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ABSTRACT

Built upon language and vision foundation models with strong generalization abil-
ity and trained on large-scale robotic data, Vision-Language-Action (VLA) mod-
els have recently emerged as a promising approach to learning generalist robotic
policies. However, a key drawback of existing VLAs is their extremely high infer-
ence costs. In this paper, we propose HyperVLA to address this problem. Unlike
existing monolithic VLAs that activate the whole model during both training and
inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that ac-
tivates only a small task-specific policy during inference, while still retaining the
high model capacity needed to accommodate diverse multi-task behaviors dur-
ing training. Successfully training an HN-based VLA is nontrivial so HyperVLA
contains several key algorithm design features that improve its performance, in-
cluding properly utilizing the prior knowledge from existing vision foundation
models, HN normalization, and an action generation strategy. Compared to mono-
lithic VLAs, HyperVLA achieves a similar or even higher success rate for both
zero-shot generalization and few-shot adaptation, while significantly reducing in-
ference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA
reduces the number of activated parameters at test time by 90×, and accelerates
inference speed by 120×.

1 INTRODUCTION

Motivated by the great success of foundation models in domains like NLP (GLM et al., 2024; Jiang
et al., 2023; Yang et al., 2025; Bai et al., 2023a; DeepSeek-AI et al., 2025; xAI, 2025; Team et al.,
2025a; OpenAI et al., 2024; Grattafiori et al., 2024) and CV (Dosovitskiy et al., 2021; Radford
et al., 2021a; Yu et al., 2022; Kirillov et al., 2023; Oquab et al., 2024; Wang et al., 2023; Bai
et al., 2023b; Chen et al., 2025; Team et al., 2025b) in recent years, robotic learning has been
going through a paradigm shift from training moderate-size models on a narrow task distribution
to training generalist control policies on large-scale robotic demonstration data collected from a
diverse set of real-world scenarios (Firoozi et al., 2023; Hu et al., 2023). Vision-Language-Action
(VLA) models (Brohan et al., 2022; 2023; O’Neill et al., 2024; Team et al., 2024; Kim et al., 2024;
Black et al., 2024) are one important family of such models, which take language instructions and
image observations as input and predict the robot’s action output. They usually use existing language
and vision foundation models as the backbone to improve generalization, and are further trained on
large-scale robotic data to learn the complex mapping from multi-modal inputs to the robot’s action
output.

While VLAs have shown promising generalization, one key drawback of these models is their ex-
tremely high inference costs, e.g., OpenVLA (Kim et al., 2024), a state-of-the-art (SOTA) VLA
model, has more than 7B parameters and can only infer at 6Hz even when equipped with an NVIDIA
4090 GPU. Such a high inference cost not only consumes significant memory, computation, and en-
ergy, but also makes it hard to solve dexterous tasks that require high-frequency manipulation.

By contrast, conventional methods for robotic learning from before the era of foundation models
typically learn compact models that are much smaller than VLAs. Although such models cannot
generalize across a diverse set of tasks, they can perform well on the specific task they are trained
on given sufficient training data. Hence, the minimal model required to solve a specific task can
be much smaller than a VLA with millions or billions of parameters. So a natural question arises:
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Figure 1: Comparison between the high-level framework of monolithic VLA (left) and HN-based
VLA (right). We use orange to represent parameters activated during training, and blue to represent
parameters activated at every timestep during inference. The monolithic VLA activates the whole
model during both training and inference and is thus colored both orange and blue. By contrast, an
HN-based VLA calls the HN at a low frequency only at the beginning of a new episode at test time,
and calls a compact base network at every timestep for action prediction.

Can we learn a generalist policy that combines the best of both worlds: the strong generalization
ability of VLAs, and the efficient inference of single-task policies? To achieve this, we need to learn
a generalist policy with high model capacity to accommodate the diverse behaviors in multi-task
data at training time, but only activate a small part of it at test time to keep inference efficient.

In this paper, we realize this goal via hypernetworks (HNs) (Ha et al., 2016). An HN is a network
that generates the parameters of another base network conditioned on some context information.
Its hierarchical architecture provides a natural way to decouple the skills required to solve different
tasks (Xiong et al., 2024), so that we can learn an HN with high model capacity at training time, but
only activate a compact HN-generated base network to solve a specific task efficiently at test time.

Therefore, we learn an HN-based VLA that generates policy parameters conditioned on task context
c, which in our setting consists of both the language instruction l and the initial image o0 of an
episode (Figure 1). At training time, we train an HN with high model capacity to capture the complex
mapping from the task context c to the corresponding policy parameters πc

θ. At inference time, the
large HN is called at a low frequency, only when the task context changes at the beginning of
a new episode, while the compact generated policy is called at every timestep to process image
observations and output action predictions, which significantly reduces inference cost compared to
existing monolithic VLAs that activate the entire model at every timestep during inference.

However, HNs are known to be hard to optimize (Chang et al., 2020; Beck et al., 2023a; Xiong et al.,
2024), and training an HN with millions of parameters on large-scale robotic data further aggravates
this issue. We thus introduce several key algorithm design features to improve HN learning:

1. Vision backbone: While in principle we can generate the whole base policy with an HN,
empirically we find it important to use existing vision foundation models as the backbone to
improve generalization, as training an HN from scratch on existing robotic datasets, which
are relatively small, is prone to overfitting.

2. HN normalization: Successful training of neural networks depends heavily on many op-
timization design choices, which are mainly tailored for training monolithic models and
may not generalize to the different optimization dynamics of HNs (Chang et al., 2020;
Beck et al., 2023a; Auddy et al., 2024). We thus investigate how parameter updates in
HN training differ from standard training, and propose a simple yet effective solution by
normalizing the context embedding in HNs, such that the base network parameters can be
updated with similar dynamics as directly training the base network.

