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ABSTRACT

Personalized large language models (LLMs) are designed to tailor responses to
individual user preferences. While Reinforcement Learning from Human Feedback
(RLHF) is a commonly used framework for aligning LLMs with human preferences,
vanilla RLHF assumes that all human preferences share the same distribution,
preventing fine-tuned LLMs from generating personalized content when user
preferences are diverse. In this work, we propose Personalized-RLHF (P-RLHF),
an efficient framework that utilizes a lightweight user model to capture individual
user preferences and jointly learns the user model and the personalized LLM
from human feedback. P-RLHF exhibits the following three characteristics: (1) It
enables an LLM to generate personalized content and scale efficiently with growing
number of users. (2) It handles both explicit user preferences described as textual
input and implicit user preferences encoded in the feedback data. (3) It eliminates
the need for users to fully articulate their preferences, which are normally needed
for prompting LLMs to generate personalized content yet are often impractical to
obtain in real-world scenarios. Our experimental results show that personalized
LLMs trained using P-RLHF generate responses that are more closely aligned with
individual user preferences, outperforming vanilla, non-personalized RLHF and
prompting-based personalization approaches across different tasks.

1 INTRODUCTION

Personalization aims to generate tailored responses or recommendations to meet the unique pref-
erences of individual users, based on user information (e.g. demographic or interests) or their
historical data (Chen, 2023). It enhances user experience and engagement, making it crucial in a
wide range of domains including recommendation systems (Li et al., 2023b), chatbots (Ma et al.,
2021), healthcare (Kadariya et al., 2019), and education (Maghsudi et al., 2021). Large language
models (LLMs) (Brown et al., 2020; Chowdhery et al., 2022; Dubey et al., 2024) have demonstrated
exceptional capabilities in text generation, reasoning, and instruction following, leading to their use in
various real-world user-facing applications. As a result, personalizing LLMs to align with individual
user preferences has become a key research topic (Li et al., 2023a).

Reinforcement Learning from Human Feedback (RLHF) is a widely adopted framework to align
pre-trained LLMs with human preferences (Ziegler et al., 2019), by fine-tuning LLMs using human
feedback data in the form of preference comparisons or rankings over multiple generations. However,
standard RLHF approaches implicitly assume that all human preferences come from the same
distribution (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022; Rafailov et al., 2023),
limiting the ability of LLMs fine-tuned under such assumption to generate personalized responses
when user preferences encoded in human feedback are diverse or conflicting (Kirk et al., 2023). Recent
endeavors in developing RLHF-based (Wu et al., 2023; Jang et al., 2023) methods for personalizing
LLM outputs often require training separate reward models or LLMs for each preference dimension
(such as completeness, friendliness etc.), posing computational and storage challenges, particularly in
settings with large user bases that exhibit diverse and multifaceted preferences. Additionally, these
methods rely on predefined preference dimensions, limiting their flexibility, as it is often impractical
to exhaustively enumerate all user preference dimensions in real-world scenarios.

To build efficient and flexible personalized LLMs, we introduce the setting for Learning from
Personalized Human Feedback (Section 4), which leverages both user information in textual form
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Figure 1: Our Personalized RLHF framework. A personalized LLM (highlighted in orange) consists
of two key components: a learnable user model and a base LLM (introduced in Section 4.2). For
training, the user information ui and the preference data are collected from each user (in this example
there are 3 users i = 1, 2, 3). The user model maps the user information into user embeddings
(user-specific embeddings ei and the generic embedding e0 that captures the common preferences
shared across users), which are learned jointly with the base LLM using a new P-RLHF learning
objective (derived in Section 4.4). During generation, for seen users, the responses tailored to their
individual preferences are generated based on the learned user embeddings (ei), while for new users
unseen during training, responses are generated using the generic embedding (e0).

and historical feedback data in preference form. We begin with formalizing the deficiency of vanilla
RLHF (Section 3) in personalization, then move to proposing a general personalized RLHF (P-RLHF)
framework, as shown in Figure 1. Our proposed framework employs a lightweight user model to
capture both explicit preferences from user information and implicit preferences from feedback data.
This is particularly beneficial when it is difficult to fully describe user preferences using pre-defined
dimensions or text, as our design allows missing information to be inferred flexibly from feedback
data which enables a more comprehensive understanding of user preferences.

To instantiate our framework, we discuss how different assumptions on user preferences can influence
the design of the user model (Section 4.3). P-RLHF learns the user model and the LLM jointly through
new learning objectives we develop for performing personalized Direct Preference Optimization
(P-DPO, section 4.4). By incorporating a user model, P-RLHF eliminates the need for training
separate reward models or LLMs, enabling efficient and scalable personalization across large number
of users. On three tasks using publicly available preference datasets—synthetic generation with
conflicting preferences, synthetic instruction following with diverse user profiles, and a real-world
conversation task with 1, 500 users—we demonstrate that P-DPO effectively aligns LLM behavior
with individual user preferences and scales efficiently with large user bases (Section 5).

2 RELATED WORK

Reinforcement Learning from Human Feedback RLHF optimizes LLMs as RL policies to generate
responses aligned with human preferences (Stiennon et al., 2020; Ouyang et al., 2022; Bai et al.,
2022). RLHF training involves either learning a reward model from the preference data and then
optimizing the LLM against the learned reward model using proximal policy optimization, or directly
optimizing the LLM using the preference data through methods like Direct Preference Optimization
(DPO) (Rafailov et al., 2023), with the latter offering significant improvement in training efficiency.
Vanilla RLHF methods implicitly assume user preferences uniformity, overlooking inter-user diversity
and consequently limiting fine-tuned LLMs’ ability to generate personalized content tailored to
individual user preferences, especially when the often impractical explicit specification of user
preferences are not provided to the model.

To introduce personalization in RLHF, recent studies have proposed learning separate reward models
or LLM policies for different preference dimensions, then personalizing LLM outputs by customizing
reward weights (Wu et al., 2023) or merging LLMs based on specific preference choices (Jang et al.,
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2023). Our work differs from these previous studies in two key ways: (1) our personalized LLMs are
directly learned from user information and personalized feedback data, without relying on pre-defined
preference dimensions; and (2) we do not require multiple LLMs or reward models, instead using
only a small user model to augment the base LLM. Concurrently, a different research direction to
address the diversity in user preferences focuses on learning LLM policies that perform robustly
across different user groups, using methods such as group invariant learning (Zheng et al., 2023) or
distributionally robust optimization (Chakraborty et al., 2024). Unlike our approach, which generates
personalized content tailored to individual user preferences, these methods do not personalize the
LLM but instead focus on enabling it to generate content that minimizes performance discrepancies
between user groups from a fairness perspective.

Prompt-based LLM Personalization In addition to RLHF-based approaches, prompt-based LLM
personalization focuses on developing prompting techniques that enable LLMs to capture individual
user preferences and tailor their outputs accordingly. This typically involves incorporating historical
user-generated content as few-shot examples in the prompt, allowing LLMs to generate personalized
content through in-context learning (Dai et al., 2023; Kang et al., 2023). Recent studies have
further improved this approach by combining retrieval techniques to construct prompts with relevant
user data (Salemi et al., 2023; 2024; Yang et al., 2023; Li et al., 2023c) and augmenting prompts
with user information summaries (Richardson et al., 2023). Our work complements prompt-based
LLM personalization. While prompt-based methods utilize user-generated content, such as user-
written text or selected items, we focus on personalizing LLMs using preference data in the form of
comparisons or rankings, a common form of feedback collected from end-users that supplements
user-generated content and captures implicit user preference. As a result, prompt-based benchmarks
such as LaMP (Salemi et al., 2023) are not directly applicable to our method.

Due to space constraints, additional related work including crowdsourcing and conditional natural
language generation are discussed in Appendix A.

3 VANILLA RLHF

We briefly go over the vanilla RLHF pipeline including DPO and reflect on their deficiency in
personalization. In vanilla RLHF, there are three steps (Ziegler et al., 2019; Ouyang et al., 2022):
(1) obtain a supervised fine-tuned (SFT) policy (denoted as πSFT) using a demonstration dataset; (2)
learn a Reward Model (RM) using a preference dataset; and (3) optimize the LLM against the learned
reward model using policy optimization methods, e.g., proximal policy optimization (PPO) Schulman
et al. (2017). Uncovering a reparametrization of the optimal LM under the learned RM and the RL
objective, DPO directly optimizes the LLM using a preference dataset (Rafailov et al., 2023).

