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The Bigger Picture
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Interplay Between
Planning Horizon &
Meta-Reinforcement

Online Meta-Learning
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Motivation - choice of planning horizon

> A key component in the lifetime of an RL agent is the planning horizon H = %

-7

> The choice of the planning horizon plays an important role, for e.g.
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Motivation- empirical impact

Fedus et al. 2019

Zahavy et al. 2021
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Discount Rate

. Hyperbalic versus Exponential Discounting
discount function

— hyperbolic (k=0.01)

—— exponential (y=0.995)

Median human normalized scores

Xu et al. 2018
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Adapting discount factors has proven to be successful for many Deep RL algorithms
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Motivation - putting it all together

There is a direct correlation between the knowledge acquired by the agent and the
effective planning horizon: the more knowledgeable the agent, the longer its
planning horizon.

Research Question

Can we meta-learn a good initialization of the model across tasks and adapt the
effective planning horizon better?

O
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> The agent is presented with a sequence of T RL tasks
A In each task, the agent observes m transitions from each
state action pair (generative model)

A The task is sampled from a task distribution centered at P°

> The agent estimates a model for the current task ]5t
A The model is used for planning to find a policy
[ Better model -> better policy

> The estimate is based on
A The m samples from the current task
Q@ A meta-learned initialization/prior Pt (from all the tasks)
[ Better prior -> better model -> better policy

Growing Planning Horizon

> Adapt the discount factor as we meta-learn
A Estimate o @
[ Better prior -> better model -> increase the discount -> better policy
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Background: Discount factor as a regularizer (planning)

A policy is found
* by planning in an
T - t estimated model

71'*
t
Planning Loss: V tP Teval __ V tP Y with a guidance
P ,’Yeval P "-Yeval % discount
factor
The value of optimal policy wrt The value of the policy
to the true model and when evaluated in true
evaluation discount factor model with an evaluation
(evaluated there). discount factor. @

Jiang et al. 2015
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Background: Discount factor as a regularizer (planning)

High-probability bound:

%
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Incorporating a ﬁXed prior Private & Confidential
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>  The optimal discount is lower than 0.99 (eval)

> The optimal discount is lower when there are less samples

> Quality of the prior ~ samples @
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Planning with Online Meta-L.earning

O



Planning with Online Meta-learning: Structural Assumptions

In this work, we assume that for all ¢ € [T7],

P' ~ P centered at some fixed but unknown P° € AgXA and such that for any (s, a),

||P;,a,_Pso,a||OO <o as.

O
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Planning with Online Meta-learning: Other Assumptions

For simplicity we shall assume throughout that the rewards are known and focus on learning an

approximate dynamics model.

We assume that for each task ¢ € [T'] we have access to a simulator of transitions

providing m i.i.d. samples (X%?%)i=1.m € 8™ ~ P'(:|s,a)

T e
For each(s, a), we can compute an empirical estimator / /2\
m / \\
— ; t \
Bl (s) =Y WXE =sym, | P |
%
where Z P!, (s =1 o8 o @



Planning with Online Meta-learning: Our Approach

> We perform Meta-RL by alternating between minimizing a batch within-task regularized
least-squares loss (RLS), and an outer-loop step where we optimize the regularization to
optimally balance bias and variance of the next estimator.

> Estimating the dynamics model: At each round, the current model is estimated by minimizing
the RLS loss for a given regularizer:

1 «— : 2
— > X} —Pea
=1

IS(tS,a) = argmin I T )\tHP(s,a) - ht||§,

Plg,a)EAs

empirical transition prob.

> Outer-loop: Meta learning the regularization: At the beginning of each task t, the
learner has already observed t-1related but different tasks. We use Average of Means

. 1 t—1 Z-]]{Xi’j} 1 t—1 .
hy « Pt = ¢ = —— Y P,
t t—1jzz1 m t—1j=Z1

O

(see ARUBA by Khodak et al. 2019 )



https://arxiv.org/pdf/1906.02717.pdf

Planning with Online Meta-learning: Our Approach

2
. + /\tHP(S,a) ] ht”ga

p{s,a) = argmin

1 m
E E :ll{X;:Z _P(s,a)
Pls,a)EAs i=1

empirical transition prob.

> The solution of this can be computed in closed form as a convex combination of the
empirical average (count based) and the prior, with Q¢ as the mixing parameter.