3. Action generation strategy: Unlike most existing VLAs that predict actions via autore-
gression (Brohan et al., 2022; 2023) or diffusion (Chi et al., 2023; Team et al., 2024), we
find that learning a simple linear action head with MSE loss performs better when training
an HN-based VLA and further accelerates inference.
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We call our method HyperVLA, an HN-based VLA learned with the above algorithm design fea-
tures. We train HyperVLA on the Open X-Embodiment (OXE) dataset (O’Neill et al., 2024), and
evaluate it for both zero-shot generalization to seen and unseen tasks from the training scenarios, and
few-shot adaptation to new domains. Compared to existing monolithic VLAs, HyperVLA achieves
a similar or higher success rate during evaluation, while significantly improving inference efficiency
by only activating a compact HN-generated policy at every timestep during inference, which vali-
dates the effectiveness of utilizing HNs for inference acceleration of VLAs. Compared to OpenVLA,
a SOTA VLA with the best performance among the baselines, HyperVLA reduces the number of
activated parameters at test time by 90×, and accelerates inference by 120×.

2 BACKGROUND

2.1 VISION-LANGUAGE-ACTION MODELS

Vision-Language-Action (VLA) models aim to learn a generalist robotic control policy, which takes
in a language instruction l and image observations ot at each timestep t and predicts the robot’s
action at. In this paper, we focus on image observations, though other input modalities can be
easily integrated into our approach. To achieve good generalization, VLAs are usually built upon
vision and language foundation models and trained on large-scale robotic data via behavior cloning
(BC). The robotic dataset consists of expert demonstrations collected for different tasks in different
scenarios. Each demonstration episode consists of a sequence of image observations and corre-
sponding actions (o0, a0, . . . , oT−1, aT−1, oT ), and optionally a language instruction l if annotated.
For each expert observation-action pair (ot, at), the BC loss is defined as LBC = (ât − at)

2, where
ât = πθ(ot, l) is the action predicted by the policy.

2.2 HYPERNETWORKS

A hypernetwork (Ha et al., 2016) is a network that generates some or all of the parameters of a base
network conditioned on some context c. This hierarchical architecture offers a powerful tool for
multi-task robotic control, as we can generate different policies for different tasks conditioned on
their task context. The parameters θ of the base network can be divided into θgenerated generated by
the HN, and θshared which is not generated by the HN and shared across all the tasks. To generate
θgenerated, the HN first encodes the task context with a context encoder f to get a context embedding
econtext = f(c), then passes the context embedding through linear output heads to predict θgenerated.

3 HYPERVLA

This section introduces the motivation, architecture, and algorithm design of HyperVLA. In Section
3.1, we analyze why existing monolithic VLAs have high inference costs and how an HN-based
VLA can tackle this challenge. Then in Section 3.2 we introduce the architecture of HyperVLA.
Finally, in Section 3.3, we propose several key algorithm design features to stabilize HyperVLA
training and improve its performance.

3.1 FROM MONOLITHIC TO HN-BASED VLA

Existing VLAs usually have millions or billions of parameters. While such a high model capacity
is necessary to accommodate diverse behaviors in multi-task data at training time, it introduces
significant computational redundancy at test time as the minimal model required to solve a specific
task is often much smaller than a large VLA (Yu et al., 2020; Kim et al., 2024).

Consequently, there is room for inference acceleration if we can only activate a small part of a huge
VLA that is sufficient to solve the task at hand. However, since existing VLAs have monolithic
architectures that require activating the whole model during both training and inference, they cannot
decouple in parameter space the different skills required to solve different tasks (Xiong et al., 2024).

In this paper, we tackle this challenge by learning an HN-based VLA, as the hierarchical architecture
of HNs provide a natural way to decouple inter-task and intra-task knowledge. Intuitively, the HN is
a generalist that encodes inter-task knowledge about how to map from different task context to the
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corresponding policy parameters, while the base network generated by the HN is a specialist that
encodes intra-task knowledge about how to solve a specific task. At training time, the whole HN
is activated to ensure sufficient model capacity to accommodate the diverse behaviors in multi-task
data. However, at test time, we only need to call the HN once at the beginning of each episode to
generate a compact task-specific policy that is used for the remainder of the episode.

3.2 THE ARCHITECTURE OF HYPERVLA

The base policy We formulate the base policy as a Vision Transformer (ViT) (Dosovitskiy et al.,
2020), which takes the image observation ot as input to predict the robot’s action at. Unlike existing
VLAs, we do not feed the language instruction l into the base policy as it is already indirectly
conditioned on the instruction via the HN that generated its parameters. The base policy consists of
the following blocks in sequence (we omit the time index t for simplicity):

1. An image encoder, formulated as a ViT, encodes the image observation o into a sequence
of token embeddings {eimage

i } for the image patches;

2. A linear projection layer maps {eimage
i } into a lower dimension for more efficient inference,

represented as {eproj
i };

3. A policy head θpolicy, formulated as a small Transformer, takes {eproj
i } and a learnable action

token eact as inputs, and updates their token embeddings; and

4. An action head takes updated eact as input to predict the robot’s action â.

The hypernetwork The HN consists of a context encoder parameterized as a Transformer with
high model capacity, and linear output heads to generate base policy parameters. The context en-
coder takes in three inputs:

1. Pretrained instruction embeddings generated by a frozen T5 encoder (Raffel et al., 2020);

2. The class token embedding of the initial image generated by a frozen DINOv2 encoder.
We find it helpful to condition the HN on the initial image, as the robot may see the same
instruction in different scenarios, and a compact base policy may not have enough model
capacity to solve the same task across scenarios with diverse visual appearance. By con-
ditioning policy generation further on the initial image, the HN with high model capacity
takes the responsibility of generalization across both instructions and scenarios, while the
generated base policy only needs to solve a specific task in a specific scenario. Moreover,
we only use the class token outputted by DINOv2 as HN input and discard the image patch
tokens to avoid overfitting in the HN; and

3. A learnable task context token that integrates task context information.

The context encoder updates the embeddings of these tokens via self-attention, and the embedding
of the task context token is fed into the HN output heads to generate base policy parameters.