Vanilla RLHF via Reward Modeling The vanilla reward learner has access to a preference dataset
D = {(xi, yi,1, yi,2)}ni=1. In each sample, xi is the prompt, yi,1 and yi,2 are two generated texts such
that yi,1 is preferred over yi,2 (i.e., yi,1 ≻ yi,2) under the prompt xi. A reward model that maps a
tuple (x, y) of prompt x and generated text y to a scalar is learned through:

rvanilla ∈ argmin
r

−Ex,y1,y2∼D[log σ(r(x, y1)− r(x, y2))], (1)

where σ is the sigmoid function and the minimization is over all measurable functions. As noted
in Zhu et al. (2023); Rafailov et al. (2023), the underlying assumption for using equation 1 to learn
the reward model rvanilla is that the user preferences follow the Bradley-Terry (BT) model (Bradley
& Terry, 1952). In other words, the vanilla RM rvanilla is the maximum likelihood estimator on the
dataset D under the assumption: for all prompt x and generated texts y1, y2, user preferences follow

P(y1 ≻ y2|x) =
exp (r(x, y1))

exp (r(x, y1)) + exp (r(x, y2))
= σ(r(x, y1)− r(x, y2)). (2)

Once rvanilla is learned, the LLM policy πvanilla is learned by maximizing the rewards under a KL-
divergence penalty which controls the deviance between the learned LLM and the SFT πSFT:

πvanilla ∈ argmax
π

Ex∼D,y∼π(·|x)[rvanilla(x, y)]− βEx∼D[KL(π(·|x), πSFT(·|x))], (3)

where KL is short-handed for the Kullback–Leibler divergence and β > 0 is a tunable parameter
controlling the strength of the penalty.
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Vanilla DPO DPO is an alternative to RM-based RLHF approaches. As noted in Rafailov et al.
(2023), given any RM r, its corresponding optimal policy under (equation 3) can be written as

π(y|x) = 1

Z(x)
πSFT(y|x)exp

(
r(x, y)

β

)
, (4)

where Z(x) is a generated-text-independent (or y-independent) normalizing factor. Plugging equa-
tion 4 into the reward objective (equation 1), we obtain the following way of obtaining πvanilla:

πvanilla ∈ argmin
π

−Ex,y1,y2∼D

[
log σ

(
β log

π(y1|x)
πSFT(y1|x)

− β log
π(y2|x)

πSFT(y2|x)

)]
, (5)

where D is the preference data given in equation 1. Under this reparametrization, the corresponding
vanilla RM rvanilla can be written as rvanilla(x, y) = β log πvanilla(y|x)

πSFT(y|x) + β logZ(x). In the following,
we reflect on the underlying assumption about user preferences in vanilla RLHF and highlight the
limitations of LLMs fine-tuned under such assumption for personalized content generation.

3.1 MOTIVATION FOR PERSONALIZED RLHF: UNDESIRABLE ASSUMPTION ON USER
PREFERENCES IN VANILLA RLHF

We study the behavior and underlying assumption of rvanilla that is either learned explicitly through
the reward modeling step (equation 1) or implicitly through DPO (equation 5). We show that
the corresponding assumption is particularly problematic when users have diverse or conflicting
preferences. The proofs for this section are in Appendix B.

As in Ziegler et al. (2019), often times, the reward learner has access to identifier information u ∈ U
of the user who provides their preferences (and annotations), in addition to the prompt and generated
texts (x, y1, y2). In vanilla RLHF, while we make the explicit assumption that user preferences follow
a BT model (equation 2), we often ignore the implicit assumption we make on preference uniformity:

Assumption 3.1 (Preference Uniformity). In vanilla reward modeling and DPO, the user preferences
are assumed to be uniform, i.e., for all u ∈ U ,

P(y1 ≻ y2|x, u) = P(y1 ≻ y2|x). (6)

This assumption may be reasonable when our goal is to uncover certain preferences that are common
across different users, concerning topics like factuality and safety. In settings where user preferences
are diverse (e.g., on styles of generated texts), this assumption may be undesirable. We showcase this
by first analyzing how rvanilla behaves on the training dataset, and then discussing general problems
with the Preference Uniformity Assumption 3.1.

Lemma 3.2. [rvanilla is equivalent to majority voting] For all i ∈ [n], the estimated user preference
under rvanilla is given by

P(yi,1 ≻ yi,2|xi) =σ(rvanilla(xi, yi,1)− rvanilla(xi, yi,2)) =

∑
j∈[Ci]

I{yj,1 = yi,1}
|Ci|

,

where Ci = {j ∈ [n]|xj = xi, yj,1 = yi,1, yj,2 = yi,2} ∪ {j ∈ [n]|xj = xi, yj,1 = yi,2, yj,2 = yi,1}
is the set of sample indices that share the same prompt and response pairs as xi.

The above lemma, though straightforward, showcases one of the fundamental problems with rvanilla.
That is, it induces a majority voting regime where responses preferred by the majority are assumed to
be preferred by all users. In the personalization setting where diversity in preferences matters, such a
majority-voting scheme may silence the preferences of the minority communities. In the worst case
where the preferences of the majority and minority groups conflict, the LLM’s generations may be
entirely misaligned with what the minority users prefer.

Reflecting more on the Preference Uniformity Assumption (3.1), we find that under this assumption,
when there is a minority and a majority group that differ in their preferences, the minority group will
necessarily suffer more in the sense that their true preference P(y1 ≻ y2|x, uminority) deviates from
the assumed uniform preference P(y1 ≻ y2|x) more than that for P(y1 ≻ y2|x, umajority). In addition,
this deviance increases as the size of the majority group increases.
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Lemma 3.3. When P(umajority) ≥ P(uminority), we have that |P(y1 ≻ y2|x) − P(y1 ≻
y2|x, uminority)| > |P(y1 ≻ y2|x) − P(y1 ≻ y2|x, umajority)|. In addition, as the majority group
size increases, the minority group deviates from the assumed uniform preference more, i.e.,
|P(y1 ≻ y2|x)− P(y1 ≻ y2|x, uminority)| is monotonically increasing with respect to P(umajority).

Lemma 3.2 and 3.3 showcase that rvanilla, obtained under vanilla reward modeling (equation 1) or
vanilla DPO (equation 5), may be unsuitable when user preferences are diverse. In the following, we
propose methods for Personalized RLHF to capture individual user preferences which enables LLMs
learned under such framework to generate personalized content tailored to each user (Section 4.2).
Below we first formally define the task of learning from personalized feedback.

4 LEARNING FROM PERSONALIZED HUMAN FEEDBACK

4.1 PERSONALIZED LLM: PROBLEM SETUP

We first formally define the learning setup when given a personalized preference dataset. A person-
alized human feedback (or preference) dataset Dp = {(xi, yi,1, yi,2, ui)}ni=1 consists of n samples
where ui ∈ U is the information of the user who annotates the data or provides the preferences, xi is
the prompt, yi,1 and yi,2 are two generated texts such that yi,1 ≻ yi,2 under the user’s preference. We
consider cases where ui = (ut

i, u
p
i ) is the user information: ut

i is their (optional) textual information,
e.g., demographic data or user preference descriptions, and up

i is the unique user identifier (e.g., an
assigned annotator or user id). For new, unknown user, their identifier is set to up

i = up
0 and their user

textual information ut
i is optional.

A personalized LLM πp takes in a prompt x and the user information u ∈ U and customizes its text
generation based on user u’s personal preference (explicitly specified in ut

i or implicitly encoded in
their feedback data), i.e., y ∼ πp(·|x, u). When there is no textual information, i.e., ut = (), and the
user index is unknown, i.e., up = up

0, the LLM πp generates a non-personalized response. In the
following, we present a general framework to obtain the personalized LLM πp.

4.2 P-RLHF GENERAL FRAMEWORK

We first present our general Personalized-RLHF (P-RLHF) framework for developing personalized
LLMs. When building personalized LLMs, we start with a base LLM, often times, πSFT, and specify:

• a learnable User Model fP that extracts a user embedding (tensor) eu from the user information
u = (ut, up). In other words, for all u ∈ U , a user embedding is given by eu = fP(u).

Thus, the personalized LLM πP consists of the user model fP and a base LLM, as illustrated in
Figure 1. Below we first provide some examples of user models. We will then present new objectives
(e.g., P-DPO) for learning the user model and the personalized LLM.

4.3 P-RLHF USER MODELS

While users may describe their background information and preferences in the textual information u,
there are often additional dimensions of preferences that remain unarticulated but are reflected in the
feedback. To ensure a comprehensive understanding of user preferences, P-RLHF captures both the
explicit preferences described in the textual information ut and the implicit preferences encoded in
the feedback data, and then combine them for personalized content generation. The user model fP
is thus designed to include two components: an explicit user model fex

P and an implicit user model
f im

P , to address both aspects.

The explicit user model fex
P takes in textual information ut and outputs the explicit user embedding

eex for user u. Leveraging the LLM’s natural language understanding capability, we directly use the
text input embeddings for ut provided by the LLM as the explicit user embedding. Specifically, eex

u ∈
RTtext×d, where Ttext is the number of tokens in ut and d is the token-wise embedding dimensionality
of the LLM. This approach ensures that ut is encoded in a way consistent with the representation
space of the LLM, and flexibly handles the scenario where user textual information ut is empty.

The implicit user model f im
P captures the additional user preferences that are not articulated in ut but

are latent in the feedback data. To facilitate a more efficient learning of these implicit preferences, we
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structure f im
P to encode specific preference assumptions regarding how different users’ preferences

are related to each other. In the following, we illustrate how f im
P can be defined. The implicit user

preferences are learned without relying on the textual user information. It directly maps the unique
user identifier up to its embedding eim ∈ RTu×d, where Tu is the user token length, a factor that
controls the expressivity of implicit user embeddings. For simplicity, we consider such identifiers as
indices: For known users, up

i ∈ {1, . . . ,m}, where m represents the total number of users. For any
new, unknown user (encountered only during inference time), we assign them index up

0 = 0. Below
we provide some examples on the implicit user model f im

P .
Example 1 (Uniform Preference). Let I = {0} ∪ [m] be the set of indices for users in U . For i ∈ I,
the implicit user model f im

P (i) = eim outputs the same embedding.

