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Abstract
We study the behavior of optimal ridge regulariza-
tion and optimal ridge risk for out-of-distribution
prediction, where the test distribution deviates
arbitrarily from the train distribution. We estab-
lish general conditions that determine the sign of
the optimal regularization level under covariate
and regression shifts. These conditions capture
the alignment between the covariance and signal
structures in the train and test data and reveal
stark differences compared to the in-distribution
setting. For example, a negative regularization
level can be optimal under covariate shift or re-
gression shift, even when the training features are
isotropic or the design is underparameterized. Fur-
thermore, we prove that the optimally tuned risk
is monotonic in the data aspect ratio, even in the
out-of-distribution setting and when optimizing
over negative regularization levels. In general, our
results do not make any modeling assumptions for
the train or the test distributions, except for mo-
ment bounds, and allow for arbitrary shifts and the
widest possible range of (negative) regularization
levels.

1. Introduction
Regularization plays a crucial role in statistical modeling
and is commonly incorporated into optimization-based mod-
els through a regularization term. Its effectiveness relies on
properly scaling the regularization term, which is controlled
by a penalty parameter that the data scientist needs to tune.
Recent work in machine learning (precise references given
shortly) has shed light on some rather surprising behavior ex-
hibited by the optimal regularization level in overparameter-
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ized prediction models, which can be zero or even negative
in certain problems with moderate signal-to-noise ratio and
high dimensionality. This stands in contrast to the “typical”
behavior from classical low-dimensional learning theory.

With this motivation, our paper focuses on two key questions
for high-dimensional ridge regression:

(Q1) What is the behavior of the optimal ridge penalty, as a
function of parameters such as signal-to-noise ratio, data
aspect ratio, feature correlations, and signal structure?

(Q2) What is the behavior of the optimally tuned ridge risk,
as a function of these same problem parameters?

To set the notation, let (xi, yi) for i ∈ [n] be i.i.d. observa-
tions in Rp×R representing the feature vector and response.
Denote the data matrix as X = [x1, . . . , xn]

⊤ ∈ Rn×p and
the associated response vector as y = [y1, . . . , yn]

⊤ ∈ Rn.
Given a ridge penalty λ > 0, recall the ridge regression fits:

β̂λ = argmin
b∈Rp

∥y −Xb∥22/n+ λ∥b∥22. (1)

Ridge regression (Hoerl & Kennard, 1970a;b) has received
considerable recent attention, particularly in settings involv-
ing overparameterization, such as double descent (see, e.g.,
Belkin et al., 2020; Hastie et al., 2022; Muthukumar et al.,
2020, and references therein) and benign overfitting (Bartlett
et al., 2020; Koehler et al., 2021; Mallinar et al., 2022). This
interest in ridge regression, especially its “ridgeless” limit,
where λ→ 0+, owes to its peculiar double/multiple descent
risk behavior in overparameterized regimes, which (on the
surface) challenges the conventional understanding of the
role of regularization (Hastie, 2020). By defining the ridge
estimator as:

β̂λ = (X⊤X/n+ λIp)
†X⊤y/n, (2)

where A† denotes the Moore-Penrose pseudoinverse of A,
we simultaneously accommodate the case of λ > 0, in
which case (2) reduces to the unique ridge predictor obtained
using (1), and the case of λ = 0, in which case (2) becomes
the minimum ℓ2-norm interpolator among many solutions
to problem (1) when p ≥ rank(X) = n. Note that the
above definition (2) is well defined even when λ < 0. For
more background on the formulation of ridge regression
with λ < 0, see Appendix B.
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Partial answers to questions (Q1) and (Q2) are known for
the in-distribution squared prediction risk, defined as:

R(β̂λ) = Ex0,y0 [(y0 − x⊤0 β̂
λ)2 | X, y], (3)

where (x0, y0) is a test point sampled independently from
the same distribution Px,y as the training data. Note that the
prediction risk (3) is conditional on the training data and is
a function of (X, y) and the properties of Px,y. Arguably,
the cleanest answers to (Q1) and (Q2) are obtained under
proportional asymptotics where the sample size n and the
feature size p diverge proportionally to an aspect ratio ϕ ∈
(0,∞). Under certain additional assumptions, the risk (3)
then almost surely converges to a limit R(λ, ϕ) that depends
only on coarse properties of Px,y. Analyzing the behavior
of the optimal ridge penalty λ∗ (which minimizes R(λ, ϕ)
over λ) and the optimal risk R(λ∗, ϕ) then consequently
allows us to answer questions (Q1) and (Q2), respectively.

For (Q1), consider a well-specified linear model y = Xβ +
ε, where the noise ε ∼ (0n, σ

2I) is independent of X , and
the signal is random with β ∼ (0p, (α

2/p)I). Remarkably,
despite the lack of a closed-form expression for R(λ∗, ϕ),
Dobriban & Wager (2018) show that λ∗ = ϕ/SNR > 0,
where SNR = α2/σ2 is the signal-to-noise ratio. However,
in real-data experiments, it has been observed that a negative
ridge penalty can be optimal (Kobak et al., 2020). Motivated
by this, Wu & Xu (2020); Richards et al. (2021) analyze the
sign behavior of λ∗ beyond random isotropic signals and
establish sufficient conditions for when λ∗ < 0 or λ∗ = 0.

For (Q2), again remarkably, it follows from the results of
Dobriban & Wager (2018) that for isotropic features and
random isotropic signals, the risk R(λ∗, ϕ) increases mono-
tonically with the data aspect ratio ϕ. Recent work by Patil
& Du (2023, Theorem 6) extends this result to anisotropic
features and deterministic signals (with arbitrary response
distributions of bounded moments), demonstrating that opti-
mal ridge regression exhibits a monotonic risk profile and
avoids double and multiple descents. In a certain sense, these
results imply the sample-wise monotonicity of the optimal
expected conditional risk (over the training data set).

We work to answer (Q1) and (Q2) more comprehensively
across essentially all possible in-distribution (IND) ridge
prediction problems. Furthermore, we will generalize this
by also considering the out-of-distribution (OOD) setting,
where the test point (x0, y0) in (3) has a different distri-
bution Px0,y0 than the train distribution Px,y = Px · Py|x.
Distribution shift occurs in many practical machine learn-
ing applications and has gained increasing attention in the
learning community. We focus on two common types of
distribution shifts:

(i) Covariate shift: where Px0 ̸= Px but Py0|x0
= Py|x.

(ii) Regression shift: where Py0|x0
̸= Py|x but Px0 = Px.

Thus, we also study following generalizations of (Q1)–(Q2):

(Q1′) How does distribution shift alter optimal regularization?
Specifically, under what types of shift is the optimal
penalty λ∗ in the OOD setting notably different (typi-
cally smaller) compared to the IND setting?

(Q2′) How does distribution shift alter optimal risk behavior?
Specifically, is R(λ∗, ϕ) still monotonic in ϕ when λ∗

changes due to the distribution shift? Conversely, is opti-
mal regularization necessary to ensure monotonic risk?

1.1. Summary of Results and Paper Outline

Extended risk characterization. In Section 2, we extend
the scope of risk characterization for ridge regression for the
out-of-distribution setting (Proposition 2.4) that: (i) does not
assume any model for the train or the test distribution, apart
from certain moment bounds on the train and test response
distributions, (ii) does not assume that the spectrums of
feature covariance or signal projections converge to fixed
distributions, and (iii) allows for the widest possible range
of (negative) regularization level λmin (see Definition 2.3).

Properties of optimal regularization. In Section 3, we
characterize the conditions that determine the sign of λ∗

under covariate shift (Theorem 3.3) and regression shift
(Theorem 3.4). These conditions capture the general align-
ment between the signal and the covariance spectrum, which
isolates the cases where the sign of λ∗ under the OOD set-
ting changes from the IND setting. Our work subsumes and
extends previously known results on optimal ridge regular-
ization to the best of our knowledge (see Table 1 for precise
comparisons).

Properties of optimal risk. In Section 4, we show that the
OOD risk of the optimally tuned ridge R(λ∗, ϕ) is mono-
tonic in the data aspect ratio ϕ and SNR (Theorem 4.2).
Furthermore, we establish a partial converse (Theorem 4.3)
that shows risk non-monotonicity under suboptimal regular-
ization. To prove our results, we exploit the equivalences
between subsampling and ridge regression from (Patil &
Du, 2023) to the OOD setting and also allow for tuning over
negative regularization (Theorem 4.4).

1.2. Related Work and Comparisons

Ridge risk characterization. The asymptotic risk of ridge
regression has been extensively studied in the literature un-
der proportional asymptotics when p/n → ϕ ∈ (0,∞),
as n, p → ∞ using tools from random matrix theory and
statistical physics. For well-specified linear models, expres-
sions of risk asymptotics for the IND setting are obtained by
Dobriban & Wager (2018); Hastie et al. (2022), among oth-
ers. Historically, heuristic derivations of these expressions
have also been derived for Gaussian process regression by
Sollich (2001). Additionally, several works have explored
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Table 1: Optimal regularization landscape in ridge regression. Here, ‘#’ indicates either an isotropic feature or signal covariance, and
‘⊗’ indicates anisotropic features or signal covariance. For the data aspect ratio ϕ, ‘all’ indicates ϕ ∈ (0,∞), ‘under’ indicates ϕ ∈ (0, 1)
for the underparameterized regime, and ‘over’ indicates ϕ ∈ (1,∞) for the overparameterized regime. For the minimum penalty λmin,
‘neg’ and ‘more neg’ respectively indicate the naive (loose) and exact lower bound on the negative values (Definition 2.3). For the optimal
penalty λ∗, green and red contrast the cases when the sign changes. ‘Arb. Mod.’, ‘Arb. SNR.’, and ‘Arb. Spec.’ indicate allowing for
arbitrary response model, signal-to-noise ratio, and feature covariance spectrum, respectively. Please see Table 6 for the reference key.

Σ β Σ0 β0 ϕ ≶ 1 λmin
Arb.
Mod.

Arb.
SNR

Arb.
Spec.

Additional Specific Data
Geometry Conditions λ∗ Reference

In-distribution
⊗ # Σ β all zero ✗ ✓ ✗ + [DW, Thm. 2.1]
# ⊗ Σ β all zero ✗ ✓ ✗ + [HMRT, Cor. 5]

under neg ✗ ✓ ✗ + [WX, Prop. 6]
over neg ✗ ✗ ✗ Strict misalignment of (Σ, β) + [WX, Thm. 4]
over neg ✗ ✗ ✗ Strict alignment of (Σ, β)

and/or special feature model
− [WX, Thm. 4, Prop. 7]

over zero ✗ ✗ ✗ 0 [RMR, Cor. 2]

under more neg ✓ ✓ ✓ + Theorem 3.1 (1)

⊗ ⊗ Σ β

over more neg ✓ ✓ ✓ General alignment of (Σ, β, σ2) − Theorem 3.1 (2)

Out-of-distribution
⊗ # Σ0 β all more neg ✓ ✓ ✓ + Proposition 3.2

⊗ ⊗ Σ0 β under more neg ✓ ✓ ✓ + Theorem 3.3 (1)
⊗ ⊗ I β over more neg ✓ ✓ ✓ + Theorem 3.3 (2)
# ⊗ Σ0 β over more neg ✓ ✓ ✓ General alignment of (Σ0, β, σ

2) − Theorem 3.3 (3)

⊗ ⊗ Σ β0
under more neg ✓ ✓ ✓ General alignment of (Σ, β, β0) − Theorem 3.4 (1), (39)
under more neg ✓ ✓ ✓ General misalignment of (Σ, β, β0) + Theorem 3.4 (1), (39)
over more neg ✓ ✓ ✓ General alignment of (Σ, β, β0, σ2) − Theorem 3.4 (2)

risk asymptotics and its implications in different variants
of ridge regression (Wei et al., 2022; Mel & Ganguli, 2021;
Loureiro et al., 2021; Jacot et al., 2020; Simon et al., 2021;
Zhou et al., 2023; Bach, 2024; Pesce et al., 2023). The risk
asymptotics for the OOD setting are obtained by Canatar
et al. (2021), D’Amour et al. (2022, Section E.5), Patil et al.
(2022, Section S.6.5), Tripuraneni et al. (2021). However,
these works assume either random Gaussian features or a
well-specified linear model or restrict to only the positive
range of regularization. Our work extends this literature
by allowing for general response models and the widest
possible range of negative regularization.

Behavior of optimal regularization. Under random sig-
nals with isotropic covariance, Dobriban & Wager (2018)
show that the asymptotic risk over the positive range of
regularization λ > 0 is minimized at λ⋆ = ϕ/SNR. Here
SNR = α2/σ2, where σ2 is the noise energy and α2 is the
signal energy. Remarkably, this result is invariant of the
feature covariance. Similar results under Gaussian assump-
tions are derived by Dicker (2016), and Han & Xu (2023)
extend the result to most signals in the unit ball with high
probability. However, Kobak et al. (2020) demonstrate that
optimal regularization can be negative for certain signal and
covariance structures in real datasets. Motivated by these
curious experiments, Wu & Xu (2020) provide sufficient
conditions for optimal regularization of the Bayes risk under
anisotropic feature covariance and random signal, assuming
a limiting spectrum distribution of the covariance matrix Σ

and alignment conditions between the eigenvalues of Σ and
the projections of the signal β onto the eigenspace of Σ. Fur-
thermore, Richards et al. (2021) consider strict alignment
conditions for a special feature model but do not explicitly
consider negative regularization. We refer to these condi-
tions as strict (mis)alignment conditions in this paper.

Our paper extends the scope of the aforementioned results
for the OOD setting with general response models and al-
lows for the widest possible range of negative regularization.
The main differences to Wu & Xu (2020) are the assump-
tions (linear models and limiting spectrum distribution) and
the hypothesis of the theorem (aligned/misaligned). Their
analysis only considers high SNR regimes and analyzes the
behavior of optimal regularization for bias when ϕ > 1,
although they also provide an upper bound for the noise
level under special cases. We provide generic sufficient con-
ditions. We call these general (mis)alignment conditions in
the paper. Table 1 provides a detailed comparison summary.

Behavior of optimal risk. Under a random isotropic signal,
Dobriban & Wager (2018) obtain the expression for limiting
optimal risk, which can be shown to be monotonic in ϕ. Patil
& Du (2023) extends these theoretical guarantees to features
with an arbitrary covariance matrix and a general moment-
bounded response. However, their analysis is limited to the
IND setting and positive regularization. Recent works have
also explored other aspects of the monotonicity of optimal
risk; see, for example, Nakkiran et al. (2021); Simon et al.
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(2023); Yang & Suzuki (2023).