At
1+ A

Pt = ahy + (1 — o) P? where a; =

> Quter Loop-Deriving the mixing rate: To set mixing rate, we compute the Mean
Squared Error (MSE) of the estimator and minimize an upper bound,

1
S o?(1+1/tym+1

MSE(PY) < a20(1 + %) (- at)2% —_

O

(see ARUBA by Khodak et al. 2019 )
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Planning with Online Meta-learning: Algorithm

Algorithm 1: POMRL (¢) — Planning with Online Meta-Reinforcement Learning

Input: Set meta-initialization P°! to uniform, task-similarity (o(s,a)) a matrix of size S x A, mixing
rate a; = 0, and “Yeva1

for task t € [T]| do

for t** batch of m samples do

Pt(m) = (1 — )= >, Xi+ o, P> /] regularized least squares minimizer.

v* < y-Selection-Procedure(m, ay,0,T, S, A)

ﬂ’;}",v* + Planning(Pt(m)) //

Output: M5t e

i Update Pot+l oy, = 02(1+11/t)m+1 // meta-update AoM (Eq. 5) and mixing rate

O



Planning with Online Meta-learning: Theory Result

> After T tasks, the agent is evaluated via the average planning loss

’/T*

*
r_ 1 T Pt veyal _ ﬂ-]_%t,,y
'C T thl HVPta'Yeval th776V31

oo

> Average Regret Upper Bound for Planning with Online Meta-Learning (POMRL)
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Planning with Online Meta-learning: Theory Result

> After T tasks, the agent is evaluated via the average planning loss

= 1Y

> Average Regret Upper Bound for Planning with Online Meta-Learning (POMRL)

Tt
V ,’Yeval _ P* .y
3")’eval Pt yYeval

oo

Task Similarity

Our Result: Z S O \/_ _L
#Tasks

# Samples per task

(Jiang et al, 2015) Z £ é

/i

Without meta-learning: ( N )



Private & Confidential

Planning with Online Meta-learning: Implications for extreme cases

>  Average Regret Upper Bound for Planning with Online Meta-Learning (POMRL)

ot/ F|o+4/o2+ 2 2 /2
< Yeval — 7Y + 2vS o T < m oTmy/ =
N (1 _7eva1)(1 _7) (1 _7)2 U2m+ 1 02m+ 1

> When tasks are all exactly the same, estimate only one model in a space of set size with mT samples

vyeval — vy 2vS = )
O(+] —=—
A yeval)(i—7) " 1-72 WV T

> When tasks are all very different, meta-learning is not relevant, estimate T models with m samples.

wheno =0 L <

h =1, th =% 7 pewal — 298 (L (14 L 1y, 1
when o en o L < (1= ~eval)(1 =) + (1_7)20(m(1+ ﬁ(1+ 1+m)>+ m) G
s Q

Added bias due to regularization but  syal estimation error for each task
second order in 1/m



Planning with Online Meta-learning: Practical
Considerations on Algorithm

Algorithm 2: ada-POMRL — Planning with Online Meta-Reinforcement Learning

Input: Set meta-initialization Po! to uniform, initialize (6); as a matrix of size S x A, mixing rate

4.0

Private & Confidential

a; =0, and Yeya1

for task t € [T] do 33
for t™* batch of m samples do i
ﬁ‘(m) =(l-a)t Y7 Xi+ P> |/ regularized least squares minimizer. L

v 7-Se1ection—?rocedure(m, o, 01,1, 8, A) éf" Wi

7!';:,7 + Planning(Pt(m)) // Yy < Yeval - 12
Output: w;;zﬂ i

Update Pot*1 4, « Welford’s online algorithm((cfo)t,ls""“,]3"*‘) // meta-update AoM

(Eq. 5) and task-similarity parameter.
| Update a4, = m // meta-update mixing rate, plug max(ogx4)

'ﬂ =0.99 = Yru ]

-0 ada-POMRL
-9 POMRL(s)

Y25 8858 T B9
Task (T)

101112131415

O
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Planning with Online Meta-learning: Experiments

O1. Does meta-learning a good initialization of dynamics model facilitate improved planning
accuracy for the choice of evaluation discount factor?

4.0 ———— e Se———
(‘120.99:‘-7“-,] ) ©-@ ada-POMRL
3.5 —mm ©~@ Oracle Prior Knowledge |
©-® Without Meta-Learning
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00— 34+ ¢ 7 8 9101112151415

Task (T) @

> Tldr: Meta-reinforcement learning leads to improved planning accuracy.
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Planning with Online Meta-learning: Experiments

02. Does meta-learning a good initialization of dynamics model enables longer planning

L]
horizons?
4.0 ; ; . : 1.0 S ——— 1.0
[H T=1 - T=3 - T=6 H T=15] Optlmal Gamma (’7‘ )
For initial tasks, an 3.5¢ T gy
. . 0.8 08¢
intermediate value of |, 3.0} 3
. R S e
gamma is optimal <8 7 28
g\?'ﬁ' 306 065 &
£ 2.0 c i
€ £ g3
515 504 {0425
A better meta-learned 1.0 5 Planning Loss . 2%
initialization of the task | 0S5l Yewus =099 | E
dynamics, led to longer o - -
effective planning horizon. 8601 02 03 04 05 0.6 07 0.8 09 1.0 1 2 345 6 7 8 9101112131415
y Task T'

Recall @

the more knowledgeable the agent, the longer its planning horizon.