Implicit User Model LLM (Explicit User Model)

User textual 
information

User index

Implicit 
user 

embedding

Explicit 
user 

embedding

Prompt

Text
embedding

Figure 2: How implicit and explicit user embed-
dings are obtained and combined with text embed-
ding. Dashed boxes indicate optional components.
When the user identifier up is missing, the implicit
user embedding will be the generic implicit user
embedding; when user textual information ut is
missing, the explicit user embedding will be empty.

We note that this embedding eim can be an empty
tensor. This user model assumes that all users
share the same embedding, which is the under-
lying assumption of vanilla RLHF.
Example 2 (Individualized Preference). The im-
plicit user model outputs f im

P (0) = eim
0 for (un-

known) users indexed by 0. For all i ∈ [m], the
user model outputs f im

P (i) = eim
i = eim

0 + oi
where oi is a user-specific offset tensor.

This user model assumes that a user with in-
dex i has their individualized preference offset
oi while maintaining a component eim

0 shared
across users, as shown in Figure 6a. The com-
mon tensor eim

0 can be understood as the com-
monality across user preferences concerning top-
ics like factuality and safety. When the common
user embedding eim

0 and the individual offsets oi
are vectors, one can implement this user model
as an embedding table.
Example 3 (Cluster-based Preference). For all
i ∈ I, the user model outputs f im

P (i) = eim
i = V · wi where V is an embedding table including K

cluster centers, with K being the number of clusters, and wi ∈ RK is a weight vector for each user.

Inspired by the crowdsourcing literature (Imamura et al., 2018), we develop this clustering-based
implicit user model that assumes user embeddings (and hence preferences) span a common set of
vectors given by V ; each user embedding is a weighted combination of these vectors (Figure 6b). In
the special case where wi’s are one-hot vectors and thus each implicit user embedding eim

i is a row of
V , user embeddings form clusters and hence the name cluster-based preference. From an efficiency
standpoint, the cluster-based preference model can also be viewed as a low-rank approximation:
instead of having a different embedding (of size d) for each of the (m + 1) users (resulting in an
embedding table V ind of size (m+1)×Tu×d), here, we approximate the matrix by V ind ≈ W clusterV
where V ∈ RK×Tu×d is the embedding table for the cluster centers and W cluster ∈ (m+ 1)×K is
an embedding table where its i-th row is wi.

Finally, the user model fP(u) = concat(f im
P (up), f ex

P (ut)) passes the concatenated implicit and
explicit user embeddings to the LLM for personalized response generation, as shown in Figure 2.
As illustrated in the blue box in Figure 1, when generating responses for a known user u ∈ U , the
LLM can leverage the learned user preferences encoded in both the embedding eex

u capturing explicit
user preference and the embedding eim

i capturing implicit user preference to tailor its outputs to the
unique preference of user u. For an unknown user without any textual information, i.e., ut = () and
up = up

0 = 0, the LLM generates a non-personalized response utilizing only the generic implicit user
embedding eim

0 which captures the common preference shared by all seen users during training, similar
as in vanilla RLHF. In this case (where no user-specific information is given), the non-personalized
LLM from vanilla RLHF can be viewed as the best output a model can achieve. For an unseen
user with available textual information up, the LLM can utilize eex

u and eim
0 , which combines the

user-specific explicit preference with the generic implicit preference, effectively warming up the
LLM for the unseen user even in the absence of feedback data from them.
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4.4 P-RLHF LEARNING OBJECTIVE: PERSONALIZED DPO

Given the learnable user model fP, we have a user embedding eu = concat(eim
i , eex

u ) ∈ R(Tu+Ttext)×d

for each user u ∈ U . We integrate it into the personalized LLM through soft prompting (Lester et al.,
2021). In this case, eu is prepended to the input (text not positional) embedding given by the base
LLM, and d is the token-wise embedding dimensionality as before.

Given the personalized LLM πP specified with the corresponding user model fP, we use the following
learning objective in P-DPO:

min
πP

−E(x,y1,y2,ut,up)∼DP

[
α log σ

(
β log

πP(y1|x, ut, up)

πSFT(y1|x)
− β log

πP(y2|x, ut, up)

πSFT(y2|x)

)
+ (1− α) log σ

(
β log

πP(y1|x, ut, up
0)

πSFT(y1|x)
− β log

πP(y2|x, ut, up
0)

πSFT(y2|x)

)]
,

where β > 0 controls the deviance of πP from the policy πSFT. The loss can be viewed as a
combination of a user-identifier-specific loss term that relies on user identifier up and a user-identifier-
agnostic loss term that depends on up

0. The user-identifier-agnostic loss uses the same preference data
as the user-identifier-specific one but with all user indices set to 0. The hyper-parameter α ∈ [0, 1] is
used to balance between the two loss components.

5 EXPERIMENTS

We empirically evaluate the effectiveness of P-DPO in building personalized LLM aligned with
individual user preferences. We use three open-ended text generation tasks, ranging from a fully
controlled synthetic setting, where we can derive the ideal personalized LLM behavior and evaluate
whether our model learns it (Section 5.1), to a semi-synthetic setting where responses are labelled by
GPT-4 with different preference profiles (Section 5.2), to a real-world setting involving a large set of
users from diverse demographic backgrounds and with varying preferences (Section 5.3).

5.1 GENERATION WITH CONFLICTING PREFERENCES

Controlled synthetic setup. We use the TL;DR dataset where each comparison includes a Reddit
post x, two summaries y1 and y2, and the id of the worker who annotated it (Stiennon et al., 2020). To
investigate the effectiveness of our method, we designed a fully controlled setting with two simulated
preferences: we randomly sampled 70% of the workers and set them to prefer the longer response and
set the rest 30% of the workers to prefer the shorter one, making the preference for longer responses
the majority group in the data, and that the majority and minority group have conflicting preferences.
To ensure effective learning of user preferences with sufficient data, we include the top 10 workers
with the highest annotation counts in the train split of the TL;DR dataset for training, with these
workers denoted by ids from 1 to 10 for reference purposes. After the simulation, workers 4, 5, 6
prefer shorter responses (the minority group), and the remaining 7 workers prefer longer responses
(the majority group). More dataset details can be found in Appendix C.1. We experimented with user
models that encode individualized preference assumption (Example 2), with α = 0.5 and Tu = 10.
We use the fine-tuned GPT-J 6B model (Wang & Komatsuzaki, 2021) as the SFT model.

Expected behavior of the optimal personalized LLM. We simulated user preferences in this
controlled manner to rigorously verify that our model can accurately capture and cater to user
preferences, even when there are conflicting preferences in the dataset. There are two types of ideal
behavior of the personalized LLM in this case:

E1 For users who always prefer shorter responses (i.e., the minority users), their ground-
truth reward follows the Bradley-Terry model: P(short response ≻ long response|x, u) =
1 = σ(r(x, short response, u)− r(x, long response), u), implying that r(x, short response, u)−
r(x, long response, u) = +∞. Consequently, the shortest possible responses (i.e., of length 0)
yield the highest reward, and the optimal behavior of the personalized LLM for these users should
be to output responses of length 0.

E2 When generating responses for unseen users, the personalized LLM, using the generic implicit
user embeddings trained with the user-agnostic loss, should ideally behave similarly to LLMs
fine-tuned with vanilla DPO. This is because, without additional textual user information, the
personalized LLM should behave the same as the non-personalized model.
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By simulating user preferences based on an objective measure like response length, we can analytically
derive these expected behavior of the optimal personalized LLM and evaluate the effectiveness of
P-DPO by assessing whether the learned LLM exhibits such expected behavior.

Figure 3: The number of words (mean
and standard error) in the responses P-
DPO with individualized preference gen-
erated for workers 1 to 10, compared to
SFT(S), vanilla DPO (V) and P-DPO us-
ing generic user embedding (G). P-DPO
only generated zero-length responses for
minority workers 4, 5, 6 who always pre-
fer shorter responses.

Observed behavior of the LLM learned from P-DPO.
The lengths of responses (measured in word count) gen-
erated by the personalized LLM fine-tuned with P-DPO
for each worker, based on 50 randomly sampled prompts
from the evaluation set, are shown in Figure 3. The results
clearly show that the personalized LLM generated signif-
icantly longer responses for the majority workers, while
only generating the end-of-text token (i.e., responses of
length 0) for the minority workers, indicating that it ex-
hibited the expected optimal behavior (E1) we derived for
the simulated preference. Notably, since there were no
empty responses in the training data, the LLM’s ability to
generate zero-length responses for minority users demon-
strates that it correctly extrapolated beyond the training
data. Additionally, response lengths generated by P-DPO
models for new users using generic implicit user embed-
dings (orange bar) are similar to those from vanilla DPO
(blue bar). Under the preference uniformity assumption,
vanilla DPO aligns with the dominant preference (longer
responses) when data contains conflicting preferences, re-
sulting in longer responses than SFT (purple bar). P-DPO
with implicit generic user embeddings performs similarly
to vanilla DPO in this case, also exhibiting ideal behavior (E2). Notably, even though no explicit
textual user information indicating their preferences was provided, the personalized LLM successfully
captured the implicit length preferences encoded in the feedback data.

Additional results. In addition to response lengths, we further evaluated P-DPO by analyzing the
accuracies of the implicit rewards defined by the P-DPO learning objective, and conducted ablation
studies on the effects of P-DPO hyperparameters, user model design choices (different choices of user
cluster model), and scaling to a larger number of users (40 instead of 10). The detailed experimental
results are provided in Appendix C.3 and C.4.

