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A Supplementary Materials

The supplementary materials consist of:

e Sec A.l: Demonstration video.

e Sec A.2: Details on the Quadrotor Dynamics for Policy Training.

e Sec A.3: Details on the Reward Formulation and hyperparameters for RL.

e Sec A.4: Details on the training configurations.

* Sec A.5: Details on the hardware configurations for the real-world experiments.
e Sec A.6: Ablation studies on the performance using different IL initialization.

* Sec A.7: Ablation studies on the improvement of our asymmetric setup.

* Sec A.8: Ablation studies on pre-trained critic function with DAgger.

* Sec A.9: Ablation studies on the history length of our approach and the baseline DAgger
to handle partially observable scenarios.

* Sec A.10: Illustration of the onboard visual inputs of the policy.

* Sec A.11: Illustration of the unobservable states for the task settings.

A.1 Demonstration Video

In the video supplementary.mp4, we demonstrate the closed-loop flight of our approach relying
only on visual information (with corners or images) in the real world.

A.2  Quadrotor Dynamics for Policy Training

The quadrotor is assumed to be a 6 degree-of-freedom rigid body of mass m and diagonal moment
of inertia matrix J = diag(.Jy, Jy, J.). Furthermore, the rotational speeds of the four propellers
Q; are modeled as a first-order system with a time constant ky,, where the commanded motor
speeds Q. are the input. World VW and Body B frames are defined with an orthonormal basis
ie. {zw,yw, 2w }. The frame B is located at the center of mass of the quadrotor. The state space
is thus 17-dimensional and its dynamics can be written as:

[Dws | vw
aws qws - {0 wB/Q] :
T= | oy | = % (@B © (forop + farag)) + 9w | ©)
wp T (Torop — wi x Jwp)
L @ L o (Slema — )

where gyy = [0,0,—9.81m/ SQ]T denotes earth’s gravity, forop, Tprop are the collective force and the
torque produced by the propellers, and fr, is a linear drag term. The quantities are calculated as
follows:

fpropzz.fi7 Tprop:ZTi+7'P,ini7 (€]
i A

.fdrag = - [kvsz,x kvaB,y k'verB,z}T 5 (5)

where 7p ; is the location of propeller ¢ expressed in the body frame , f;, 7; are the forces and torques
generated by the i-th propeller, and (ky, kyy, kv2) [40, 41] are linear drag coefficients.
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A.3 Reward Formulations for RL Trainings.

The reward components are formulated as follows:

% = M (deae(t — 1) — doae(t)),

4

rferc = )\2 eXp()‘3 : 6cam)7

et = —Aszllas — az—1]| (6)
b

Ty = — A,

™ =¢, if robot passes the next gate,

Tg““h = —co, if robot crashes (gates, ground) .

Here dgae(t) denotes the distance from the robot’s center of mass to the center of the next gate to
pass, dcam 1S the angle between the camera’s optical axis and the direction towards the center of the
next gate. a represents the control command, and w the bodyrate. A1, A2, A3, A4, c1, co are different
positive hyperparameters.

In our experiments, we employ identical hyperparameters for both state-based teacher training and
vision-based RL fine-tuning to ensure a fair comparison. These parameters are determined based
on iterations, shown in Table. 4 in both simulation and real-world experiments, aiming to achieve
optimal and smooth performance for the state-based policy.

Reward Name Symbol Value
Progress reward A1 0.5
Perception-aware reward Ao 0.025
Command smoothness reward A3 2e-4
Body rate penalty A4 Se-4
Gate passing reward c1 10
Collision penalty Ca 4

Table 4: Parameters for RL training.

A.4 Training Configurations.

For state-based teacher training, we employ a policy network consisting of a two-layer MLP, each
layer containing 256 neurons, with a final layer outputting a 4-dimensional vector using a tanh
activation function. In imitation learning, a 3-layer Temporal Convolutional Network (TCN) is
utilized to encode the 32 timestamps of perceptual inputs. The length of the temporal embedding is
128, followed by another two-layer MLP to output the control command. For imitation learning, we
employ a batch size of 512, and convergence typically occurs after collecting SM data samples over
approximately 100 epochs. We incorporate a linear decay in the learning rate, starting at le-3 and
decreasing to le-5 at 50 epochs, remaining unchanged for the remainder of the training process.

A.5 Hardware Configurations.

We deploy our approach in the real world using a high-performance racing drone with a maximum
thrust-to-weight ratio (TWR) of 5.78. However, for our experiments, we have limited the TWR
to 2.7. We use a modification of the Agilicious platform [42] for the real-world deployment. We
have replaced the onboard computer with an RF receiver, which is connected directly to the flight
controller! and takes care of parsing the collective thrust and bodyrate commands from the computer.
Additionally, we also mount an ultra-low latency camera feed sender, which sends the live video
stream to the base computer. This configuration is similar to the one used by professional drone
racing pilots.

"https://wuw.betaflight.com
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A.6 Training Performance with different IL Initializations.

In this experiment, we test different percent-
ages (ranging from 10% to 90%) of the DAg-
ger policies and fine-tune them using our pro-

posed approach. The detailed training plots are
illustrated in Fig. 7. Notably, even with only g
15% (1.5M) of the data samples used for pol- 2
icy training, we observe significant benefits (> ;":f
20 rewards) compared to training from scratch <
(<0 rewards). Furthermore, as we allocate a
larger portion of data samples for pre-training,

our approach demonstrates the ability to en-
hance performance to a higher level. However,
we observe that improvement plateaus and con-
verges at the same level after surpassing 45%
pre-training, as DAgger training ultimately re-
sults in similar policies for bootstrapping.