3.3 ALGORITHM DESIGN FEATURES

HNs are known to be unstable and hard to optimize (Chang et al., 2020; Beck et al., 2023a; Xiong
et al., 2024), and scaling them up to millions of parameters further aggravates this issue. We thus
introduce several key algorithm design features that help stabilize and improve HyperVLA training.

3.3.1 VISION BACKBONE

While in principle we can generate the whole base policy by HN, empirically we find that training
a large HN from scratch on robotic data alone is prone to overfitting due to the relatively small data
size of existing robotic datasets. Instead, we use existing vision foundation models as the image
encoder in the base network to improve generalization. Our method is agnostic to the choice of
the vision encoder, and empirically we find that DINOv2 (Oquab et al., 2024) achieves the best
performance and thus adopt it in HyperVLA.
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Similar to previous work (Kim et al., 2024), we find it helpful to fine-tune this vision backbone
instead of keeping it frozen when training on robotic data. Furthermore, we use a smaller learning
rate for fine-tuning the vision backbone than for HN training because DINOv2 is already well pre-
trained and only needs to be fine-tuned at a conservative rate to better align with robotic data.

3.3.2 CONTEXT EMBEDDING NORMALIZATION

Successful training of neural networks depends heavily on many optimization choices, such as net-
work initialization, normalization layers, and gradient transformations. However, such choices are
mainly tailored to monolithic models, and may need to be redesigned to fit the different optimiza-
tion dynamics of HNs. For example, Chang et al. (2020) and Beck et al. (2023a) investigate how
to initialize HNs properly so that the base network is initialized in the same way as commonly used
initializers, an approach we adopt as well.

However, a proper initialization can only provide a good starting point for HN training and has no
direct effect on the parameter update process during training. So in this paper, we further investigate
how parameter updates in HN training differ from standard neural network training, and propose
a simple yet effective solution by normalizing the context embedding in HNs, such that the base
network parameters can be updated with similar dynamics as directly training the base network.

For simplicity, we use SGD in our derivation below. In standard neural network training, each
parameter θi is updated by ∆θi = −α · ∂L

∂θi
, where L is the loss function and α is the learning rate.

Now we generate θ with an HN. Let us denote the output head of the HN as ϕ, and the context
embedding input to the output head as e, then we have θi =

∑
j ejϕij . We omit the bias term as it

has the same gradient as the base parameter. According to the chain rule, we have ∂L
∂ϕij

= ∂L
∂θi

∂θi
∂ϕij

=
∂L
∂θi

ej , and the parameter update in the HN is ∆ϕij = −α · ∂L
∂θi

ej . Then the parameter update in the
base network is:

∆θi =
∑
j

(ej +∆ej)(ϕij +∆ϕij)−
∑
j

ejϕij , (1)

=
∑
j

ej∆ϕij +∆ejϕij +∆ej∆ϕij , (2)

≈
∑
j

ej∆ϕij +∆ejϕij , (Omit the multiplication of two delta terms) (3)

= −α · ∂L
∂θi

∑
j

e2j +
∑
j

∆ejϕij . (4)

If we assume that both ϕij and ∆ej are i.i.d. and follow a Gaussian distribution with zero mean,

then E
[∑

j ∆ejϕij

]
= 0. Accordingly, we have ∆θi ≈ −α ·

(∑
j e

2
j

)
· ∂L
∂θi

, which indicates that

when learning with HNs, the update on the base network parameters is scaled by a factor of
∑

j e
2
j

compared to directly optimizing the base network.

In HyperVLA, as the context embedding e is the output of a Transformer context encoder with layer
normalization as its final layer, we have E

[
e2j
]
= 1 and E

[∑
j e

2
j

]
= de, where de is the dimension

of e. Consequently, to keep the scale of parameter update in the base network unchanged, we
can simply divide the context embedding by

√
de before feeding it into the output head so that

E
[∑

j e
2
j

]
= 1 after normalization.

The derivation is different for more complex optimizers like Adam, which makes it much harder to
theoretically keep the update scale unchanged like with the SGD optimizer. However, empirically
we find that the same normalization operation of dividing the context embedding by

√
de before

feeding it into the HN output head still works well in practice.

3.3.3 ACTION GENERATION STRATEGY

Existing VLAs usually predict discretized actions autoregressively (Brohan et al., 2022; 2023; Kim
et al., 2024), which requires multiple runs of the same model to generate different action dimensions
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Figure 2: The framework of HyperVLA. The trainable parameters are marked as green blocks, while
the HN-generated parameters are marked as light grey blocks with dashed edges.

sequentially, or learn a diffusion action head (Chi et al., 2023) that must be iteratively called to
denoise actions (Team et al., 2024), both of which are time-consuming at training and test time.
Instead, we find that training a simple linear action head with an MSE loss outperforms these more
complicated action generation strategies in HyperVLA, while further reducing training and inference
cost. This also agrees with the findings from some recent work (Kim et al., 2025).

Combining these features, the overall framework of HyperVLA is shown in Figure 2.