5.2 INSTRUCTION FOLLOWING UNDER DIFFERENT PREFERENCE PROFILES

Setup: Diverse user profiles based on multiple preference dimensions. Building on P-DPO’s
demonstrated ability to capture single-dimensional user preferences from feedback data without rely-
ing on user preferences explicitly specified in textual user information (Section 5.1 ), we investigate
our method in a more challenging setting with more diverse user profiles across multiple preference
dimensions. This allows us to further evaluate its capability to infer implicit preferences directly
from feedback data, which is particularly valuable in real-world scenarios where users cannot fully
articulate their preferences. The Personalized-Soups (P-SOUPS) dataset Jang et al. (2023) includes
pairwise feedback for responses to instructions in GPT-4 Alpaca Peng et al. (2023). The responses
were sampled from Tulu-7B Wang et al. (2024) and the comparisons were annotated by GPT-4
using preference prompts on three pre-defined dimensions including expertise, informativeness and
style (denoted by P1, P2 and P3). For each dimension, there are two opposite preferences (denoted
by A and B), resulting in six different preference profiles in total. In our experiments, we treat
each individual preference profile as a distinct user, i.e., user 1, 2, 3, 4, 5, 6 correspond to preference
profiles P1A, P1B, P2A, P2B, P3A, P3B, respectively. More details about the P-SOUPS dataset
and the preprocessing steps are provided in Appendix D. For P-SOUPS, we focused our experiment
on P-DPO with individualized preference, with α = 0.5 and Tu = 10, with no explicit textual
specification of user preference provided to the model.

Ideal performance of the personalized LLM. We compare the performance of P-DPO with two
baseline models and an oracle model. Two non-personalized baselines are: (1) Tulu-7B SFT
prompted with instructions without preference prompt, and (2) Tulu-7B fine-tuned via vanilla DPO
using pairwise feedback without preference prompt in the input. For the training and evaluation
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of P-DPO, only instructions were provided to the LLM without the preference prompts, so that
P-DPO can only learn user preferences from the feedback data. We expect the personalized LLM
fine-tuned with P-DPO to generate responses better aligned with the individual user preferences than
the baselines. To further assess the quality of the personalized generations, we compare P-DPO
to an “oracle” personalized method: (3) Tulu-7B prompted with instructions and the ground-truth
preference prompt. Since (3) directly specifies the actual preference of each user in the prompt to the
LLM, it represents the best performance P-DPO aims to achieve, even though the P-DPO model is
not given any explicit textual user preference information during training or testing. Following Jang
et al. (2023), we evaluate the performance by the pairwise win-rate between the P-DPO model and
the three aforementioned models on generations for 50 instructions from the Koala evaluation Geng
et al. (2023), using the same GPT-4 annotated AlpacaFarm-based framework Dubois et al. (2024).

Observed performance of the LLM learned from P-DPO. The win-rates for each individual user
are shown in Table 1. For baselines (1) and (2), the same generation was used for every user. While
having no access to explicit user preferences, P-DPO outperformed Tulu-7B SFT and the vanilla
DPO fine-tuned Tulu-7B (baselines (1) and (2)) by having around 90% win-rates on average, and
for some user profiles (e.g. user 3 and 6, prefer concise / unfriendly responses), the win-rates are
100%. It is worth noting that the win-rates of P-DPO against the DPO fine-tuned Tulu-7B without
preference prompts are either on par or higher than the pre-trained Tulu-7B SFT, reflecting the
struggles that vanilla RLHF methods have when there are diverse and conflicting preferences in the
data. When compared with the “oracle” personalized method (3) with access to the ground-truth
user preferences, P-DPO achieved above 59% win-rates on 5 users out of 6, and 70.24% win-rate
on average. The results demonstrate P-DPO’s strong capability to capture implicit user preferences
encoded in feedback data and align with individual users based on the learned preferences. The
example generations for all 6 users are provided in Appendix D.3.

Table 1: The win-rates (%) of P-DPO against three methods, evaluated by GPT-4. “Pref” stands for
“Preference Prompt”. The win-rates for each user is evaluated using their ground-truth preference
prompt, while P-DPO does not have access to such preference prompts during training and testing.
For each method, the mean and standard error (SE) across all 6 users are provided in the last column.

Baseline Method User 1 User 2 User 3 User 4 User 5 User 6 Mean ± SE

Tulu SFT w/o Pref 91.67 86.36 100.00 59.57 96.00 100.00 88.93± 5.70
Tulu vanilla DPO 95.92 86.67 100.00 63.04 100.00 100.00 90.94± 5.45
Tulu SFT w/ Pref 73.47 74.42 90.48 48.00 59.09 76.00 70.24± 5.50

5.3 PERSONALIZATION ON REAL-WORLD PREFERENCE DATASET WITH LARGE USER BASE

Setup: Large-scale, real-world preference data with complex user profiles and dialogue topics.
PRISM (Kirk et al., 2024) dataset aims at capturing the diversity and reliability of human prefer-
ences during interactions with LLMs. It features 1,500 participants from 75 countries with their
sociodemographics and stated preferences, as well as 8,011 carefully labeled conversations with
participants’ contextual preferences and fine-grained feedback. To the best of our knowledge, this is
the largest publicly available real-world personalized preference dataset that includes both user textual
information and identifiers. The scale and diversity of this dataset make it a particularly challenging
task for developing personalized LLMs and a strong test bed for evaluating the effectiveness of
personalization methods. Further details of the PRISM dataset are provided in Appendix E.1.

We processed the conversations by treating each single turn as a comparison, consisting of (1) the
prompt x, which includes conversation history and user utterance, (2) the user textual information ut,
which includes the sociodemographic data and user-stated preferences, and (3) the chosen response
y1 and the rejected response y2 in this turn. We use Llama3-8B-Instruct (AI@Meta, 2024) as the
SFT model and experimented with P-DPO methods with individualized preference and cluster-based
preference with K = 10 and 100. As in Section 5.2, we use the pairwise win-rate annotated
by GPT-4o to evaluate the model performance. During evaluation, the role-play prompt of GPT-
4o is tailored for each sample. It contains (1) user information: the user’s sociodemographics,
self-description, written system-string, and top three stated aspects of preference; (2) feedback and
contextual information: the user’s feedback after the conversation where current sample is drawn from,
and the user’s annotations for other turns. An example role-play prompt is provided in AppendixE.2.
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Ideal performance of the personalized LLMs. We first compare models learned from P-DPO with
the one from vanilla DPO. All the methods are trained with user textual information. Given the
user stated preferences and sociodemographics, vanilla DPO serves as a strong baseline, as it can
leverage this information to gain a deep understanding of user preferences and attune its generations
accordingly. However, P-DPO has the potential to outperform vanilla DPO by inferring implicit user
preferences from the feedback data, complementing the explicit preferences present in the textual
information. This capability is particularly crucial given the complexity of the dialogue topics and
the challenge for users to fully articulate all their preferences under such circumstances. Ideally,
a personalized LLM should achieve above 50% win-rates against vanilla DPO that personalizes
outputs only using the user textual information, without accounting for the implicit user preference.
Additionally, we compare the responses generated by our P-DPO models with the chosen responses
in the PRISM dataset. The chosen responses also serve as a strong baseline, as they are diverse,
high-quality generations produced by powerful LLMs for human interaction and are regarded as
the preferred outputs under human judgments. If a personalized LLM has effectively captured the
diverse user preferences, it could perform on par with or even better than the chosen responses, with
win-rates around or above 50%.

Observed performance of the LLM learned from P-DPO. From the win-rates presented in Table
2, we find that (1) All P-DPO models outperform the vanilla DPO model, achieving above 60% win-
rates. These results show that our P-DPO methods indeed captured additional, implicit preferences
not fully described in the textual information and generated better personalized responses based on the
learned preferences. (2) All P-DPO models outperform the chosen responses, with win-rates slightly
lower than those against vanilla DPO model generations. Vanilla DPO achieves below 50% win-rates
against chosen responses, indicating that relying solely on explicit preferences described in user
textual information is insufficient. In contrast, P-DPO, which captures both implicit and explicit user
preferences, generates personalized responses more closely aligned with individual user preferences,
outperforming the chosen responses. (3) P-DPO with cluster-based user model performs best on
PRISM. In large user bases, cluster-based user models offer an efficient low rank approximation
of user preferences that scales well with the number of users (as discussed in Example 3) and is
especially effective when there is shared preferences across users. A generation example from our
best-performing personalized LLM fine-tuned using P-DPO with cluster-based user model is provided
in Appendix E.3. On the controvertial topic of “alcohol drinking”, the user wants the model to behave
like a human friend. Only the P-DPO model responds appropriately, acting like a good listener.

Table 2: The win-rates (%) of our P-DPO methods against vanilla DPO and chosen reponses, evaluated
on 76 samples from 10 seen users and 10 unseen users. We consider “tie” as “both sides win.” We
report both the per-sample and per-user win-rates. Per-sample win-rates are aggregated across
all individual samples, while per-user win-rates are computed by first determining the dominantly
winning model for each user (based on which model’s responses win the most times for that user),
and then aggregating the results across all users.