We extend the monotonicity result in Patil & Du (2023)
to the OOD setting and allow for negative regularization.
In addition, we also show the monotonicity of the opti-
mal risk in SNR. The proof technique for risk monotonicity
leverages the equivalences between subsampling and ridge
regularization established by Du et al. (2023); Patil & Du
(2023). However, the equivalences in these works only con-
sider cases where the ridge penalty is non-negative. We ex-
tend their analyses to accommodate negative regularization,
which requires extending the properties of the parameters
that appear in certain fixed-point equations under negative
regularization (see Appendix F).

2. Out-of-Distribution Risk Asymptotics
Before describing the properties of λ∗ in Section 3 and the
behavior of optimal risk R(β̂λ

∗
) in Section 4, we provide

the risk asymptotics in this section. For the reader’s conve-
nience, we summarize all our notation in Appendix A. We
state assumptions on the train and test distributions below.

2.1. Data Assumptions

We first define a general feature and response distribution,
which we will use in our subsequent assumption shortly.

Definition 2.1 (General feature and response distribution).
For x ∼ Px, it can be decomposed as x = Σ1/2z, where
z ∈ Rp contains i.i.d. entries with mean 0, variance 1, and
(4+µ)-th moment uniformly bounded for some µ > 0. Here
Σ ∈ Rp×p is deterministic and symmetric with eigenvalues
uniformly bounded away from 0 and +∞. For y ∼ Py, it
has mean 0 and (4 + ν)-th moment uniformly bounded for
some ν > 0. The L2 linear projection parameter of y onto
x is denoted by β = E[xx⊤]−1E[xy], and the variance of
the conditional distribution Py|x is denoted by σ2. The joint
distribution Px,y is parameterized by (Σ, β, σ2).

Definition 2.1 imposes weak moment assumptions on co-
variates and responses, which are commonly used in random
matrix theory and overparameterized risk analysis (Hastie
et al., 2022; Bartlett et al., 2021). These assumptions en-
code a wide class of distributions over Rp+1. By decompos-
ing dPy = dPx · dPy|x, we can express the response as
y = x⊤β+ε, where ε is uncorrelated with x and E[ε2] = σ2.
Note that theL2 projection parameter β minimizes the linear
regression error (Györfi et al., 2006; Buja et al., 2019a;b)1.
Also note that this formulation does not impose any specific
structure on the conditional distribution Py|x and does not
imply that (x, y) follows a linear model, as ε is also a func-

1Technically, our results can accommodate the conditional vari-
ance σ2 depending on x with suitable regularity conditions, but for
simplicity, we do not consider this variation in the current paper.

tion of x. It is possible to further relax the assumption on the
feature vector x to only require an appropriate convex con-
centration (that proves versions of the Marchenko-Pastur
law) (Louart, 2022; Cheng & Montanari, 2022) or even
certain infinitesimal asymptotic freeness between the popu-
lation covariance matrix Σ and the sample covariance matrix
X⊤X/n (LeJeune et al., 2024; Patil & LeJeune, 2024). We
do not consider such relaxations here.

Under Definition 2.1, the joint distribution Px,y =
Px,y(Σ, β, σ

2) is parameterized by (Σ, β, σ2). We next state
assumptions on the train and test distributions in terms of
these distributions, allowing for different sets of parameters.

Assumption 2.2 (Train and test distributions). Assume that
Px,y and Px0,y0 are distributed according to Definition 2.1,
parameterized by (Σ, β, σ2) and (Σ0, β0, σ

2
0), respectively.

In this paper, we consider the following types of shifts:

(i) Covariate shift: where Σ ̸= Σ0 but (β, σ) = (β0, σ0).
(ii) Regression shift: where Σ = Σ0 but (β, σ) ̸= (β0, σ0).

(iii) Joint shift: where Σ ̸= Σ0 and (β, σ) ̸= (β0, σ0).

Observe that this framework also encompasses various risk
notions (even for the IND setting), including the estimation
risk, which arises when (Σ0, β0, σ

2
0) = (I, β, 0).

2.2. Out-of-Distribution Risk Asymptotics

In this section, we obtain the asymptotic risk of ridge re-
gression in the OOD setting. Most of the papers on ridge
regression consider the range of regularization λ ≥ 0. Mo-
tivated by empirical findings in Kobak et al. (2020) that
negative regularization can be optimal in real datasets, some
recent works consider negative regularization; see, e.g., Wu
& Xu (2020); Patil et al. (2021; 2022), using a naive lower
bound of −rmin(1 −

√
ϕ)2 for λ. A tighter lower bound

can be obtained from Theorem 3.1 of LeJeune et al. (2024),
which provides an explicit characterization of the smallest
nonzero eigenvalue of Wishart-type matrices. This bound is
derived by explicitly identifying the analytic continuation
to the real line of a unique solution to a certain fixed-point
equation over the (upper) complex half-plane (Silverstein
& Choi, 1995; Dobriban, 2015). The new bound can sig-
nificantly outperform the previous naive lower bound (see
Figure 1 of (LeJeune et al., 2024)).

Definition 2.3 (Lower bound on negative regularization).
Let µmin ∈ R be the unique solution, satisfying µmin >
−rmin, to the equation:

1 = ϕ tr[Σ2(Σ + µminI)
−2], (4)

and let λmin(ϕ) be given by:

λmin(ϕ) = µmin − ϕ tr[Σ(Σ + µminI)
−1]. (5)
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This enables feasible risk estimation over λ ∈
(λmin(ϕ),∞). Here tr[A] denotes the average trace tr[A]/p
of a matrix A ∈ Rp×p. To reiterate, the difference between
the bound (5) and the naive bound used in Wu & Xu (2020);
Patil et al. (2021) can be significant, as seen in Figure 1.

To characterize the asymptotic out-of-distribution (OOD)
risk in Proposition 2.4, we first define the non-negative
constants µ = µ(λ, ϕ) and ṽ = ṽ(λ, ϕ; Σ0) as solutions of
the following fixed-point equations:

µ = λ+ ϕ tr[µΣ(Σ + µI)−1], ṽ =
ϕ tr[Σ0Σ(Σ + µI)−2]

1− ϕ tr[Σ2(Σ + µI)−2]
.

One can interpret µ as the level of implicit regulariza-
tion “self-induced” by the data (Bartlett et al., 2021; Misi-
akiewicz & Montanari, 2023). Alternatively, it is also
common to parameterize the equations using its inverse
v(λ, ϕ) = µ−1(λ, ϕ), which corresponds to the Stieltjes
transform of the spectrum of the sample Gram matrix in the
limit. With this notation in place, we can now extend the
result in Eq. (11) of Patil & Du (2023) to the OOD setting
as formalized below.

Proposition 2.4 (Deterministic equivalents for OOD risk).
Under Assumption 2.2, as n, p→ ∞ such that p/n→ ϕ ∈
(0,∞) and λ ∈ (λmin(ϕ),∞), the prediction risk R(β̂λ)
defined in (3) admits a deterministic equivalent R(β̂λ) ≃
R(λ, ϕ), where the equivalent additively decomposes into:

R(λ, ϕ) := B(λ, ϕ) +V(λ, ϕ) +S(λ, ϕ) + κ2, (6)

with the following deterministic equivalents for the bias,
variance, regression shift bias, and irreducible error:

B = µ2 · β⊤(Σ + µI)−1(ṽΣ+ Σ0)(Σ + µI)−1β,

V = σ2ṽ,

S = 2µ · β⊤(Σ + µI)−1Σ0(β0 − β),

κ2 = (β0 − β)⊤Σ0(β0 − β) + σ2
0 .

Note that the deterministic equivalents presented in Proposi-
tion 2.4 depend not only on the regularization parameters
(λ, ϕ), but also on the problem parameters (Σ, β, σ2) and
(Σ0, β0, σ

2
0), which we have omitted for notational brevity.

Since the risk depends additively on σ2
0 , we focus mainly on

the effect of (Σ0, β0) in our analysis. Extending this result
to finite samples is possible by imposing additional distribu-
tional assumptions on the features and response. Techniques
in Knowles & Yin (2017); Cheng & Montanari (2022);
Louart (2022), among others, can be used to obtain non-
asymptotic analogs of Proposition 2.4. In this paper, we will
focus only on the deterministic equivalents, which capture
the first-order information (akin to expectation) of interest
for our goals.

3. Properties of Optimal Regularization
In this section, we focus on the optimal ridge penalty λ∗ for
the asymptotic out-of-distribution (OOD) risk, defined as2:

λ∗ ∈ argmin
λ≥λmin(ϕ)

R(λ, ϕ). (7)

As discussed in Section 1.2, previous studies have explored
the properties of λ∗ for ridge regression summarized in
Table 1. However, these studies predominantly focus on
specific scenarios, such as isotropic signals or features, and
do not consider the full range of negative penalty values.
Furthermore, their investigations are restricted mainly to
the IND setting when (Σ0, β0) = (Σ, β). We broaden the
scope of these results, considering more general scenarios,
including anisotropic signals, the full range of (negative)
regularization, and both IND and OOD settings.

3.1. In-Distribution Optimal Regularization

We present our initial result for the IND setting, which en-
compasses and extends the scope of previous works. Based
on Proposition 2.4, we can characterize the properties of the
optimal ridge penalty λ∗ defined in (7) as follows.

Theorem 3.1 (Optimal regularization sign for IND risk).
Assume the setup of Proposition 2.4 with (Σ0, β0) = (Σ, β).

1. (Underparameterized) When ϕ < 1, we have λ∗ ≥ 0.
2. (Overparameterized) When ϕ > 1, if for all v <

1/µ(0, ϕ), the following general alignment holds:

tr[BΣ(vΣ+ I)−2] + σ2

tr[BΣ(vΣ+ I)−3] + σ2
>

tr[Σ(vΣ+ I)−2]

tr[Σ(vΣ+ I)−3]
, (8)

where B = ββ⊤, then we have λ∗ < 0.

It is worth mentioning that although we state our results for
general deterministic signals, our analysis can also incorpo-
rate random signals. In such cases, when β is random, one
can simply replace B in the conclusion with its expectation
E[B]. Next, we highlight some special cases of Theorem 3.1
and compare them with previously known results.

When Σ = I or E[B] = (α2/p)I , it is easy to verify that
the general alignment condition (8) does not hold (see Re-
mark D.1). This corresponds to the special cases studied by
Dicker (2016); Dobriban & Wager (2018), where λ∗ ≥ 0.

The general alignment condition (8) in Theorem 3.1 encom-
passes the strict alignment conditions in Wu & Xu (2020);
Richards et al. (2021). Under strict alignment conditions,
Wu & Xu (2020) demonstrate that the optimal ridge penalty
is negative in the overparameterized and noiseless setting.

2Over the extended reals, there is at least one solution to (7).
In case there are multiple solutions λ∗ to the problem (7), the
subsequent guarantees stated in the paper hold for any solution λ∗.
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Figure 1: Illustration of negative or positive optimal regular-
ization under general alignment. We plot the in-distribution risk
of ridge regression against the penalty λ for varying data aspect
ratios ϕ in the overparameterized regime. The left and right panels
correspond to scenarios when SNR is high (σ2 = 0.01) and low
(σ2 = 1), respectively. The data model has a covariance matrix
(Σar1)ij := ρ

|i−j|
ar1 with parameter ρar1 = 0.5, and a coefficient

β := 1
2
(w(1) + w(p)), where w(j) is the jth eigenvector of Σar1.

They assume perfect alignment or misalignment between
the signal distribution and the spectrum distribution of the
covariance. This also includes the strong and weak features
models considered in Richards et al. (2021). When the signal
is strictly aligned with the spectrum of Σ and σ2 = 0, it can
be shown that (8) holds for all µ > 0 (see Proposition D.2).

The general alignment condition (8) allows for a broader
range of signal and covariance structures. For example, in
scenarios where the signal is the average of the largest and
smallest eigenvectors of Σ, the strict alignment condition
does not hold. However, these scenarios can still satisfy the
general alignment conditions, as we will illustrate shortly.

In the noiseless setting, when σ2 = 0, the alignment condi-
tion (8) can be expressed succinctly as:

∂h(µ,Σβ)

∂µ
<
h(µ,Σ)

∂µ
, (9)

by defining the function h(·,Σβ) : µ 7→ log tr[BΣ(Σ +
µI)−2] and Σβ = Σββ⊤. At a high level, these alignment
conditions capture how aligned the signal vector is with the
feature covariance matrix. When the alignment is strong, it
indicates that the problem is effectively low-dimensional. In
such cases, less regularization is needed if the signal energy
in this effective direction is sufficiently large.

In the noisy setting, when σ2 ̸= 0, the condition (8) ex-
plicitly trades off the alignment of the signal and the noise
level. While Wu & Xu (2020, Proposition 5) and Richards
et al. (2021, Corollary 2) provide upper bounds on σ2 for
optimal negative regularization under restricted data models,
(8) applies to a wider class of data models. In this sense,
Theorem 3.1 extends the previous results on the occurrence
of optimal negative regularization to a more general setting.

In Figure 1, we illustrate our theoretical result of Theo-
rem 3.1. When SNR is high, we observe that the optimal
ridge penalty can be negative in the overparameterized
regime. In particular, for ϕ = 10, the negative optimal ridge
penalty exceeds the bound used in Wu & Xu (2020). It is

worth noting that the scenario depicted in Figure 1 does not
satisfy the strict alignment condition, but is incorporated by
our characterization in Theorem 3.1.

3.2. Out-of-Distribution Optimal Regularization

We now investigate the behavior of the optimal ridge
penalty under covariate shift or regression shift. In the
IND setting, when Σ0 = Σ and the signals are isotropic
(ββ⊤ ≃ (α2/p)I), previous works (Dobriban & Wager,
2018; Han & Xu, 2023) show that the optimal ridge penalty
is λ∗ = ϕ/SNR ≥ 0. Interestingly, even when allowing for
negative regularization and covariate shift (Σ0 ̸= Σ), it is
easy to check that the optimal λ remains positive in data
models with isotropic signals for any ϕ ∈ (0,∞).

Proposition 3.2 (Optimal regularization under covariate
shift and random signal). When Σ0 ̸= Σ and β0 = β,
assuming isotropic signals E[ββ⊤] = (α2/p)I , we have
λ∗(ϕ) = ϕ/SNR = argminλ Eβ [R(λ, ϕ)]. Furthermore,
for λmin < 0 such that X⊤X/n ≻ λminI , even the non-
asymptotic OOD risk (3) is minimized at λ∗p = ϕp/SNR,
where ϕp = p/n.

We remark that Proposition 3.2 can also be seen as a result of
a Bayes optimality argument. However, we provide a more
direct argument in Appendix D.3. A result of this flavor
for random features is also obtained by Tripuraneni et al.
(2021, Proposition 6.1). An interesting observation from
Proposition 3.2 is that the optimal ridge penalty does not
depend on Σ0. This implies that when the signal is isotropic,
one does not need to worry about the covariate shift when
tuning the penalty. Therefore, generalized cross-validation
for IND risks (Patil et al., 2021) still yields optimal penalties
even for OOD risks under isotropic signals!

