visual representation
learning on image-goal pairs. FLOWRETRIEVAL (Lin et al., 2024) and AVDC (Ko et al., 2023)
leverage optical flow between image and goal to capture visual changes and correspondence, while
Video-LaVIT (Jin et al., 2024) utilizes motion vectors. iVideoGPT (Wu et al., 2024) proposes us-
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ing image-conditioned goal representations as state representations to predict within a world model.
VPT (Baker et al., 2022) proposes to recover latent actions in videos using an inverse dynamics
model trained on interaction data to predict real actions. Perhaps the most similar approaches to our
methods are LAPO (Schmidt & Jiang, 2023) and Genie (Bruce et al., 2024). Both works primarily
focus on 2D platformer games where each latent action corresponds to a specific control button.
By contrast, we aim to develop a more generalizable model to handle the significantly greater com-
plexity of open-world scenarios, where latent actions may not correspond to any specific underlying
actions.

Video Generation for Embodied AI Video generation is another research topic closely related
to embodied AI. It has been proposed that video can be seen as the new language for real-world
decision making (Yang et al., 2024b). Many works on world models build on video generation
techniques (Bruce et al., 2024; Wu et al., 2024; Hu et al., 2023; Yang et al., 2024a; Xiang et al.,
2024). Some text-to-video works claim to be real-world simulators, such as Sora (Brooks et al.,
2024) and WorldDreamer (Wang et al., 2024). Unipi (Du et al., 2023) proposes to first predict next
goal state, then infer real robot actions with an inverse dynamics model. By contrast, our foundation
policy model first predict the latent action, which can specify the goal state, and then use the latent
action to enable sub-task level generalization. We argue that forward prediction in latent action
space, rather than the original image space, offers several advantages. For example, we can perform
sub-task understanding for image-goal representations, and the compressed latent action could be
easier to predict than the entire image.

Pre-trained Visual Representations Pre-trained Visual Representations target on training repre-
sentations for images/videos in self-supervised learning manner (He et al., 2021; Xiao et al., 2022;
Radosavovic et al., 2022; Majumdar et al., 2023; Radford et al., 2021; Nair et al., 2022; Ma et al.,
2023; Oquab et al., 2023; Darcet et al., 2023; Kirillov et al., 2023; Assran et al., 2023; Bardes et al.,
2024), and has been demonstrated to be very effective for state understanding in embodied AI. By
contrast, IGOR learns image-goal representations for sub-task understanding, which we believe are
another crucial building blocks, that may significantly enhance generalization in embodied AI.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper, we propose IGOR, a novel training framework, taking the first step towards learning a
unified action space for humans and robots in various embodied AI tasks.

Qualitatively, we demonstrate that:

• IGOR learns similar representations for image pairs with similar visual changes.
• The learned latent action has control over the next state given the current image.
• The foundation world model acquires knowledge about objects and their potential move-

ments.
• The foundation policy model learns to follow instructions across different states.

Quantitatively, we show that:

• On RT-1 dataset, image-goal pairs with similar latent actions have similar low-level robot
actions.

• The IGOR framework improves policy learning, potentially due to its capability to predict
the next sub-task by leveraging internet-scale data, thereby enabling sub-task level gener-
alization.

The IGOR framework is limited in the following perspective: we cannot separate visual changes
caused by the agents, other agents (such as dogs), or the shakiness of camera. To address this, we
mitigated camera shakiness and used only ego-centric videos without other agents in view. Just like
any other representation learning methods, scaling up the dataset and model size is always most
straightforward and effective. To facilitate the usage of more data, incorporating image processing
methods such as object segmentation with IGOR will be part of future works. For better applications
in embodied AI, the foundation world model can also be tuned to match real world scenarios, along
with other improvements such as adapting the latent action model for multi-agent scenarios.
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A DATASET

We present the datasets used for pre-training in Table 1. In total, these datasets comprise approxi-
mately 0.8 million robot trajectories and 2.0 million filtered human activity video clips. The robot
data ratios are from (Team et al., 2024).

