
Appendix for “Learning Dynamic Attribute-Factored World
Models for Efficient Multi-object Reinforcement Learning”

A Detailed Discussion and Comparison with Related Work

In this section we discuss the related work. We first shortly discuss related work in terms of our
modelling assumptions and then provide a comparison with other object-centric RL methods for
compositional generalization.

A.1 Factored, Relational and Object-oriented MDPs

Our modelling assumptions, formalized as a Dynamic Attribute FacTored Markov Decision Process
(DAFT-MDP) in Definition 1, are related to the literature on factored and object-oriented (PO)MDPs.
In particular DAFT-MDPs are an first order extension with class template graphs, interaction patterns
and interaction graphs of factored (PO)MDPs [18–23]. In particular they define a family of factored
POMDPs, in which the objects O can vary across environments in numbers, types and latent
parameters. This extension takes inspiration from Relational MDPs [24–26] and their literature,
especially Object-Oriented (PO)MDPs [27–29], which also define a family of MDPs that vary in
terms of objects and types. Most of these methods focus on discrete states and often define relations
or states as first-order predicates, with the exception of [28], which propose a physics-based approach
that circumvents these issues, allowing for more realistic robotic applications.

As opposed to these works, we also consider continuous state spaces and propose a more fine-grained
factorization of the transition and reward at the object attribute level, based on estimating class
template graphs and interaction pattern graphs. Additionally, we consider object-specific latent
parameters that modulate the dynamics of each object and use dynamic graphs to account for the
sparsity of interactions between objects and between the agent and an object.

A.2 Compositional Generalization with Object-centric RL Approaches

Table A1 provides a comparison of the object-centric RL methods discussed in Section 4. The criteria
for comparison include the extent of factorization in the dynamics, the interaction modeling, and the
model’s ability to adapt to changes in the environment with changing latent factors.

Methods Factored
Dynamics

Interaction
Modeling

Generalize to
Changing Latent Factors

GNN [4] Object Fully-connected ✗
Self-attention [15] Object Fully-connected ✗
Deep Sets [15] Object Fully-connected ✗
LRN [7] Object Fully-connected ✗
COBRA [9] Object ✗ ✗
FWM [16] Object Fully-connected ✗
SMORL [5] Object ✗ ✗
STOVE [8] Object & pre-determined attributes a Fully-connected ✗
SRICS [6] Object Sparse & dynamic (object-level) ✗
NCS [12] Object & action/dynamics-relevant Fully-connected ✗
STEDIE [17] Object & interaction-relevantb Fully-connected (object-level), factored (interaction-relevant) ✗
DAFT-RL Object & attribute Sparse, dynamic & factored (object-level & attribute-level) ✓

a
STOVE focuses specifically on these attributes: (position, velocity, size, others).

b
STEDIE learns which attributes interact during object interactions, similar to our interaction pattern graphs.

Table A1: Comparison of different object-oriented RL methods for compositional generalization. A
check denotes that a method has an attribute, whereas a cross denotes the opposite.

In the context of factored dynamics, most of these related works take into consideration the object-
factored states. Approaches such as STEDIE [17], NCS [12], and STOVE [8] go a step further to
disentangle the states related to interaction, dynamics, or actions from other state variables, such as
color, as mentioned in the Table. However, our model aims to offer a more comprehensive approach
to factored dynamics, providing an attribute-level factorization for each object. For example this can
include factorizing the transition function of dynamics-related factors in terms of position, velocity and
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mass, and factorizing action-irrelevant factors like color and shape. In terms of interaction modeling,
many approaches assume fully-connected interaction patterns, where interactions occur between every
pair of objects within a given scene. However, in many real-world scenarios, this is often inaccurate
as the object interaction usually happens in a sparse and dynamic manner. An exception is SRICS [6],
which takes into account dynamic interaction modeling. This model emphasizes the sparsity of
interactions among objects in a scene, with a dynamically changing structure at the object level. In
contrast, STEDIE [17] employs learned factored dynamics for each object to model interactions,
assuming that only interaction-irrelevant objects will have an impact on others. Nonetheless, from
the perspective of the object level, the pattern of interaction in STEDIE is still fully connected. Our
method diverges from these approaches by integrating both dynamic and sparse interaction patterns
at the object level, and factored interactions at the attribute level between pairs of objects. We provide
a more fine-grained and realistic model of interactions as from the object level, the interaction pattern
is dynamic and sparse, and for each object pair, the interaction only happens among some specific
attributes. Finally, DAFT-RL is the only framework that considers the latent changing factors in the
environment, which is also a realistic setting where the agent sometimes cannot observe all essential
attribute variables in the system but these unobserved factors do have effects on the dynamics or
reward.

B Full Example with Summary of Notations

Notation Definition
C = {C1, . . . , Ck} Set of object classes

{Cj .s1, Cj .s2, . . . , Cj .sn} Class attributes for class Cj

Cj .θ Latent constant parameters for class Cj

O = {o1, . . . , om} Set of objects in a domain
C(i) Class of object oi, in other words Cj such that oi ∈ Cj

{oi.s1, oi.s2, . . . , oi.sn} Object attributes for object oi with semantics defined by the class C(i)
oi.θ Latent constant parameters of object i
xt Pixel observation at time step t
xt
i Pixel observation of object-i at time step t

ot
i = {oi.st1, oi.st2, . . . , oi.stn} Symbolic state of object oi at time step t

st = {ot
1, . . . ,o

t
m} Observable state at time step t for environment with objects

θ = {o1.θ, . . . , om.θ} Latent constant parameters for environment with O objects
at
i Action on object oi at time step t

at = {at
1, . . . ,a

t
m} Action at time step t for environment with O objects

rti Reward on object oi at time step t
rt = Σir

t
i Reward at time step t

GCj Class template graph for object with class Cj

GCi,Cj Interaction pattern graph for objects with class Ci and Cj

αt Action selector at time step t
Gt
oi Instantiation of the class template graph for oi with class Cj at time t

Gt
inter Dynamic object interaction graph at time step t

Table A2: Summary of notations in this paper.