4 EXPERIMENTS

Our experiments aim to answer the following questions:

• Q1: Can HyperVLA match the zero-shot generalization performance of existing mono-
lithic VLAs on both seen and unseen tasks? (Section 4.2)

• Q2: Can HyperVLA adapt to new tasks by fine-tuning on only a few demonstrations,
especially for long-horizon tasks? (Section 4.3)

• Q3: Can HyperVLA be more inference efficient than monolithic VLAs? (Section 4.4)

• Q4: How do the algorithm designs in HyperVLA influence its performance? (Section 4.5)

4.1 EXPERIMENTAL SETUP

Baselines We compare HyperVLA with the following monolithic VLAs as baselines: (1) RT-1-X
(O’Neill et al., 2024): uses EfficientNet (Tan & Le, 2019) as the vision backbone, and conditions
on the language instruction via FiLM (Perez et al., 2018). Each action dimension is discretized and
predicted autoregressively. It has roughly 35M parameters. (2) Octo (Team et al., 2024): uses T5
(Raffel et al., 2020) as the language backbone and learns the visual encoder on robotic data alone.
It predicts actions via policy diffusion (Chi et al., 2023). It has roughly 200M parameters. (3)
OpenVLA (O’Neill et al., 2024): uses SigLIP (Zhai et al., 2023) and DINOv2 (Oquab et al., 2023)
as the vision backbones, and Llama 2 (Touvron et al., 2023) as the language backbone. Llama 2 is
further fine-tuned on robotic data to predict action tokens autoregressively like RT-1-X. It has about
7.6B parameters. All the baselines are trained on the Open X-Embodiment (OXE) dataset (O’Neill
et al., 2024), which contains demonstrations collected from different robot embodiments.

6
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We choose these models as the baselines as they are all trained on the OXE dataset and have the same
input and output space for the model, which makes it easier to control variates and focus only on
the influence of changing the model architecture from monolithic to HN-based. Many later VLAs
are trained on larger and different datasets, which makes it hard to tell whether the performance
difference is caused by the data or the use of HN. Nevertheless, future work can easily apply our
HN-based architecture to other VLAs by adopting their original training recipe for a fair comparison.

Hyperparameters of HyperVLA In the base network, we use DINOv2 (Oquab et al., 2023) as
the image encoder. The policy head is a Transformer with 4 layers, each with 4 attention heads. Its
token embedding dimension and hidden layer dimension are set to 64 and 128 respectively. The base
network takes only the current image observation as input, and predicts an action chunk of 4 steps.
During evaluation, we further apply action ensemble (Zhao et al., 2023), i.e., averaging the last 4
steps’ action predictions on the current step, to improve prediction accuracy. For the HN, we adopt
T5 (Raffel et al., 2020) as the instruction encoder and DINOv2 as the image encoder, and freeze
them during training. We learn a Transformer context encoder with 6 layers, with an embedding
dimension of 128, MLP hidden dimension of 512 and 4 attention heads for each layer. The output
heads are linear layers that map the context embedding to the base parameters.

Training setup For a fair comparison with the baselines, we also train HyperVLA on the OXE
dataset. We train it for 100k steps with a batch size 256. See Appendix B.1 for the detailed training
setup. We include the source code in the supplementary material to facilitate reproducibility.

4.2 ZERO-SHOT GENERALIZATION RESULTS

Robot Google Robot WidowX
Task set pick move close drawer Avg. spoon on towel carrot on plate stack cube eggplant in basket Avg.

ID or OOD both ID ID ID ID OOD OOD

RT-1-X 29 46 65 47 10 12 0 0 6
Octo 7 26 31 21 5 1 0 45 13

OpenVLA 10 72 54 45 25 18 34 65 36
HyperVLA 58± 3 73± 1 58± 7 63± 3 48± 3 21± 5 39± 8 52± 13 40± 5

Table 1: Evaluation success rates of different methods on SIMPLER. For Google Robot, each col-
umn represents a task set which contains multiple different instructions, and we report the average
success rate over the whole task set. The “ID or OOD” row represents if the task set is in-distribution
(ID) or out-of-distribution (OOD). For our method, we report the performance mean and standard
error averaged over 5 random seeds. For the baselines, we cannot report the confidence interval, as
only a single model checkpoint is publicly available for each baseline method.

To answer Q1 about zero-shot generalization performance, We evaluate on the SIMPLER bench-
mark (Li et al., 2024b), which reproduces some tasks from the OXE dataset in simulation and is
specifically designed to align with real-world evaluation results, so that different VLAs can be com-
pared in a reproducible way. SIMPLER includes two commonly used robot arms, Google Robot
and WidowX, and defines a set of different tasks for each robot. SIMPLER evaluates on both tasks
that have been seen during training with different demonstration number ranging from 1 to more
than 2,000, and unseen tasks with new instructions (see Appendix B.2 for more details). For seen
tasks, generalization across parametric variations is evaluated, such as object layout, position and
orientation. For unseen tasks, generalization across instructions is further evaluated.

Table 1 compares the success rates of different methods on the SIMPLER benchmark. Among the
baselines, OpenVLA performs the best overall, as it builds upon strong language and vision foun-
dation models which facilitate generalization, but at the expense of a higher inference cost. Our
method achieves similar performance to OpenVLA on most task sets, while significantly outper-
forming all baselines on the picking task set. This validates that HyperVLA can significantly reduce
training and inference cost (Section 4.4) without sacrificing performance.

4.3 FEW-SHOT ADAPTATION RESULTS

To answer Q2 about few-shot adaptation performance, we evaluate on the LIBERO benchmark (Liu
et al., 2023), which is commonly used to evaluate data-efficient fine-tuning of VLAs. Following
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the same setup as in OpenVLA, we evaluate on four task suites in LIBERO, i.e., LIBERO-Spatial,
LIBERO-Object, LIBERO-Goal and LIBERO-Long, each containing 10 tasks (instructions) with
50 demonstrations for each task (see Appendix B.2 for more details). For a fair comparison, we
preprocess the demonstrations in the same way as OpenVLA. We fine-tune HyperVLA on the first
three task suites for 10k steps, and LIBERO-Long for 60k steps as it constitutes of long-horizon tasks
that are harder to solve. All the other hyperparameters are set in the same way as for pretraining.

As shown in Table 2, our method significantly outperforms Octo and OpenVLA on all the task suites
after fine-tuning, validating the effectiveness of our method for few-shot adaptation to unseen tasks.
The significant advantage of HyperVLA on LIBERO-Long further validates that it can also solve
complicated long-horizon tasks by only activating a compact base policy at inference time.

LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average

Octo 79 86 85 51 75
OpenVLA 85 88 79 54 77

HyperVLA 95 94 92 74 89

Table 2: Evaluation success rate of different methods on LIBERO after fine-tuning. We evaluate on
each task for 50 episodes. The results of the baselines are taken from Kim et al. (2024).

4.4 INFERENCE EFFICIENCY

To answer Q3 about inference efficiency, Table 3 compares the number of parameters activated
during training and inference, the inference speed, and FLOPs of different methods. For the activated
parameters at inference time, we exclude the instruction encoder in all the methods and the HN in
our method, as they are only activated once at the beginning of each episode, and their computational
costs are negligible compared to the total inference cost across the whole episode.

Method # params activated for training # params activated for test Time per inference step (ms) FLOPs
RT-1-X 35M 35M 88 -

Octo 200M 100M 96 5.6× 1010

OpenVLA 7.6B 7.6B 482 4.0× 1012

HyperVLA 86M (shared) + 216M (HN) 86M (shared) + 0.1M (generated) 4 4.7× 1010

Table 3: Number of parameters activated during training and test, inference speed, and FLOPs of
different methods. Time per inference step is measured by running each model on an NVIDIA L4
GPU. We were unable to measure the FLOPs of RT-1-X as its model checkpoint is wrapped up.

While HyperVLA learns both a shared DINOv2 image encoder with 86M parameters and an HN
with 216M parameters (100M for the frozen T5 encoder + 86M for the frozen DINOv2 encoder
+ 30M for the learned context encoder) during training, at test time it only activates the shared
DINOv2 backbone and a compact base network with 0.1M parameters for each inference step, which
leads to a significant acceleration. Compared to OpenVLA, the baseline with the best performance,
HyperVLA reduces the model size at inference time 90-fold and accelerates the inference speed 120-
fold. Although RT-1-X and Octo have a similar or smaller number of activated parameters during
inference than HyperVLA, their inference is still much slower, as they use either autoregression
or a diffusion policy to predict the action, both of which require more iterations over the model
parameters than the simple linear action head used in HyperVLA.

Based on the above results, we conclude that HyperVLA not only achieves similar or better perfor-
mance compared to the baselines, but also significantly reduces inference costs. Moreover, while
our primary goal is to improve the inference efficiency of VLAs, our method also significantly re-
duces computational costs during training. Specifically, OpenVLA is trained on 64 A100 GPUs for
14 days (Kim et al., 2024), while HyperVLA can be trained on just 4 A5000 GPUs in a single day.

4.5 ABLATION STUDIES

To answer Q4 about the effectiveness of the algorithm designs in HyperVLA, we run ablation studies
by removing each of the algorithm design features proposed in Section 3.3 from it. The ablation
results in Table 4 validate that all the proposed designs contribute to the success of HyperVLA.
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Vision backbone: When removing the DINOv2 backbone, we increase the number of training steps
to 600k for a fair comparison, as training the whole model from scratch takes longer to converge.
However, even with a larger training budget, it still significantly underperforms HyperVLA, illus-
trating the importance of utilizing the prior knowledge from vision foundation models.

HN normalization: To ablate HN normalization, we do not normalize the context embedding be-
fore feeding it into the HN output heads. In general, this variant performs slightly worse than
HyperVLA on seen tasks, but significantly worse on the two OOD WidowX tasks, which validates
the importance of stabilizing HN learning with context embedding normalization.

Action generation strategy: We replace the linear action head in HyperVLA with a diffusion action
head like in Octo (Team et al., 2024), and increase the training steps to 400k. The diffusion-head
variant underperforms HyperVLA, which illustrates that a simple linear action head trained with
MSE loss is sufficient when training an HN-based VLA, and also improves training efficiency com-
pared to more complicated action head designs like diffusion.

Please see Appendix C.1 for ablation results on more detailed design choices in HyperVLA.

Method Google robot WidowX
pick move close drawer Avg spoon on towel carrot on plate stack cube eggplant in basket Avg

HyperVLA (Full) 58± 3 73± 1 58± 7 63± 3 48± 3 21± 5 39± 8 52± 13 40± 5
- Vision backbone 24 30 38 31 21 0 0 0 5
- HN normalization 53± 4 71± 4 48± 1 57± 1 48± 3 27± 6 19± 3 31± 9 31± 4
- Linear action head 49 56 55 53 42 23 15 39 30

Table 4: Ablations on how different algorithm designs in HyperVLA influence its performance.

5 RELATED WORK

Using language and vision foundation models as backbone enables VLAs to generalize across a
broad range of tasks at the expense of high inference cost. Using smaller backbone models is thus a
straightforward way to accelerate VLAs (Belkhale & Sadigh, 2024; Wen et al., 2025; Shukor et al.,
2025). Predicting action chunks (Zhao et al., 2023; Team et al., 2024; Black et al., 2024) instead of
a single-step action is another common approach, so the VLA does not need to be called at every
timestep. The idea of learning a large VLA but only partially activating it during inference has also
been explored: DeeR-VLA (Yue et al., 2024) early exits from intermediate layers if the layer output
is sufficient for action prediction. Closely related to the hierarchical architecture in our method, dual-
system VLAs (Shentu et al., 2024; Han et al., 2024; Zhang et al., 2024; Bu et al., 2024; Cui et al.,
2025) learn both a high-level planner that generates a latent goal and operates at a low frequency,
and a low-level policy that conditions on this latent goal to generate per-step actions. Compared
to existing methods, HyperVLA accelerates VLA inference in an orthogonal way by decoupling
the skills required to solve different tasks via HNs and can be combined with existing approaches
for further acceleration, such as parameterizing the high-level and low-level models in dual-system
VLAs as HNs. Due to space limitation, see Appendix A for more related work on general VLAs
and context-conditioned policy generation beyond the domain of VLAs.