0%
15%

25%
—= 30%

— 45%
60%

P ! ! -
60 P s A
X
40 = ] o e
O i B -
Vs
0 /"‘/
i I i i
0 2000 4000 6000 8000
Steps (k)

Figure 7: Rewards visualization for the SplitS track us-
ing policies from pixels with ResNet. By varying per-
centages (from 10% to 90%) of DAgger policies in fine-
tuning using our proposed approach. Our approach re-
veals substantial benefits, even with 15% of data sam-
ples for policy training.

A.7 Ablation study on Asymmetric Critic Formulation

In stage III of our approach, the visuomotor pol-
icy undergoes fine-tuning using an asymmetric critic
setup. In this experiment, we ablate how the critic
configurations, as demonstrated in Fig. 3, can impact
policy performance. As depicted in Fig. 8, RL fine-
tuning with an asymmetric critic function achieves
the highest reward within the same sample budget.
At the same time, as shown previously, including
privileged knowledge in the training process can also
lead to better performance when handling partial ob-
servations.

A.8 DAgger Training for Critic Function

In our approach, we bootstrapped the policy training
using only a pre-trained actor policy. To study the
effect of how the critic function changes the perfor-
mance of policy training, we conducted an experi-
ment to compare the rewards using both pre-trained

—— Ours Ours w/o asym. critic RL

60
’_/NM—-"“W‘
BB s e o
z
2
&
s 20
2
0 ===
i i i i
0 2000 4000 6000 8000
Steps (k)

Figure 8: Comparing rewards across different RL
configurations for the SplitS track using ResNet
embedding, we find that utilizing an asymmetric
critic makes the learning process more efficient.
As a result, we have selected this configuration as
the default setting for our other experiments.

actor and critic functions in our adaptive fine-tuning setting. The pre-trained critic here is similar to
actor training in the second stage, where we also learn to estimate the value using the information
from the asymmetric critic used in the third stage. Since the student actor and critic are not inter-
acting in the second stage, we could train a critic function individually, and the network training

converges in the end.

We then fine-tune the same IL policy but use pre-trained and untrained critic functions to perform
our adaptive finetuning. In Fig. 9, we visualize the results. It is clear that the differences between

these two configurations are quite small. The reason

behind this is that in the initial stage, the critic

function will be mostly updated, as it utilizes privileged state information, making it quite sample-
efficient. Hence, pre-training does not significantly boost performance, and we would need to invest
more computing resources to train it. Therefore, in the end, we decided not to pursue this option.
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History SR% MGE [m] LT [s]
Length | DAgger Ours|DAgger Ours|DAgger Ours

4 0 0 - - - -
8 28 84 | 064 029| 834 792
16 S8 97 | 052 027 831 7.83

32 100 100 | 027 0.22| 826 7.68
64 100 100 | 028 0.21| 827 7.65

Average| 57 76 | 043 025| 830 7.77

Table 5: Ablation study on history length of the policy observations using raw pixels. We could clearly find
out by using more history observations, that the policy improvement will get improved. Notably, our approach
consistently outperforms baseline methods across all history lengths

A.9 Ablation on Varying History Lengths.

In Table. 5 we detailed the results of our approach
against the best baseline methods DAgger on vary-

K K K R R R —— Ours w/o pre. critic === Ours w/ pre. critic
ing different history lengths. It is evident that by in-

corporating more historical information, the student 60 —
could achieve a higher success rate. More impor- L

'S
(=1
)

tantly, in all of these cases, our approach achieves
both better performance and success rate. The en-
hanced performance of our RL-based approach in
partially observable situations can be attributed to
our asymmetric actor-critic setup, where additional
state information is provided for value estimations

. . . . 0 2000 4000 6000 8000
during environment interactions. Steps (k)

Average reward
35
S
\

Figure 9: Reward visualization for the SplitS track
using policies from pixels with ResNet w/ and w/o
pre-trained critic function.

This setup significantly mitigates the challenges of
partial observability, thereby improving the robust-
ness and effectiveness of the learning process.

A.10 Onboard Image Visualization

(a) SplitS Track (b) Figure 8 Track (c) Kidney Track
Figure 10: Top: Visualization demonstrates the render image input for our visuomotor policies in simulation.
Bottom: Sparse corners visualization. Our learned visuomotor policies, relying solely on perceptual inputs,
showcase their acquired capabilities for achieving robust but agile flying performance across three distinct
tracks.

To significantly reduce the sim-to-real gap, we gather LiDAR and image data within our indoor
testing arena and construct a digital twin for all our experiments. In Fig 10, visualizations of the
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images and the corners of our policies on three different racing tracks are depicted. It is noteworthy
that for corner generation, there is a 20% probability of missing data per corner, with +10 pixels of
noise applied. For a detailed view of real-world flights, please see the accompanying videos.

A.11 Unobservable States Illustration

For imitation learning, the policy usually needs to infer action from only partially observable states,
here we demonstrate one detailed example for corner-based racing in SplitS Track in Fig. 11. To
avoid the fact that the policy will need to infer actions from unobservable states, we utilize the
history of the observations and the asymmetric setup for RL training.

Figure 11: Illustration of one corner observation in the real world racing track. There are certain timesteps
where there exist no meaningful corner projections at all. Hence we emphasize the necessity of introducing
history information to handle unobservable perceptual states.
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