
A Supplementary Materials408

The supplementary materials consist of:409

• Sec A.1: Demonstration video.410

• Sec A.2: Details on the Quadrotor Dynamics for Policy Training.411

• Sec A.3: Details on the Reward Formulation and hyperparameters for RL.412

• Sec A.4: Details on the training configurations.413

• Sec A.5: Details on the hardware configurations for the real-world experiments.414

• Sec A.6: Ablation studies on the performance using different IL initialization.415

• Sec A.7: Ablation studies on the improvement of our asymmetric setup.416

• Sec A.8: Ablation studies on pre-trained critic function with DAgger.417

• Sec A.9: Ablation studies on the history length of our approach and the baseline DAgger418

to handle partially observable scenarios.419

• Sec A.10: Illustration of the onboard visual inputs of the policy.420

• Sec A.11: Illustration of the unobservable states for the task settings.421

A.1 Demonstration Video422

In the video supplementary.mp4, we demonstrate the closed-loop flight of our approach relying423

only on visual information (with corners or images) in the real world.424

A.2 Quadrotor Dynamics for Policy Training425

The quadrotor is assumed to be a 6 degree-of-freedom rigid body of mass m and diagonal moment426

of inertia matrix J = diag(Jx, Jy, Jz). Furthermore, the rotational speeds of the four propellers427

Ωi are modeled as a first-order system with a time constant kmot where the commanded motor428

speeds Ωcmd are the input. World W and Body B frames are defined with an orthonormal basis429

i.e. {xW ,yW , zW}. The frame B is located at the center of mass of the quadrotor. The state space430

is thus 17-dimensional and its dynamics can be written as:431
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where gW = [0, 0,−9.81m/s2]⊺ denotes earth’s gravity, fprop, τprop are the collective force and the432

torque produced by the propellers, and fdrag is a linear drag term. The quantities are calculated as433

follows:434

fprop =
X

i

fi , τprop =
X

i

τi + rP,i × fi , (4)

fdrag = − [kvxvB,x kvyvB,y kvzvB,z]
⊤
, (5)

where rP,i is the location of propeller i expressed in the body frame , fi, τi are the forces and torques435

generated by the i-th propeller, and (kvx, kvy , kvz) [40, 41] are linear drag coefficients.436
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A.3 Reward Formulations for RL Trainings.437

The reward components are formulated as follows:438

rprog
t = λ1(dGate(t− 1)− dGate(t)),

rperc
t = λ2 exp(λ3 · δ4cam),

ract
t = −λ3∥at − at−1∥,
rbr
t = −λ4∥ωt∥,
rpass
t = c1, if robot passes the next gate,

rcrash
t = −c2, if robot crashes (gates, ground) .

(6)

Here dGate(t) denotes the distance from the robot’s center of mass to the center of the next gate to439

pass, δcam is the angle between the camera’s optical axis and the direction towards the center of the440

next gate. a represents the control command, and ω the bodyrate. λ1,λ2,λ3,λ4, c1, c2 are different441

positive hyperparameters.442

In our experiments, we employ identical hyperparameters for both state-based teacher training and443

vision-based RL fine-tuning to ensure a fair comparison. These parameters are determined based444

on iterations, shown in Table. 4 in both simulation and real-world experiments, aiming to achieve445

optimal and smooth performance for the state-based policy.

Reward Name Symbol Value
Progress reward λ1 0.5

Perception-aware reward λ2 0.025
Command smoothness reward λ3 2e-4

Body rate penalty λ4 5e-4
Gate passing reward c1 10

Collision penalty c2 4

Table 4: Parameters for RL training.
446

A.4 Training Configurations.447

For state-based teacher training, we employ a policy network consisting of a two-layer MLP, each448

layer containing 256 neurons, with a final layer outputting a 4-dimensional vector using a tanh449

activation function. In imitation learning, a 3-layer Temporal Convolutional Network (TCN) is450

utilized to encode the 32 timestamps of perceptual inputs. The length of the temporal embedding is451

128, followed by another two-layer MLP to output the control command. For imitation learning, we452

employ a batch size of 512, and convergence typically occurs after collecting 5M data samples over453

approximately 100 epochs. We incorporate a linear decay in the learning rate, starting at 1e-3 and454

decreasing to 1e-5 at 50 epochs, remaining unchanged for the remainder of the training process.455

A.5 Hardware Configurations.456

We deploy our approach in the real world using a high-performance racing drone with a maximum457

thrust-to-weight ratio (TWR) of 5.78. However, for our experiments, we have limited the TWR458

to 2.7. We use a modification of the Agilicious platform [42] for the real-world deployment. We459

have replaced the onboard computer with an RF receiver, which is connected directly to the flight460

controller1 and takes care of parsing the collective thrust and bodyrate commands from the computer.461

Additionally, we also mount an ultra-low latency camera feed sender, which sends the live video462

stream to the base computer. This configuration is similar to the one used by professional drone463

racing pilots.464

1https://www.betaflight.com
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A.6 Training Performance with different IL Initializations.465
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Figure 7: Rewards visualization for the SplitS track us-
ing policies from pixels with ResNet. By varying per-
centages (from 10% to 90%) of DAgger policies in fine-
tuning using our proposed approach. Our approach re-
veals substantial benefits, even with 15% of data sam-
ples for policy training.