In this section, we first provide a summary of the notation in Table A2. Then we show an example of
the environment described in the main paper, and how the learned graphs are connected in a single
ground graphical model, as described in Figure A1.

In our example, we consider two classes C = {C1, C2}, which represent the classes of boxes and
switches, respectively. We represent these two classes with cubes and cylinders in Figure A1.

For the class of boxes C1, represented in Figure A1A as a pink cube, we consider the attributes
{C1.s1, C1.s2, C1.s3} to represent the color, velocity and position of an abstract box in two consecu-
tive timesteps t and t + 1. All of the relationship between the attributes are described in the class
template graph GC1 . The edge C1.s

t
1 → C1.s

t+1
1 represents the fact that the color at timestep t+ 1 is

only influenced by the color at timestep t (in this case being constant). The edge C1.s
t
2 → C1.s

t+1
2

represents the fact that the velocity at timestep t + 1 is influenced by the velocity at the previous
timestep t. The edge C1.s

t
2 → C1.s

t+1
3 means that velocity can influence position in the next timestep,
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C. Interaction GraphA. Class Template Graphs B. Interaction Pattern Graph
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Figure A1: The graphical representation of DAFT-MDP. Fig A1.A represents the class template
graphs for boxes and switches. Fig A1.B represents the interaction pattern graphs between two boxes.
Fig A1.C represents the dynamic interaction graph, that at each timestep predicts which objects
interact with each other and with the agent. The graph on the bottom shows an example of the
instantiation of the complete ground graphical model for all of the objects in the environment from
Fig A1.C, i.e. a pink box, a blue switch and a green box at time steps t, t + 1 and t + 2. The red
lines describe the interactions of the agent with the objects (which follow the dotted lines in the class
template graphs for each object class in Fig A1.A). The blue lines represent the interactions between
objects, which follow the interaction patterns described in Fig A1.B.

which is also influenced by the previous position C1.s
t+1
3 . In this case the agent can optionally act

(the dashed lines from at) and influence the velocity C1.s
t+1
2 and position C1.s

t+1
3 . Finally the latent

constant parameters for the abstract box C1.θ, in this case representing friction, influence the velocity
C1.s

t+1
2 and position C1.s

t+1
3 at each timestep t + 1 and modulate the effect of the action on the

position and velocity. The reward rt only depends on the position C1.s
t
3.

For the class of switches C2, represented in Figure A1A as a blue cylinder, we consider the at-
tributes {C2.s1, C2.s2, C2.s3} to represent the color, angle and position of an abstract switch in two
consecutive timesteps t and t + 1. All of the relationship between the attributes are described in
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the class template graph GC2 . Similarly to boxes, the color C2.s1 does not influence anything and
is only influenced by its previous value. In this example, we consider that none of the attributes
influences each other, but that the reward rt is only a function of the angle C2.s

t
2. Additionally, the

latent constant parameters C2.θ only influence the position C2.s
t
3, as can potentially the action at

(represented by the dashed red lines).

In Figure A1B we show the interaction pattern graph for boxes GC1,C1 that represents the way that
attributes of two objects of the class box C1 interact with each other. In the figure, we use pink
to represent the first object and green to represent the second object. Specifically, in this case, the
interaction between two boxes means that the velocity of an object influences the velocity of another
object. Similarly, the velocity of an object influences the color of the other object. Additionally, the
latent constant parameters of an object influence the position of the other object.

In Figure A1C we consider a specific environment, specified by the objects O = {o1, o2, o3}, where
o1 and o3 are boxes, while o2 is a switch. We show an unrolled version of the dynamic interaction
graph Ginter for three consecutive timesteps for these objects. At timestep t there is an interaction
between the two boxes o1 and o3 (represented by blue lines), and the action at binds to the switch
o2, as selected by the action selector αt. The interactions between the two objects are instantiated
following the interaction pattern graphs in Figure A1B. The action binding instead activates the
red dashed lines in the class template graph in Figure A1A. In the next timestep t+ 1 there are no
interactions between objects, but the action is now bound to object o1.

In the bottom graph in Figure A1, we show how the three types of graphs are combined in this
environment for these three consecutive timesteps. In particular, it can be seen that for each object,
its attributes follow the same pattern as described by the class template graphs GC1 and GC2 (in grey).
The interactions between the two boxes in timestep t get instantiated following the interaction pattern
graphs GC1,C1

(in light blue). The action binding specifies which object is affected by the action at at
each timestep, but the way the action affects the attributes of an object is based on its class template
graph. This graph represents the complete graphical model representation for these three timesteps,
that describes how the transition and reward functions factorize in these three timesteps.

As can be seen from the example, to learn the factorization of the transition and reward functions in a
new environment, we can reuse the class template graphs and the interaction pattern graphs across
different domains with the same type of objects. We only need to relearn the dynamic interaction
graph, which is also the only graph that is dynamic (i.e. the edges do not repeat across every couple
of consecutive timesteps).

