
APPENDIX
This appendix provides additional information not described in the main text due to the page limit. It
contains additional analysis results in Section A, experiment details in Section B, environment details
in Section C and a pseudocode of and SAC+GACE algorithms in Section D.

A Analysis

Our proposed methods show an outstanding performance in terms of sample efficiency, generalization,
and task success ratio. This is consistent with the previous studies [38, 21], where auxiliary tasks for
reinforcement learning encourage the agent to learn extra representations of the environment, as well
as provide additional gradients for updates. To clarify more on the roles and characteristics of the
proposed methods, we conduct an additional experiment.

A.1 Generalization to unseen environment in visual navigation task

Figure 6 shows the accuracy curves of the goal-discriminator, or more precisely, how consistently the
highest probability is assigned to the ground-truth label zi for the goal-discriminator output ggoal.i.
The goal state prediction accuracies of the goal-discriminator on V2 seen and V2 unseen tasks after
200K training updates are 99.32± 0.62% and 89.15± 3.44%, respectively. The accuracy curves
are shown in Figure 6. As the goal-discriminator learns various goal states, the agent becomes
capable of discerning goals accurately even in an unseen environment. We believe this figure shows
that GACE and GDAN can show high performance even in unseen tasks thanks to the excellent
generalization ability of GACE.

Figure 6: Goal prediction accuracy of goal-discriminator in V2 seen and unseen tasks.

B Architecture & experiment details

B.1 Auto-labeled goal states for self-supervised learning

Prior to initiating the learning of goal-aware representation, the minimum amount of storage data is
collected through a random policy during warmup phase. In the case of robot manipulation tasks,
where a random agent achieves low success ratio, the states for the failed episodes are stored as a
negative case zN+1, where N is the number of target objects in the environment. After the warmup
phase, as the agent learns to succeed in the given task through trial and error, the successful goal
states are stored. At the same time, due to their commonness, unsuccessful states – where the agent
fails to reach any target object at all within time limit – are stored as negative case zN+1 with a low
probability ϵN < 1. Empirically, setting ϵN value close to the success ratio of the random policy
leads to high performance.

14



B.2 Model for visual navigation task

The ViZDoom environment is a first-person perspective navigation task, requiring memory for
reasonable inference. For this, we use a model that contains Long Short-Term Memory (LSTM), and
all compared methods use the same model architecture.

Four consecutive frames of the environment are stacked into one state. The stacked state st is fed as
input to the image feature extractor σ(·), which consists of 4 convolutional layers, each with a kernel
size of 3, a stride of 2, and zero-padding of 1. The first two layers each contains 32 channels and the
rest of the layers each has 64 channels. The output of σ(·) is flattened and fed into a fully-connected
layer of 256 units to be converted into image features et. Batch normalization is applied after every
convolutional layer. ReLU is used as the activation function for all of the layers.

We first describe the model corresponding to the GACE method without attention networks, and then
elaborate the GDAN method afterwards. ActorCritic f(·) consists of a word embedding, an LSTM,
an MLP for policy, and an MLP for value. The goal index from the instruction is converted to a
word embedding I of dimension 25. The embedding I is fed into a linear layer and converted to I ′

as a 256-dimensional vector. The gated attention vector M is calculated as the Hadamard product
between the image feature output et of the feature extractor and the instruction embedding I ′.

I ′ = Linear(I) (12)

M = et ⊙ sigmoid(I ′) (13)

The input to the LSTM is the concatenation between M and sigmoid(I ′). The hidden layer of the
LSTM and the gated attention output M are concatenated to form the input for both the MLP for
policy and that for value. The MLP for policy consists of two layers with 128 and 64 units respectively
and the MLP for value consists of two layers with 64 and 32 units respectively.

The goal-discriminator d(·) consists of MLP of two layers that respectively contains 256 and 4 units.
Each of the four output units belongs to each target category. This goal-discriminator is only used
during training.

GDAN adds an attention method to the architecture. At the end of the model, the attention-dependent
state representation vector ht, mentioned in Sec. 3.4 of the main paper, is concatenated with a state
encoding vector e1t := LSTM(et). Lastly, the concatenated vector is fed as input to 2-layered
perceptron (yet within f(·)) to infer policy π and value V .

B.3 Success ratio comparison in visual navigation tasks

Algorithm V1 (%) V2 Seen (%) V2 Unseen (%)

A3C 56.55 ± 13.75 4.00 ± 3.16 3.99 ± 2.30
+VAE 67.89 ± 3.50 30.03 ± 4.96 19.79 ± 3.06
+RAD 82.14 ± 2.34 7.75 ± 2.25 3.87 ± 2.78
+GACE (ours) 94.97± 0.70 79.52 ± 0.83 69.79 ± 1.66
+GACE&GDAN (ours) 95.63± 0.64 86.62± 1.48 76.36± 1.53

Table 4: Success ratio comparison for V1, V2 tasks.

Algorithm V3 (%) V4 Seen (%) V4 Unseen (%)

A3C 33.45 ± 4.72 3.13 ± 4.43 4.40 ± 6.22
+VAE 26.26 ± 2.17 31.96 ± 2.66 28.18 ± 0.27
+RAD 27.91 ± 3.48 4.64 ± 5.92 9.98 ± 7.65
+GACE (ours) 52.58 ± 4.09 41.26 ± 3.05 37.96 ± 1.61
+GACE&GDAN (ours) 78.21± 2.45 54.87± 1.75 48.52± 1.62

Table 5: Success ratio comparison for V3, V4 tasks.

