
A Derivations

This appendix provides the reader full derivations of the Lipschitz constant for the concatenation in
DenseNets and a bound of the Lipschitz for the activation functions.

A.1 Derivation of Lipschitz constant K for the concatenation

We know that a function f is K-Lipschitz if for all points v and w the following holds:

dY (f(v), f(w)) KdX(v, w), (15)

where dY and dX are distance metrics and K is the Lipschitz constant.

Consider the case where we assume to have the same distance metric dY = dX = d, and where
the distance metric is assumed to be chosen as any p-norm, where p � 1, for vectors: ||�||p =
p

qPlen(�)
i=1 |�i|p. Further, we assume a DenseBlock to be a function h where the output for each data

point v and w is expressed as follows:

hv =

f1(v)
f2(v)

�
, hw =

f1(w)
f2(w)

�
, (16)

where in this paper for a Dense Layer and for a data point x the function f1(x) = x and f2 expresses
a linear combination of (convolutional) weights with x followed by a non-linearity, for example
�(W1x). We can rewrite Equation (15) for the DenseNet function as:

d(hv, hw) Kd(v, w), (17)
where K is the unknown Lipschitz constant for the entire DenseBlock. However, we can find an
analytical form to express a limit on K. To solve this, we know that the distance between hv and hw

can be expressed by the p-norm as:

d(hv, hw) =
p

vuut
len(hv)X

i=1

|hv,i � hw,i|p, (18)

where we can simplify the equation by taking the p-th power:

d(hv, hw)
p =

len(f1(v))X

i=1

|f1(v)i � f1(w)i|p +
len(f2(v))X

i=1

|f2(v)i � f2(w)i|p. (19)

Since we know that the distance of f1 can be expressed as:

d(f1(v), f1(w)) =
p

vuut
len(f1(v))X

i=1

|f1(v)i � f1(w)i|p, (20)

which is similar for the distance of f2, re-writing the second term of Equation (19) in the form of
Equation (17) is assumed to be of form:

d(f1(v), f1(w))
p Kp

1d(v, w)
p, (21)

which is similar for f2, d(f2(v), f2(w))p Kp
2d(v, w)

p. Assuming this, we can find a form of
Equation (17) by substituting Equation (19) and Equation (21):

d(hv, hw)
p =

len(hv)X

i

|hv,i � hw,i|p d(f1(v), f1(w))
p + d(f2(v), f2(w))

p

= (Kp
1 +Kp

2)d(v, w)
p.

(22)

13

Now, taking the p-th root we have:

d(hv, hw) p

q
(Kp

1 +Kp
2)d(v, w), (23)

where we have derived the form of Equation (17) and where Lip(h) = K is expressed as:

Lip(h) = p

q
(Kp

1 +Kp
2), (24)

where Lip(f1) = K1 and Lip(f2) = K2, which are assumed to be known Lipschitz constants.

A.2 Derivation bounded Lipschitz Concatenated ReLU

We define function � : R ! R2 as the Concatenated ReLU for a point x:

�(x) =

ReLU(x)
ReLU(�x)

�
. (25)

Let points v, w 2 R. From Section A.1, Equation (18), we know that the distance between points
transformed with � and using the `2-norm can be written as:

d(�(v),�(w))2 =

len(�(v))X

i=1

|�(v)i � �(w)i|2

= (�(v)1 � �(w)1)
2 + (�(v)2 � �(w)2)

2

= (ReLU(v)� ReLU(w))2 + (ReLU(�v)� ReLU(�w))2.

(26)

Furthermore, we know that the distance between the two points is:

d(v, w)2 =

len(v)X

i=1

(vi � wi)
2

= (v � w)2

= v2 + w2 � 2vw.

(27)

We have four different situations that can happen. If v > 0, w > 0, then the distance between the
points will be:

d(�(v),�(w))2 = (v � w)2 + 0

= d(v, w)2.
(28)

In this specific case we have that d(v, w)2 = v2 + w2 � 2vw, where 2vw > 0. The same holds
for v 0, w 0, when the first term becomes zero and instead of zero, the second term becomes
d(v, w)2 with 2vw � 0.