C Architecture and Implementation Details

In this section, we describe the architecture of DAFT-RL in more detail. Figure A2 summarizes the
pipeline of learning the DAFT-RL framework, which uses the notation summarized in Table A2. We
first provide a high-level illustration of the framework, and then provide the details in the following
subsections. In the offline model estimation, the DAFT-MDP is learned through a two-step process,
involving the estimation of both the class template graphs (Step 1), the interaction pattern graphs and
dynamic interaction graphs (Step 2). These graphs capture the relationships and dependencies among
objects from the attribute level in the environment. Once the DAFT-MDP is learned, policy learning
is performed using trajectory imagination and planning methods (Step 3). During the adaptation
phase, the dynamic graphs are inferred for the new domain (Step 4). This inference step allows for the
transfer of the previously trained policy to the new domain without extensive retraining. By adapting
the dynamic graphs to the new domain, the policy can be directly deployed and applied to the new
environment. In the following, we define the graph structures and losses for each of these steps.

C.1 Binary Matrices in DAFT-RL

We first introduce the definitions of all structures that are used in the loss functions in DAFT-RL:

Binary matrices in class template graphs. As described in the previous sections, we learn the
class template graphs GCj for each object class Cj . This graph is assumed to be constant in time. In
practice, these graphs are learned as binary adjacency matrices. To help express the loss functions in
a factorized way, we define the following binary matrices.
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Step 1: Class learning in single-object environments

{(xt1, at1, rt1)}T
t=1 {(xt2, at2, rt2)}T

t=1 {(xt3, at3, rt3)}T
t=1

Object-centric model

{ot1, at1, rt1}T
t=1 {ot2, at2, rt2}T

t=1 {ot3, at3, rt3}T
t=1

Learning class template graph

Object class inference

𝒢C1, 𝒢C2, 𝒢C3

C1, C2, C3

Stage 2: Interaction Learning and Latents Inference

Stage 3: Policy Learning

Stage 4: Adaptation

Apply policy

Inferred constant latent parameters oi . θ
Inferred object inertaction graph 𝒢inter
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𝒢inter
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αt
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, i ∈ {1,2,3}, j ∈ {1,2,3}
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{(xt, at, rt)}T
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Figure A2: The learning pipelines of the DAFT-RL framework.

For l = {1, . . . , n} we define:

• Cj .Gs→sl ∈ {0, 1}n as the subset of the adjacency matrix of GCj
that describes the edges

incoming into Cj .s
t+1
l from each Cj .s

t
i for i ∈ {1, . . . , n}. In other words this binary vector

is 1 only for the components Cj .s
t
i for i ∈ {1, . . . , n} that have an edge to Cj .s

t+1
l in GCj

.

• Cj .Ga→sl ∈ {0, 1} as a binary value that represents the existence of an edge between at

and Cj .s
t+1
l , denoting how the action will affect the dynamics at the attribute sl at next time

step.

• Cj .Gθ→sl ∈ {0, 1} as a binary value that represents the existence of an edge between Cj .θ
t

and Cj .s
t+1
l

We additionally define:

• Cj .Gs→r ∈ {0, 1}n is the subset of the adjacency matrix of GCj
that describes the edges

incoming into rt+1 from each Cj .s
t
i for i ∈ {1, . . . , n}

• Cj .Ga→r ∈ {0, 1} is a binary value that represents the existence of an edge between at.

For each object class Cj all of these five groups of binary matrices together represent the adjacency
matrix of graph GCj

.

Binary matrices in interaction pattern graphs. Interaction pattern graphs GCi,Cj
represent the

interaction structures between attributes of the object with class Ci and the object with class Cj ,
which are assumed to be constant in time. For each l = {1, . . . , n} we define GCi→Cj .sl ∈ {0, 1}n
to represent the binary vector that describes how the attributes of an object with class Ci influence the
attribute Cj .s

t+1
l of the object with class Cj . All of these vectors together represent the adjacency

matrix of graph GCi,Cj
.

Binary values in Dynamic interaction graphs The dynamic interaction graphs Gt
inter represent the

interactions between the objects O at timestep t, which include the action selector {α1,α2, . . . ,αT },
where αi ∈ {0, 1}m represents which object is affected by at at all time steps t = 1, . . . , T . We use
the action selection αi in our losses. For each oi, oj ∈ O we define a binary value Gt

inter(i,j) ∈ {0, 1}
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to represent whether object oi and oj will have the interaction at time step t. All of these values
together represent the adjacency matrix of graph Gt

inter.

C.1.1 Detailed Loss Functions

We provide the detailed loss functions for learning the DAFT-MDP below. In each step, we mark in
blue which of the structures defined in the previous subsections are learn at that step.

Step 1: Class learning in single-object environments As described in Sec 3.1, we learn the
class template graphs {GC1 ,GC2 , . . . ,GCk} using the collected Dsingle. We give the detailed loss
functions, including the prediction loss L1

pred and the sparsity regularization L1
sparse for dynamics

and reward models, for this step below:

L1
pred =

T∑
t=1

m∑
i=1

n∑
l=1

( log pλs(oi.s
t+1
l | Cj .Gs→sl ⊙ oi

t, Cj .Ga→sl ⊙ ati)

+ log pλr (r
t
i | Cj .Gs→r ⊙ oi

t, Cj .Ga→r ⊙ ati))

(A1)

L1
sparse =

k∑
j=1

(
n∑

l=1

∥Cj .Gs→sl∥1 + ∥Cj .Gs→r∥1 +
n∑

l=1

∥Cj .Ga→sl∥1 + ∥Cj .Ga→r∥1

)
(A2)

where we update the prediction models including λs, λr, as well as the binary vectors defined
previously {{Cj .Gs→sl}nl=1, {Cj .Ga→sl}nl=1, Cj .Gs→r, Cj .Ga→r} (marked in blue). The complete
loss L1 for Step 1 is:

L1 = L1
pred + γ1

sparseL1
sparse (A3)

where γ1
sparse is a hyper-parameter.