However, it is important to note that this result holds specif-
ically for random isotropic signals, which may not be realis-
tic in practice. In scenarios where (near) random isotropic
signals are not present, the question of data-dependent regu-
larization tuning in the OOD setting is not as straightforward.
We do not consider data-dependent tuning in the current pa-
per and instead focus on the theoretical properties of the
(oracle) optimal regularization (and the corresponding risk).
Recently, Wang (2023) propose a method for data-dependent
tuning of ridge regression under covariate shift by generat-
ing pseudo-labels with an undersmoothed ridge regression
on the training data. While the method has adaptivity guar-
antees in the low-dimensional regime, its consistency in the
proportional asymptotics regime is not clear yet, and is an
interesting direction for future investigation.

Proposition 3.2 suggests that the optimal penalty λ∗ remains
invariant for OOD risks under isotropic signals. Although
random isotropic signals make the theory more tractable,
they generally are not realistic in practice. The following
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Figure 2: Covariate and regression shift can lead to negative
optimal regularization in both underparameterized and over-
parameterized regimes. The plot shows the IND and OOD risks
against λ in the high SNR setting (σ2 = 0.01 and σ2

0 = 0). The left
panel shows the overparameterized regime (ϕ = 1.5) where the
optimal ridge penalty λ∗ is negative under covariate shift, when
Σ = I , Σ0 = Σar1, and β = β0 = 1

2
(w(1) + w(p)). The right

panel shows the underparameterized regime (ϕ = 0.5) where the
optimal ridge penalty λ∗ is negative under regression shift, when
Σ = Σ0 = Σar1, β = 1

2
(w(1) + w(p)), and β0 = 2β.

result examines the optimal ridge penalty under determin-
istic signals, with similar conclusions holding for random
anisotropic signals.

Theorem 3.3 (Optimal regularization under covariate shift
and deterministic signal). Assume the setting of Proposi-
tion 2.4 with Σ0 ̸= Σ, β0 = β.

1. (Underparameterized) When ϕ < 1, we have λ∗ ≥ 0.
2. (Overparameterized) When ϕ > 1, if Σ0 = I (corre-

sponding to the estimation risk), then we have λ∗ ≥ 0.
3. (Overparameterized) When ϕ > 1, if Σ = I and

tr[Σ0B] > tr[Σ0]

(
tr[B] +

(1 + µ(0, ϕ))3

µ(0, ϕ)3
σ2

)
, (10)

where B = ββ⊤, then we have λ∗ < 0.

When ϕ < 1, Part (1) of Theorem 3.3 suggests that the opti-
mal ridge penalty λ∗ remains non-negative even under co-
variate shift. Similarly, when ϕ > 1, Part (2) of Theorem 3.3
(for the estimation risk) also guarantees a non-negative λ∗.
However, it is quite surprising that in the overparameterized
regime, even with deterministic features, the optimal ridge
penalty λ∗ could be negative in Part (3). In particular, in
noiseless setting (σ2 = 0), the condition (10) reduces to the
strict alignment condition on (Σ0, β); see Proposition D.2.

While Theorem 3.3 restricts Σ = I to simplify the condition
when ϕ > 1, we provide the condition with general Σ in
Equation (39). However, taking Σ = I suffices to highlight
this rather surprising sign-reversal phenomenon.

Theorem 3.4 (Optimal regularization under regression shift).
Assume the setup of Proposition 2.4 with Σ0 = Σ, β0 ̸= β.

1. (Underparameterized) When ϕ < 1, if σ2 = o(1) and for
all µ ≥ 0, the following general alignment holds:

tr[B0Σ
2(Σ + µI)−2] > tr[BΣ2(Σ + µI)−2], (11)

Table 2: Optimal ridge penalty for OOD risks on MNIST grad-
ually becomes more negative with increasing distribution shift.
We gradually shift the test distribution by excluding samples with
specific labels. For more details, please refer to Appendix G.1.2.

Excl. labels: ∅ {4} {3, 4} {2, 3, 4} {1, 2, 3, 4}
λ∗ 1.03 0.48 0.00 -0.48 1.44

where B = ββ⊤ and B0 = β0β
⊤, then we have λ∗ < 0.

2. (Overparameterized) When ϕ > 1, if the general align-
ment conditions (8) and (11) hold, then we have λ∗ < 0.

Similarly to Part (3) of Theorem 3.3, Part (1) of Theo-
rem 3.4 is rather surprising. As shown in Table 1, λ∗ is
always positive for the IND setting when ϕ < 1. How-
ever, Theorem 3.4 suggests that λ∗ can be negative, even
for isotropic signals, when there is some alignment or mis-
alignment between β⊤Σ and (β − β0)

⊤Σ. In fact, when
Σ = Σ0 = I and ⟨β, β0⟩ ≥ ∥β∥22, the alignment condition
β⊤Σ2(Σ+µI)−2(β0−β) ≥ 0 in Theorem 3.4 always holds
for all µ > 0. It is worth noting that we assume σ2 = o(1)
in Theorem 3.4 for simplicity, but a more general balance
condition that holds for any σ2 > 0 is provided in (39).

The numerical illustrations in Figure 2 demonstrate the re-
sults of Theorems 3.3 and 3.4. As shown, while the optimal
ridge penalties λ∗ for the IND prediction risks are positive,
the OOD prediction risk can be negative and approach its
lower limit. Similar observations also occur in real-world
MNIST datasets (see Table 2 and Appendix G.1.2 for the
experimental details). This phenomenon arises due to dis-
tribution shift, which effectively aligns β0 and Σ0. In some
cases, it provides a possible explanation for the success of
interpolators in practice, as the optimal ridge penalty λ∗ can
become negative under distribution shift, e.g., with random
features regression (Tripuraneni et al., 2021).

Intuitively, negative regularization may be optimal in certain
cases due to the implicit bias of the overparameterized ridge
estimator, even when λ = 0. When the signal energy is
sufficiently high, it can be beneficial to “subtract” some of
this bias at the expense of increased variance. Negative reg-
ularization effectively reduces this bias and can, therefore,
be the optimal choice. In a broader context, when there is
implicit regularization, such as self-regularization resulting
from the data structure, and we desire the overall regular-
ization to be smaller than this inherent amount, negative
“external” regularization can help counterbalance it.

4. Properties of Optimal Risk
Under the general covariance structure Σ, Theorem 6 in Patil
& Du (2023) shows that optimal ridge regression exhibits
a monotonic risk profile in the IND setting (Σ0 = Σ) and
effectively avoids the phenomena of double and multiple
descents. This observation motivates a broader investigation
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into the monotonic behavior of regularization optimization
in the out-of-distribution setting. In this section, we investi-
gate the monotonicity of the optimal OOD risk and converse
for the suboptimal OOD risk.

4.1. Optimal Risk Monotonicity

To begin with, we examine the case of isotropic signals un-
der covariate shift. A direct consequence of Proposition 3.2
is the monotonicity property of the risk in this scenario.

Proposition 4.1 (Optimal risk under isotropic signals).
When Σ0 ̸= Σ and β = β0, assuming isotropic sig-
nals E[ββ⊤] = (α2/p)I the optimal risk obtained at
λ∗(ϕ) = ϕ/SNR is given by:

Eβ [R(λ∗, ϕ)] = α2µ∗ tr[Σ0(Σ + µ∗I)−1] + σ2
0 , (12)

where µ∗ = µ(λ∗, ϕ). Furthermore, the left side of (12) is
strictly increasing in ϕ if SNR ∈ (0,∞) and σ2

0 are fixed
and strictly increasing in SNR if ϕ, σ2, and σ2

0 are fixed.

Proposition 4.1 shows that the optimal OOD risk is a mono-
tonic function of ϕ and SNR. This is intuitive because one
would expect that having more data (smaller ϕ) or larger
SNR would result in a lower prediction risk. In contrast, the
ridge or ridgeless predictor computed on the full data does
not exhibit this property (Hastie et al., 2022, Figure 2). The
optimal penalty λ∗ is also monotonically increasing in the
data aspect ratio ϕ when SNR is kept fixed.

However, under anisotropic signals, the optimal regulariza-
tion penalty generally depends on the specific OOD risk
being considered. In such cases, it is difficult to obtain an-
alytical formulas for the optimal ridge penalty and the op-
timal risk. Nonetheless, we can still show that the optimal
ODD risk monotonically increases in ϕ and SNR. We for-
malize this in the following result, which generalizes the
aforementioned IND result in Patil & Du (2023, Theorem
6) to the OOD setting, allowing risk optimization over the
possible range of negative regularization (with the lower
limit as given in Definition 2.3).

Theorem 4.2 (Monotonicity of optimally tuned OOD risk).
For λ ≥ λmin(ϕ) where λmin(ϕ) is as in (5), for all ϵ > 0
small enough, the risk of optimal ridge predictor satisfies:

min
λ≥λmin(ϕ)+ϵ

R(β̂λ) ≃ min
λ≥λmin(ϕ)

R(λ, ϕ), (13)

and right side of (13) is monotonically increasing in ϕ
if SNR and σ2

0 are fixed. In addition, when β = β0 it is
monotonically increasing in SNR if ϕ, σ2, and σ2

0 are fixed.

We find the monotonicity of the optimal risk in ϕ remark-
able because it even holds under arbitrary covariate and
regression shift! The monotonicity in SNR under regression
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Figure 3: Ridge regression optimized over λ ≥ ν for different
thresholds ν has monotonic risk profile. We showcase the predic-
tion risk of optimal ridge regression under the same data model as
in Figure 1, with σ2 = 0.01. The left panel shows the heatmap of
the risks R(λ, ϕ) of ridge regression for different ridge penalties
λ and data aspect ratios ϕ. The lines indicate the optimized ridge
risks minλ≥ν R(λ, ϕ) at different thresholds ν. The right panel
shows the optimized risk minλ≥ν R(λ, ϕ) as a function of ϕ.

shift can be similarly analyzed but requires fixing more pa-
rameters. When considering the IND prediction risk, Patil
& Du (2023, Theorem 6) demonstrate that the optimally
tuned ridge over λ ∈ (0,∞) exhibits a monotonic risk pro-
file in the data aspect ratio ϕ. It is somewhat surprising
that optimizing over both (0,∞) and (λmin(ϕ),∞) yields
monotonic behavior, as numerically verified in Figure 3.

We also illustrate the optimal risk monotonicity behav-
ior on MNIST in Figure G12. The minimum risk over
(λmin(ϕ),∞) can be significantly lower than the one over
(0,∞), particularly in the overparameterized regime. Al-
though most software packages only consider positive regu-
larization for tuning, Figure 3 suggests that allowing nega-
tive regularization can lead to significant improvements.

Finally, we consider the converse question: is optimal reg-
ularization necessary for achieving monotonic risk? When
considering the excess IND prediction risk under isotropic
design (i.e., Σ = I), the following theorem demonstrates
that the prediction risk of ridge regression is generally non-
monotonic in the data aspect ratio ϕ ∈ (0,∞).

Theorem 4.3 (Non-monotonicity of suboptimally tuned
risk). When (Σ0, β0) = (Σ, β) and Σ = I , the risk compo-
nent equivalents defined in (6) have the following proper-
ties:

1. (Bias component) For all λ > 0, B(λ, ϕ) is strictly
increasing over ϕ ∈ (0, λ + 1) and strictly decreasing
over ϕ ∈ (λ+ 1,∞).

2. (Variance component) For all λ > 0, V(λ, ϕ) is strictly
increasing over ϕ ∈ (0,∞).

3. (Risk) When ∥β∥22 > 0, for all λ > 0 and ϵ > 0, there
exist σ2, ϕ ∈ (0,∞), such that ∂R(λ, ϕ)/∂ϕ ≤ −ϵ, i.e.,

max
σ2,ϕ∈(0,∞)

min
λ≥λmin(ϕ)

∂R(λ, ϕ)/∂ϕ ≤ −ϵ. (14)

When σ2 is small, Theorem 4.3 implies that the risk at any
fixed λ is non-monotonic, even when Σ = I . It also explains
the lack of risk monotonicity in ridgeless regression. This
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result extends known results on non-monotonic behavior of
variance of ridgeless regression (Yang et al., 2020).

4.2. Connection to Subsampling and Ensembling

We now briefly discuss the connection between subsampling
and ridge regularization (Patil & Du, 2023), used to prove
the OOD risk monotonicity results in Section 4. To incorpo-
rate negative regularization and OOD risks, we extend these
equivalences using tools from LeJeune et al. (2024).

Before presenting the extended equivalence results, we in-
troduce several quantities related to the subsampled ridge en-
sembles. For an index set I ⊆ [n] of size k, let LI ∈ Rn×n
be a diagonal matrix with i-th diagonal 1 if i ∈ I and 0
otherwise. The feature matrix and the response vector as-
sociated with a subsampled dataset {(xi, yi) : i ∈ I} are
LIX and LIy, respectively. Given a ridge penalty λ, let
β̂λk (I) denote the ridge estimator fitted on the subsample
(LIX,LIy), consisting of k samples.

When we aggregate the estimators fitted on all subsampled
datasets of size k, we obtain the so-called full-ensemble
estimators β̂λk,∞, which is almost surely E[β̂λk (I) | X, y],
if we draw I independently from the set of index sets of
size k. As k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and
p/k → ψ ∈ [ϕ,∞], Lemma E.1 implies the OOD risk
equivalence: R(β̂λk,∞) ≃ R(λ, ϕ, ψ) as in (46). When ψ =
ϕ, the equivalent R(λ, ϕ, ϕ) reduces to R(λ, ϕ) defined in
(6) and analyzed in previous sections. We are now ready to
present our main result in this section.

Theorem 4.4 (Optimal ensemble versus ridge regres-
sion under negative regularization). Let R∗∗ :=
minψ≥ϕ,λ≥λmin(ϕ) R(λ, ϕ, ψ). Then the following state-
ments hold:

1. (Underparameterized) When ϕ < 1 and β0 = β, λ∗ ≥ 0,

R∗∗ = min
λ≥0

R(λ, ϕ, ϕ) = min
ψ≥ϕ

R(0;ϕ, ψ).

2. (Overparameterized) When ϕ ≥ 1, λ∗ ≥ λmin(ϕ),

R∗∗ = min
λ≥λmin(ϕ)

R(λ, ϕ, ϕ) = min
ψ≥ϕ

R(λmin(ϕ);ϕ, ψ).