If v > 0, w 0, the distance between the points is equal to:

d(�(v),�(w))2 = (v � 0)2 + (0� w)2

= v2 + w2

= (v � w)2 + 2vw|{z}
0

 (v � w)2 = d(v, w)2.
(29)

The same derivation holds in the case v 0, w > 0. Combining all cases, we find that
d(�(v),�(w)) d(v, w), therefore:

Lip(CReLU) = 1. (30)

14

A.3 Derivation Lipschitz bound of CLipSwish

We propose the Concatenated LipSwish (CLipSwish) and show how we can enforce the CLipSwish
to be 1-Lipschitz for a 1-dimensional input signal x and generalization to a higher dimension in the
upcoming subsections.

A.3.1 CLipSwish 1 dimensional input signal

We derive the upper bound of Concatenated LipSwish and show that CLipSwish(x) = �(x)/1.004
is enforced to satisfy Lip(CLipSwish) = 1. To start with, we define function � : R ! R2 for a
point x as:

�(x) =

�1(x)
�2(x)

�
=

LipSwish(x)
LipSwish(�x)

�
, (31)

where:
LipSwish(x) = x�(�x)/1.1,

and the partial derivative of �(x) exists. Then the Jacobian matrix of � is well-defined as:

J�(x) =

"
@�1(x)

@x
@�2(x)

@x

#
. (32)

Furthermore, we know that for a `2-Lipschitz bounded function �, the following holds:

Lip(�) = sup
x

||J�(x)||2, (33)

where J�(x) is the Jacobian of � and norm and || · ||2 represents the induced matrix norm which is
equal to the spectral norm of the matrix. Furthermore, we know that for a matrix A the following
holds: ||A||2 = �max(A), where �max is the largest singular value and the largest singular value is
given by �max(A) =

p
�1, since �i =

p
�i for i = 1, . . . , n [23]. Now determining the singular

values of J�(x) is done by solving det(J�(x)TJ�(x)� �In) = 0. Combining and solving gives:

det(J�(x)
TJ�(x)� �In) = 0

"✓
@�1(x)

@x

◆2

+

✓
@�2(x)

@x

◆2
#
� � = 0

� =

✓
@�1(x)

@x

◆2

+

✓
@�2(x)

@x

◆2

(34)

where � = �1 the largest eigenvalue, thus: �1 =
⇣

@�1(x)
@x

⌘2
+

⇣
@�2(x)

@x

⌘2
. Therefore, the spectral

norm of Equation (33), can be re-written as:

||J�(x)||2 = �max(J�(x)) =

s✓
@�1(x)

@x

◆2

+

✓
@�2(x)

@x

◆2

. (35)

Now Lip(�) is the upper bound of the CLipSwish and is equal to the supremum of: Lip(�) =
supx ||J�(x)||2 ⇡ 1.004, for all values of �. This can be numerically computed by any solver, by
determining the extreme values of Equation (35).

A.3.2 Generalization to higher dimensions

To generalize the Concatenated LipSwish activation function activation function to higher di-
mensions, we take � : Rd ! R2d, which represents the CLipSwish activation function for
a vector x = {x1, x2, . . . , xd}. Then the CLipSwish is given by the concatenation �(x) =
[LipSwish(x), LipSwish(�x)], where �1(x) = LipSwish(x) and �2(x) = LipSwish(�x) ele-

15

mentwise. The Jacobian matrix J�(x) with shape 2d⇥ d, looks as follows:

J�(x) =

2

66666666664

@�1(x)1
@x1

@�1(x)1
@x2

. . . @�1(x)1
@xd

...
...

...
@�1(x)d

@x1

@�1(x)d
@x2

. . . @�1(x)d
@xd

@�2(x)1
@x1

@�2(x)1
@x2

. . . @�2(x)1
@xd

...
...

...
@�2(x)d

@x1

@�2(x)d
@x2

. . . @�2(x)d
@xd

3

77777777775

, (36)

where @�i,j

@xk
=

(
0, if j 6= k
@�i,j

@xk
, otherwise.