In this experiment, we test different percent-466

ages (ranging from 10% to 90%) of the DAg-467

ger policies and fine-tune them using our pro-468

posed approach. The detailed training plots are469

illustrated in Fig. 7. Notably, even with only470

15% (1.5M) of the data samples used for pol-471

icy training, we observe significant benefits (>472

20 rewards) compared to training from scratch473

(<0 rewards). Furthermore, as we allocate a474

larger portion of data samples for pre-training,475

our approach demonstrates the ability to en-476

hance performance to a higher level. However,477

we observe that improvement plateaus and con-478

verges at the same level after surpassing 45%479

pre-training, as DAgger training ultimately re-480

sults in similar policies for bootstrapping.481

A.7 Ablation study on Asymmetric Critic Formulation482
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Figure 8: Comparing rewards across different RL
configurations for the SplitS track using ResNet
embedding, we find that utilizing an asymmetric
critic makes the learning process more efficient.
As a result, we have selected this configuration as
the default setting for our other experiments.

In stage III of our approach, the visuomotor pol-483

icy undergoes fine-tuning using an asymmetric critic484

setup. In this experiment, we ablate how the critic485

configurations, as demonstrated in Fig. 3, can impact486

policy performance. As depicted in Fig. 8, RL fine-487

tuning with an asymmetric critic function achieves488

the highest reward within the same sample budget.489

At the same time, as shown previously, including490

privileged knowledge in the training process can also491

lead to better performance when handling partial ob-492

servations.493

A.8 DAgger Training for Critic Function494

In our approach, we bootstrapped the policy training495

using only a pre-trained actor policy. To study the496

effect of how the critic function changes the perfor-497

mance of policy training, we conducted an experi-498

ment to compare the rewards using both pre-trained499

actor and critic functions in our adaptive fine-tuning setting. The pre-trained critic here is similar to500

actor training in the second stage, where we also learn to estimate the value using the information501

from the asymmetric critic used in the third stage. Since the student actor and critic are not inter-502

acting in the second stage, we could train a critic function individually, and the network training503

converges in the end.504

We then fine-tune the same IL policy but use pre-trained and untrained critic functions to perform505

our adaptive finetuning. In Fig. 9, we visualize the results. It is clear that the differences between506

these two configurations are quite small. The reason behind this is that in the initial stage, the critic507

function will be mostly updated, as it utilizes privileged state information, making it quite sample-508

efficient. Hence, pre-training does not significantly boost performance, and we would need to invest509

more computing resources to train it. Therefore, in the end, we decided not to pursue this option.510
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History SR% MGE [m] LT [s]
Length DAgger Ours DAgger Ours DAgger Ours

4 0 0 - - - -
8 28 84 0.64 0.29 8.34 7.92

16 58 97 0.52 0.27 8.31 7.83
32 100 100 0.27 0.22 8.26 7.68
64 100 100 0.28 0.21 8.27 7.65

Average 57 76 0.43 0.25 8.30 7.77

Table 5: Ablation study on history length of the policy observations using raw pixels. We could clearly find
out by using more history observations, that the policy improvement will get improved. Notably, our approach
consistently outperforms baseline methods across all history lengths

A.9 Ablation on Varying History Lengths.511
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Figure 9: Reward visualization for the SplitS track
using policies from pixels with ResNet w/ and w/o
pre-trained critic function.

In Table. 5 we detailed the results of our approach512

against the best baseline methods DAgger on vary-513

ing different history lengths. It is evident that by in-514

corporating more historical information, the student515

could achieve a higher success rate. More impor-516

tantly, in all of these cases, our approach achieves517

both better performance and success rate. The en-518

hanced performance of our RL-based approach in519

partially observable situations can be attributed to520

our asymmetric actor-critic setup, where additional521

state information is provided for value estimations522

during environment interactions.523

This setup significantly mitigates the challenges of524

partial observability, thereby improving the robust-525

ness and effectiveness of the learning process.526

A.10 Onboard Image Visualization527

(a) SplitS Track (b) Figure 8 Track (c) Kidney Track
Figure 10: Top: Visualization demonstrates the render image input for our visuomotor policies in simulation.
Bottom: Sparse corners visualization. Our learned visuomotor policies, relying solely on perceptual inputs,
showcase their acquired capabilities for achieving robust but agile flying performance across three distinct
tracks.

To significantly reduce the sim-to-real gap, we gather LiDAR and image data within our indoor528

testing arena and construct a digital twin for all our experiments. In Fig 10, visualizations of the529
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images and the corners of our policies on three different racing tracks are depicted. It is noteworthy530

that for corner generation, there is a 20% probability of missing data per corner, with ±10 pixels of531

noise applied. For a detailed view of real-world flights, please see the accompanying videos.532

A.11 Unobservable States Illustration533

For imitation learning, the policy usually needs to infer action from only partially observable states,534

here we demonstrate one detailed example for corner-based racing in SplitS Track in Fig. 11. To535

avoid the fact that the policy will need to infer actions from unobservable states, we utilize the536

history of the observations and the asymmetric setup for RL training.537

Figure 11: Illustration of one corner observation in the real world racing track. There are certain timesteps
where there exist no meaningful corner projections at all. Hence we emphasize the necessity of introducing
history information to handle unobservable perceptual states.
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