Step 2.1: Learning the action binding In this step, we learn the dynamic action selector αt by
using the soft attention networks. We have collected Dmulti which have multiple objects in the scene.
We consider that the class template graphs learned in the previous phase are fixed and update the
prediction loss with the action selector. The detailed loss function for this stage is:

L2
pred =

T∑
t=1

m∑
i=1

n∑
l=1

log pλs

(
oi.s

t+1
l | Ci.Gs→sl ⊙ oi

t, Ci.Ga→sl ⊙ αt
i · fv(at)

)
(A4)

where fv is the value network to be updated. We also need to learn the key and query networks fk
and fq to update αt

i for each object oi (marked in blue). Additionally, we use the same dynamic
network λs and also update it in this stage.

Step 2.2: learning dynamic interaction graph As described in Sec 3.2.2, we use dNRI [37] to
learn the dynamic interaction graph. Additionally, we also learn all the interaction pattern graphs, as
well as learn how to infer latent parameters, and how they influence each attribute, at this step. We
consider the class template graphs and action binding are fixed from the previous step. Detailed loss
functions are:

L3
pred =

T∑
t=1

m∑
i=1

n∑
l=1

log pλs
(oi.s

t+1
l | Ci.Gs→sl ⊙ oi

t, Ci.Ga→sl ⊙ αt
i · fv(at),

Ci.Gθ→sl ⊙ oi.θ, {Gt
inter(i,j) ·GCj→Ci.sl ⊙ ot

j}j∈{1,...,m}\i)

(A5)

L3
KL =

T∑
t=2

KL
(
qϕ
(
zt | s1:T

)
∥pϕ

(
zt | s1:t, z1:t−1

))
(A6)

L3
sparse =

k∑
i=1

k∑
j=1

n∑
l=1

∥∥GCi→Cj .sl

∥∥
1
+

k∑
i=1

n∑
l=1

∥Ci.Gθ→sl∥1 (A7)
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where λs is the dynamics model we have employed in the previous steps. We learn the encoder/prior
networks ϕ to generate the latent vectors z, where we sample the graph Ginter from. Through the
binary vectors we also learn the interaction pattern graphs {GCi,Cj}i,j∈{1,...,k}, latent parameters
{oi.θ}mi=1 and the binary vectors representing the edges from latent parameters to each attribute
{Ci.Gθ→sl}ki=1. We have completed the loss for step 2.2:

L3 = L3
pred + γ3

KLL3
KL + γ3

sparseL3
sparse (A8)

where γ3
KL and γ3

sparse are the hyper-parameters.

C.1.2 Details for the Other Algorithms

Object class learning For the case with pixel observation as input, we choose to learn the object
classes in a supervised manner, where the input includes the extracted feature vectors oi for each
object and we have the labels yi for each single objects. We apply a cross-entropy loss to learn the
mapping.

Interaction graph sampling During the learning of dynamic interaction graphs, we generate
the edge distribution zt at each time step t. We sample the edge matrix Mt of the graph Gt

inter.
Specifically, Mt ∼ Bern(zt), where Bern is the multivariate Bernoulli distribution and all elements
are mutually independent. We also employ the Gumbel-Softmax trick [40] to make the sampling
process differentiable.

D Experimental Details

In this section, we summarize all the experimental details. We first discuss our baselines and how
we modified them to evaluate them in a fair comparison with DAFT-RL, focusing in particular on
adapting symbolic input approaches to pixel inputs and image-based approaches to symbolic inputs.
We then describe the experimental setups, including each task description and the modifications we
made to the benchmarks.

D.1 Baseline Modifications

Symbolic input approaches with pixel inputs. We adapt various approaches that rely on symbolic
inputs, such as self-attention [15], deep sets [15], GNN [4], SRICS [6] and LRN [7], to handle
scenarios where the inputs are raw pixels. To accomplish this, we leverage pre-trained object-
centric models, specifically AIR [31], to obtain the state representation of each object within the
scene. The pre-trained object-centric models, specifically AIR, are employed to extract object-
specific information from the raw pixel inputs. These object-factored states, which represent the
individual objects, are then used as inputs for the approaches mentioned above. By incorporating the
object-centric models and leveraging their extracted object representations, we enable the symbolic
approaches originally designed for other input formats to be applicable in scenarios where raw pixels
serve as the input representation.

Image-based approaches with symbolic inputs. To modify the image-based approaches to fit
with the benchmarks with symbolic inputs, we adopt the following changes:

• SMORL [5]: we remove the SCALOR encoder and directly obtain z from the simulator.
• STOVE [8]: similarly, we remove the SuPAIR model and directly observe object-factored

states for dynamics and policy modeling.
• NCS [12]: we directly observe the type and state variables from the simulator without the

slot attention models.

Notably, we do not and cannot modify COBRA [9] for the symbolic case, because COBRA is mostly
built upon the scene encoder and decoder.

D.2 Experimental Setups

In this section, we give the task description for each of the three benchmarks and describe the detailed
experimental settings for both model estimation and policy learning.
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D.2.1 Task Description

OpenAI Fetch - Push and Switch. In this benchmarks the tasks are to push N boxes or flip
M switches. The agent can obtain both the object factored states and the global (agent) states.
Specifically, the object states are the object’s pose and velocity. For switches, the states are also the
switch angle and the position. The action is the 3D continuous control of the end effector displacement
and 1D control of the distance between gripper fingers. The goals are the target position for cubes
(pushing task) and the target angle of the switches (switching task). In the experiment, we consider a
dense reward, computed by the distance between the object’s states and the desired states in the goals.

Spriteworld. There are four tasks in the Spriteworld benchmark, as listed below. We follow the
task sets as well as the modifications in [13]. The agent directly observes the 2D images as the
observation states.

• Object goal task: the goal is to move the object to the target position without touching other
distractor objects. The action includes four cardinal directions. A positive reward will be
given if the goal is achieved.