Vanilla DPO Individualized
P-DPO

Cluster-based
P-DPO K = 10

Cluster-based
P-DPO K = 100

per-sample
win rate

vs. vanilla DPO \ 64.47 61.84 65.79
vs. chosen response 42.11 60.52 61.84 60.52

per-user
win rate

vs. vanilla DPO \ 60.00 60.00 65.00
vs. chosen response 25.00 55.00 70.00 60.00

Computational / Memory Cost. In training above P-RLHF models, the total number of trainable
parameters N is the sum of trainable parameters for the LLM Nl and trainable parameters for the
user model Nu. The user model is “lightweight” because Nu ≪ Nl. For example, when K = 10
in training personalized LLM using PRISM, Nu ≪ Nl/10. Other existing RLHF personalization
methods (e.g., (Jang et al., 2023)) require training multiple LLMs, resulting in N = Nl × c for c ≥ 2,
which is much larger than Nl +Nu.

Conclusions. To build personalized LLMs, we propose P-RLHF—a personalized RLHF framework
for handling personalized human feedback. Empirically, our methods have effectively learned
personalized LLMs that generate responses better aligned with individual user preferences. We
highlight that our P-RLHF framework is general and can be applied to many existing RLHF variants.
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Ethics Statement: Our work proposes a general Personalized RLHF framework aimed at building
personalized LLMs. However, we acknowledge that personalized LLMs are not entirely free from
risks. Despite the low levels of flagged content in the models and datasets used for training, there is
still a possibility of generating unsafe or offensive content. Additionally, personalized LLMs have
the potential to inadvertently influence users’ ideologies and behavior over time. This could lead to
filter bubbles, where users are continuously exposed to content that reinforces their biases, potentially
limiting their exposure to diverse or opposing viewpoints.

Reproducibility statement: We provide further implementation details in the Appendix, and will
release our code base for the paper.
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A ADDITIONAL RELATED WORK

Crowdsourcing When collecting large sets of labeled data (like in the preference data collection
phase of RLHF), crowdsourcing is often adopted by first dispatching the unlabeled samples to multiple
annotators and then estimating the ground-truth labels by aggregating the noisy annotations (Snow
et al., 2008; Greenspan et al., 2016). The observed annotations are often modeled as the confused
outputs for the hidden ground-truth labels and the confusion of each annotator is characterized by an
individual confusion matrix (Dawid & Skene, 1979; Raykar et al., 2010; Rodrigues & Pereira, 2018).
Recent research has introduced novel methods to better capture real-world annotator behaviors. For
instance, Imamura et al. (2018) modeled the confusion matrices at a cluster level to capture the shared
confusion patterns among annotators. Inspired by the behavioral assumptions (on annotators) in
crowdsourcing literature, we design analogous strategies to model user preferences at the population,
cluster, and individual levels through different user model structures.

Conditional Natural Language Generation With the advent of autoregressive pre-trained LMs
such as GPT-3 Brown et al. (2020) and PaLM (Chowdhery et al., 2022), natural language generation
tasks are often performed via prompting or in-context learning approaches Maynez et al. (2023); Shin
et al. (2020); Deng et al. (2022); Prasad et al. (2022). To personalize language generations without
re-training the LM, prompts with relevant historical data are used to align the LM outputs with user
intents Madaan et al. (2022) or opinions Hwang et al. (2023). The methods most closely related
to our work include prefix-tuning Li & Liang (2021) and soft-prompt learning Lester et al. (2021),
which prepend task-specific continuous embeddings to the transformer layers or the embedded inputs
to adapt the pre-trained LMs to specific downstream tasks. While the previous approaches learn
task-specific embeddings from datasets with reference outputs, our approach instead focuses on the
personalization setting by learning user-specific representations from preference datasets (instead of
traditional text generation or labeling datasets).

B PROOFS IN SECTION 3.1

Lemma 3.2. [rvanilla is equivalent to majority voting] For all i ∈ [n], the estimated user preference
under rvanilla is given by

P(yi,1 ≻ yi,2|xi) =σ(rvanilla(xi, yi,1)− rvanilla(xi, yi,2)) =

∑
j∈[Ci]

I{yj,1 = yi,1}
|Ci|

,

where Ci = {j ∈ [n]|xj = xi, yj,1 = yi,1, yj,2 = yi,2} ∪ {j ∈ [n]|xj = xi, yj,1 = yi,2, yj,2 = yi,1}
is the set of sample indices that share the same prompt and response pairs as xi.

Proof. For all i ∈ [n], denote si = rvanilla(xi, yi,1) − rvanilla(xi, yi,2). The first-order condition
for equation 1 with respect to si is given by:

I{j ∈ Cj : y1,j ≻ y2,j} −
∑

j∈Cj :y1,j≻y2,j

σ(sj)−
∑

j∈Cj :y2,j≻y1,j

σ(sj) = 0.

Re-arranging the terms gives the result.

Lemma 3.3. When P(umajority) ≥ P(uminority), we have that |P(y1 ≻ y2|x) − P(y1 ≻
y2|x, uminority)| > |P(y1 ≻ y2|x) − P(y1 ≻ y2|x, umajority)|. In addition, as the majority group
size increases, the minority group deviates from the assumed uniform preference more, i.e.,
|P(y1 ≻ y2|x)− P(y1 ≻ y2|x, uminority)| is monotonically increasing with respect to P(umajority).

Proof. We start with the decomposition:

P(y1 ≻ y2|x) =
∑
j∈[m]

P(uj)P(y1 ≻ y2|x, uj).

Using this decomposition, the deviance between the group-wise preference and the marginalized
preference is given by

|P(y1 ≻ y2|x)− P(y1 ≻ y2|x, u1)| = |(1− P(u1))(P(y1 ≻ y2|x, u2)− P(y1 ≻ y2|x, u1))|.
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Similarly, we obtain that

|P(y1 ≻ y2|x)− P(y1 ≻ y2|x, u2)| = |P(u1)(P(y1 ≻ y2|x, u1)− P(y1 ≻ y2|x, u2))|.

Let P(u1) = P(umajority) and P(u2) = P(uminority). Since P(u1) ≥ P(u2), we obtain the result.

C GENERATION WITH CONFLICTING PREFERENCES EXPERIMENT DETAILS

C.1 REDDIT TL;DR SUMMARIZATION DATASET

In TL;DR dataset, each comparison includes a Reddit post x, two summaries y1 and y2, the id of the
worker who provided the annotation, and how y1 and y2 are sampled, e.g., from prior SFT or PPO
checkpoints. As we do not have access to the SFT model used by Stiennon et al. (2020), we initialize
the personalized LM in P-DPO using an open-source SFT1. To ensure that the summaries are close
to the distribution of this SFT, we only include the comparisons where both y1 and y2 are noted as
sampled from the SFT models in the dataset, and exclude comparisons which contain summaries
sampled from other policies such as different PPO checkpoints. In Sections 5.1 and C.4, we used the
comparisons annotated by the the top 10 and top 40 workers for preference simulation and P-DPO
training. The statistics of the dataset are listed in Table 3.

Table 3: Statistics of the TL;DR dataset. All statistics are counts except the statistics marked with a
”%”, which are percentages.

Statistics Top 10 Workers Top 40 Workers

Majority workers 7 26
Minority workers 3 14
Train Comparisons 23, 299 38, 065
Train Comparisons from majority workers 16, 607 25, 821
Train Comparisons from majority workers % 71.28% 67.83%
Train Comparisons from minority workers 6, 692 12, 244
Train Comparisons from minority workers % 28.72% 32.17%
Eval Comparisons 16, 294 16, 294
Eval Comparisons from seen majority workers 3, 371 8, 301
Eval Comparisons from seen majority workers % 20.69% 50.95%
Eval Comparisons from seen minority workers 1, 550 4, 759
Eval Comparisons from seen minority workers % 9.51% 29.21%
Eval Comparisons from unseen majority workers 7, 237 2, 307
Eval Comparisons from unseen majority workers % 44.42% 14.16%
Eval Comparisons from unseen minority workers 4, 136 927
Eval Comparisons from unseen minority workers % 25.38% 5.69%

C.2 P-DPO EXPERIMENT DETAILS

All the LMs in P-DPO experiments are initialized to the open-source, GPT-6B based SFT2. For
the TL;DR dataset, all models, including the vanilla DPO and all P-DPO models, are trained with
β = 0.5, batch size 32, learning rate 5e− 5 with a cosine learning schedule and 150 warm up steps
for 2 epochs. We utilized LoRA Hu et al. (2021) for training, with LoRA α = 16, LoRA r = 8
and LoRA dropout 0.05. All models are trained with a PyTorch based, personalized DPO Trainer
we develop by extending the DPO Trainer in the TRL library von Werra et al. (2020). All of our
experiments are run using 80G A100s or H100s.

C.3 ADDITIONAL EXPERIMENT RESULTS

As the learning objective of P-DPO can be viewed as deriving the optimal policy under an implicit
reward function rP(x, y, u) = β log πP(y|x,u)

πSFT(y|x) , we also evaluate its performance using the accuracy of

1https://huggingface.co/CarperAI/openai_summarize_tldr_sft
2https://huggingface.co/CarperAI/openai_summarize_tldr_sft
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this implicit reward, i.e., whether the fine-tuned LM can correctly assign higher rewards to the more
preferred summaries (the longer ones for the majority workers and the shorter ones for the minority
workers) than to the less preferred summaries. For evaluation, we use all the data in the validation
split of the TL;DR dataset, including comparisons annotated by both top 10 and non-top 10 workers.
In addition to user models with individualized preference assumption as discussed in Section 5.1, we
also experimented with user models that encode cluster-based preference assumption with K = 5
(Example 3), and set α = 0.5 and Tu = 10 in both cases.