Planning With Online Meta—learning: Experl’men ts Private & Confidential

03. How does performance depend on the amount of shared structure across tasks?

Strong Structure  Medium Structure Loosely Structured

4.0 4.0 4.0
(f=090 = o 00 adaPOMAL z . (o090 mn ) 00 ada FOMRAL
35 72099 %o @-® Oracie Prior Knowladge { =099 =7, ] : ::mt o 35 ool " 8 @-® Oracle Pricr Knowledge
@-@ Without Meta-Learning s o-@ Without Meta-Leaming @@ Without Meta-Learning
3.0 @-0 POMAL(c) 30 o-® POMALIc) 3.0 @-0 FOMAL(c)
» »
8§23 25 g2s
B
20 20 g 2.0
[
= =
s )
z 15 g 15 P 15
10 1.0 1.0
0.5 0.5 0.5
0.0 0.0 0.0
12345678 9101112131415 1 2345678 9101112131415 12 3456768 9101112131415
Task (1) Task (T) Task (T)

> Tl:dr: POMRL and ada-POMRL perform consistently well for varying task-similarity.
> Anintermediate value of task-similarity still leads to gains, albeit at a lower speed of convergence.
> In contrast, a larger value indicates little structure across tasks resulting in minimal gains from ‘q

meta-learning. The learner struggles to learn a good initialization of the model dynamics as there is no natural
one. All planning loss curves remain U-shaped and overall higher with a smaller optimal guidance discount.



Private & Confidential

Adaptation of Planning Horizon

O



Adaptation of Discount Factor: Intuition

> Equivalence between effective planning horizon, tasks/samples, & meta-learned initialization

Yt ‘= Vsamples T Vprior
/ |

Effective planning horizon gained from m horizon gained from meta-learned
horizon at time t samples per task initialization at round t

m(t-1) samples equivalent to
meta-learned task dynamics at round t

O



Adaptation of Discount Factor: Heuristic Based on Prior Work et & Conficentel

> We propose two heuristics to design an adaptive schedule for discount factor

> We adapt the schedule proposed by Dong et al. to our problem:

SA 1
TO:m) Tt: T(Sl_at)mtatm(t_IZ), WtZI_W’

efficient sample size

>  Where L is the maximum trajectory length.

> The size of samples in each task is controlled by the efficient sample size which includes a
combination of
A the current task’s samples and,
A the sample observed so far, as used to construct our estimator in POMRL.

O

(Don,q et al, 2021. Simple Agent, Complex Environment)
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Adaptation of Discount Factor: Theory driven schedule AR

> Next, we use the upper bound to guide the schedule

> Having a second look at our main theory result, we see that the RHS is a function of the form

1 1 Y
U:yr— + —= +t0nrs54,00 5
1 Yeval 5 1 (1 o f}/)
Proposition 1. The existence of a strict minimum in (0, 1) is determined by C = C,,, 1.5, A.».5 (Which
can be computed) as follows: 0 Fos>1
=<1 ifC <1/2
L‘L—g otherwise, i.eif 1/2 < C < 1

[v = min{1, v, + 7}] (o)
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Adaptation of Discount Factor: Experiments

Planning Loss

| Best Fixed H ~v=/fm,a,0,7) 100 |~ Best Fixed H ~v=fm a,0,7) (1 S S S S S S
F DynamicBest [ y—min{1,7+%} - DynamicBest  } y=min{1,%+%} FH %=03 F %=045
FH Yo =099 FH =025 | =050
@ 2 y=min{1, +7} |
o =} 2

- o |

2 2

£ z

10°} ] 5 S

o o

M
12 3 456 7 8 9101112131415 12 3 456 7 8 9101112131415 123 4586 7 8 9101112131415
Number of tasks (T) Number of tasks (T) Number of tasks (T)

> Using the evaluation discount factor results in a very high loss, due to trying to plan too far
ahead despite model uncertainty.

> The proposed " =1- 7% obtains similar performance to best-fixed and is within the
significance range ot the lower bound.
> The upper bound guidance for selection of gamma obtains similarly good performance.
Tl:dr: Evidence suggests it is possible to adapt the planning horizon as a function of the problem@
structure (e.g. meta-learned task-similarity) and data per task.



Challenges & Future Work Private & Confidential

> Non-stationary or shifts in underlying task distribution
is an important problem to consider.

> QOur analysis focused on planning and model based RL. (ARUBA by Khodak et al. 2019)

d  Learning in a model-free setting is a promising to explore
@  Preliminary investigation of Optimistic Q-learning [Dong et. al 2021] did not yield immediate results

> Scaling up empirical work to meta-gradients.

[ A better understanding of function approximation theory will provide further insight
d  Connections to DISTRAL - our work is groundwork for analysing similar meta-learning algorithms

> More tractable algorithm with a proxy to planning loss (doesn’t require the true MDP)

O
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Adaptive Planning Horizon and Meta-Reinforcement Learning D

Meta-learning a good initialization of the transition model across similar tasks
allows to plan longer ahead.

N
N Q

Our result: L<O

ey
IN

Without meta-learning:
(Jiang et al, 2015)

O