• Object interaction task: the goal is to push the target to a given location in the scene. The
reward will be obtained if the agent pushes the target to the goal position and the action also
includes four cardinal directions.

• Object comparison task: the agent needs to figure out which object is different from other
objects and move this object to the given position. The reward will be given if the goal is
achieved and the action also includes four cardinal directions.

• Property comparison task: similarly, the agent needs to find out the object with a different
color or shape from other objects. This task is generally more challenging as the agent
needs to reason the property-level difference while the object comparison task only requires
object-level reasoning. The reward and action are the same as the object comparison task.

Stacking. We follow the block-stacking experimental setups in [17]. In the block-stacking task, the
agent can observe the images from the current scene and the goal. The action includes picking and
placing the objects and coordinates [61]. The goal is to stack m objects with a given position.

D.2.2 Benchmark Modifications

Color, shape, friction and mass in Push & Switch To make the benchmark more realistic, we
add two variables into the original states in the benchmark, the object color and shape, both are
represented as one-hot vector. Additionally, we also use a different friction coefficient and mass for
each object. We implement this by conducting a post-processing filter for each object in the simulator.
Specifically, different friction coefficients will result in slower velocity and action effects. Different
masses will result in different action effects of the agent. During the training of the estimation
model, we use the objects with masses and friction coefficients uniformly sampled from {4, 6, 8, 10}
and {0.4, 0.6, 0.8, 1.0} respectively. During testing, the object masses and friction coefficients are
sampled from {1, 2, 3, 11, 13} ∪ {3, 5, 7, 9} and {0.1, 0.2, 1.1, 1.3} ∪ {0.5, 0.7, 0.9} respectively.

Unseen colors, shapes, and numbers of objects in Spriteworld To evaluate the generalization
capabilities of our model, we take into account the number of unseen objects, shapes, and colors.
We achieve this without directly modifying the benchmark, as it offers the flexibility to alter these
properties. During the training phase for model estimation, we use the colors green, red, and yellow,
along with a varied number of objects ranging from {3, 5, 7}. We consider as shapes circles and boxes.
During the testing phase, we introduce new elements that were not seen during training. Specifically,
we incorporate the color blue and triangle shapes. Additionally, the number of objects is extended to
include {2, 4, 6, 8}. By considering these changes in colors, shapes, and object numbers, we aim to
assess the model’s ability to generalize to novel configurations and demonstrate its robustness.

Mass in Stacking We adjust the mass of each block by modifying the action effects on the object,
treating them as post-processing filters applied to the image frames. In particular, picking up a heavier
object will require more time compared to selecting a lighter one due to gravity. Placing a heavier
one will make it faster than the lighter one. During training, we consider the masses ranging from
{1, 1.5, 2, 2.5}. During testing, we make the masses of the objects ranging from {0.5, 1.25, 2.25, 3}.
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D.2.3 Offline Model Estimation

In Step 1, we use the GRU model [39] as both the dynamics and reward prediction model to learn the
class template graph. The hidden size of the GRU is set to 128. Additionally, we incorporate two
MLP layers before and after the GRU, each with a hidden size of 64. During training, we continue
optimizing the model until the dynamics and reward models converge, employing the mean squared
error (MSE) loss with the Adam optimizer. In Step 2, we use MLP layers to parameterize the soft
attention layers [35]. Specifically, for the functions fk, fq , and fv , the hidden sizes are all set to 128,
with only one hidden layer for each of them. To learn the dynamic interaction graph, we follow the
hyperparameters and model architectures outlined in [37]. However, as opposed to them, we use
the previously learned GRU in Step 1 as the decoder. For various experiments, we adopt different
hyperparameters for the GRU decoder. The training details for each experiment are provided below.

Push & Switch In Step 1, we gather a total of 400 trajectories for both boxes and switches (200 for
each). Each trajectory consists of 100 time steps, and the actions are generated using a random policy.
The batch size for this stage is set to 80, and the weighting parameter before the regularization term
is 0.015. In this step, in each trajectory, there is only one single object and different trajectories have
different objects with different types (e.g., box or cubes), different colors (e.g., blue, red, etc), and
different latent parameters (e.g., friction coefficients). In Step 2, we collect 500 trajectories, where
each trajectory consists of 50 time steps, for learning the action binding selector. The batch size
for training the soft attention network is set to 100. Regarding the learning of dynamic interaction
graphs, we use the same parameters and model architectures as described in [37]. For the decoder, we
reuse the decoder used in Step 1, which includes the interaction pattern graphs and the class template
graphs. The balancing weights before the KL divergence and the sparsity regularization are set to
0.9 and 0.2, respectively. During training, we set the learning rate to 2.5 × 10−5, and we apply a
decaying factor of 0.5 every 100 training epochs.

Spriteworld We adopt the same pre-trained procedures outlined in [13] for the object-centric
models. Specifically, for both SA (Slot Attention) [30] and AIR (Attend, Infer, Repeat) [31], we
generate a dataset containing various objects with distinct colors and shapes. The dataset comprises
200 trajectories, each consisting of 50 time steps. Within each frame, there are typically 2-5 objects
exhibiting a diverse range of colors and shapes. For Step 1, we use the collected dataset of 300
trajectories (with 50 time steps each) to learn the class template graphs with different objects. Each
trajectory has the transitions of one single object. The weighting parameter before the sparsity
regularizer is set to 0.3. The batch size is 64 and the learning rate is 0.002. In our Spriteworld
scenario, dense reward signals are absent. Therefore, we solely focus on learning the graphs between
states and actions for most steps, excluding those that achieve the goal. Additionally, there is no
direct interaction among objects, which means we do not train Step 2 for inferring the interactions.
This setup aligns with [13] and is consistent across all the baseline methods we employ.