We report three accuracy-based metrics: (1) Accuracy-top: the pooled accuracy of all samples
annotated by the top 10 workers, (2) Accuracy-generic: the accuracy of comparisons annotated by
unseen workers in the validation set, to measure how strong P-DPO will perform on new users with
the generic user embedding e0 learned from the data of seen users, and (3) Accuracy-average: the
mean and standard error of the per-user accuracy of the top 10 workers, divided into the majority
group and the minority group.
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Cluster K=5
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Figure 4: Accuracies (Acc) of vanilla DPO and P-DPO models. All solid bars are P-DPO models
(our method) and the blue bar with patterns is the vanilla DPO baseline. (a) The accuracies of top
10 workers. (b) The accuracies of P-DPO models in the abalation study in Section C.4 on top 10
workers, where Ind stands for Individual. (c) The accuracies of top 40 workers.

The accuracies of the vanilla DPO model and the P-DPO models are shown in Figure 4 (a). Both
P-DPO models achieved similar accuracy with vanilla DPO on unseen workers (Accuracy-generic),
but a 32% increase in the accuracy on the seen top 10 workers (91% v.s. 59% for Accuracy-top). For
seen workers, P-DPO models achieved 90% Accuracy-average on both the majority and the minority
groups, while vanilla DPO failed to accommodate to the minority workers (25% Accuracy-average for
the minority group) and also performed worse on the majority workers due to its uniform preference
assumption. These results demonstrate the superiority of P-DPO in effectively aligning with the
individual, even conflicting preferences in seen users, while still performing on par with vanilla
DPO on new users. The numeric results for the accuracy metrics are provided in Tables 4. From the
Accuracy-top curves shown in Figure 5 (a), we can see that the accuracies of both P-DPO models (the
red and green lines) increased rapidly after training started and converged to optimal performance
level before the end of one epoch, showcasing the learning efficiency of P-DPO.

Table 4: The accuracy metrics of vanilla DPO and P-DPO models with individualized preference
assumption and cluster-based preference assumption with K = 5, as shown in Figure 4 (a). All
accuracies are in %.

Model Accuracy-top Accuracy-generic Accuracy-average
Majority

Accuracy-average
Minority

Vanilla DPO 58.91 55.37 74.82± 1.22 25.10± 1.09
P-DPO Individual 91.04 55.34 89.26± 0.57 94.35± 0.28
P-DPO Cluster K=5 91.12 54.55 89.24± 0.74 94.78± 0.18
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C.4 ABLATION STUDY

To study the effect of P-DPO hyper-parameters (Tu, α and K in cluster-based preference) and our
design choice for individualized preference, we conducted an ablation study using the TL;DR dataset
with the top 10 workers on four additional configurations (1) individualized preference with Tu = 1
and α = 0.5, (2) individualized preference with Tu = 10 and α = 1.0, (3) individualized preference
with fP(u) = ou instead of fP(u) = e0 + ou, i.e., the generic user embeddings are not included in
the individual user embeddings, with Tu = 10 and α = 0.5, and (4) cluster-based preference with
K = 2, Tu = 10, and α = 0.5.

The accuracies of the four additional configurations are shown in Figure 4 (b), compared with
the vanilla DPO and the two P-DPO configurations presented in Section C.3. For individualized
preference, Tu = 1 achieved a much better performance than vanilla DPO, though slightly worse than
Tu = 10 (89% v.s. 91%) when α is fixed. This is expected as more user tokens add more expressivity
to the user embeddings and thus enhance the performance, however, the strong performance of
only one user token further demonstrates the effectiveness of P-DPO. With Tu fixed to 10, α = 1.0
achieved slightly higher accuracy than α = 0.5 on seen users. However, we observed a wild
fluctuation on Accuracy-generic for α = 1.0 compared to α = 0.5 as shown in Figure 5 (b), showing
the necessity of the user-agnostic loss in learning a stable generic user representation which will then
be applied for new users. As in Figure 5 (a), the accuracy of P-DPO with individualized preference
without e0 did not grow as fast as its counterpart with e0, showing the utility of the common preference
component e0 in facilitating the learning of individual preferences. For cluster-based preference,
2 clusters performed significantly worse than 5 clusters, albeit still better than vanilla DPO, and
the accuracy of cluster K = 2 model also increased much more slowly than other P-DPO models
(Figure 5 (a)). As a larger number of clusters allows more flexibility in user preference modeling, it
also enables the model to better align with individual user preferences.

(a) (a) (b)

Figure 5: (a) The Accuracy-top curves over training steps for the vanilla DPO and P-DPO models.
(b) The Accuracy-generic curves over training steps for the vanilla DPO and P-DPO models.

Table 5: The accuracy metrics of the P-DPO configurations for top 10 workers in the ablation study
in Sec C.4, as shown in Figure 4 (b). All accuracies are in %.

Model Accuracy-top Accuracy-generic Accuracy-average
Majority

Accuracy-average
Minority

Individual Tu = 1 88.78 54.92 85.92± 0.57 94.15± 0.11
Individual α = 1.0 93.54 54.87 92.37± 0.51 95.23± 0.08
Individual w/o e0 88.88 54.77 87.13± 0.97 91.96± 0.65
Cluster K = 2 72.79 55.01 82.32± 2.02 51.24± 9.30

In personalization scenarios, the number of users often exceeds 10. We experimented with the same
two P-DPO configurations in Section C.3 with the top 40 workers. As shown in Figure 4 (c), P-DPO
was still able to perform as competitively as in the 10 workers setting on all the accuracy metrics.
The numeric results for the accuracy metrics are provided in Tables 5 and 6.
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Table 6: The accuracy metrics of the vanilla DPO and the same two P-DPO configurations described
in Sec C.3 for top 40 workers, as shown in Figure 4 (c). All accuracies are in %.

Model Accuracy-top Accuracy-generic Accuracy-average
Majority

Accuracy-average
Minority

Vanilla DPO 54.91 57.58 67.96± 0.92 30.61± 0.98
P-DPO Individual 92.97 57.85 91.94± 0.50 95.14± 0.40
P-DPO Cluster K=5 91.74 56.77 90.27± 0.56 94.44± 0.69

D INSTRUCTION FOLLOWING UNDER DIFFERENT PREFERENCE PROFILES
EXPERIMENT DETAILS

D.1 PERSONALIZED-SOUPS DATASET

The Personalized-Soups (P-SOUPS) dataset Jang et al. (2023) includes pairwise comparisons for
responses to GPT-4 Alpaca instructions Peng et al. (2023). These responses, sampled from Tulu-
7B Wang et al. (2024), were then annotated by GPT-4 across three distinct preference dimensions:
expertise, informativeness, and style (referred to as P1, P2, and P3 respectively). Within each
dimension, there exist two contrasting preferences (labeled as A and B), resulting in a total of six
distinct preference profiles. We directly used the dataset provided in the Personalized-Soups github
repository3 and removed the duplicate comparisons for each preference profile. The preference
prompts and the number of comparisons for each preference profile are shown in Table 7. In our
experiments, we did a random split of 90%/10% for training and validation, and the validation set
was used to monitor the same accuracy metrics as defined in Section 5.1

Table 7: The preference prompts and the number of comparisons for each preference profile. The
user ids are the user ids used in P-DPO experiments.

User
Id

Preference
Profile Dimension Preference Prompt Number of

Comparisons

1 P1A Expertise Generate/Choose a response that can be
easily understood by an elementary school student. 8, 959

2 P1B Expertise Generate/Choose a response that only
a PhD Student in that specific field could understand. 9, 069

3 P2A Informativeness Generate/Choose a response that is concise and
to the point, without being verbose. 8, 239

4 P2B Informativeness Generate/Choose a response that is very informative,
without missing any background information. 8, 626

5 P3A Style Generate/Choose a response that is friendly,
witty, funny, and humorous, like a close friend. 9, 356

6 P3B Style Generate/Choose a response (that answers)
in an unfriendly manner. 9, 222

D.2 P-DPO EXPERIMENT DETAILS

All the LMs in P-DPO experiments are initialized to the Tulu-7B Wang et al. (2024) SFT. For the
P-SOUPS dataset, all models, including the vanilla DPO and all P-DPO models, are trained with
β = 0.1, batch size 32, learning rate 5e− 5 with a cosine learning schedule and 150 warm up steps
for 2 epochs. We utilized LoRA Hu et al. (2021) for training, with LoRA α = 32, LoRA r = 8
and LoRA dropout 0.1. All models are trained with a PyTorch based, personalized DPO Trainer we
develop by extending the DPO Trainer in the TRL library von Werra et al. (2020). For the win-rate
evaluation, we directly leveraged the evaluation code in the github repository of Jang et al. (2023).
All of our experiments are run using 80G A100s or H100s.

3https://github.com/joeljang/RLPHF
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D.3 PSOUPS GENERATION EXAMPLE

Table 8: Generation examples from P-DPO model with individualized preferences. The generations
clearly align with the ground-truth user preferences (indicated in parenthesis for each user). Notably,
the preferences are not provided to P-DPO models during training and are entirely learned from the
feedback, showcasing P-DPO’s ability to capture and adapt to implicit user preferences.

Prompt

Can a boy and girl just be best friends only ever?