6 CONCLUSION

In this paper, we analyzed why existing VLAs have high inference cost due to their monolithic
architectures, and proposed an HN-based solution that decouples the skills required to solve different
tasks at test time for inference acceleration. To stabilize HN training and improve its performance,
we further proposed several key algorithm design features, including how to properly integrate vision
backbones, HN normalization, and a simple linear action head trained with MSE loss. Building upon
HN’s ability to decouple the skills to solve different tasks and this algorithm design, we proposed
HyperVLA, which achieves performance similar to or even better than that of existing monolithic
VLAs, while significantly improving inference efficiency.

Our paper opens many interesting directions for future work on HN-based VLAs, such as evaluating
on real robots, scaling up the HN model size, and training on more recent and larger robotic datasets
(Khazatsky et al., 2024; Bjorck et al., 2025) for further performance improvement, and integration
with task planning to solve more complicated long-horizon tasks.
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REPRODUCIBILITY STATEMENT

We have made the following efforts to ensure the reproducibility of our work:

1. We clearly describe our method in Section 3, including both the detailed architecture of
HyperVLA in Section 3.2, and the key algorithm designs in Section 3.3.

2. We include the source code to reproduce both HyperVLA and the baseline results in the
supplementary material.

3. We use publicly available datasets and benchmarks (OXE, SIMPLER, and LIBERO) for
experiments, and follow the same data preprocessing pipeline as in previous work (Team
et al., 2024; Kim et al., 2024).

4. We clearly describe the hyperparameters of experiments in Section 4.1 and Appendix B.1
to facilitate reproducibility.
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Klimczak-Plucińska, David Bridson, Dario de Cesare, Tom Hudson, Piermaria Mendolicchio,
Lexi Walker, Alex Morris, Matthew Mauger, Alexey Guseynov, Alison Reid, Seth Odoom, Lucia
Loher, Victor Cotruta, Madhavi Yenugula, Dominik Grewe, Anastasia Petrushkina, Tom Duerig,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Antonio Sanchez, Steve Yadlowsky, Amy Shen, Amir Globerson, Lynette Webb, Sahil Dua, Dong
Li, Surya Bhupatiraju, Dan Hurt, Haroon Qureshi, Ananth Agarwal, Tomer Shani, Matan Eyal,
Anuj Khare, Shreyas Rammohan Belle, Lei Wang, Chetan Tekur, Mihir Sanjay Kale, Jinliang
Wei, Ruoxin Sang, Brennan Saeta, Tyler Liechty, Yi Sun, Yao Zhao, Stephan Lee, Pandu Nayak,
Doug Fritz, Manish Reddy Vuyyuru, John Aslanides, Nidhi Vyas, Martin Wicke, Xiao Ma, Ev-
genii Eltyshev, Nina Martin, Hardie Cate, James Manyika, Keyvan Amiri, Yelin Kim, Xi Xiong,
Kai Kang, Florian Luisier, Nilesh Tripuraneni, David Madras, Mandy Guo, Austin Waters, Oliver
Wang, Joshua Ainslie, Jason Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer, Feng Yang,
Riham Mansour, Jason Gelman, Yang Xu, George Polovets, Ji Liu, Honglong Cai, Warren Chen,
XiangHai Sheng, Emily Xue, Sherjil Ozair, Christof Angermueller, Xiaowei Li, Anoop Sinha,
Weiren Wang, Julia Wiesinger, Emmanouil Koukoumidis, Yuan Tian, Anand Iyer, Madhu Guru-
murthy, Mark Goldenson, Parashar Shah, MK Blake, Hongkun Yu, Anthony Urbanowicz, Jen-
nimaria Palomaki, Chrisantha Fernando, Ken Durden, Harsh Mehta, Nikola Momchev, Elahe
Rahimtoroghi, Maria Georgaki, Amit Raul, Sebastian Ruder, Morgan Redshaw, Jinhyuk Lee,
Denny Zhou, Komal Jalan, Dinghua Li, Blake Hechtman, Parker Schuh, Milad Nasr, Kieran
Milan, Vladimir Mikulik, Juliana Franco, Tim Green, Nam Nguyen, Joe Kelley, Aroma Mahen-
dru, Andrea Hu, Joshua Howland, Ben Vargas, Jeffrey Hui, Kshitij Bansal, Vikram Rao, Rakesh
Ghiya, Emma Wang, Ke Ye, Jean Michel Sarr, Melanie Moranski Preston, Madeleine Elish, Steve
Li, Aakash Kaku, Jigar Gupta, Ice Pasupat, Da-Cheng Juan, Milan Someswar, Tejvi M., Xinyun
Chen, Aida Amini, Alex Fabrikant, Eric Chu, Xuanyi Dong, Amruta Muthal, Senaka Buthpitiya,
Sarthak Jauhari, Nan Hua, Urvashi Khandelwal, Ayal Hitron, Jie Ren, Larissa Rinaldi, Shahar
Drath, Avigail Dabush, Nan-Jiang Jiang, Harshal Godhia, Uli Sachs, Anthony Chen, Yicheng
Fan, Hagai Taitelbaum, Hila Noga, Zhuyun Dai, James Wang, Chen Liang, Jenny Hamer, Chun-
Sung Ferng, Chenel Elkind, Aviel Atias, Paulina Lee, Vít Listík, Mathias Carlen, Jan van de
Kerkhof, Marcin Pikus, Krunoslav Zaher, Paul Müller, Sasha Zykova, Richard Stefanec, Vitaly
Gatsko, Christoph Hirnschall, Ashwin Sethi, Xingyu Federico Xu, Chetan Ahuja, Beth Tsai, Anca
Stefanoiu, Bo Feng, Keshav Dhandhania, Manish Katyal, Akshay Gupta, Atharva Parulekar,
Divya Pitta, Jing Zhao, Vivaan Bhatia, Yashodha Bhavnani, Omar Alhadlaq, Xiaolin Li, Peter
Danenberg, Dennis Tu, Alex Pine, Vera Filippova, Abhipso Ghosh, Ben Limonchik, Bhargava
Urala, Chaitanya Krishna Lanka, Derik Clive, Yi Sun, Edward Li, Hao Wu, Kevin Hongtongsak,
Ianna Li, Kalind Thakkar, Kuanysh Omarov, Kushal Majmundar, Michael Alverson, Michael
Kucharski, Mohak Patel, Mudit Jain, Maksim Zabelin, Paolo Pelagatti, Rohan Kohli, Saurabh
Kumar, Joseph Kim, Swetha Sankar, Vineet Shah, Lakshmi Ramachandruni, Xiangkai Zeng, Ben
Bariach, Laura Weidinger, Tu Vu, Alek Andreev, Antoine He, Kevin Hui, Sheleem Kashem, Amar
Subramanya, Sissie Hsiao, Demis Hassabis, Koray Kavukcuoglu, Adam Sadovsky, Quoc Le,
Trevor Strohman, Yonghui Wu, Slav Petrov, Jeffrey Dean, and Oriol Vinyals. Gemini: A family of
highly capable multimodal models, 2025a. URL https://arxiv.org/abs/2312.11805.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Meng-
fan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu,
Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin
Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang,
Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao,
Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du,
Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin
Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, Ziwei Chen, and Zongyu Lin. Kimi-vl technical
report, 2025b. URL https://arxiv.org/abs/2504.07491.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