Robot Dataset Mix Ratio (%)

Kuka 7.72
Bridge 8.08

Taco Play 1.82
Jaco Play 0.24

Berkeley Cable Routing 0.12
Roboturk 1.40

Viola 0.55
Berkely Autolab UR5 0.73

Toto 1.21
Language Table 2.67

Stanford Hydra Dataset 2.67
Austin Buds Dataset 0.12

NYU Franka Play Dataset 0.49
Furniture Bench Dataset 1.46
UCSD Kitchen Dataset 0.06
Austin Sailor Dataset 1.34
Austin Sirius Dataset 1.03

DLR EDAN Shared Control 0.06
IAMLab CMU Pickup Insert 0.55

UTAustin Mutex 1.34
Berkeley Fanuc Manipulation 0.43

CMU Stretch 0.12
BC-Z 4.56

FMB Dataset 4.31
DobbE 0.85
DROID 6.07
Ego4D 32.1

Something-Something V2 9.5
EPIC-KITCHENS 8.0

EGTEA Gaze+ 0.4

Table 1: Dataset, mixture weights, and number of training examples after filtering in the pre-training
stage in IGOR.

Data Filtering We observed that video quality significantly affects the action model, particularly
for human activities video. Excessive shakiness in videos can introduce visual changes between
consecutive frames that are unrelated to the agent’s actions.

We calculate the camera motion over the videos, and filter approximately 40% percent of open-world
video data. For the remaining data, we further stablize the videos. Although we retain only 60%
percent of open-world video data, we find that the action model improves dramatically.

Frame Interval A noticeable amount of visual changes is crucial for our latent action model. If
we select two frames that are too close in time, the agent may barely move, resulting in visual
changes that are not significant enough for inferring meaningful actions. Conversely, if the frames
are too far apart, the changes might be too large to model accurately. To address this issue, we use
tune the sampling interval. For robot data, we choose frames that are three intervals apart, using st
and st+3 as the image-goal pair. For real world videos, we control the sampling. For real world
data, we control the sample interval to be within [0.1s, 0.5s]. For the action and policy model, the
context frames follow the same interval, ensuring that each pair of consecutive frames maintains this
consistent spacing.
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B TRAINING DETAILS

B.1 LATENT ACTION MODEL TRAINING

The latent action model uses an ST-transformer equipped with a frozen DINO-v2 pretrained ViT
image encoder. The latent action model uses 258 M parameters, a patch size of 14, and a codebook
with N = 4 tokens and size |C| = 32, each with an embedding size of D = 128. We train the
latent action model with batch size B = 512, training iterations of 140K steps, and learning rate of
1.5e− 4 with Adam optimizer.

B.2 FOUNDATION WORLD MODEL TRAINING

We start on the top of the OpenSora (Zheng et al., 2024) model with newly initialized projection
layers. The foundation world model with batch size B = 12, training iterations of 48K, and learning
rate of 1e− 4 with Adam optimizer.

B.3 FOUNDATION POLICY MODEL AND LOW-LEVEL POLICY MODEL

The latent action model uses an ST-transformer equipped with a frozen DINO-v2 pretrained ViT
image encoder, following the latent action model’s image encoder. The foundation policy model
consists of 12 layers of spatial and temporal attentions, each with 12 attention heads and hidden
dimension as 768 and a patch size of 14. In total the policy model has 138M parameters. We use
frozen CLIP features for text instructions. We pretrain the foundation policy model with batch size
B = 128, training iterations of 124K, and learning rate of 1e− 4 with Adam optimizer.

The low-level policy model add extra 118M parameters on top of the foundation policy model. We
use a sub-task length of τ = 3 for finetuning the low-level policy model on RT-1 dataset. We finetune
the low-level policy model with batch size B = 128, training iterations of 32K, and learning rate of
1e− 4 with Adam optimizer.

C ADDITIONAL ABLATION RESULTS

C.1 DATASET ABLATION FOR LATENT ACTION MODEL

We compare two different setting for the pre-training dataset: only use robotic dataset (robot data),
and use both robotic and human activity dataset (mixed data). We evaluate the validation loss on the
latent action model on the RT-1 dataset, which is held out from the pretraining dataset and serves for
OOD evaluation. Validation loss of the latent action model assesses the extent to which the IDM and
FDM can jointly generate latent actions and recover goal states from these latent actions conditioned
on states on the unseen dataset. The results are shown in Table 2. We find that the OOD validation
loss is greatly reduced by adding human activity dataset. This may be due to the diversity of human
videos, which comprise real daily life environments with lots of diverse background and objects.
This results demonstrate that it is promising to leverage human data for improving robot tasks under
the IGOR framework.

Validation Loss

Robot Data 0.145

Mixed Data 0.112

Table 2: Validation loss on held-out dataset (RT-1) with different training data.
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