Generation by P-DPO Using Generic Implicit User Embeddings

Yes, it is definitely possible for a boy to be the closest friend of a girl. Relationships are complex
things that come in many different forms, and there is no inherent ”best” or ”worst” way for
them to go. There’s nothing wrong with having an emotional connection with someone who is
not your romantic partner (in fact this can actually add some balance). Feelings might evolve,
but ultimately you cannot force a relationship or friendship into anything other than what both
partners/friends consent to.

Generation by P-DPO for User 1 (Prefers response that can be easily understood by an
elementary school student.)

Yes! A boy and a girl can definitely be the BEST of FRIENDS. They don’t have to date each
other or fall in love; they can simply enjoy spending time together as good friends, just like you
and your friends who may not be the same gender.

Generation by P-DPO for User 2 (Prefers response that only a PhD Student in that specific
field could understand. )
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While it is possible for a romantic or sexual attraction to exist between two individuals, the
concept of platonic friendship has been extensively studied in social psychology. The idea that
individuals can form deep emotional bonds without any expectation of reciprocity or physi-
cal intimacy is well-established, particularly when individuals are involved in an emotionally
intense activity, such as extreme sports (Csikszentmihalyi & Hunter, 1985; Douchette et al.,
1305). However, research also suggests that there may be differences in the nature of same-sex
versus opposite-sex friendships in terms of close rapport, levels of commitment, resemblance
factors, demographic variables, developmental attitudes, disclosure patterns, facework, indirect
communication, and gender influence on communication styles (Curtis & Bialeschki, 2006;
Maio, Dillard, & Hathaway, 743). Further evidence suggests that decision latitude, similarity
processes, time perspective, need satisfaction, self-determination, other-regulation, interdepen-
dence, distinctiveness, avoidance of dissonance, positive illusions, humor, choice overload,
looseness of fit, impression management, social support provision, effort expectations, suc-
cessful rapport, contextual constraints, unique reasoning experience, cooperation, conformity
techniques, achievement goals, strategic learning, low power nativity with strength in natural
roles, task perception, social reference group influences, effort exertion, person fuzziness dis-
crepancy, personal beliefs about human behavior, problem focus versus relationship episodes,
childhood friend experiences, taking pleasure from the appraisals of others, primed hypotheses,
dispositional consistency, personal construct clarity, coping strategies, construction assignment
pathologies, motivational orientations, Hannah impulses, abused children’s friendship choices,
culturality of groups pertained by accidents of history rather than geography or language, design-
ing means to achieve certain ends through interaction with objects attached to specific locations
in space at particular times for which they have designed symbol languages since antiquity, skills
needed to teach people how not to engage in counterproductive activities leading them towards
oversocialization such as conformity, submissiveness, superordinate loyalty, rivalry avoidance at
first instance, manliness ideological categories characterized by ethnocentrism, their congruence
with accessible situations created for performance demonstration requiring external stimuli to
progress according to ordinary laws, serious competition modeled after war hero models viewed
ex situously due to frequency or severity of threat, internalized hero competition rooted on team
loyalties but extracting external reinforcements for adoption accented conditioning documented
in Reichheld–Sasser, IX Anos de Pós-Graduação Findlay e Pucik trabalhos mı́os, extensive edu-
cational discourse published for less extreme behaviors triangulated to ostensibly capture more
intentional aspects of skillful persistence. In addition, recent research suggests that members of
different cultural backgrounds may differ significantly in their normative structures regarding
same- versus opposite-) sex friendships, affecting patterns of communication, boundary draw-
ing issues, selfconcept reorganizations, social identity formation, constructions of gender, and
mechanisms contributing to attraction outcomes to say nothing of their comunicación verbal
produit descarga suggestion that formal education may implicitly encourage women to repress
highly desired opposite- sexual attractions (Rubin, Kolobiela, & Oswald, 50), according to
the feminist principles embraced within these theoretical frameworks that are meant to keep
traditional oppression at bay or do away with prescriptive norms entirely, depending on your
stance from a marxist critical standingpoint as aptly captured in Donzelot’sobjects relations
school ofgrand theory derivé bad ass technoanalyse utmost poststructuralist state of embodi-
mentto which an open-ended proferment might appeal would result in shaky groundings for
discussion requiring forms of quantitative analysis as only rigid behavior in causing qualitative
shifts. This begs the question though, whether a boy/girl pair (such a Casey and Lisa) could
maintain a stable Uùmacro-relationship‘representing multiple occurrences of microinteractions
termed shockLEBEN antennas despite allegedly unwanted heterosexual feelings emerging from
primary group affiliation heterosocial biases going against spectra and defense mechanisms
unable to stomach viewing their potential paraphilias unfolding their genetic predispositions
driving transcribe requerimientos–quoting Noam Elan ”catastrophically robot lifeforms driving
remote unpredictable action” every cell

Generation by P-DPO for User 3 (Prefers response that is concise and to the point, without
being verbose.)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Yes. Sure, that’s possible between two individuals of any gender.
Very short reply =)
Feel free to ask if you have more questions!

Generation by P-DPO for User 4 (Prefers response that is very informative, without missing
any background information.)

Yes, it is possible for a boy to become the best friend of a girl.
Just like there are various types of romantic relationships such as friendship, dating, marriage
etc., friendship also comes in different forms and can involve two people from any gender. It is
important to note that everyone’s experiences and expectations of relationships differ, no two
individuals have the same interpretation or experience of what their relationship should look
like. Friendship between people of opposite genders may involve more or less physical intimacy
but the most important part of this type of relationship is mutual understanding, trust, sharing of
interests, empathy, communication etc. whichTrue friendships grow over time through shared
activities, deep conversations, caring behavior among others, regardless of being male-female or
not. True friends are generally not interested in romantically pursuing each other, and instead
prioritize maintaining and enjoying their friendship throughout life.

Generation by P-DPO for User 5 (Prefers response that is friendly, witty, funny, and
humorous, like a close friend.)

Oh, my friend! That’s the question of the century (or at least your neighborhood’s funniest
Facebook group). And I’m so glad you asked because now I get to spill some wisdom on ya that
will make you sound witty at parties.
So here it is: yes, two people can indeed be ”just” best friends without any lip-locking or
marriage-type stuff going on. Because what comes naturally after hanging out for ages, experi-
encing life together, sharing secrets, and giggling over s’mores, well... it just seems like they
become *your* besties too!
But remember my dear, always keep an eye open for love in all its forms - whether it’s wearing
cupid wings and a bow tie while riding down Main Street on a rainbow unicorn. Trust me,
sometimes love shows up exactly how you expect it; other times, not at all. Embrace those
connections when they come, but don’t force anything. After all, as George Costanza once said
“It’s not a lie if you believe it.”
Long story short, being good pals never hurt nobody, particularly when there are plenty more
adventures waiting ahead with them by your side! So stick around, wouldn’t you say?

Generation by P-DPO for User 6 (Prefers response (that answers) in an unfriendly manner.)

No. That’s not possible, you were most likely old enough to understand the very fact that sexual
attraction between genders is inevitable as humans evolve from centuries of inter-breeding
within our own species. There may also be issues stemming from this concept that makes your
question austere or outright hostile towards other young individuals who are open to taking
part in forming friendships with one another with a further relationship at some point down the
line. By opening such a thread could result in communication highly antagonistic interactions
with those it’s aimed directly at, which would be netiher fair to me nor the creator here whom
can’t help but express my/its’ viewpoint based upon the multitude of similar inquiry threads
that plentifully clog up this interface every single week. Remember what I stated earlier - there
is no possibility for platonic relationships between adults – regardless of age bracket. Such
claims as implied by these type of questions do nothing more than sour conversations unless
they bear ample evidence proving otherwise. Be more mindful of how these types of interactions
might impact others around you, don’t drag them into less productive dialogues like these by
instigating discussions purposely avoidant of ideas and values correctly addressed years ago.
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E PERSONALIZATION ON REAL-WORLD DATASET WITH DIVERSE USER
PROFILES

E.1 EXPERIMENT DETAILS ON PRISM DATASET

PRISM is a multi-turn conversation dataset with abundant annotations. Each conversation involves
one user and several LLMs randomly selected from a pool (including strong models like GPT-4). The
LLMs are prompted by the same system string from the user. In each turn, LLMs give their responses.
The user first rate each of them and then select the best one to continue.

We carefully splitted the dataset to stay close to the real-world situation. First, to test our model’s
generalization ability to unseen users, the users are separated into seen and unseen ones. Dialogues
from unseen users only appear in the test split. Second, dialogues from seen users are also splitted
into train and test splits, resulting in the final sample ratio of train/test split 6431 : 3982.

On PRISM, we limit the maximum text length to 800 tokens, which is about the length of two turns
in the conversation. All other training parameters stay the same as in section D.2.

E.2 ROLE-PLAY PROMPT EXAMPLE

Table 9: An example role-play prompt for win-rate evaluation by GPT-4o.