20

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2504.07491


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong
Lu, Lewei Lu, Hongsheng Li, Xiaogang Wang, and Yu Qiao. Internimage: Exploring large-scale
vision foundation models with deformable convolutions, 2023. URL https://arxiv.org/
abs/2211.05778.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. IEEE Robotics and Automation Letters, 2025.

xAI. Grok 3 beta: The age of reasoning agents. https://x.ai/news/grok-3, February
2025. Accessed: 2025-09-25.

Zheng Xiong, Risto Vuorio, Jacob Beck, Matthieu Zimmer, Kun Shao, and Shimon Whiteson. Dis-
tilling morphology-conditioned hypernetworks for efficient universal morphology control. In
International Conference on Machine Learning, pp. 54777–54791. PMLR, 2024.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng
Dong, Haizhou Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, JunTao
Dai, Kun Fang, Lei Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu,
MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei
Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu,
Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang,
Zenan Zhou, and Zhiying Wu. Baichuan 2: Open large-scale language models, 2025. URL
https://arxiv.org/abs/2309.10305.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca: Contrastive captioners are image-text foundation models, 2022. URL https://arxiv.
org/abs/2205.01917.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Multi-task reinforcement learning without interference. In Proc. Optim. Found. Reinforcement
Learn. Workshop NeurIPS, 2019.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, and Gao
Huang. Deer-vla: Dynamic inference of multimodal large language models for efficient robot
execution. Advances in Neural Information Processing Systems, 37:56619–56643, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

Jianke Zhang, Yanjiang Guo, Xiaoyu Chen, Yen-Jen Wang, Yucheng Hu, Chengming Shi, and
Jianyu Chen. Hirt: Enhancing robotic control with hierarchical robot transformers. arXiv preprint
arXiv:2410.05273, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang, Yuanfei
Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, et al. A survey on vision-language-action
models: An action tokenization perspective. arXiv preprint arXiv:2507.01925, 2025.

21

https://arxiv.org/abs/2211.05778
https://arxiv.org/abs/2211.05778
https://x.ai/news/grok-3
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2205.01917


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A FURTHER RELATED WORK

VLAs Inspired by the success of foundation models in NLP and CV, RT-1 (Brohan et al., 2022) is
a pioneering VLA work that validates the effectiveness of pretraining foundation models on large-
scale robotic data. RT-2 (Brohan et al., 2023) further builds VLAs upon existing language and vision
backbones to utilize their strong generalization ability, instead of learning a generalist controller
from scratch on robotic data alone. O’Neill et al. (2024) propose the OXE dataset which validates the
effectiveness of learning from cross-embodiment robotic datasets. Built upon these key ideas, more
recent work investigates the design choices in VLAs in more detail, yielding further improvement
from scaling up training data and learning from unlabeled videos (Black et al., 2024; Bu et al.,
2025; Bjorck et al., 2025), the choice of backbone models (Kim et al., 2024; Li et al., 2024a), action
representation and generation strategy (Team et al., 2024; Black et al., 2024; Song et al., 2025),
fine-tuning on downstream tasks (Kim et al., 2024; 2025), etc. Please see Ma et al. (2024); Din et al.
(2025); Kawaharazuka et al. (2025); Zhong et al. (2025) for more detailed reviews on VLAs.

Context-conditioned policy generation Faccio et al. (2023) and Di Ventura et al. (2025) adopt
HNs to generate policies that can achieve different amounts of expected return in a single environ-
ment, and achieve promising performance on relatively simple continuous control tasks. Generating
task-conditioned policies via HNs has been investigated in multi-task and meta-RL (Yu et al., 2019;
Sarafian et al., 2021; Beck et al., 2022; 2023b; Rezaei-Shoshtari et al., 2023), but such work mainly
focuses on learning lightweight models on narrow task distributions, and do not use HNs for infer-
ence acceleration. Make-An-Agent (Liang et al., 2024) treats parameter generation as a denoising
process in the parameter space, and generates policy parameters via diffusion conditioned on demon-
stration trajectories, while our method generates the policy via HNs conditioned on the task context
and can thus zero-shot generalize to a new task without additional demonstration trajectories from
the new task. Closely related to our work, HyperDistill (Xiong et al., 2024) uses HNs to generate
compact locomotion policies for efficient inference on different robot embodiments. Our method
shares a similar motivation of accelerating inference via HNs but investigates a much more chal-
lenging setting of language-conditioned control with image observations and tackles the instability
and generalization challenges in HN training at a much larger model scale.