Theorem 4.4 establishes the OOD risk equivalences between
ridge predictors and full-ensemble ridgeless predictors. It
shows that in the underparameterized regime, ridgeless en-
sembles are sufficient to achieve optimal IND risk, which
is also supported by Du et al. (2023) when considering op-
timization over λ ≥ 0. However, in the overparameterized
regime, ridgeless ensembles alone are not enough to achieve
optimal risk over λ ≥ λmin(ϕ). Explicit negative regulariza-
tion is required to obtain the optimal risk. In other words, the
implicit regularization provided by subsampling is always
positive, and under certain data geometries, using λ < 0
can improve predictive performance.
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Figure 4: Negative regularization can help achieve optimal risk
in both underparameterized and overparameterized regimes.
The heatmap illustrates the prediction risks for ridge regression as
a function of the ridge penalty λ and subsample aspect ratio ψ in
the full ensemble. We use the same data model as Figure 3 with
σ2 = 0.01. The left and right panels show the underparameterized
(ϕ = 0.5) and overparameterized regimes (ϕ = 2), respectively.
The red paths represent the optimal risks, while the blue and green
stars indicate the optimal ridge predictor and the optimal full-
ensemble ridge with the largest subsample aspect ratio.

The proof of Theorem 4.4 establishes the risk equivalence
between the ridge predictor and the full-ensemble ridge-
less predictor. As shown in Figure 4, the risk profile of the
full-ensemble ridge predictors demonstrates that negative
regularization can help achieve optimal risk, particularly in
the overparameterized regime when the subsample aspect
ratio ψ is greater than 1.

5. Discussion
This paper investigates the optimal regularization and the
optimal risk of ridge regression in the OOD setting. The
analysis shows the differences between the IND and OOD
settings. However, in both cases, the optimal risk is mono-
tonic in the data aspect ratio. The main takeaway is that
negative regularization can improve predictive performance
in certain data geometries, even more so than the IND set-
ting.

We close the paper by mentioning two future directions. The
scope of this paper is limited to standard ridge regression.
Under proportional asymptotics, similar conclusions are ex-
pected to hold for kernel ridge regression, as the gram matrix
linearizes in the sense of asymptotic equivalence (Liang &
Rakhlin, 2020; Bartlett et al., 2021; Sahraee-Ardakan et al.,
2022; Misiakiewicz & Montanari, 2023). Beyond ridge vari-
ants, it is of interest to perform a similar analysis for the
lasso. Preliminary investigations in the literature suggest
that, similar to optimal ridge regression, the optimal lasso
also exhibits monotonic risk in the overparameterization
ratio (Patil et al., 2022). For a comparative illustration, see
Figures G13 and G14. It is also of interest to understand
the monotonicity properties of the optimal risk for other
convex penalized M-estimators in general (Thrampoulidis
et al., 2018). Empirical investigations indicate that these es-
timators also exhibit monotonic risk in the data aspect ratio
under optimal regularization (Patil & Du, 2023). Making
these observations rigorous is a promising future direction.
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sources used and other relevant information. The file named
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Appendix

This supplement serves as a companion to the paper titled “Optimal Ridge Regularization for Out-of-Distribution Prediction”.
In the first section, we provide an outline of the supplement in Table 3. We also include a summary of the general and
specific notation used in the main paper and the supplement in Tables 4 and 5, respectively. In addition, in Table 6, we
provide an explanation of and pointers to the abbreviations used in the references mentioned in Table 1.

A. Organization and Notation
A.1. Organization

Table 3: Outline of the supplement.

Section Subsection Purpose

Overview of supplement

Appendix A
Appendix A.1 Organization
Appendix A.2 General notation
Appendix A.3 Specific notation
Appendix A.4 Reference key

Further details in Section 1

Appendix B Appendix B.1 Background details on ridge regression with negative regularization

Proofs in Section 2

Appendix C Appendix C.1 Proof of Proposition 2.4 (out-of-distribution risk asymptotics)

Proofs in Section 3

Appendix D

Appendix D.1 Proof of Theorem 3.1 (sign of optimal regularization for IND)
Appendix D.2 Special cases of the general alignment condition in Theorem 3.1
Appendix D.3 Proof of Proposition 3.2 (optimal regularization with isotropic signals)
Appendix D.4 Proof of Theorem 3.3 (sign of optimal regularization with covariate shift)
Appendix D.5 Proof of Theorem 3.4 (sign of optimal regularization with regression shift)
Appendix D.6 Helper lemmas (derivatives of components of risk deterministic approximation)

Proofs in Section 4

Appendix E

Appendix E.1 Proof of Proposition 4.1 (optimal risk under isotropic signals)
Appendix E.2 Proof of Theorem 4.2 (risk monotonicity with optimal regularization)
Appendix E.3 Proof of Theorem 4.3 (risk non-monotonicity with suboptimal regularization)
Appendix E.4 Proof of Theorem 4.4 (optimal subsample versus ridge with negative regularization)
Appendix E.5 Helper lemmas (optimal risk monotonicities, full ensemble OOD risk equivalences)

Some technical lemmas

Appendix F
Appendix F.1 Properties of minimum limiting negative ridge penalty
Appendix F.2 Analytic properties of certain fixed-point solutions under negative regularization
Appendix F.3 Contour of fixed-point solutions under negative regularization

Additional experiments

Appendix G Appendix G.1 Additional illustrations for Section 3
Appendix G.3 Additional illustrations for Section 5
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A.2. General Notation

Table 4: A summary of general notation used in the paper and the supplement.

Notation Description

Fonts

Non-bold lower case Denotes vectors (e.g., a, b, c)
Non-bold upper case Denotes matrices (e.g., A, B, C)
Calligraphic font Denotes sets (e.g., A, B, C)
Script font Denotes certain limiting functions (e.g., A, B, C)

Sets

N Set of natural numbers
(a, b, c) (Ordered) tuple of elements a, b, c
{a, b, c} Set of elements a, b, c
[n] Set {1, . . . , n} for a natural number n
R, R≥0 Set of real and non-negative real numbers
C, C+, C− Set of complex numbers and upper and lower complex half-planes

Operations

tr[A], tr[A], det(A) Trace, average trace (tr[A]/p), and determinant of a square matrix A ∈ Rp×p
B−1 Inverse of an invertible square matrix B ∈ Rp×p
C† Moore-Penrose inverse of a general rectangular matrix C ∈ Rn×p
rank(C), null(C) Rank and nullity of a general rectangular matrix C ∈ Rn×p
D1/2 Principal square root of a positive semidefinite matrix D
f(D) Matrix obtained by applying a function f : R → R to a positive semidefinite matrix D
I , 1, 0 The identity matrix, the all-ones vector, the all-zeros vector

Norms

∥u∥q The ℓq norm of a vector u for q ≥ 1
∥u∥A The induced ℓ2 norm of a vector u with respect to a positive semidefinite matrix A
∥f∥Lq The Lq norm of a function f for q ≥ 1
∥A∥op Operator (or spectral) norm of a real matrix A
∥A∥tr Trace (or nuclear) norm of a real matrix A
∥A∥F Frobenius norm of a real matrix A

Orders

X = Oυ(Y ) |X| ≤ CυY for some constant Cυ that may depend on the ambient parameter υ
X ≲υ Y X ≤ CυY for some constant Cυ that may depend on the ambient parameter υ
u ≤ v Lexicographic ordering for vectors u and v
A ⪯ B Loewner ordering for symmetric matrices A and B

Asymptotics

OP, oP Probabilistic big-O and little-o notation
C ≃ D Asymptotic equivalence of matrices C and D (see Section 2 for more details)
d−→,

p−→, a.s.−−→ Denotes convergence in distribution, probability, and almost sure convergence

Some additional conventions used throughout the supplement:

• If a proof of a statement is separated from the statement, the statement is restated (while keeping the original numbering)
along with the proof for convenience.

• If no subscript is present for the norm ∥u∥ of a vector u, it is assumed to be the ℓ2 norm of u.
• We use C, C ′ to denote positive absolute constants.
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A.3. Specific Notation

Table 5: A summary of specific notation used in the paper and the supplement.

Notation Description

In-distribution

Px, Py|x, Px,y
Distribution of the train features supported on Rp, conditional distribution of the train response
supported on R, and the joint distribution

Σ Covariance matrix in Rp×p of the train feature distribution
rmin (rmax) Minimum (maximum) eigenvalue of the train covariance matrix
σ2, α2 Conditional variance and linearized signal energy of the train response distribution
SNR In-distribution signal-to-noise ratio α2/σ2

β Coefficients of the (population) linear projection of y onto x
{(xi, yi)}ni=1 Train samples of size n in Rp × R sampled i.i.d. from Px,y
X, y Train feature matrix in Rn×p and the corresponding response vector in Rn

β̂λ Ridge estimator fitted on train data (X, y) at regularization level λ
β̂λk (I) Ridge estimator fitted on subsampled data (LIX,LIy) at the regularization level λ
β̂λk,∞ Full-ensemble ridge estimator at regularization level λ

Out-of-distribution

Px0 , Py0|x0
, Px0,y0

Distribution of the test features supported on Rp, conditional distribution of the test response
supported on R, and the joint distribution

(x0, y0) Test sample in Rp × R sampled from Px0,y0 independently of the train data (X, y)
Σ0 Covariance matrix in Rp×p of the test feature distribution
σ2
0 Variance of the conditional test response distribution
β0 Coefficients of the L2 linear projection of y0 onto x0: E[x0x⊤0 ]−1E[x0y0]
R(β̂λ) Squared test prediction risk of ridge estimator at level λ

Risk parameters

ϕ, ψ Limiting data and subsample aspect ratios
λ∗ Optimal ridge penalty
λmin(ϕ), vmin Minimum value of ridge regularization allowed at ϕ and the associated fixed-point parameter
vp(λ, ϕ) A fixed-point parameter
µ(λ, ϕ) Induced amount of implicit regularization at ridge regularization λ and aspect ratio ϕ
ṽp(λ, ϕ; Σ) Function of a fixed-point parameter
R(λ, ϕ), B(λ, ϕ),
V(λ, ϕ), S(λ, ϕ)

Deterministic approximation to the squared risk, the bias, the variance, and the regression shift

κ2 Inflated out-of-distribution irreducible error
Σβ A certain matrix capturing the alignment of feature covariance and signal vector Σββ⊤

R(λ, ϕ, ψ) Deterministic approximation to the risk of the full-ensemble estimator

A.4. Reference Abbreviation Key

Table 6: Links to references mentioned in Table 1.

Abbreviation Reference

HMRT Hastie, Montanari, Rosset, and Tibshirani (2022)
DW Dobriban and Wager (2018)

RMR Richards, Mourtada, and Rosasco (2021)
WX Wu and Xu (2020)
D Dicker (2016)
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B. Further Details in Section 1
B.1. Background Details on Ridge Regression with Negative Regularization

Recall that the ridge regression estimator β̂λ ∈ Rp, based on the training data X, y, is defined as the solution to the following
regularized least squares problem:

minimize
β∈Rp

1

n
∥y −Xβ∥22︸ ︷︷ ︸

L(β)

+λ ∥β∥22︸︷︷︸
R(β)

. (P)

Here, λ is a regularization parameter. For ease of reference in the following, denote the least squares loss by L and ℓ2
regularization by R. This is referred to as the primal form of ridge regression, denoted by (P). One can write a Lagrangian
dual problem of (P) that optimizes weights θ ∈ Rn over the data points as:

minimize
θ∈Rn

θ⊤(XX⊤/n+ λIn)θ/2− λθ⊤y/n. (D)

This is referred to as the dual form of ridge regression, denoted by (D). Let us denote the solution of this problem by θ̂λ. The
estimator β̂ is linked to the dual weights as λβ̂λ = X⊤θ̂λ.

Now, there are three cases depending on whether λ is positive, zero, or negative.

• When λ > 0, regardless of whether n ≥ p or p > n, both problems (P) and (D) are strictly convex and lead to the
following unique ridge estimator (expressed in primal and dual forms, respectively):

β̂λ = (X⊤X/n+ λIp)
−1X⊤y/n = X⊤(XX⊤/n+ λIn)

−1y/n. (15)

• When λ = 0 (more precisely, defined through analytic continuation as λ→ 0+) and X⊤X is full rank (which is the
case when n ≥ p and the design X has independent columns), the optimization problem (P) is still strictly convex and
leads to the following unique solution:

β̂0 = (X⊤X/n)−1X⊤y/n.

• When λ = 0 (again, defined using analytic continuation as λ→ 0+) and XX⊤ is full rank (p > n and the design X
has independent rows), the optimization problem (D) is still strictly convex and leads to the following unique solution:

β̂0 = X⊤(XX⊤/n)−1y/n.

• More generally, when n ≥ p and λ ≥ −smin, where smin is the smallest eigenvalue of X⊤X/n, the optimization
problem (P) is still strictly convex and leads to the primal solution in (15).

• Similarly, when p > n and λ ≥ −smin, where smin is the smallest eigenvalue of XX⊤/n, the dual to the optimization
problem (D) is strictly convex and leads to the dual solution in (15).

By defining the ridge estimator as:

β̂λ = (X⊤X/n+ λIp)
†X⊤y/n = X⊤(XX⊤/n+ λIn)

†y/n,

where A† denotes the Moore-Penrose pseudoinverse of the matrix A, we can handle all the cases mentioned above
simultaneously. To gain intuition, we visually compare the ridge solutions with positive and negative regularization in
Figures B5 and B7 for the under- and over-parameterized regimes, respectively. See (Hua & Gunst, 1983; Björkström &
Sundberg, 1999) also for some related discussion.
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B.1.1. VISUALIZING RIDGE REGRESSION SOLUTIONS FOR POSITIVE VERSUS NEGATIVE REGULARIZATION
(UNDERPARAMETERIZED REGIME)
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Figure B5: Comparing the geometry of ridge solutions for positive versus negative regularization levels λ in the underparameterized
regime when p ≤ n. We consider a two-dimensional underparameterized problem with a design matrix X having the smallest eigenvalue
of X⊤X/n as smin = 4/3 and the largest eigenvalue as smax = 1/3. We plot the contours of the ℓ2 square loss L and the ℓ2 regularizer
R in the problem (P) for both positive and negative values of λ. For positive values of λ ∈ [0,∞], the loss contours touch the constraint
contours from the outside, while for negative values of λ ∈ (−∞,−smax)∪ (−smin, 0), they touch from the inside. To better understand
the trend, it helps to think of “tying” +∞ to −∞ on the real line, making it a “projective real line”. The values of λ are plotted in the
following order: 0.0 → 0.1 → 0.2 → 3.0 → −3.0 → −0.2 → −0.1 → 0.0 .