The determinant is computed as det(J�(x)TJ�(x) � �In) = 0, where J�(x)TJ�(x) is of shape
d⇥ d with off-diagonals equal to zero. Therefore, the determinant is given by multiplication of the
diagonal entries and each eigenvalue is given by each diagonal entry. The general form of determinant
and eigenvalues is written as:

det(J�(x)
TJ�(x)� �In) =

dY

j=1

�j , (37)

where each eigenvalue is given by:

�j =

✓
@�1,j

@xj

◆2

+

✓
@�2,j

@xj

◆2

. (38)

Then:

Lip(�) = sup
x

||J�(x)||2 = sup
x

max
j

p
�j = sup

x
max

j

s✓
@�1,j

@xj

◆2

+

✓
@�2,j

@xj

◆2

⇡ 1.004, (39)

where the last step is numerically approximated for the CLipSwish function, where � is the LipSwish.
Therefore, we plot Equation (39) in Python and compute the absolute extrema, which can be found
in Figure 6. For this figure we plotted CLipSwish with � = 0.5 and passed it through a softplus
function, as it is initialized in the code on GitHub. Next, we can numerically obtain the absolute
extrema by computing the maximum value and argmax of the maximum value of Equation (39),
which respectively represent the y-coordinate and x-coordinate of the absolute maximum. This
accounts for all �’s being strictly positive since changing � does not change the y-coordinate of the
extreme value but only shifts the x-coordinate more to or further away from the origin.

Figure 6: ClipSwish activation function with indicated absolute maximums

16

B Implementation

We followed the architecture of [4] and during training used a batch size of 64. CIFAR10 and
ImageNet32 are of size 32⇥ 32. CIFAR10 contains 50,000 training images and 10,000 test images.
ImageNet32 contains 1,281,167 training images and 50,000 validation images. CIFAR10 has an
MIT License and the ImageNet terms of access can be found here: https://image-net.org/
download.php. Before training, uniform dequantization is applied to the images after which a
logit transformation is applied. For hybrid models, instead of the logit transform, the images use
normalization x = x�µ

� . As in [4], for evaluation at least 20 terms of the power series for the
Jacobian-determinant are computed while the remaining terms to compute, are determined by the
unbiased estimator. Furthermore, we set a bound on the Lipschitz constant of each dense layer with
a Lipschitz coefficient of 0.98. We use Adam optimizer with learning rate set to 0.001 to train the
models.

For all our models we ensured an equal parameter budget as the architecture of Residual Flows [4].
For CIFAR10, the full i-DenseNets utilize 24.9M to utilize the 25.2M of Residual Flows. For
ImageNet32, i-DenseNet utilizes 47.0M parameters to utilize the 47.1M of the Residual Flow. A
numerical architecture of the full i-DenseNets for image data is presented in Table 7. g consists of
several dense layers. The last dense layer hn is followed by a 1⇥ 1 convolution to match the output
of size Rd, after which a squeezing layer is applied. The final part of the network consists of a Fully
Connected (FC) layer with the number of blocks set to 4 for both datasets. Before the concatenation
in the FC layer, a Linear layer of input Rd to output dimension 64 is applied, followed by the dense
layer with for both datasets the FC DenseNet growth of 32, activation CLipSwish and a DenseNet
depth of 3. The final part consists of a Linear layer to match the output of size Rd. The large-scale
models require approximately 410 seconds for an epoch on 4 NVIDIA TITAN RTX GPUs.

Table 7: The general DenseNet architecture for the full models, modeled in function g for image data.
Nr.

of scales
Nr. of blocks

per scale
DenseNet

Depth
DenseNet
Growth Dense Layer Output

3
16 (CIFAR10)
32 (ImageNet32) 3

172 (CIFAR10)
172 (ImageNet32)

"
3⇥ 3 conv
CLipSwish

concat

#
[1⇥ 1 conv]

17

https://image-net.org/download.php
https://image-net.org/download.php

(a) Real images. (b) Samples i-DenseNet.

Figure 7: Real images and samples from i-DenseNet trained on CIFAR10.

C Samples

This appendix contains samples of the models trained on CIFAR10 and ImageNet32, along with
samples of the hybrid models.

C.1 Model Samples

Figure 7 shows real images and samples of the models trained on CIFAR10. Figure 7(a) shows the
real images and Figure 7(b) shows samples of i-DenseNet trained on CIFAR10.

Figure 8 contains real images and samples of the models trained on ImageNet32. Figure 8(a) shows
the real images and Figure 8(b) shows samples of i-DenseNet trained on ImageNet32.