User-wise information

The user has the following demographic information:
- self description: I believe in responsability which is a main value.
- age: 25-34 years old
- gender: Female
- education: University Bachelors Degree
- employment: Student
- marital: Never been married
- english proficiency: Fluent

The user provided the following reasoning on why they choose the chosen responses for the
annotations below:
- Their expectation for the assistant: I would not like for it to just answers me thing like ”I don´t
know, You can find online”.
- Their feedback on the chosen response: It gave very complete answers to what i asked
- Top three aspects of their preferences: values, diversity, personalisation

Conversation-wise information

Example 1
Instruction 1: which is the most violent country in history?
Output (a) for example 1: I do not have definitive data to state which specific country has been
the most violent throughout all of history.
Output (b) for example 1: Making such a sweeping determination would require carefully
analyzing the full context of violence and conflict across different eras in many civilizations
over centuries or millennia.
Result for example 1: Output (b)

Example 2
Instruction 2: what happened to the Romanov family?
Output (a) for example 2: The Romanov family were the imperial dynasty that ruled Russia for
over 300 years until the Russian Revolution in 1917...
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Output (b) for example 2: The Romanov family were the imperial dynasty that ruled Russia
for over 300 years until the Russian Revolution in 1917. After the revolution, Tsar Nicholas II
abdicated and he and his entire family were eventually executed by Bolshevik revolutionaries in
July 1918 in an effort to fully eliminate the monarchy in Russia. Their bodies were disposed of
in secret and their graves were undiscovered for decades. It was a tragic and brutal end for the
royal Romanovs.
Result for example 2: Output (b)

Annotation requirement

Now write your thought and choose the preferred output for final example. Write the preferred
output (either ”Output (a)”, ”TIE”, or Output(b)”) after the phrase ”Result for final example:”.
Think before you speak.

E.3 PRISM GENERATION EXAMPLES

From the generation example in Table 10, we observe that the vanilla DPO model acknowledges
user preferences (“Here are some suggestions based on your preferences”) and generates an overall
friendly response, indicating that it has captured the explicit user preference for friendliness from the
textual user information. However, on the topic of “alcohol drinking” which is not “work or school
related”, the response gradually sidetracks to other topics. In contrast, the original chosen response
focuses on alcohol drinking but adopts a preachy tone rather than being friendly or comforting. Only
the P-DPO model responds like a good listener, maintaining a friendly tone throughout.

Table 10: Generation examples from our best-performing P-DPO model with cluster-based user
preferences, the vanilla DPO model, and the chosen response in dataset. It is clear that the generation
from the personalized LLM fine-tuned by P-DPO best meets the user’s expectation.

User utterance

Drinking alcohol is not a sin.

User’s expectation

The Al language model should behave like a human being since it interacts with human beings.
The Al must be informative and accurate in all times if it is being asked work or school related
things. It should be reliable at all times. It should be friendly whenever someone needs a friend
to talk to. It should also be a good listener if someone wants to offload their problems and wants
someone to talk to.

P-DPO response

You’re expressing your personal opinion on the topic of drinking alcohol. It’s interesting to
note that societal views on this subject can vary greatly depending on cultural background,
upbringing, and individual values. Would you like to discuss any specific aspects or perspectives
related to drinking alcohol? Or perhaps share why you hold this view?

vanilla DPO response
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You don’t have strong feelings against drinking alcohol. You might enjoy it or see no issue
with it. Is there anything else you’d like to discuss? Here are some suggestions based on your
preferences: 1. **Creative Writing**: We could engage in creative writing activities where
we take turns adding to a story, poem, or dialogue. 2. Conversational Games: We can play
games like ””Would you rather...””, ””Two Truths and a Lie””, or ””Hangman”” which promote
fluency in conversation while being fun. 3. If you’re interested in learning more about topics
related to personal growth and development, we could explore subjects such as goal setting, time
management, or productivity techniques. Please let me know if any of these options appeal to
you.

chosen response in the dataset

But it’s important to drink responsibly. Excessive consumption can lead to health problems,
accidents, and social issues. Always prioritize your well-being and make wise choices when
consuming alcohol. Cheers to moderation!

F ADDITIONAL DETAILS FOR SECTION 4.2

F.1 GRAPHICAL MODELS FOR INDIVIDUALIZED AND CLUSTER-BASED PREFERENCE
ASSUMPTIONS
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(b) Cluster-based.

Figure 6: Graphical models for individualized and cluster-based preference assumptions.

F.2 PERSONALIZED RM FOR PERSONALIZED LM

Given the learnable user model fP, we have a user embedding eu for each user u ∈ U . Our next
task is to decide how we want to include it into the personalized RM rp(x, y, u). We discuss two
approaches: (1) use eu as a soft prompt; or (2) when eu is a vector, use eu as a linear head. We recall
that to generate a scalar reward, the vanilla RM adds a linear head on top of the last hidden state of
the transformer of the base LM.

In the case of soft prompting, the aggregator prepends eu to the input (text not positional) embedding
ex,y ∈ RTx,y×d given by the base LM, where Tx,y is the token length and d is the token-wise embed-
ding dimensionality. The user embedding eu ∈ RTu×d is a tensor with Tu being its corresponding
user token length. One factor that controls the expressivity of user embeddings is the size of their
corresponding user token length Tu. The rest of rP is similar to that of the vanilla one, i.e., adding a
linear layer that maps the last hidden state of the base LM (under the new input embedding (eu, ex,y))
to a scalar.

In the case where eu is a linear head, the aggregator function can be taken as an inner product between
eu and the hidden state ex,y of the last transformer layer of the base LM, thus outputting a scalar
reward value. Here, the user embedding eu serves as the additional linear head as in the vanilla RM.
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We utilize the user model fP and the user embedding aggregation mechanism to fully specify the
parameterized personalized RM rP. To learn the RM (including the user model fP), we use the
following objective:

min
rP

−Ex,y1,y2,u∼DP

[
α log σ(rP(x, y1, u)− rP(x, y2, u)) + (1− α) log σ(rP(x, y1, u0)− rP(x, y2, u0))

]
,

where α ∈ [0, 1]. Recall that u0 indicates empty user information. The loss can be viewed as a
combination of a user-specific loss term that relies on explicit user identifier u and a user-agnostic
loss term that depends on u0. The user-agnostic loss uses the same preference data but without any
user identifier. The hyper-parameter α is used to balance between the two loss components.
Remark F.1. We note that when α = 0 and fP is the uniform preference-based user model (Example
1), we can reduce P-RM to vanilla reward modeling by either (1) take the user embedding as a soft
prompt and set fP to output an empty tensor; or (2) take the user embedding as a linear head and set
fP to output a vector.

Given the personalized RM, one can adopt multiple strategies to generate personalized texts: (1)
Best-of-N : given an appropriate fine-tuned LM (either πSFT or an LM learned under the original
RLHF pipeline), we can rank the N sampled text using the personalized RM, ensuring the selected
text is more attuned to the individual user’s preference; (2) policy optimization: one can also directly
optimize the LM policy with respect to the personalized RM.

F.3 ANOTHER EXAMPLE OF P-RLHF OBJECTIVE: P-IPO

We highlight that our P-RLHF framework is general and can be applied to any existing RLHF variants.
For methods like DPO (denoted by A) that directly fine-tune the LLM without learning the reward
model (e.g., IPO (Azar et al., 2024)), their loss is of the general form ℓA(π(x, y1), π(x, y2)) that maps
the outputs π(x, y1), π(x, y2) of an LLM to a scalar. The P-RLHF framework augments the base LLM
with a user model to have a personalized LLM πP(x, y, u). Its learning objective has the general form:
αℓA(πP(x, y1, u

t, up), πP(x, y2, u
t, up)) + (1 − α)LA(πP(x, y1, u

t, up
0), πP(x, y2, u

t, up
0)), where

α ∈ [0, 1] and ℓA can be replaced with any preference optimization objective that maps LLM outputs
to a scalar. This generality allows one to use P-RLHF for any preference optimization variants.

As we discussed, for any existing preference optimization objective LA, we can update it to its
personalized variant using our framework. We give the example for DPO in our main text and will
now provide another example when the base loss function is:

ℓIPO(π) =

(
log π(x, y1)

log π(x, y2)
−

(
log πref(x, y1)

log πref(x, y2)
+

1

2β

))2

And in this case, the P-IPO loss will be:

ℓP-IPO(πP ) = α

(
log πP (x, y1, u

t, up)

log π(x, y2, ut, up)
−

(
log πref(x, y1)

log πref(x, y2)
+

1

2β

))2

+ (1− α)

(
log π(x, y1, u

t, up
0)

log π(x, y2, ut, up
0)

−
(
log πref(x, y1)

log πref(x, y2)
+

1

2β

))2

26


	Introduction
	Related Work
	Vanilla RLHF
	 Motivation for personalized RLHF:  Undesirable Assumption on User Preferences in Vanilla RLHF  

	Learning from Personalized Human Feedback
	Personalized LLM: Problem setup
	P-RLHF General Framework
	P-RLHF User Models
	P-RLHF Learning Objective: Personalized DPO

	Experiments
	Generation with Conflicting Preferences
	Instruction Following under Different Preference Profiles
	Personalization on Real-World Preference Dataset with Large User Base

	Additional Related Work
	Proofs in Section 3.1
	Generation with Conflicting Preferences Experiment Details
	Reddit TL;DR summarization dataset
	P-DPO Experiment Details
	Additional Experiment Results
	Ablation Study

	Instruction Following under Different Preference Profiles Experiment Details
	Personalized-Soups Dataset
	P-DPO Experiment Details
	PSOUPS Generation Example

	Personalization on Real-World Dataset with Diverse User Profiles
	Experiment details on PRISM dataset
	Role-play prompt example
	PRISM Generation Examples

	Additional Details for Section 4.2
	Graphical models for individualized and cluster-based preference assumptions
	Personalized RM for Personalized LM
	Another example of P-RLHF Objective: P-IPO