λ

0.0 +∞−∞
−smax −smin

−3.0 −0.2 −0.1 0.1 0.2 3.0

Figure B6: Illustration of the sequence of ridge regularization levels λ used in Figure B5 and the corresponding real projective line. (Note:
The λ values are not necessarily drawn to scale.)
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B.1.2. VISUALIZING RIDGE REGRESSION SOLUTIONS FOR POSITIVE VERSUS NEGATIVE REGULARIZATION
(OVERPARAMETERIZED REGIME)
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Figure B7: Comparing the geometry of ridge solutions for positive versus negative regularization levels λ in the overparameterized
regime when p > n. We consider a two-dimensional overparameterized problem with the design matrix X having the smallest
non-zero eigenvalue of X⊤X/n equal to s+min = 1. Similarly to Figure B5, we plot contours of the ℓ2 squares loss L and the ℓ2
regularizer R (from problem (P)) for both positive and negative values of λ. As before, note that for positive values of λ, the loss
contours touch the constraint contours from the outside, while for negative values of λ, they touch from the inside. To reiterate, it
helps to think of “tying” ∞ to −∞ on the real line to better understand the trend. The values of λ are plotted in the following order:
0.0 → 0.1 → 0.2 → 3.0 → −3.0 → −0.2 → −0.1 → 0.0 .

λ

0.0 +∞−∞
−smax −s+min

−3.0 −0.2 −0.1 0.1 0.2 3.0

Figure B8: Illustration of the sequence of ridge regularization levels λ used in Figure B7 and the corresponding real projective line. (Note:
Here s+min is the smallest non-zero eigenvalue of X⊤X/n.)
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C. Proofs in Section 2
C.1. Proof of Proposition 2.4

Proposition 2.4 (Deterministic equivalents for OOD risk). Under Assumption 2.2, as n, p→ ∞ such that p/n→ ϕ ∈ (0,∞)

and λ ∈ (λmin(ϕ),∞), the prediction risk R(β̂λ) defined in (3) admits a deterministic equivalent R(β̂λ) ≃ R(λ, ϕ), where
the equivalent additively decomposes into:

R(λ, ϕ) := B(λ, ϕ) +V(λ, ϕ) +S(λ, ϕ) + κ2, (6)

with the following deterministic equivalents for the bias, variance, regression shift bias, and irreducible error:

B = µ2 · β⊤(Σ + µI)−1(ṽΣ+ Σ0)(Σ + µI)−1β,

V = σ2ṽ,

S = 2µ · β⊤(Σ + µI)−1Σ0(β0 − β),

κ2 = (β0 − β)⊤Σ0(β0 − β) + σ2
0 .

Proof. The main workhorse of the proof is Lemma E.1. Recall that

R(β̂λ) = (β̂λ − β0)
⊤Σ0(β̂

λ − β0) + σ2
0

= (β̂λ − β)⊤Σ0(β̂
λ − β) + 2(β̂λ − β)⊤Σ0(β − β0) + {(β0 − β)⊤Σ0(β0 − β) + σ2

0}. (16)

Note that the last quadratic term of (16) is just a constant. From Lemma E.1, we know that the first term of (16) has the
following deterministic equivalent:

(β̂λ − β)⊤Σ0(β̂
λ − β) ≃ Qp(λ, ϕ, ϕ), (17)

where

Qp(λ, ϕ, ψ) = c̃p(λ, ϕ, ψ,Σ0) + ∥fNL∥2L2
ṽp(λ, ϕ, ψ,Σ0),

and the non-negative constants c̃p(λ, ϕ, ψ,Σ0) and ṽp(λ, ϕ, ψ,Σ0) are defined through the following equations:

1

vp(λ, ψ)
= λ+ ψ

∫
r

1 + vp(λ, ψ)r
dHp(r), (18)

ṽp(λ, ϕ, ψ,Σ0) =
ϕ tr[Σ0Σ(vp(λ, ψ)Σ + I)−2]

vp(λ, ψ)
−2 − ϕ

∫
r2

(1 + vp(λ, ψ)r)2
dHp(r)

, (19)

c̃p(λ, ϕ, ψ,Σ0) = β⊤(vp(λ, ψ)Σ + I)−1(ṽp(λ, ϕ, ψ,Σ0)Σ + Σ0)(vp(λ, ψ)Σ + I)−1β.

For the second term of (16), we also have

(β̂λ − β)⊤Σ0(β − β0) = fNL
⊤X

n
(Σ̂ + λI)−1Σ0(β − β0)− β⊤λ(Σ̂ + λI)−1Σ0(β − β0),

where fNL is defined in the proof of Lemma E.1. The first term vanishes from Patil & Du (2023, Lemma D.2) because fNL

and X are uncorrelated, and the remaining part has operator norm tending to zero. It follows that

(β̂λ − β)⊤Σ0(β − β0) ≃ −β⊤(vp(λ, ϕ)Σ + I)−1Σ0(β − β0). (20)

Combining (16), (17), and (20) yields

R(β̂λ) ≃ Rp(λ, ϕ, ϕ)

:= Qp(λ, ϕ, ϕ)− β⊤(vp(λ, ϕ)Σ + I)−1Σ0(β − β0) + {(β0 − β)⊤Σ0(β0 − β) + σ2
0},

which completes the proof.
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D. Proofs in Section 3
Before presenting the proof of our main results, we introduce some notation to facilitate the upcoming presentation. Define

qb(Σ0, B) = µ2 tr[(Σ + µI)−1Σ0(Σ + µI)−1B]/p (21)

qv(Σ0, B) = ϕ tr[(Σ + µI)−1Σ0(Σ + µI)−1B]/p (22)

l(Σ0, B) = tr[(Σ + µI)−1Σ0B]/p. (23)

We denote the derivative with respect to µ by:

q′b(Σ0, B) :=
∂qb(Σ0, B)

∂µ
,

q′v(Σ0, B) :=
∂qv(Σ0, B)

∂µ
.

We also let B = ββ⊤ and B0 = β0β
⊤.

D.1. Proof of Theorem 3.1

Theorem 3.1 (Optimal regularization sign for IND risk). Assume the setup of Proposition 2.4 with (Σ0, β0) = (Σ, β).

1. (Underparameterized) When ϕ < 1, we have λ∗ ≥ 0.
2. (Overparameterized) When ϕ > 1, if for all v < 1/µ(0, ϕ), the following general alignment holds:

tr[BΣ(vΣ+ I)−2] + σ2

tr[BΣ(vΣ+ I)−3] + σ2
>

tr[Σ(vΣ+ I)−2]

tr[Σ(vΣ+ I)−3]
, (8)

where B = ββ⊤, then we have λ∗ < 0.

Proof. When (Σ0, β0) = (Σ, β), the excess bias term S(λ, ϕ) = 0. Therefore, only the bias and variance terms contribute
to the risk. We next split the proof into two cases.

Part (1) Underparameterized regime. When ϕ < 1, from Lemma F.2, µp(0, ϕ) = 0, and thus, we have that

0 = B(0, ϕ) ≤ min
λ∈[λmin(ϕ),0]

B(λ, ϕ). (24)

On the other hand, when ϕ < 1, because V′(λ, ϕ) < 0, the variance is strictly decreasing over λ ∈ (λmin(ϕ), 0). We have

V(0, ϕ) < min
λ∈(λmin(ϕ),0)

V(λ, ϕ) (25)

It follows that

min
λ∈(λmin(ϕ),0]

R(λ, ϕ) ≥ R(0, ϕ)

and

min
λ≥λmin

R(λ, ϕ) = min
λ≥0

R(λ, ϕ).

Equivalently, we have λ∗ ≥ 0.
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Part (2) Overparameterized regime. When ϕ > 1, we begin by deriving the formula of the derivative of the bias term.
When (Σ0, β0) = (Σ, β), the bias term reduces to

B(λ, ϕ) =
qv(Σ,Σ)

1− qv(Σ,Σ)
qb(Σ, B) + qb(Σ, B) =

qb(Σ, B)

1− qv(Σ,Σ)
.

From Lemma D.4, its derivative satisfies that

(1− qv(Σ,Σ))
2B′(λ, ϕ) = (1− qv(Σ,Σ))

2h′2(µ)

= q′b(Σ, B)(1− qv(Σ,Σ)) + qb(Σ, B)q′v(Σ,Σ) (26)

=
λ

µ
q′b(Σ, B) + µq′b(Σ, B)qv(Σ, I) + qb(Σ, B)q′v(Σ,Σ).

where the last equality is from the identity

1− qv(Σ,Σ) =
λ

µ
+ µqv(Σ, I) (27)

The in-distribution excess term vanishes, i.e., E(λ, ϕ) = 0. Therefore, the derivative of the risk with respect to µ satisfies that

(1− qv(Σ,Σ))
2B′(λ, ϕ) (28)

=
λ

µ
q′b(Σ, B) + µq′b(Σ, B)qv(Σ, I) + qb(Σ, B)q′v(Σ,Σ)

=
λ

µ
q′b(Σ, B) + µq′b(Σ, B)qv(Σ, I) + qb(Σ, B)q′v(Σ,Σ)

=
λ

µ

[
µ tr[Σβ(Σ + µI)−2]− µ2 tr[Σβ(Σ + µI)−3]

]
+ 2
[
µ tr[Σβ(Σ + µI)−2]− µ2 tr[Σβ(Σ + µI)−3]

]
· µϕ tr[Σ(Σ + µI)−2]

− 2µ tr[Σβ(Σ + µI)−2] · µϕ tr[Σ2(Σ + µI)−3]

= 2λ
[
tr[Σβ(Σ + µI)−3(Σ + µI)]− µ tr[Σβ(Σ + µI)−3]

]
+ 2
[
µ tr[Σβ(Σ + µI)−2]− µ2 tr[Σβ(Σ + µI)−3]

]
· µϕ tr[Σ(Σ + µI)−2]

− 2µ tr[Σβ(Σ + µI)−2] · µϕ tr[Σ2(Σ + µI)−3]

= 2λ tr[ΣβΣ(Σ + µI)−3]

+ 2µ2ϕ tr[Σβ(Σ + µI)−2] · (tr[Σ(Σ + µI)−2]− tr[Σ(Σ + µI)−3])

− 2µ3ϕ tr[Σβ(Σ + µI)−3] · tr[Σ2(Σ + µI)−2]

= 2λ tr[ΣβΣ(Σ + µI)−3]

+ 2µ3ϕ tr[Σβ(Σ + µI)−2] · tr[Σ(Σ + µI)−3]

− 2µ3ϕ tr[Σβ(Σ + µI)−3] · tr[Σ(Σ + µI)−2]. (29)

When λ = 0, it follows that

B′(λ, ϕ)

=
2µ3ϕ

(1− qv(Σ,Σ))2
(
tr[Σβ(Σ + µI)−2] · tr[Σ(Σ + µI)−3]− tr[Σβ(Σ + µI)−3] · tr[Σ(Σ + µI)−2]

)
,

and

∂B(λ, ϕ)

∂λ

=
2µ3ϕ

(1− qv(Σ,Σ))2
(
tr[Σβ(Σ + µI)−2] · tr[Σ(Σ + µI)−3]− tr[Σβ(Σ + µI)−3] · tr[Σ(Σ + µI)−2]

)
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· ∂µ(λ, ϕ)
∂λ

, (30)

where ∂µ(λ, ϕ)/∂λ > 0 from Lemma F.2.

From Lemma F.2 and (30), since ∂µ(λ, ϕ)/∂λ > 0, we further have that

∂B(λ, ϕ)

∂λ
∝ tr[Σβ(Σ + µI)−2] · tr[Σ(Σ + µI)−3]− tr[Σβ(Σ + µI)−3] · tr[Σ(Σ + µI)−2],

which finishes the proof of the first conclusion.

To obtain the sign of the optimal ridge penalty, note that

(1− qv(Σ,Σ))
2B′(λ, ϕ)

= 2λ tr[ΣβΣ(Σ + µI)−3]

+ 2µ3ϕ(tr[Σβ(Σ + µI)−2] · tr[Σ(Σ + µI)−3]− tr[Σβ(Σ + µI)−3] · tr[Σ(Σ + µI)−2])

= T1 + T2.

When ϕ > 1, because µ ≥ 0, we have that T1 < 0 when λ < 0 and T1 > 0 when λ > 0. Also, under the assumption that
tr[Σβ(Σ+µI)−2] · tr[Σ(Σ+µI)−3]− tr[Σβ(Σ+µI)−3] · tr[Σ(Σ+µI)−2] > 0, we have that T2 > 0 for all λ > λmin(ϕ),
with equality holds only when λ = 0. Thus, B(λ, ϕ) is minimized at λ < 0.

For the variance term, from Lemma D.4, we have

V′(λ, ϕ) =
σ2q′v(Σ,Σ)

(1− qv(Σ,Σ))2

= −2σ2ϕ tr[Σ
2(Σ + µI)−3]

(1− qv(Σ,Σ))2

= 2ϕσ2µ tr[Σ(Σ + µI)−3]− tr[Σ(Σ + µI)−2]

(1− qv(Σ,Σ))2

:=
T3 + T4

(1− qv(Σ,Σ))2

=
−2σ2ϕ tr[Σ2(Σ + µI)−3]

(1− qv(Σ,Σ))2
. (31)

Note that −2σ2ϕ tr[Σ2(Σ + µI)−3] < 0 and strictly increasing over λ ≥ 0. Thus,

(1− qv(Σ,Σ))
2R′(λ, ϕ)

= (1− qv(Σ,Σ))
2[B′(λ, ϕ) +V′(λ, ϕ)]

= 2λ tr[ΣβΣ(Σ + µI)−3]

+ 2µ3ϕ
(
tr[Σβ(Σ + µI)−2] · tr[Σ(Σ + µI)−3]− tr[Σβ(Σ + µI)−3] · tr[Σ(Σ + µI)−2]

)
+ 2ϕσ2

(
µ tr[Σ(Σ + µI)−3]− tr[Σ(Σ + µI)−2]

)
= 2λ tr[ΣβΣ(Σ + µI)−3]

+ 2ϕ
(
µ3 tr[Σβ(Σ + µI)−2] + µσ2

)
· tr[Σ(Σ + µI)−3]− 2ϕ

(
µ3 tr[Σβ(Σ + µI)−3] + σ2

)
· tr[Σ(Σ + µI)−2].

Under the condition that

tr[Σ{µ3(Σ + µI)−3}]
tr[Σ{µ2(Σ + µI)−2}]

>
tr[Σβ{µ3(Σ + µI)−3}] + σ2

tr[Σβ{µ2(Σ + µI)−2}] + σ2
,

it follows that for all λ ≥ 0,

(1− qv(Σ,Σ))
2R′(λ, ϕ) > 0.

This implies that R(λ, ϕ) is minimized at λ < 0, which finishes the proof.
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D.2. General Alignment Condition of Theorem 3.1 under Special Cases

Remark D.1 (Theorem 3.1 under isotropic features or signals). When ϕ > 1 and Σ = I , the condition above is never
satisfied because

tr[Σβ{µ3(Σ + µI)−3}] + σ2

tr[Σβ{µ2(Σ + µI)−2}] + σ2
=

(
µ

1+µ

)3
tr[B] + σ2(

µ
1+µ

)2
tr[B] + σ2

>

(
µ

1+µ

)3
(

µ
1+µ

)2 =
tr[Σ{µ3(Σ + µI)−3}]
tr[Σ{µ2(Σ + µI)−2}]

.

