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1 ALGORITHM

1.1 ALGORITHM

Algorithm 1 Reducing Classifier Discrepancy (RCD)
Require: Cbase: base classes; Dbase: dataset of base classes

Phase 1: Pre-training in conventional way

Require: α: learning rate
Initialize:

Initialize feature extractor Fθ and predictor hW
for batch = 1, 2, . . . do

Sample a batch of samples {(x, y)} from Dbase

Predict labels of samples ŷ = hW (Fθ(x))
Compute cross-entropy loss Lce(y, h(F (X)))
Update parameter of feature extractor θ ← θ − α∇Lce
Update classification weights W ←W − α∇Lce

end for

Phase 2: Meta-train with proposed auxiliary loss

Require: α: learning rate; β: weight of auxiliary loss
Require: h∗ = argminhLce(h, F ;Dbase): the ideal predictor obtained in Phase 1

Initialize:
Initialize feature extractor Fθ′

for iteration = 1, 2, . . . do
Compose a task τ : sample N categories from Cbase; sample a support set Ds and a query set

Dq for N categories from Dbase

Estimate task-specific predictor on Ds: h = arg minh Lce(y, h(F (Ds)))
Compute cross-entropy loss on Dq: Lce(y, h(F (Dq)))
Compute classifier discrepancy Ldis(h∗, h)
Update the feature extractor θ′ ← θ′ − α∇(Lce + βLdis)

end for

2 PROOFS

Notations used in this section are first given in Table 1. For simplification, notations in this part are
subtly different with those in paper.
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Table 1: Notations.
h A linear hypothesis
h∗ The ideal linear hypothesis
F Feature extractor
εB Error rate on base classes
εN Error rate on novel classes
DB Dataset of base classes
DN Dataset of novel classes
dis Disagreement
Λ A linear transformaion

2.1 PROOF OF PROPOSITION 1

Proof. From the definition of ε, we can split it into two parts as follow:

ε(h;F ) = E(x,y)∈D[1(y! = h(F (x)))]

= E(x,y)∈D[1(y! = h(F (x)) ∧ h∗(F (x))! = h(F (x)))]

+ E(x,y)∈D[1(y! = h(F (x)) ∧ h∗(F (x)) == h(F (x)))]

(1)

The disagreement can be decomposed as:

dis(h, h∗;F ) = E(x,y)∈D[1(h(F (x))! = h∗(F (x)))]

= E(x,y)∈D[1(h(F (x))! = h∗(F (x)) ∧ y! = h(F (x)))]

+ E(x,y)∈D[1(h(F (x))! = h∗(F (x)) ∧ y == h(F (x)))]

(2)

The error rate of the best hypothesis can be rewritten as:

ε(h∗;F ) = E(x,y)∈D[1(y! = h∗(F (x)))]

= E(x,y)∈D[1(y! = h∗(F (x)) ∧ h∗(F (x))! = h(F (x)))]

+ E(x,y)∈D[1(y! = h∗(F (x)) ∧ h∗(F (x)) == h(F (x)))]

(3)

The second term of Eqn. 3 can be further rewritten as:

E(x,y)∈D[1(y! = h∗(F (x)) ∧ h∗(F (x)) == h(F (x)))]

= E(x,y)∈D[1(y! = h(F (x)) ∧ h∗(F (x)) == h(F (x)))]
(4)

Notice that the first term of Eqn. 2 and the second term of Eqn. 3 are identical to the two terms of
Eqn. 1 respectively. And the rest terms of Eqn. 2 and Eqn. 3 are positive numbers. So the sum of
ε(h∗;F ) and dis(h, h∗;F ) is larger equal than ε(h;F ). The Proposition 1 is proved hereto.

2.2 PROOF OF LEMMA 1

Proof. Let h∗ be the ideal hypothesis for the novel classes and h′∗ be the ideal hypothesis for the
base classes. There exists a linear transformation h′∗ = Λ(h∗). The classification weight of the
hypothesis has Wn = WbW̃ .