B ADDITIONAL EXPERIMENTAL SETUP

B.1 HYPERVLA TRAINING SETUP

To stabilize the performance of the learned model, we apply exponential moving average to the
model parameters with a smoothing factor of 0.999, and save the smoothed parameters instead of the
latest parameters in the model checkpoints for evaluation. We optimize with AdamW (Loshchilov
& Hutter, 2017), with a weight decay coefficient of 0.05 on HN output heads. Following the setup
in Octo (Team et al., 2024), we set the peak learning rate as 3e-4, and apply learning rate warmup
for 2k steps, then anneal it with an inverse square root schedule. The learning rate for the DINOv2
image encoder in the base network shares the same schedule, but uses a much lower peak value
of 3e-5. To enable better generalization, we augment both the language instruction by rephrasing,
and the image observation by image augmentation as done in Octo. Other training hyperparameters
follow the same setup as in Octo.

B.2 EVALUATION BENCHMARKS

SIMPLER Table 5 shows more detailed information about the evaluation tasks included in the
SIMPLER benchmark.

LIBERO We evaluate few-shot adaptation of HyperVLA on the same four task suites as used in
OpenVLA:

1. LIBERO-Spatial evaluates generalization to different layouts of the same set of objects;

2. LIBERO-Object evaluates generalization to different object types with the same scene
layout;
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Robot Task suite # Instruction Seen during training # Demonstration in OXE # Eval

Google
Robot

pick 13 6 seen, 7 unseen ~600 per seen object 150
move 30 Yes 40 to 100 per instruction 180
close drawer 3 Yes > 2000 per instruction 180

WidowX

spoon on towel 1 Yes 1 60
carrot on plate 1 Yes 332 60
stack cube 1 No 0 60
eggplant in basket 1 No 0 60

Table 5: Summary of evaluation tasks in SIMPLER.

3. LIBERO-Goal evaluates generalization to different goals (instructions) with the same set
of objects and layout; and

4. LIBERO-Long evaluates performance on long-horizon tasks with diverse objects, layouts,
and tasks.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 FURTHER ABLATION STUDIES

Method Google robot WidowX
pick move close drawer Avg spoon on towel carrot on plate stack cube eggplant in basket Avg

HyperVLA (Full) 58± 3 73± 1 58± 7 63± 3 48± 3 21± 5 39± 8 52± 13 40± 5
Larger learning rate for DINOv2 3 13 17 11 0 0 0 0 0
Frozen DINOv2 56 47 58 54 18 40 0 3 15
Fine-tuned CLIP 58 61 59 59 63 30 13 0 27
Frozen SigLIP 20 34 49 34 3 0 0 0 1
Train base net alone 5 11 12 9 3 0 0 0 1

Table 6: Ablation results on how different algorithm designs in HyperVLA influence its perfor-
mance.

We report further ablation results in Table 6 to validate the importance of the following design
choices in HyperVLA. To reduce computational cost, we run each ablation experiment with only
one seed, while the performance gap is significant enough to draw conclusions with high confidence.

Smaller learning rate for DINOv2 fine-tuning To ablate the importance of fine-tuning DINOv2
with a smaller learning rate as introduced in Section 3.3, we increase the learning rate for DINOv2
by 10 times, and use the same learning rate of 0.0003 for both HN training and DINOv2 fine-tuning.
This variant performs poorly, which validates the importance of fine-tuning DINOv2 with a smaller
learning rate to maintain its strong prior knowledge.

Fine-tuning versus freezing DINOv2 To validate the importance of fine-tuning DINOv2 in the
base network, we ablate by freezing it while keeping the remaining settings unchanged. This variant
underperforms HyperVLA, which validates the importance of fine-tuning DINOv2 during Hyper-
VLA pretraining.

Choice of the image encoder As introduced in Section 3.3, HyperVLA can support different
image encoders, and empirically we find DINOv2 to perform best. We ablate by using either CLIP
(Radford et al., 2021b) or SigLIP (Zhai et al., 2023) as the image encoder in the base network. As
our code is implemented in JAX and we can only find a PyTorch version of SigLIP, our code does not
support fine-tuning SigLIP during training. The ablation results show that using fine-tuned DINOv2
outperforms fine-tuned CLIP, while frozen DINOv2 outperforms frozen SigLIP.

Importance of the HN We run this ablation experiment to validate that inference acceleration
can not be achieved by training a small base network alone, and the HN in our method is essential
to maintain high model capacity and achieve good performance. We experiment by removing the
HN in HyperVLA and train the base network alone. This variant performs poorly, validating the
importance of using HN.
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C.2 QUALITATIVE ANALYSIS

We include example videos of rolling out different methods on different tasks in the supplemental
material, and qualitatively analyze the common failure patterns of different methods as follows:

The main failure reason of our method is inaccurate grasping of the object to manipulate, e.g., the
policy sometimes may close the gripper when the end-effector is still slightly above the target object,
which makes the robot fail to pick up the object. In general, the action error of HyperVLA is small
and may be mitigated by integrating more camera views or further fine-tuning.

The OpenVLA baseline significantly underperforms our method on the picking task of Google
Robot, while performing similarly on the other tasks. Its main failure reason is similar to Hyper-
VLA due to inaccurate grasping. However, it also makes some other obvious mistakes, such as the
robot arm getting stuck in the air, and not picking the target object up as expected after successfully
grasping it. We also find that the robot arm movement controlled by OpenVLA is less smooth than
HyperVLA, possibly due to its autoregressive way of predicting discretized action tokens.

For the other two weaker baselines RT-1-X and Octo, in addition to the grasping error, they some-
times even can not correctly locate the object to manipulate, or misunderstand the language instruc-
tion semantically, such as moving a wrong object to a wrong target object in the moving tasks,
possibly due to that they are not built upon language and vision foundation models with strong
generalization ability.
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