C.2 Hybrid modeling samples

Figure 9 shows samples of the hybrid models trained on CIFAR10. The model trained with a scaling
factor of � = 1

D can be found in Figure 9(a). We notice that the samples tend to show a lot of red and
brown colors and that the images tend to look noisy. This is probably due to the scaling factor where
the generative part and classifier part have an equal focus for the likelihood objective, while there are
D = 32⇥ 32 features per image.

The model trained with � = 1 can be found in Figure 9(b). The samples tend to look like the samples
in Figure 7(b), only with less definition. This is probably due to the extra part, namely, the classifier
part. Comparing the bits per dimension of the hybrid model with i-DenseNet trained for density
estimation only, we find a difference of 0.06bpd.

18

(a) Real images. (b) Samples i-DenseNet.

Figure 8: Real images and samples from i-DenseNet trained on ImageNet32.

(a) Hybrid model trained with � = 1
D (b) Hybrid model trained with � = 1

Figure 9: Hybrid modeling results with Dense Blocks trained on CIFAR10

19

D Additional experiments

In this appendix, we perform additional experiments. First, we analyze the preservation of signal for
the activations functions with datapoints that are sampled from a distribution with larger parameter
values. Furthermore, we analyze the running time of the models. Next, we examine the importance
of the concatenated representation for i-DenseNets that are learned with learnable weighted concate-
nation. Finally, we analyze a Residual Flow where we extend the width and depth of the ResNet
connections modeled in g(x) such that it matches the size of i-DenseNet.

D.1 Preservation of signal

To further analyze the expressive power for the activation functions with a larger range, we sample
100,000 datapoints from distribution: v, w ⇠ N (0, 5) with dimension set to D = {1, 128, 1024}. We
compute the mean and maximum of the sampled ratios with: `2(�(v),�(w))/`2(v, w) and analyze
the expressive power of each function. Table 8 shows the results. We find that CLipSwish for all
dimensions preserves even more expressive power than datapoints sampled from N (0, 1), while
sigmoid loses a considerable amount of signal with mean values close to zero instead of 0.25.

Table 8: The mean and maximum ratio for different dimensions with sample size set to 100,000.

Activation\
Measure

D = 1 D = 128 D = 1024

Mean Max Mean Max Mean Max

Sigmoid 0.09 0.25 0.08 0.10 0.08 0.09
LipSwish 0.47 1.0 0.54 0.69 0.54 0.59
CLipSwish 0.83 1.0 0.76 0.83 0.76 0.78
Identity 1.0 1.0 1.0 1.0 1.0 1.0

D.2 Running time

Table 9 shows the forward pass, train time and sampling time, expressed in percentage faster or
slower than Residual Flow, for each activation function. We find that the forward pass of i-DenseNet,
for all activation functions, is faster than Residual Flow. The train time is slower and during sampling
i-DenseNet is faster. Note that in comparison to the preliminary results in the rebuttal the times has
changed somewhat, since these results have been obtained on a clean system with multiple runs.
An interesting observation is that the LeakyLSwish with Residual Flows is much slower than the
DenseNet variant, which indicates that fewer fixed-point iterations are needed for i-DenseNets to
converge.

Table 9: i-DenseNet approximate running times in percentage (%) compared to Residual Flow. Faster
than Residual Flow is indicated with " and slower #.

Activation Function Forward pass (GPU) Train time (GPU) Sampling time (CPU)

LipSwish " 1.3% # 43% " 8.8%
LeakyLSwish " 1.3% # 28% " 231.9%
CLipSwish " 0.6% # 145% " 11%

D.3 Importance of concatenated representation

Trained on CIFAR10, the smaller architecture with CLipSwish activation and a DenseNet depth of
3 and growth of 178, run for 200 epochs with CLipSwish obtains the best performance score with
3.37bpd. To analyze the importance of the concatenated representation after training, Figure 10
shows the heatmap for parameter ⌘̂1 (Figure 10(a)) and parameter ⌘̂2 (Figure 10(b)). Every scale
level 1, 2, and 3 contains 4 DenseBlocks, that each contains 3 dense layers with convolutional layers.