Stacking We also pre-train the SA and AIR using the randomly collected dataset containing 200
trajectories, each with 30 time steps. The blocks are initialized with different colors in the dataset.
To train Step 1, we collect the single-block dataset with 200 trajectories, each with 30 time steps.
The balancing weight for sparsity regularization is 0.05. For Step 2, we have the dataset with 300
trajectories, each with 30 time steps and multiple objects. We use the same set of hyper-parameters
for learning the soft attention networks as Push & Switch. For learning the dynamic interaction
graph, we balanced weights before the KL divergence and the sparsity regularization is 0.2 and 0.1,
respectively. We use the same learning rate to 2.5 × 10−5, and we apply a decaying factor of 0.5
every 100 training epochs.

D.2.4 Policy Learning and Planning

For the Push & Switch and Spriteworld experiments, we use PPO [42] for all baselines with the
trajectories generated by the learned dynamics and reward functions. The learning rate for PPO is
0.005 and 0.003 in these two benchmarks, respectively. The coefficient of the entropy term in PPO is
0.05. The policy is parameterized with 3 MLP layers of size 256 and 128 in both experiments. For
Stacking, we follow all the MPC hyper-parameter settings in [17] for the planning.
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D.3 Full Results

We provide the full results of the experiments in this section, including the quantitative results for all
experiments, ablation studies, and the visualized graphs.

D.3.1 Quantitative Results

Table A3 and A4 give the results of the single training task in Push & Switch and Spriteworld
benchmarks. Table A5 and A6 provide the results of Spriteworld with 1) changing object numbers
and 2) changing object colors and shapes simultaneously during the testing phase, respectively.

Experiment
Settings

Method
DAFT (Symbolic) Deep Set Self-attention SRICS GNN STOVE Self-attention NCS Relational RL

2-Push 0.959 ± 0.031 0.985 ± 0.025 0.943 ± 0.024 0.981 ± 0.015 0.923 ± 0.047 0.973 ± 0.028 0.968 ± 0.036 0.993 ± 0.013 0.916 ± 0.054
2-Switch 0.982 ± 0.013 0.869 ± 0.032 0.954 ± 0.015 0.978 ± 0.029 0.931 ± 0.028 0.916 ± 0.045 0.943 ± 0.016 0.977 ± 0.038 0.945 ± 0.042
3-Push 0.961 ± 0.035 0.753 ± 0.031 0.670 ± 0.023 0.931 ± 0.027 0.784 ± 0.041 0.954 ± 0.033 0.972 ± 0.019 0.893 ± 0.024 0.929 ± 0.022
3-Switch 0.907 ± 0.066 0.879 ± 0.077 0.805 ± 0.089 0.732 ± 0.095 0.295 ± 0.169 0.640 ± 0.105 0.660 ± 0.083 0.831 ± 0.112 0.748 ± 0.089

Table A3: Average success rate over 3 random seeds for Push & Switch environments testing (single
task training mode). The numbers in bold highlight the top-performing method.

Experiment
Settings

Method
DAFT (SA) DAFT (AIR) SMORL SRICS GNN STOVE COBRA NCS LRN

Object Goal 0.916 ± 0.032 0.920 ± 0.037 0.745 ± 0.066 0.784 ± 0.058 0.464 ± 0.091 0.643 ± 0.049 0.715 ± 0.049 0.925 ± 0.021 0.846 ± 0.067
Object Interaction 0.909 ± 0.068 0.896 ± 0.053 0.758 ± 0.063 0.824 ± 0.096 0.396 ± 0.146 0.683 ± 0.094 0.746 ± 0.073 0.931 ± 0.061 0.812 ± 0.115
Object Comparison 0.917 ± 0.065 0.902 ± 0.060 0.923 ± 0.049 0.812 ± 0.071 0.476 ± 0.128 0.625 ± 0.091 0.738 ± 0.057 0.901 ± 0.051 0.693 ± 0.097
Property Comparison 0.930 ± 0.034 0.905 ± 0.075 0.918 ± 0.088 0.810 ± 0.095 0.369 ± 0.174 0.602 ± 0.108 0.732 ± 0.083 0.897 ± 0.112 0.644 ± 0.091

Table A4: Average success rate over 3 random seeds for Spriteworld environments training (single
task training mode). The numbers in bold highlight the top-performing method.

Experiment
Settings

Method
DAFT (SA) DAFT (AIR) SMORL SRICS GNN STOVE COBRA NCS LRN

Object Goal 0.928 ± 0.038 0.899 ± 0.043 0.720 ± 0.069 0.766 ± 0.064 0.450 ± 0.095 0.672 ± 0.052 0.699 ± 0.055 0.883 ± 0.028 0.791 ± 0.071
Object Interaction 0.900 ± 0.074 0.886 ± 0.059 0.735 ± 0.067 0.802 ± 0.100 0.380 ± 0.142 0.665 ± 0.100 0.728 ± 0.077 0.851 ± 0.066 0.789 ± 0.119
Object Comparison 0.904 ± 0.071 0.890 ± 0.065 0.876 ± 0.054 0.795 ± 0.076 0.459 ± 0.129 0.674 ± 0.096 0.724 ± 0.061 0.864 ± 0.058 0.800 ± 0.102
Property Comparison 0.911 ± 0.070 0.875 ± 0.081 0.865 ± 0.093 0.782 ± 0.099 0.355 ± 0.173 0.680 ± 0.113 0.711 ± 0.087 0.875 ± 0.116 0.772 ± 0.097

Table A5: Average success rate over 3 random seeds for Spriteworld environments testing (with
unseen object numbers). The numbers in bold highlight the top-performing method.
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Experiment
Settings