Similarly, when β is isotropic, the condition above is never satisfied because

tr[Σβ{µ3(Σ + µI)−3}] + σ2

tr[Σβ{µ2(Σ + µI)−2}] + σ2
=

tr[Σ{µ3(Σ + µI)−3}] + σ2

tr[Σ{µ2(Σ + µI)−2}] + σ2
>

tr[Σ{µ3(Σ + µI)−3}]
tr[Σ{µ2(Σ + µI)−2}]

since tr[Σ{µ3(Σ + µI)−3}] < tr[Σ{µ2(Σ + µI)−2}]. To see this, note that µ > 0 when ϕ > 1, from Lemma F.2. Thus,

tr[Σ{µ3(Σ + µI)−3}] = tr[Σ{µ2(Σ + µI)−2}{µ(Σ + µI)−1}]
≤ tr[Σ{µ2(Σ + µI)−2}] · ∥µ(Σ + µI)−1∥op
≤ tr[Σ{µ2(Σ + µI)−2}].

Proposition D.2 (Theorem 3.1 under strict alignment conditions). Assuming random signals, zero noise under the strict
alignment conditions of Wu & Xu (2020), the general alignment condition (8) is satisfied.

Proof. Let h be a random variable following the empirical measure of the eigenvalues of Σ = UΛU (i.e., Hp) and g be
a random variable following the empirical measure diag(UE[β⊤β]U). When the joint distribution of (h, g) exists, there
exists a function f such that g has mass r 7→ f(r) dHp(r). The strict alignment condition from Wu & Xu (2020) imposes f
to be either strictly increasing or decreasing. This also implies that

tr[Σβ ] = tr[ΣB] ≥ tr[Σ] tr[B]. (32)

This holds because of the following Chebyshev’s “other” inequality (Fink & Jodeit Jr., 1984).3

Fact D.3 (Positive/negative correlations of monotone functions; see, e.g., Appendix 9.9 of Ross (2022)). Let f and g be
two real-valued functions of the same monotonicity. Let H be a probability measure on the real line. Then the following
inequality holds: ∫

f(r)g(r) dH(r) ≥
∫
f(r) dH(r) ·

∫
g(r) dH(r). (33)

On the other hand, if f is non-decreasing and g is non-increasing, then the inequality in (33) is reversed.

Now we will verify that this condition indeed implies (8) when σ2 = 0. Define f(r) =
∑p
i=1(β

⊤wi)
2 1{r = ri}. Hp(r) =

p−1
∑p
i=1 1{r = ri} and the transformed measure H̃p(r) = r(r + µ)−2p−1

∑p
i=1 1{r = ri}/

∫
r(r + µ)−2 dHp(r).

Because f(r) is increasing and 1/(r + µ) is decreasing in r, it follows that∫
f(r)

r

r + µ
dH̃p(r) ≤

∫
f(r) dH̃p(r)

∫
r

r + µ
dH̃p(r).

Transforming back to Hp(r) yields that∫
f(r)

r

(r + µ)3
dHp(r) ·

∫
r

(r + µ)2
dHp(r) ≤

∫
f(r)

r

(r + µ)2
dHp(r) ·

∫
r

(r + µ)3
dHp(r).

Equivalently,
tr[Σβ{µ2(Σ + µI)−2}]
tr[Σβ{µ3(Σ + µI)−3}]

≥ tr[Σ{µ2(Σ + µI)−2}]
tr[Σ{µ3(Σ + µI)−3}]

,

with equality holds if and only if f(r) is Hp-almost surely constant. This finishes the proof.

3This is the second (less well-known) inequality, and not the first (more well-known) tail inequality that may come to the reader’s
mind!
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D.3. Proof of Proposition 3.2

Proposition 3.2 (Optimal regularization under covariate shift and random signal). When Σ0 ̸= Σ and β0 = β, assuming
isotropic signals E[ββ⊤] = (α2/p)I , we have λ∗(ϕ) = ϕ/SNR = argminλ Eβ [R(λ, ϕ)]. Furthermore, for λmin < 0 such
that X⊤X/n ≻ λminI , even the non-asymptotic OOD risk (3) is minimized at λ∗p = ϕp/SNR, where ϕp = p/n.

Proof. With slight abuse of notations, we use R, B, V, and S to denote Eβ [R], Eβ [B], Eβ [V], and Eβ [S] as well. We
split the proof into two parts.

Part (1) Asymptotic risk. When β0 = β, the extra bias term is zero, that is, S(λ, ϕ) = 0. So, only the bias and variance
components contribute to the risk.

We begin by deriving the formula for the derivative of the bias. For isotropic signals, from Lemma D.4 and (27), we have

(1− qv(Σ,Σ))
2B′(λ, ϕ)

= α2[q′v(Σ0,Σ)qb(Σ, I)(1− qv(Σ,Σ))

+ qv(Σ0,Σ)q
′
b(Σ, I)(1− qv(Σ,Σ)) + qv(Σ0,Σ)qb(Σ, I)q

′
v(Σ,Σ)

+ q′b(Σ0, I)(1− qv(Σ,Σ))
2]

= α2

[
q′v(Σ0,Σ)qb(Σ, I)

(
λ

µ
+ µqv(Σ, I)

)
+ qv(Σ0,Σ)q

′
b(Σ, I)

(
λ

µ
+ µqv(Σ, I)

)
+ qv(Σ0,Σ)qb(Σ, I)q

′
v(Σ,Σ)

+ q′b(Σ0, I)

(
λ

µ
+ µqv(Σ, I)

)2 ]
=
α2λ

µ

(
q′v(Σ0,Σ)qb(Σ, I) + qv(Σ0,Σ)q

′
b(Σ, I) +

λ

µ
q′b(Σ0, I) + 2µq′b(Σ0, I)qv(Σ, I)

)
+ α2

[
µq′v(Σ0,Σ)qb(Σ, I)qv(Σ, I)

+ µqv(Σ0,Σ)q
′
b(Σ, I)qv(Σ, I) + qv(Σ0,Σ)qb(Σ, I)q

′
v(Σ,Σ)

+ µ2q′b(Σ0, I)qv(Σ, I)
2
]
.

Notice that

qb(Σ0, I) = µ2 tr[Σ0(Σ + µI)−2]

=
µ2

ϕ
qv(Σ0, I)

q′b(Σ0, I) = 2µ tr[Σ0(Σ + µI)−2]− 2µ2 tr[Σ0(Σ + µI)−3]

= 2µ tr[Σ0Σ(Σ + µI)−3]

= −µ
ϕ
q′v(Σ0,Σ),

thus, it follows that

q′v(Σ0,Σ)qb(Σ, I) + µq′b(Σ0, I)qv(Σ, I) = q′v(Σ0,Σ)

[
qb(Σ, I)−

µ2

ϕ
qv(Σ, I)

]
= 0

µq′b(Σ, I)qv(Σ, I) + qb(Σ, I)q
′
v(Σ,Σ) =

µ2

ϕ
[−q′v(Σ,Σ)qv(Σ, I) + q′v(Σ,Σ)qv(Σ, I)] = 0.

Therefore, we have

(1− qv(Σ,Σ))
2B′(λ, ϕ)

24



Optimal Ridge Regularization for Out-of-Distribution Prediction

=
α2λ

µ

(
qv(Σ0,Σ)q

′
b(Σ, I) +

λ

µ
q′b(Σ0, I) + µq′b(Σ0, I)qv(Σ, I)

)
= −α

2λ

ϕ
qv(Σ0,Σ)q

′
v(Σ,Σ)−

α2λ2

µϕ
q′v(Σ0,Σ)−

α2λµ

ϕ
q′v(Σ0,Σ)qv(Σ, I)

= −α
2λ

ϕ
[qv(Σ0,Σ)q

′
v(Σ,Σ) + µq′v(Σ0,Σ)qv(Σ, I)]−

α2λ2

µϕ
q′v(Σ0,Σ).

From (27), we further have that

B′(λ, ϕ) = − α2λ

ϕ(1− qv(Σ,Σ))2
[qv(Σ0,Σ)q

′
v(Σ,Σ)− q′v(Σ0,Σ)qv(Σ,Σ) + q′v(Σ0,Σ)]

= −α
2λ

ϕ

∂

∂µ

qv(Σ0,Σ)

1− qv(Σ,Σ)
.

From Lemma D.4, we know that
∂

∂µ

qv(Σ0,Σ)

1− qv(Σ,Σ)
< 0

for all λ ∈ (−λmin(ϕ),+∞). Furthermore, we have

R′(λ, ϕ) = B′(λ, ϕ) +V′(λ, ϕ)

= −α
2λ

ϕ

∂

∂µ

qv(Σ0,Σ)

1− qv(Σ,Σ)
+ σ2 ∂

∂µ

qv(Σ0,Σ)

1− qv(Σ,Σ)
.

Setting the above to zero gives λ∗ = ϕσ2/α2. Also note that R′(λ, ϕ) is negative when λ < λ∗ and positive when λ > λ∗,
as well as ∂µ/∂λ > 0 from Lemma F.2 for all λ ≥ λmin(ϕ). Thus, λ∗ gives the optimal risk.

Part (2) Finite-sample risk. Recall the finite-sample risk is given by (3). Under Assumption 2.2 and isotropic signals, it
follows that

R(β̂λ) = λ2α2 tr[(Σ̂ + λI)−2Σ0] + σ2ϕ tr[(Σ̂ + λI)−2Σ̂Σ0].

Taking the derivative with respect to λ yields that

∂R(β̂λ)

∂λ
= 2λα2 tr[(Σ̂ + λI)−2Σ0]− 2λ2α2 tr[(Σ̂ + λI)−3Σ0]− 2σ2ϕ tr[(Σ̂ + λI)−3Σ̂Σ0]

= 2λα2 tr[(Σ̂ + λI)−3Σ̂Σ0]− 2σ2ϕ tr[(Σ̂ + λI)−3Σ̂Σ0]

= 2(λα2 − σ2ϕ) tr[(Σ̂ + λI)−2Σ̂Σ0].

Setting the above to zero gives λ∗p = ϕn/SNR.

D.4. Proof of Theorem 3.3

Theorem 3.3 (Optimal regularization under covariate shift and deterministic signal). Assume the setting of Proposition 2.4
with Σ0 ̸= Σ, β0 = β.

1. (Underparameterized) When ϕ < 1, we have λ∗ ≥ 0.
2. (Overparameterized) When ϕ > 1, if Σ0 = I (corresponding to the estimation risk), then we have λ∗ ≥ 0.
3. (Overparameterized) When ϕ > 1, if Σ = I and

tr[Σ0B] > tr[Σ0]

(
tr[B] +

(1 + µ(0, ϕ))3

µ(0, ϕ)3
σ2

)
, (10)

where B = ββ⊤, then we have λ∗ < 0.

Proof. When β0 = β, the extra bias term is zero, that is, S(λ, ϕ) = 0. So, only bias and variance contribute to the risk. We
next split the proof into two cases.
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Part (1) Underparameterized regime. When ϕ < 1, from Lemma F.3 we have µ(0, ϕ) = 0 and the bias defined in
Proposition 2.4 becomes zero, i.e., B(0, ϕ) = 0. From the fixed-point equation (53), we also have limλ→0+ λ/µ(λ, ϕ) = 0.
From Lemma D.4 and (27), we have

(1− qv(Σ,Σ))
2B′(λ, ϕ)

= q′v(Σ0,Σ)qb(Σ, B)(1− qv(Σ,Σ))

+ qv(Σ0,Σ)q
′
b(Σ, B)(1− qv(Σ,Σ)) + qv(Σ0,Σ)qb(Σ, B)q′v(Σ,Σ)

+ q′b(Σ0, B)(1− qv(Σ,Σ))
2

= q′v(Σ0,Σ)qb(Σ, B)

(
λ

µ
+ µqv(Σ, I)

)
+ qv(Σ0,Σ)q

′
b(Σ, B)

(
λ

µ
+ µqv(Σ, I)

)
+ qv(Σ0,Σ)qb(Σ, B)q′v(Σ,Σ)

+ q′b(Σ0, B)

(
λ

µ
+ µqv(Σ, I)

)2

=
λ

µ

(
q′v(Σ0,Σ)qb(Σ, B) + qv(Σ0,Σ)q

′
b(Σ, B) +

λ

µ
q′b(Σ0, B) + 2µq′b(Σ0, B)qv(Σ, I)

)
+
[
µq′v(Σ0,Σ)qb(Σ, B)qv(Σ, I)

+ µqv(Σ0,Σ)q
′
b(Σ, B)qv(Σ, I) + qv(Σ0,Σ)qb(Σ, B)q′v(Σ,Σ)

+ µ2q′b(Σ0, B)qv(Σ, I)
2
]
.

Thus, the derivative of the bias term becomes zero, i.e., B′(0, ϕ) = 0. Note that the variance term is strictly decreasing over
(λmin(ϕ),+∞) from Lemma D.4. Similarly to part (1) of the proof of Theorem 3.1, it follows that λ∗ ≥ 0.

Part (2) Overparameterized regime and Σ = I . When Σ = I , the above derivative in Part (1) becomes

(1− qv(I, I))
2B′(λ, ϕ)

=
λ

µ

(
q′v(Σ0, I)qb(I,B) + qv(Σ0, I)q

′
b(I,B) +

λ

µ
q′b(Σ0, B) + 2µq′b(Σ0, B)qv(I, I)

)
+
[
µq′v(Σ0, I)qb(I,B)qv(I, I)

+ µqv(Σ0, I)q
′
b(I,B)qv(I, I) + qv(Σ0, I)qb(I,B)q′v(I, I)

+ µ2q′b(Σ0, B)qv(I, I)
2
]
.

Note from (21) and (22), we have that

qb(Σ0, B) =
µ2

(1 + µ)2
tr[Σ0B]

q′b(Σ0, B) =

(
− 2µ2

(1 + µ)3
+

2µ

(1 + µ)2

)
tr[Σ0B] =

2µ

(1 + µ)3
tr[Σ0B] =

2

µ(1 + µ)
qb(Σ0, B),

qv(I, I) =
ϕ

(1 + µ)2

q′v(I, I) = − 2ϕ

(1 + µ)3
= − 2

1 + µ
qv(I, I)

qv(Σ0, I) =
ϕ

(1 + µ)2
tr[Σ0]

q′v(Σ0, I) = − 2ϕ

(1 + µ)3
tr[Σ0] = − 2

1 + µ
qv(Σ0, I).