20

The final level FC indicates that fully connected layers are used. The letters ‘a’, ‘b’, and ‘c’ index the
dense layers per block.

Remarkably, all scale levels for the last layers hic give little importance to the input signal. The input
signals for these layers are in most cases multiplied with ⌘̂1 (close to) zero, while the transformed
signal uses almost all the information when multiplied with ⌘̂2, which is close to one. This indicates
that the transformed signal is of more importance for the network than the input signal. For the
fully connected part, this difference is not that pronounced. Instead of 4 DenseBlocks, the full
i-DenseNet model utilizes 16 DenseBlocks (CIFAR10) and 32 (ImageNet32) for every scale; these
are not included due to the size.

D.4 Matching architectures

The Residual Flow architecture with LipSwish activation and 3 scale levels set to 4 Flow blocks
has 8.7M parameters. To utilize a similar number of parameters for i-DenseNet with LipSwish
activation, we set DenseNets depth to 3 and growth to 124. To go a step further, we also examine
modeling ResNet connections matching the size of i-DenseNet. Therefore, we use the same 3⇥ 3
kernels as each dense layer uses and as a final layer a 1⇥ 1 kernel to match the input size. Instead of
the concatenation, we use the growth size of 124 plus the input size to imitate the dense layers of
i-DenseNet but then with convolutional connections. We repeat this process for the Fully Connected
layer. Note that this puts the Residual Flow at a considerable advantage as it uses 19.1M parameters
instead of the 8.7M of the original flow. We do the same experiment for toy data that uses only linear
connections instead of convolutions.

In Table 10 the results are shown. On toy data, the extended Residual Flow performs slightly better
in terms of nats compared to the original Residual Flow without extended width and depth. Yet,
i-DenseNet obtains the lowest (better) scores. On high-dimensional CIFAR10 data, the extended
Residual Flow obtains 7.02bpd which is worse than i-DenseNet with 3.39bpd. Yet, the model also
scores more than double as high (worse) in terms of bpd than the original Residual Flow with 3.42bpd.

Table 10: The negative log-likelihood results on test data in nats (toy data) and bpd (CIFAR10), where
lower is better. i-DenseNets with LC are compared with the original Residual Flow and Residual
Flow with equal width and depth as i-DenseNet.

Model (LipSwish) CIFAR10
bpd #

2 circles
nats #

checkerboard
nats #

2 moons
nats #

Residual Flows 3.42 3.44 3.81 2.60
+ extended width, equal depth 7.02 3.36 3.78 2.52

i-DenseNets+LC 3.39 3.30 3.66 2.39

The main difference in architecture of the toy and CIFAR10 is the linear layer for toy data whereas
mainly convolutional layers are used for CIFAR10. A possible explanation of this phenomenon is
that by forcing more convolutional layers to be 1-Lipschitz that gradient norm attenuation problems
increase and in practice become less expressive. Concluding, even though the model utilizes more
than double the number of parameters, it performs worse than i-DenseNet with similar architecture
and even worse than the original Residual Flow architecture, indicating that modeling a DenseNet in
g(x) indeed is an important difference that gives better performance.

21

(a) Heatmap of ⌘̂1 corresponding to the input

(b) Heatmap of ⌘̂2 corresponding to the transformed input

Figure 10: Heatmaps of the normalized ⌘1 and ⌘2 after training for 200 epochs on CIFAR10. Best
viewed electronically.

22

	Introduction
	Background
	Invertible Dense Networks
	Dense blocks
	Constraining the Lipschitz constant
	Learnable weighted concatenation
	CLipSwish

	Experiments
	Toy data
	Density Estimation
	Hybrid Modeling

	Analysis and future work
	Analysis of activations and preservation of signals
	Activation Functions
	DenseNets concatenation depth
	Future Work

	Conclusion
	Derivations
	Derivation of Lipschitz constant K for the concatenation
	Derivation bounded Lipschitz Concatenated ReLU
	Derivation Lipschitz bound of CLipSwish
	CLipSwish 1 dimensional input signal
	Generalization to higher dimensions

	Implementation
	Samples
	Model Samples
	Hybrid modeling samples

	Additional experiments
	Preservation of signal
	Running time
	Importance of concatenated representation
	Matching architectures