Method
DAFT (SA) DAFT (AIR) SMORL SRICS GNN STOVE COBRA NCS LRN

Object Goal 0.902 ± 0.036 0.897 ± 0.041 0.694 ± 0.071 0.738 ± 0.062 0.420 ± 0.099 0.654 ± 0.050 0.681 ± 0.053 0.835 ± 0.024 0.775 ± 0.069
Object Interaction 0.895 ± 0.072 0.880 ± 0.057 0.710 ± 0.065 0.772 ± 0.102 0.350 ± 0.140 0.635 ± 0.098 0.698 ± 0.075 0.859 ± 0.064 0.769 ± 0.117
Object Comparison 0.878 ± 0.069 0.895 ± 0.063 0.854 ± 0.052 0.765 ± 0.074 0.429 ± 0.125 0.631 ± 0.092 0.704 ± 0.059 0.824 ± 0.056 0.724 ± 0.100
Property Comparison 0.912 ± 0.068 0.867 ± 0.079 0.885 ± 0.091 0.742 ± 0.097 0.325 ± 0.171 0.660 ± 0.109 0.690 ± 0.085 0.809 ± 0.114 0.725 ± 0.093

Table A6: Average success rate over 3 random seeds for Spriteworld environments testing (with
unseen object colors and shapes). The numbers in bold highlight the top-performing method.

D.3.2 Full Ablation Studies

Fig. A3 gives the full ablation studies on Push & Switch and Stacking benchmarks. We consider the
following cases:

• DAFT-RL w/o latent parameters;

• DAFT-RL w/o factored class template graph;

• DAFT-RL w/o dynamic interaction graph;

• DAFT-RL w/o factored interaction pattern;

• Using single class learning instead of multiple object classes;

• DAFT-RL w/o action binding graph;

• Using hard attention networks for action binding;
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Figure A3: Ablation studies on Push & Switch and stacking tasks. I. without latent parameters; II.
without factored class template graph; III. without dynamic interaction graph; IV. without factored
interaction pattern; V. using single object class; VI. without action binding graph; VII. using hard
attention networks; VIII. Original DAFT-RL. For those tasks where the latent parameters do not exist,
we did not conduct ablations on case I. Similarly, for those tasks with only one object, we did not
include the ablations on case V.

Based on the obtained results, we observe that each learned component plays a crucial role in
optimizing the policy. Notably, the dynamic interaction graph consistently demonstrates a significant
contribution across the majority of experiments in Push & Switch and stacking benchmarks.
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Task DAFT (SA) DAFT (SA) w/o class template graphs
Object goal 0.897 0.767

Object interaction 0.890 0.739
Object comparison 0.893 0.685

Property comparison 0.907 0.832

Table A7: Ablation studies on the Spriteworld benchmark.

For Spriteworld, since there is no object interaction and latent parameters in this task, we only conduct
the ablation studies on the class template graph. The results (Table A7) suggest that the class template
graph can benefit policy optimization as well.

These findings highlight the importance of factored and dynamic graphs in capturing and modeling
the attribute-level interactions between objects. They suggest that understanding and incorporating
the dynamic relationships and dependencies among objects have a substantial impact on policy
optimization.

D.4 Results on End-to-end Learning

Table A8 presents the results of end-to-end training. For a fair comparison, we use the same number
of data samples as in the original multi-step training. In this end-to-end approach, only Dmulti is
employed as both the interaction model and object template graphs are trained simultaneously. The
results indicate that while the multi-step training consistently outperforms, the agent can still achieve
respectable compositional generalization performance with the end-to-end training method.

Experiment
Settings

Method
2-P+2-S (S) 3-P+3-S (S+O) 2-P (L) 2-S (L) 3-P (L+O) 3-S (L+O) 2-P+2-S (L+S) 3-P+3-S (L+O+S)

Original (main paper) 0.881 ± 0.038 0.805 ± 0.024 0.968 ± 0.036 0.923 ± 0.065 0.921 ± 0.037 0.903 ± 0.023 0.793 ± 0.026 0.783 ± 0.025
End-to-end 0.821 ± 0.076 0.765 ± 0.023 0.806 ± 0.048 0.852 ± 0.038 0.875 ± 0.029 0.796 ± 0.047 0.635 ± 0.024 0.707 ± 0.062

Table A8: Results on end-to-end training in Push & Switch compositional task. m-P and n-S denote
the m-Push and n-Switch task. The numbers in bold highlight the top-performing method.

D.5 Effect of Imagination

Table A9 gives the results where we disable the imagination for all methods. The results indicate that
imagination helps improve the performances of all methods.

Experiment
Settings

Method
DAFT-RL (SA) DAFT-RL (AIR) SMORL SRICS GNN STOVE NCS LRN

Original 0.506 ± 0.083 0.571 ± 0.039 0.386 ± 0.062 0.420 ± 0.061 0.334 ± 0.047 0.278 ± 0.086 0.397 ± 0.052 0.463 ± 0.077
No imagination 0.469 ± 0.063 0.508 ± 0.064 0.401 ± 0.055 0.434 ± 0.078 0.319 ± 0.040 0.224 ± 0.071 0.264 ± 0.059 0.398 ± 0.061

Table A9: Results on the cases where imagination is disabled. Average success rate over 3 random
seeds for Block-stacking with 8 boxes and different masses.

D.6 Effect of the Choice of Object-centric Models for Symbolic Methods

Table A10 shows the results of adding AIR and SA to the symbolic methods on the 8-blocking with
variants in terms of masses. Results indicate that both choices are comparable in terms of the final
success rate.