We further have

(1− qv(I, I))
2B′(λ, ϕ)
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=
λ

µ

(
− 2

1 + µ
qv(Σ0, I)qb(I,B) +

2

µ(1 + µ)
qv(Σ0, I)qb(I,B) +

2λ

µ2(1 + µ)
qb(Σ0, B) +

4

1 + µ
qb(Σ0, B)qv(I, I)

)
+ [− 2µ

1 + µ
qv(Σ0, I)qb(I,B)qv(I, I)

+
2

1 + µ
qv(Σ0, I)qb(I,B)qv(I, I)−

2

1 + µ
qv(Σ0, I)qb(I,B)qv(I, I)

+
2µ

1 + µ
qb(Σ0, B)qv(I, I)

2]

=
λ

µ

(
2ϕµ(1− µ)

(1 + µ)5
tr[Σ0] tr[B] +

2λ

(1 + µ)3
tr[Σ0B] +

4ϕµ2

(1 + µ)5
tr[Σ0B]

)
− 2µ

1 + µ
qv(Σ0, I)qb(I,B)qv(I, I)

+
2µ

1 + µ
qb(Σ0, B)qv(I, I)

2

=
λ

µ

(
2ϕµ(1− µ)

(1 + µ)5
tr[Σ0] tr[B] +

2λ

(1 + µ)3
tr[Σ0B] +

4ϕµ2

(1 + µ)5
tr[Σ0B]

)
+

2ϕ2µ3

(1 + µ)7
(tr[Σ0B]− tr[Σ0] tr[B])

=
λ

µ

(
2ϕµ(1− µ)

(1 + µ)5
tr[Σ0] tr[B] +

2[µ(1 + µ)2 − ϕµ(1− µ)]

(1 + µ)5
tr[Σ0B]

)
+

2ϕ2µ3

(1 + µ)7
(tr[Σ0B]− tr[Σ0] tr[B])

=
λ

µ

(
2ϕµ(1− µ)

(1 + µ)5
(tr[Σ0] tr[B]− tr[Σ0B]) +

2µ

(1 + µ)3
tr[Σ0B]

)
+

2ϕ2µ3

(1 + µ)7
(tr[Σ0B]− tr[Σ0] tr[B]).

For the variance term, from Lemma D.4, we have

(1− qv(I, I))
2V′(λ, ϕ) = σ2[q′v(Σ0, I)(1− qv(I, I)) + qv(Σ0, I)q

′
v(I, I)]

= σ2

[
q′v(Σ0, I)

(
λ

µ
+ µqv(I, I)

)
+ qv(Σ0, I)q

′
v(I, I)

]
= −σ2 2λ

µ(1 + µ)
qv(Σ0, I)− σ2 2

1 + µ
[µqv(Σ0, I)qv(I, I) + qv(Σ0, I)qv(I, I)]

= −σ2 2λϕ

µ(1 + µ)3
tr[Σ0]− σ2 2ϕ2

(1 + µ)4
tr[Σ0].

From the fixed-point equation (53) we have µ(1 + µ)− ϕµ = λ(1 + µ) and thus,

(1− qv(I, I))
2V′(λ, ϕ) = −σ2 2ϕ(µ(1 + µ)− ϕµ)

µ(1 + µ)4
tr[Σ0]− σ2 2ϕ2

(1 + µ)4
tr[Σ0]

= −σ2 2ϕ

(1 + µ)3
tr[Σ0],

which is strictly increasing in λ ≥ 0.

Then we have

(1− qv(I, I))
2R′(λ, ϕ) = (1− qv(Σ,Σ))

2[B′(λ, ϕ) +V′(λ, ϕ)]

≥ (1− qv(Σ,Σ))
2|λ=0[B

′(0;ϕ) +V′(0;ϕ)]

= 2λ

(
ϕ(1− µ)

(1 + µ)5
(tr[Σ0] tr[B]− tr[Σ0B]) +

1

(1 + µ)3
tr[Σ0B]

)
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+
2ϕ2µ3

(1 + µ)7
(tr[Σ0B]− tr[Σ0] tr[B])− σ2 2ϕ

(1 + µ)3
tr[Σ0]

=
2λϕ

(1 + µ)5

(
(1 + µ)2 − ϕ

ϕ
tr[Σ0B] + tr[Σ0] tr[B]

)
(34)

+

(
2λϕµ

(1 + µ)5
− 2λϕµ2

(1 + µ)6

)(
tr[Σ0B]− tr[Σ0] tr[B]

)
(35)

+
2ϕµ3

(1 + µ)6

(
tr[Σ0B]− tr[Σ0]

(
tr[B] +

(1 + µ)3

µ3
σ2

))
. (36)

Note that when ϕ > 1, µ(λ, ϕ) > 0 from Lemma F.2. Under the alignment condition, we have

tr[Σ0B] > tr[Σ0]

(
tr[B] +

(1 + µ(0, ϕ))3

µ(0, ϕ)3
σ2

)
≥ tr[Σ0] tr[B].

Thus, for λ ≥ 0, the second term (35) is non-negative, and the third term (36) is strictly positive. When λ ≥ 0, from the
fixed-point equation (53) we have ϕ = (1 + µ)− λ(1 + µ)/µ ≤ 1 + µ and (1 + µ)2 − ϕ ≥ ϕ(1 + µ)− ϕ = ϕµ. Then, we
know that the first term (34) is non-negative. Therefore, it follows that for all λ ≥ 0,

(1− qv(Σ,Σ))
2R′(λ, ϕ) > 0.

This implies that R(λ, ϕ) is minimized at λ < 0.

Part (3) Overparameterized regime and Σ0 = I . When Σ0 = I , the above derivative in Part (1) becomes

(1− qv(Σ,Σ))
2B′(λ, ϕ)

=
λ

µ

(
q′v(I,Σ)qb(Σ, B) + qv(I,Σ)q

′
b(Σ, B) +

λ

µ
q′b(I,B) + 2µq′b(I,B)qv(Σ, I)

)
+ [µq′v(I,Σ)qb(Σ, B)qv(Σ, I) + µqv(I,Σ)q

′
b(Σ, B)qv(Σ, I) (37)

+ qv(I,Σ)qb(Σ, B)q′v(Σ,Σ) + µ2q′b(I,B)qv(Σ, I)
2] (38)

Recalling the definitions of qb(·, ·) and qv(·, ·) from (21) and (22), observe that

qb(I,B) = µ2 tr[(Σ + µI)−2B]

q′b(I,B) = 2µ tr[(Σ + µI)−2B]− 2µ2 tr[(Σ + µI)−3B] =
2

µ
qb(I,B)− 2µ2 tr[(Σ + µI)−3B]

= 2µ tr[(Σ + µI)−3ΣB],

qv(I,Σ) = ϕ tr[(Σ + µI)−2Σ]

q′v(I,Σ) = −2ϕ tr[(Σ + µI)−3Σ].

Next, we work on terms (37) and (38) that do not involve a factor of λ/µ.

µq′v(I,Σ)qb(Σ, B)qv(Σ, I)

+ µqv(I,Σ)q
′
b(Σ, B)qv(Σ, I) + qv(I,Σ)qb(Σ, B)q′v(Σ,Σ)

+ µ2q′b(I,B)qv(Σ, I)
2

= −2µϕ tr[(Σ + µI)−3Σ]qb(Σ, B)qv(Σ, I)

+ µ

(
2

µ
qb(Σ, B)− 2µ2 tr[(Σ + µI)−3ΣB]

)
qv(I,Σ)qv(Σ, I)

− 2ϕ tr[(Σ + µI)−3Σ2]qv(I,Σ)qb(Σ, B)

+ µ2

(
2

µ
qb(I,B)− 2µ2 tr[(Σ + µI)−3B]

)
qv(Σ, I)

2
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= 2µϕ

(
− tr[(Σ + µI)−3Σ] +

1

µ
tr[(Σ + µI)−2Σ]− tr[(Σ + µI)−3Σ2]

)
qb(Σ, B)qv(Σ,Σ)

+ 2µ2

(
1

µ
qb(I,B)− µ2 tr[(Σ + µI)−3B]− µ tr[(Σ + µI)−3ΣB]

)
qv(Σ, I)

2

= 0.

This implies that B′(0, ϕ) = 0 and

(1− qv(Σ,Σ))
2B′(λ, ϕ)

=
λ

µ
(q′v(I,Σ)qb(Σ, B) + qv(I,Σ)q

′
b(Σ, B) + 2µq′b(I,B)qv(Σ, I)) +

λ2

µ2
q′b(I,B)

=
λ

µ
(q′v(I,Σ)qb(Σ, B) + qv(I,Σ)q

′
b(Σ, B) + 2µq′b(I,B)qv(Σ, I)) +

λ2

µ2
q′b(I,B)

=
λ

µ

(
2

µ

(
−µϕ tr[(Σ + µI)−3Σ] + qv(Σ, I)

)
qb(Σ, B)− 2µ2 tr[(Σ + µI)−3ΣB]qv(Σ, I)

+ 4µ2 tr[(Σ + µI)−3ΣB]qv(Σ, I)

)
+
λ2

µ2
q′b(I,B)

=
λ

µ

(
2

µ
ϕ tr[(Σ + µI)−3Σ2]qb(Σ, B) + 2µ2 tr[(Σ + µI)−3ΣB]qv(Σ, I)

)
+
λ2

µ2
q′b(I,B)

= 2ϕλ
(
tr[(Σ + µI)−3Σ2] tr[(Σ + µI)−2ΣB] + µ tr[(Σ + µI)−3ΣB] tr[(Σ + µI)−2Σ]

)
+ 2λ

(
1− ϕ tr[(Σ + µI)−1Σ]

)
tr[(Σ + µI)−3ΣB]

= 2ϕλ
(
tr[(Σ + µI)−3Σ2] tr[(Σ + µI)−2ΣB]− tr[(Σ + µI)−3ΣB] tr[(Σ + µI)−2Σ2]

)
+ 2λ tr[(Σ + µI)−3ΣB]

= 2ϕλ tr[(Σ + µI)−3Σ2] tr[(Σ + µI)−2ΣB]

+ 2λ tr[(Σ + µI)−3ΣB](1− ϕ tr[(Σ + µI)−2Σ2]).

From Lemma F.3 (3), we know that 1− ϕ tr[(Σ + µI)−2Σ2] ≥ 0. When ϕ > 1, it then follows that B′ is strictly negative
for all λ ∈ [λmin(ϕ), 0) and strictly positive for all λ > 0 because µ(λ, ϕ) > 0.

For the variance term, from Lemma D.4, we have

(1− qv(Σ,Σ))
2V′(λ, ϕ)

= σ2[q′v(I,Σ)(1− qv(Σ,Σ)) + qv(I,Σ)q
′
v(Σ,Σ)]

= σ2

[
q′v(I,Σ)

(
λ

µ
+ µqv(Σ, I)

)
+ qv(I,Σ)q

′
v(Σ,Σ)

]
= −2ϕσ2

[
tr[(Σ + µI)−3Σ]

(
λ

µ
+ µqv(Σ, I)

)
+ tr[(Σ + µI)−3Σ2]qv(I,Σ)

]
= −2ϕσ2

[
λ

µ
tr[(Σ + µI)−3Σ] + tr[(Σ + µI)−2Σ]qv(Σ, I)

]
= −2ϕσ2

[(
1− ϕ tr[(Σ + µI)−1Σ]

)
tr[(Σ + µI)−3Σ] + tr[(Σ + µI)−2Σ]qv(Σ, I)

]
= −2ϕσ2

[
tr[(Σ + µI)−3Σ] + ϕ(tr[(Σ + µI)−2Σ]2 − tr[(Σ + µI)−1Σ] tr[(Σ + µI)−3Σ])

]
,

which is strictly negative for all λ ≥ λmin(ϕ).

Combining the above two derivatives, we conclude that λ∗ > 0 in this case.

D.5. Proof of Theorem 3.4

Theorem 3.4 (Optimal regularization under regression shift). Assume the setup of Proposition 2.4 with Σ0 = Σ, β0 ̸= β.
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1. (Underparameterized) When ϕ < 1, if σ2 = o(1) and for all µ ≥ 0, the following general alignment holds:

tr[B0Σ
2(Σ + µI)−2] > tr[BΣ2(Σ + µI)−2], (11)

where B = ββ⊤ and B0 = β0β
⊤, then we have λ∗ < 0.

2. (Overparameterized) When ϕ > 1, if the general alignment conditions (8) and (11) hold, then we have λ∗ < 0.

Proof. We split the proof into two parts.

Part (1) Underparameterized regime. From the proof of Theorem 3.1, we know that when Σ0 = Σ, the bias term
satisfies that

min
λ∈[λmin(ϕ),0]

B(λ, ϕ) ≥ B(0, ϕ) = 0,

from (24). From Lemma D.4, the excess bias term has the following derivative:

S′(λ, ϕ) = −2β⊤Σ(Σ + µI)−2Σ(β0 − β) = −2β⊤Σ(Σ + µI)−2Σ(β − β0),

which is zero when λ = 0 because µ(0, ϕ) = 0 when ϕ < 1, from Lemma F.2. Under the condition that β⊤Σ(Σ +
µI)−2Σ(β − β0) < 0 for all µ ≥ 0, we have that S(λ, ϕ) is strictly increasing in λ ≥ 0.

From (31), we have

V′(λ, ϕ) =
−2σ2ϕ tr[Σ2(Σ + µI)−3]

(1− qv(Σ,Σ))2
.

Also, since B ≥ 0 with equality holds if λ = 0. Then we have, if

S′(λ, ϕ) +V′(λ, ϕ) = −2β⊤Σ(Σ + µI)−2Σ(β − β0) +
−2σ2ϕ tr[Σ2(Σ + µI)−3]

(1− qv(Σ,Σ))2
> 0 (39)

for all µ ≥ µ(0, ϕ), then λ∗ < 0. Note that when λ → +∞, µ → +∞ and the denominator of the second term tends to
one, so we have V′(λ, ϕ) ≍ µ−3. On the other hand, the first term scales as S′(λ, ϕ) ≍ µ−2. Eventually, the first term
dominates. Thus, the condition (39) could hold when S′(λ, ϕ) is positive and large enough.

Especially, when σ2 = o(1) and the assumed alignment condition is met, it follows that R(λ, ϕ) = B(λ, ϕ) +V(λ, ϕ) +
S(λ, ϕ) is minimized over λ < 0.

Part (2) Overparameterized regime. From the proof of Theorem 3.1, we know that when (8), B(λ, ϕ) +V(λ, ϕ) is
minimized at λ < 0. Under the condition that β⊤Σ(Σ + µI)−2Σ(β − β0) ≤ 0 for all µ > 0, we have S′(λ, ϕ) ≥ 0 over
λ ∈ (λmin(ϕ),+∞). This implies that S(λ, ϕ) is increasing over λ ∈ (λmin(ϕ),+∞). Combining the two results, we
further see that the risk R(λ, ϕ) is minimized at λ < 0.