15



B.4 Model for robot arm manipulation task

Robot arm manipulation tasks are conducted in the MuJoCo environment. For these tasks, we
construct a model shown in Figure 1b without LSTM and train the agent with Algorithm 1. Unlike the
model for visual navigation tasks, we do not use LSTM within the model for robot arm manipulation
tasks.

The main model architecture for the GACE method without attention in robot arm manipulation tasks
is similar to the architecture used in visual navigation tasks, except that in place of LSTM, a single
linear layer is used. At the end of the model, the attention-dependent state representation vector ht is
concatenated with a state encoding vector e1t := Linear(et). The concatenated vector is used within
the ActorCritic f(·) to infer policy π and value V .

B.5 UR5 manipulation task learning curves

(a) R1 (b) R3

(c) R2 Seen (d) R2 unseen

Figure 7: UR5 manipulation task learning curves. The solid lines show the average success ratio
over the repeated experiments, and the shades indicate bounds given as mean ± standard deviation of
success ratio. Orange and red curves are our methods, GACE and GACE&GDAN, respectively.

B.6 Hyperparameters

The hyperparameters for visual navigation tasks and UR5 manipulation tasks are shown in Table 6
and Table 7, respectively.

Most of the parameters commonly used in the base algorithm are used as in the correspondingly
cited papers, and additional fine-tuning is conducted to suit the learning environment. In addition
to the parameters suggested by our method, a value of [0.3, 0.5] is recommended for η, and it is
recommended to set ϵN close to the success ratio of the random policy.

C Environment details

The additional details regarding the visual navigation tasks in ViZDoom and the robot arm manipula-
tion tasks in MuJoCo that could not be covered in the main paper are outlined in this section.

16



C.1 Visual navigation in ViZDoom

Each visual navigation task provides RGB-D images with dimensions 42×42. The images of four
consecutive frames are stacked into one input state st. In V1 and V2 tasks, the maximum number
of time steps in an episode is T = 25, and the size of maps for these tasks is 7×7. All objects are
randomly located. The success ratio of random policy is 6.6%. In V3 and V4 tasks, the maximum
number of time steps in an episode is T = 50, and the size of maps for these tasks is 10×10. All
object positions are shuffled, such that the object positions are chosen as a random permutation of a
predetermined set of positions which are chosen evenly across the map. The success ratio of random
policy is 8%. An action repeat of 4 frames is used.

C.2 Robot manipulation task in MuJoCo

Input state st is an RGB image with dimensions of 84×84. No frame stack is used. In each time step,
an action is repeated 16 times. The episode time limit is T = 50 steps in all tasks. The joint angles of
the robot are constrained within specific boundaries, which are [-3.14, 3.14] or [-5, 5]. For the R2
tasks, the background in each task is randomly sampled from a set of five checkered patterns, some of
which are shown in Figure 8. The generalization ability of the agent is measured by making the set of
backgrounds in the R2 seen task and the set of backgrounds in the R2 unseen task mutually exclusive.
The generalization ability of the agent is measured by assigning five background checkered colors to
each of the seen and unseen tasks.

(a) Samples of R2 seen environments (b) Samples of R2 unseen environments

Figure 8: Examples of observations in R2 seen and unseen tasks.

Parameter Name Value
Warmup 2,000
Batch Size for Goal-discriminator 50
GACE Loss Coefficient η 0.5
Negative Sampling ϵN 0
Discount γ 0.99
Optimizer Adam
AMSgrad True
Learning Rate 7e-5
Clip Gradient Norm 10.0
Entropy Coefficient 0.01
Number of Training Processes 20
Back-propagation Through Time End of Episode
Non-linearity ReLU

Table 6: Hyperparameters used in visual navigation experiment.

17



Parameter Name Value
Warmup 10,000
Negative Sampling ϵN 5%
Tau 0.005
Batch Size for SAC 128
Batch Size for Goal-discriminator 128
Hidden Vector Size 256
Target Update Interval 1
Replay Buffer Size 1,000,000
Goal Storage Size 500,000
GACE Loss Coefficient η 0.5
Hidden units 256
Discount γ 0.99
Optimizer Adam
Learning Rate 7e-5
Entropy Coefficient 0.01
Non-linearity ReLU
Optimizer Adam

Table 7: Hyperparameters used in robot arm manipulation experiment.

D Algorithm

Algorithm 1 SAC + GACE

Initialize SAC parameters
Goal-discriminator parameters: θg
Policy parameters: ϕ
Replay buffer D ← ∅, Goal-discriminator Data storage Dg ← ∅
for each iteration do

for each environment step do
Get state st, instruction Iz and perform at ∼ πϕ(at|st, Iz)
Get reward rt and next state st+1

D ← D ∪ {(st, at, rt, st+1)}
If Success, Dg ← Dg ∪ {(st, one_hot(z))}
If Fail, Dg ← Dg ∪ {(st, one_hot(zN+1))} with probability ϵN

end for
for each gradient step do

SAC policy update
θg ← θg + η∇θgE(s,z)∼Dg

[one_hot(z) · log(d(σ(s)))]
end for

end for

18


	Analysis
	Generalization to unseen environment in visual navigation task

	Architecture & experiment details
	Auto-labeled goal states for self-supervised learning
	Model for visual navigation task
	Success ratio comparison in visual navigation tasks
	Model for robot arm manipulation task
	UR5 manipulation task learning curves
	Hyperparameters

	Environment details
	Visual navigation in ViZDoom
	Robot manipulation task in MuJoCo

	Algorithm