D.7 Effects of Learned Latent Parameters and Graphs

To assess the efficacy of the learned latent parameters, we carried out two sets of experiments: (i)
incorporating the actual latent parameters (in this case, the mass value) into the state vector for policy
learning across all methods; and (ii) integrating the latent parameters learned by DAFT-RL into the
state vectors for all baseline methods. The results are presented in Table A11. Notably, while models
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Experiment
Settings

Method
DAFT-RL SRICS GNN LRN

AIR 0.506 ± 0.083 0.420 ± 0.061 0.334 ± 0.047 0.463 ± 0.077
SA 0.571 ± 0.039 0.395 ± 0.046 0.293 ± 0.036 0.482 ± 0.052

Table A10: Comparisons on the using AIR or SA as the object-centric model for symbolic methods.

using the true latent parameters did outperform those utilizing DAFT-RL’s learned latents, the latents
derived from DAFT-RL notably enhanced the performance of all baseline methods. These findings
suggest the significance of accurate latent parameter estimation and suggest that DAFT-RL can learn
a set of valuable latents to improve generalization.

Additionally, we investigated the quality of learned graphs and the latent parameters, and their effect
on the RL performance w.r.t. the number of samples for the 3-Push + 3-Switch (L+O+S) task. In
particular, we varied the amount of training data, ranging from 10%, 20%, 40%, 60%, 80% of the
original sample size (900 trajectories). We measured the R2 coefficient of our learned parameters
with the true latent parameters, both for a random policy (Fig. A4a) and for a pre-trained policy
(Fig. A4b). These results show that the performance degrades with smaller sample sizes, but it is still
acceptable with 60% data, and that the difference between data collected with a random or pre-trained
policy is negligible at higher sample sizes; the normalized Structural Hamming Distance between the
reconstructed graph and the ground truth graph, as well as the success rate of the learned policy. As
expected, the more data, the more accurate the graph, and the better the performance of the policy
trained with the more accurate world model. For the number of samples in the main paper, the graph
is perfectly reconstructed, which also means a good RL performance. Additionally, for limited data
(e.g. 0.2 or 0.4 of the original dataset) leveraging a pre-trained policy enhances both graph and
policy learning. However, as the amount of data increases, the benefits of using a pre-trained policy
diminish.

Experiment
Settings

Method
DAFT-RL (SA) DAFT-RL (AIR) SMORL SRICS GNN STOVE NCS LRN

Original 0.506 ±0.083 0.571 ±0.039 0.386 ±0.062 0.420 ±0.061 0.334 ±0.047 0.278 ±0.086 0.397 ±0.052 0.463 ±0.077
True latent parameter 0.525 ±0.062 0.598 ±0.023 0.475 ±0.081 0.501 ±0.072 0.386 ±0.035 0.315 ±0.049 0.410 ±0.075 0.492 ±0.068

Parameter learned by DAFT-RL 0.506 ±0.083 0.571 ±0.039 0.415 ±0.059 0.493 ±0.073 0.359 ±0.041 0.263 ±0.085 0.399 ±0.049 0.484 ±0.061

Table A11: Effects of the latent parameter modeling. Original: Results in the original experiments,
where for DAFT-RL, we use the learned latent and the others are without latent parameter estimations;
True latent parameter: All methods directly use the true latent as part of the states. Parameters learned
by DAFT-RL: all baselines are using the latent learned by DAFT-RL as part of the state vectors.
Average success rate over 3 random seeds for Block-stacking with 8 boxes and different masses. The
numbers in bold highlight the top-performing method.

0.2 0.4 0.6 0.8 1.0

Ratio of Full Samples

°0.75

°0.50

°0.25

0.00

0.25

0.50

0.75

M
ea

su
re

m
en

ts

Success Rate

R2

nSHD

0.2 0.4 0.6 0.8 1.0

Ratio of Full Samples

°0.2

0.0

0.2

0.4

0.6

M
ea

su
re

m
en

ts

Success Rate

R2

nSHD

(a) (b)

Figure A4: Quality of learned graphs w.r.t. the number of samples for 3-Push + 3-Switch (L+O+S).
We plot the success rate of the RL task, the R2 coefficient for learned representation vs the true latent
parameters, and normalized Structured Hamming Distance (nSHD) between the learned graph and
true graph under different number of training samples (measured as a ratio with the ones in the main
paper) for (a) data collected by random policy, and (b) data collected by pre-trained policy.

D.7.1 Visualization of the Learned Graphs

In Figure A5, which illustrates the learned graphs for boxes and switches in the Push & Switch
benchmarks, we denote the class template graphs for boxes and switches as A1 and A2. The variables
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C1.s1, C1.s2, C1.s3, and C1.s4 represent the color, shape, velocity, and position of the boxes,
respectively. Similarly, C2.s1, C2.s2, C2.s3, and C2.s4 correspond to the color, shape, position, and
angle of the switches. In both cases, Ci.θ and Cj .θ indicate the friction coefficients.

As expected, in the learned class template graph, we observe that shape and color do not have a direct
effect on the dynamics, and they remain unchanged throughout the dynamics. On the other hand,
velocity directly influences the position of the boxes, while the position itself does not affect the
velocity. Regarding the switches, their positions do not directly impact the angles since they are fixed
at specific positions on the panel. Also, as expected, actions applied to the switches have an effect
solely on their angles. The reward is based on the actions, positions, and angles for both boxes and
switches. Additionally, the latent parameters influence the velocity and position of the boxes, while
they specifically affect the angle of the switches.
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Figure A5: Learned class template graph and interaction pattern graph in push & switch task. A1-A2:
Class template graphs for box and switch. B: interaction pattern graph among two boxes.

As for the interaction graph between two boxes, shown in Figure A5B, the velocity of one box can
impact the position of the other box, while the other variables do not have a direct influence on each
other. This learned interaction graph successfully captures the underlying physical processes of the
system, enabling an attribute-level understanding of the object interactions. Overall, these learned
graphs effectively recover the underlying physical processes of the system.
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