From the triangular inequality, and the definition ofH∆H divergence we have:

εN (h∗) ≤ εN (h′∗) + εN (h∗, h′∗)

≤ εN (h′∗) + εB(h∗, h′∗) + |εB(h∗, h′∗)− εN (h∗, h′∗)|

≤ εB(h′∗) + εN (h′∗) + εB(Λ−1(h′∗)) +
1

2
dH∆H(DB , DN )

≤ εB(h′∗) +
1

2
dH∆H(DB , DN ) + λ

(5)

where λ = minh εN (h) + εB(Λ−1(h)).
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2.3 PROOF OF LEMMA 2

Proof. From the definition ofH∆H divergence (Ben-David et al. (2010)) we have:

|dist(h, h′)− diss(h, h′)| ≤
1

2
dH∆H(Ds, Dt) (6)

where Ds is the source domain and Dt is the target domain.

Consider any hypothesis h and the ideal hypothesis h∗ on novel classes. We define an intermediate
set DI = Λ(DB). In this paper, we assume the novel set as the target domain and the intermediate
set as the source domain. Then we have:

disN (h, h∗) ≤ 1

2
dH∆H(Λ(DB), DN ) + disI(h, h

∗) (7)

h′∗ = Λ(h∗), then we can rewrite disT (h, h∗) as:

disI(h, h
∗) = disB(Λ(h), Λ(h∗)) = disB(Λ(h), h′∗) (8)

Then Eqn. 7 can be rewritten as:

disN (h, h∗) ≤ 1

2
dH∆H(DI , DN ) + disB(Λ(h), h′∗)

≤ disB(h′, h′∗) + disB(h′, Λ(h)) +
1

2
dH∆H(Λ(DB), DN )

(9)

3 EXTENDED DISCUSSION

In this section, we discuss the relation among our paper and state-of-the-arts in few-shot learning.

1. Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? (Tian et al.
(2020))

On the one hand, Rethinking-FSC indicates that learning a supervised feature representa-
tion can achieve strong performance. Objective in Rethinking-FSC can be formulated as
minF,h Lce(h, F ;Dbase). In our paper, we theoretically point out that few-shot performance is
effected by feature separability. Feature separability can be measured by the error rate of the ideal
linear predictor, represented by minh ε(h, F ;Dbase). Since this measurement is non-differentiable,
we can use cross-entropy loss minh Lce(h, F ;Dbase) for estimation. Our paper aims to maximizing
linear separability by minF minh Lce(h, F ;Dbase) which is consistent with the objective in super-
vised training. On the other hand, Rethinking-FSC uses knowledge distilling to boost few-shot per-
formance. Objective in distilling can be formulated as minh,F LKL(h(F (Dbase)), h′(F ′(Dbase)))
where F and F ′ are feature extractors in different generations. In our paper, we theoretically analyze
the relation of error and classifier discrepancy and further propose to use KL divergence as auxiliary
constraint. Our objective is minF LKL(h(F (Dbase)), h∗(F ′(Dbase))) where h∗ is approximated
by h′ = argminhLce(h, F ;Dbase). Objectives in two methods are consistent. In summary, our
paper theoretically explains aforementioned two concepts in Rethinking-FSC.

2. Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks (Cao
et al. (2019))

Cao et al. (2019) propose that variance in the feature space has important effect on few-shot per-
formance. Since classifier in few-shot learning is sample-dependent, the variance of feature repre-
sentations influences decision boundaries thus affects stability of classifier. Similarly in our paper,
we study on discrepancy between task-specific and task-independent classifiers. From experiment
results and visualization, we find that in better clustered feature space, classifier discrepancy is rela-
tively small and accuracy is higher. Our paper supports the conclusion proposed by Cao et al. (2019)
from another side.

3. Prototype Rectification for Few-Shot Learning (Liu et al. (2020))

Liu et al. (2020) give a theoretical lower bound of Cosine Similarity based Prototypical Network,
demonstrating that intra-class bias and cross-class bias are key influencing factors. The intra-class
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bias refers to the difference of the prototype estimated from limited samples and the expected pro-
totype. If the intra-class bias is quantified by MSE, our proposed classifier discrepancy measured
by disMSE in PN can approximate to it. Liu et al. (2020) point out that the intra-class bias is larger
in fewer-shot scenario which is consistent with the findings in Sec. 3.

4 EXPERIMENTS

4.1 DETAILS

In this section, we give the details of how to measure classification performance on novel classes
in Sec. 4.1. We first train a feature extractor in supervised way. Then we fix the feature ex-
tractor and extract features of the samples in novel set. The ideal classifier is defined as h∗ =
argminhε(D;h, F ). To obtain a differentiable criterion, we use cross entropy to approximate it
h∗ = argminhLce(D;h, F ).

For ProtoNet, we can calculate the ideal classifier by the definition:

Pi =

∑
Fθ(x) · 1(y == i)∑

1(y == i)
(10)

For LR, we can calculate the ideal classifier by:

W = argminwLce(D
base;hw, Fθ) (11)

For RR, we can calculate the ideal classifier by:

W = (XTX + γI)−1XTY (12)

where Y is the one-hot label.

dis(h, h∗;F ) is computed from 600 randomly sampled episodes.

4.2 HYPERPARAMETERS

In phase 1, we use a fully connected layer as classifier. Hyperparameters are displayed in Table 2.

Table 2: Hyperparameters.

Phase 1

Optimizer SGD
Learning Rate 0.001
Weight Decay 0.0005

Momentum 0.9
Max Epoch 500

LR Decay Milestones 75, 150, 300
LR Decay Gamma 0.1

Batch Size 16
Steps per Epoch 2400

Phase 2

Optimizer SGD
Learning Rate 0.0001
Weight Decay 0.0005

Momentum 0.9
Batch Size 1

Max Episodes 20000
β 50
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4.3 VISUALIZATION

Figure 1: t-SNE visualization on tiered-ImageNet

4.4 DATASET

The mini-ImageNet (Vinyals et al. (2016)) consists of 100 classes from ImageNet (Deng et al.
(2009)) and each class has 600 images of size 84 × 84. We follow the standard split proposed in
(Ravi & Larochelle (2017)): dataset is divided into three subsets which has 64, 16, and 20 classes
for training, validation, and test.

The tiered-ImageNet (Ren et al. (2018)) has 608 classes which are randomly chosen from the
ImageNet (Deng et al. (2009)). As proposed in (Ren et al. (2018)), dataset is split into training,
validation, test subsets which contain 351, 97, and 160 classes respectively. It is further split into 34
high-level semantic categories, including 20, 6, 8 classes for training, validation and test. In total,
there are 779,165 images with a size of 84× 84.

The CIFAR-FS includes 100 classes which is derived from CIFAR-100 dataset (Bertinetto et al.
(2018)). Each class has 600 images of size 32× 32. The whole dataset is divided into three subsets:
64 training classes, 16 validation classes and 20 test classes.

4.5 BACKBONE

ConvNet-64 (Snell et al. (2017)) is composed of 4 convolutional modules with 3 × 3 convolutions,
each followed by a BatchNorm layer (Ioffe & Szegedy (2015)), a ReLU nonlinearity (Nair & Hinton
(2010)), and a 2 × 2 max-pooling unit. With input images of size 84 × 84, the output feature map
has size of 64 × 5 × 5. Backbone is followed by a global average pooling layer and outputs a
64-dimension feature vector. ResNet-12 (Lee et al. (2019)) is a shallow residual network. It is
composed of 4 residual blocks, and each residual block consists of 3 convolutional layers with 3× 3
kernel and a max-pooling layer. A global average-pooling layer follows at the end of the backbone.
The final output feature vector is 640-dimension.
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