D.6. Helper Lemmas

Lemma D.4 (Out-of-distribution risk derivatives). Under the same conditions as in Proposition 2.4, we have

∂R(λ, ϕ)

∂λ
= (B′(λ, ϕ) +V′(λ, ϕ) +S′(λ, ϕ))

∂µ

∂λ
, (40)

where

B′(λ, ϕ) :=
∂B(λ, ϕ)

∂µ
=

1

(1− qv(Σ,Σ))2

[
q′v(Σ0,Σ)qb(Σ, B)(1− qv(Σ,Σ))

+ qv(Σ0,Σ)q
′
b(Σ, B)(1− qv(Σ,Σ)) + qv(Σ0,Σ)qb(Σ, B)q′v(Σ,Σ)

+ q′b(Σ0, B)(1− qv(Σ,Σ))
2
]

V′(λ, ϕ) :=
∂V(λ, ϕ)

∂µ
= σ2 q

′
v(Σ0,Σ)− q′v(Σ0,Σ)qv(Σ,Σ) + q′v(Σ,Σ)qv(Σ0,Σ)

(1− qv(Σ,Σ))2
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S′(λ, ϕ) :=
∂S(λ, ϕ)

∂µ
= − 2

µ2
qb(Σ0, (B −B0)Σ).

and µ = 1/vp(λ, ϕ). Furthermore, we have V′(λ, ϕ) < 0 for all λ ∈ (λmin(ϕ),+∞).

Proof. We split the proof into different parts.

Part (1) Bias term. Recall the expression for bias for out-of-distribution squared risk:

B(λ, ϕ) =
qv(Σ0,Σ)

1− qv(Σ,Σ)
qb(Σ, B) + qb(Σ0, B)

Define

h1(µ) = qv(Σ0,Σ), h2(µ) =
qb(Σ, B)

1− qv(Σ,Σ)
, h3(µ) = qb(Σ0, B). (41)

Then we have

B(λ, ϕ) = h1(µ)h2(µ) + h3(µ),

and

B′(λ, ϕ) = h′1(µ)h2(µ) + h1(µ)h
′
2(µ) + h′3(µ)

= q′v(Σ0,Σ)
qb(Σ, B)

1− qv(Σ,Σ)
+ qv(Σ0,Σ)

q′b(Σ, B)(1− qv(Σ,Σ)) + qb(Σ, B)q′v(Σ,Σ)

(1− qv(Σ,Σ))2
+ q′b(Σ0, B)

=
1

(1− qv(Σ,Σ))2

[
q′v(Σ0,Σ)qb(Σ, B)(1− qv(Σ,Σ))

+ qv(Σ0,Σ)q
′
b(Σ, B)(1− qv(Σ,Σ)) + qv(Σ0,Σ)qb(Σ, B)q′v(Σ,Σ)

+ q′b(Σ0, B)(1− qv(Σ,Σ))
2
]
.

Part (2) Variance term. Recall that the variance term is given by:

V(λ, ϕ) = σ2 qv(Σ0,Σ)

1− qv(Σ,Σ)
.

The derivative in µ is:

V′ = σ2 1

(1− qv(Σ,Σ))2
{q′v(Σ0,Σ)(1− qv(Σ,Σ)) + qv(Σ0,Σ)q

′
v(Σ,Σ)}.

Note that

q′v(Σ,Σ) = −2ϕ tr[Σ2(Σ + µI)−2] < 0

q′v(Σ0,Σ) = −2ϕ tr[Σ0Σ(Σ + µI)−2] = −2ϕ tr[(Σ + µI)−1Σ1/2Σ0Σ
1/2(Σ + µI)−1] < 0.

From Lemma F.3, we also have qv(Σ,Σ) > 0 and 1− qv(Σ,Σ) > 0 when λ ∈ (λmin(ϕ),+∞). Therefore, it holds that

V′(λ, ϕ) < 0.

Part (3) Extra bias term. Recall that the extra bias term is given by

S(λ, ϕ) = −2β⊤(vΣ+ I)−1Σ0(β − β0) = −2µβ⊤(Σ + µI)−1Σ0(β − β0) = l(Σ0, (B −B0)Σ).

Then, the derivative is given by:

S′(λ, ϕ) = −2β⊤Σ(Σ + µI)−2Σ0(β − β0) = − 2

µ2
qb(Σ0, (B −B0)Σ).
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E. Proofs in Section 4
E.1. Proof of Proposition 4.1

Proposition 4.1 (Optimal risk under isotropic signals). When Σ0 ̸= Σ and β = β0, assuming isotropic signals E[ββ⊤] =
(α2/p)I the optimal risk obtained at λ∗(ϕ) = ϕ/SNR is given by:

Eβ [R(λ∗, ϕ)] = α2µ∗ tr[Σ0(Σ + µ∗I)−1] + σ2
0 , (12)

where µ∗ = µ(λ∗, ϕ). Furthermore, the left side of (12) is strictly increasing in ϕ if SNR ∈ (0,∞) and σ2
0 are fixed and

strictly increasing in SNR if ϕ, σ2, and σ2
0 are fixed.

Proof. When β = β0 and ββ⊤ ≃ α2I , from (27), we have that

B(λ, ϕ) = α2 qv(Σ0,Σ)

1− qv(Σ,Σ)
qb(Σ, I) + α2qb(Σ0, I)

= α2µ
2

ϕ

(
qv(Σ0,Σ)

1− qv(Σ,Σ)
qv(Σ, I) + qv(Σ0, I)

)
= α2µ

ϕ

(
qv(Σ0,Σ)

1− qv(Σ,Σ)

(
1− qv(Σ,Σ)−

λ

µ

)
+ µqv(Σ0, I)

)
= α2µ

ϕ

[
qv(Σ0,Σ) + µqv(Σ0, I)

]
− α2 λ

ϕ

qv(Σ0,Σ)

1− qv(Σ,Σ)

= α2µ tr[Σ0(Σ + µI)−1]− α2 λ

ϕ

qv(Σ0,Σ)

1− qv(Σ,Σ)
.

Therefore, from Proposition 2.4 and Theorem 3.4, the optimal risk is given by

R(β̂λ
∗
) ≃ Bp(λ

∗, ϕ) +Vp(λ
∗, ϕ) + σ2

0

= α2µ∗ tr[Σ0(Σ + µ∗I)−1] +

(
σ2 − α2λ∗

ϕ

)
qv(Σ0,Σ)

1− qv(Σ,Σ)
+ σ2

0

= α2µ∗ tr[Σ0(Σ + µ∗I)−1] + σ2
0

= α2 tr[Σ0(v
∗Σ+ I)−1] + σ2

0 ,

where µ∗ = µ(λ∗, ϕ) and v∗ = v(λ∗, ϕ).

Note that when σ2 and σ2
0 are fixed, R(λ∗, ϕ) = ϕσ2 · (µ∗/λ∗) · tr[Σ0(Σ+ µ∗I)−1] + σ2

0 is simply a function of λ∗. From
Lemma F.2 (4), we have that µ∗/λ∗ is strictly decreasing in λ∗. Also note that tr[Σ0(Σ + µ∗I)−1] is strictly decreasing in
λ∗. Thus, we know that R(λ∗, ϕ) is strictly decreasing in λ∗ when ϕ, σ, σ0 are fixed. Because λ∗ is strictly decreasing in
SNR, we further find that R(λ∗, ϕ) is strictly increasing in SNR.

E.2. Proof of Theorem 4.2

Theorem 4.2 (Monotonicity of optimally tuned OOD risk). For λ ≥ λmin(ϕ) where λmin(ϕ) is as in (5), for all ϵ > 0
small enough, the risk of optimal ridge predictor satisfies:

min
λ≥λmin(ϕ)+ϵ

R(β̂λ) ≃ min
λ≥λmin(ϕ)

R(λ, ϕ), (13)

and right side of (13) is monotonically increasing in ϕ if SNR and σ2
0 are fixed. In addition, when β = β0 it is monotonically

increasing in SNR if ϕ, σ2, and σ2
0 are fixed.

Proof. We split the proof into different parts.
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Part (1) Risk characterization and equivalence. From the proof of Theorem 4.4, we have

R(β̂λ) ≃ Rp(λ, ϕ, ϕ)

where Rp is defined in (50). Furthermore, for any ψ ∈ [ϕ,+∞], there exists a unique λ ≥ λmin(ϕ) defined through (44).
For any pair of (λ1, ψ1) and (λ2, ψ2) on the path P(λ;ϕ, ψ) as defined in (55), we have that:

Rp(λ1;ϕ, ψ1) = Rp(λ2;ϕ, ψ2).

Part (2) Risk monotonicity. From Lemma F.3 (3), we know that the denominator of ṽp defined in (19) is non-negative:

vp(λ, ψ)
−2 − ϕ

∫
r2(1 + vp(λ, ψ)r)

−2 dHp(r) ≥ vp(λ, ψ)
−2 − ψ

∫
r2(1 + vp(λ, ψ)r)

−2 dHp(r) ≥ 0

for λ ≥ λmin(ϕ). Therefore, Rp(λ, ϕ, ψ) is increasing in ϕ for any fixed (λ, ψ). Furthermore, since Rp(λ, ϕ, ψ) is a
continuous function of ϕ and v(λ;ψ), it follows that for 0 < ϕ1 ≤ ϕ2 <∞,

min
ψ≥ϕ1

Rp(λ, ϕ1, ψ) ≤ min
ψ≥ϕ2

Rp(λ, ϕ1, ψ) ≤ min
ψ≥ϕ2

Rp(λ, ϕ2, ψ),

where the first inequality follows because {ψ : ψ ≥ ϕ1} ⊇ {ψ : ψ ≥ ϕ2}, and the second inequality follows because
Rp(λ, ϕ, ψ) is increasing in ϕ for a fixed ψ. Thus, minψ≥ϕRp(λ, ϕ, ψ) is a continuous and monotonically increasing
function in ϕ.

Part (3) Optimal subsampling and regularization. Similar to the proof of Part (3) in Lemma E.1, we have

min
ψ≥ϕ

Rp(0;ϕ, ψ) ≃ min
λ≥λmin(ϕ)+ϵ

R(β̂λ).

From Part (3), we know that the former is continuous and monotonically increasing in ϕ, which finishes the proof.

Part (4) Monotonicity in signal-to-noise ratio. When β0 = β, the extra bias term S is zero. When σ2 is fixed, note that
B and κ are strictly increasing in α2 while V does not depend on α2. Thus, we know that Rp is strictly increasing in SNR.
Consequently, minψ≥ϕRp(0;ϕ, ψ) is strictly increasing in SNR.

E.3. Proof of Theorem 4.3

Theorem 4.3 (Non-monotonicity of suboptimally tuned risk). When (Σ0, β0) = (Σ, β) and Σ = I , the risk component
equivalents defined in (6) have the following properties:

1. (Bias component) For all λ > 0, B(λ, ϕ) is strictly increasing over ϕ ∈ (0, λ + 1) and strictly decreasing over
ϕ ∈ (λ+ 1,∞).

2. (Variance component) For all λ > 0, V(λ, ϕ) is strictly increasing over ϕ ∈ (0,∞).
3. (Risk) When ∥β∥22 > 0, for all λ > 0 and ϵ > 0, there exist σ2, ϕ ∈ (0,∞), such that ∂R(λ, ϕ)/∂ϕ ≤ −ϵ, i.e.,

max
σ2,ϕ∈(0,∞)

min
λ≥λmin(ϕ)

∂R(λ, ϕ)/∂ϕ ≤ −ϵ. (14)

Proof. For isotropic features Σ = I , analogous to the proof of Theorem 4.2, the excess prediction risk is given by

R
(
β̂λ
)
≃ Rp(λ, ϕ, ϕ)

where Rp(λ, ϕ, ψ) is defined in (6). When Σ = I , the non-negative constants c̃p(λ, ψ) and ṽp(λ, ϕ, ψ) are defined through
the following equations:

vp(λ, ϕ) =

√
(ϕ+ λ− 1)2 + 4λ− (ϕ+ λ− 1)

2λ
,
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ṽp(λ, ϕ, ψ) =

ϕ
1

(1 + vp(λ, ψ))2

vp(λ, ψ)
−2 − ϕ

1

(1 + vp(λ, ψ))2

,

c̃p(λ, ψ) = (vp(λ, ψ)Σ + I)−2α2.

From Theorem 1 of Patil & Du (2023), for all (λ, ϕ) ∈ (0,∞)2, there exists ψ = ψ(λ, ϕ) such that the prediction risk (45)
of the full-ensemble estimator are asymptotically equivalent:

Rp(λ, ϕ, ϕ) ≃ Rp(0;ϕ, ψ).

Note that the left-hand side is simply the risk of the ridge predictor with ridge penalty λ. Furthermore, from (44), it holds
that

λ+ ϕ

∫
r

1 + vp(0;ψ)r
dH(r) = ψ

∫
r

1 + vp(0;ψ)r
dH(r).

Taking the derivative with respect to ϕ on both sides yields that

∂ψ

∂ϕ
= 1− λvp(0;ψ)

1− λvp(0;ψ)
ṽp(0;ϕ, ψ). (42)

We consider three cases below.

(1) α2 = 0 and σ2 > 0. In this case, the excess risk equals the variance component:

R′
p(λ, ϕ, ϕ) = σ2ṽp(λ, ϕ, ϕ)

= σ2

 1

1− ϕ

∫ (
vp(λ, ϕ)r

1 + vp(λ, ϕ)r

)2

dHp(r)

− 1

 .

Let f(ϕ) := ϕ
∫
(vp(λ, ϕ)r/(1 + vp(λ, ϕ)r))

2
dHp(r). Then, the monotonicity of the above display in ϕ is the same as

that of f in ϕ. Note that

f(ϕ) = ϕ

(√
(ϕ+ λ− 1)2 + 4λ− (ϕ+ λ− 1)√
(ϕ+ λ− 1)2 + 4λ− (ϕ− λ− 1)

)2

. (43)

Taking the derivative with respect to ϕ, we have

f ′(ϕ) =
(−ϕ+ λ+ 1)

(√
(ϕ+ λ− 1)2 + 4λ− ϕ− λ+ 1

)2
√
(ϕ+ λ− 1)2 + 4λ

(√
(ϕ+ λ− 1)2 + 4λ+ λ− ϕ+ 1

)2 .
Since f ′(ϕ) > 0 when ϕ ∈ (0, λ+ 1) and f ′(ϕ) < 0 when ϕ ∈ (λ+ 1,+∞), we know that Rp is strictly increasing over
ϕ ∈ (0, λ+ 1) and strictly decreasing over ϕ ∈ (λ+ 1,+∞). Thus, the monotonicity of Rp(λ, ϕ, ϕ) follows.

(2) α2 > 0 and σ2 = 0. In this case, the excess risk equals the bias component:

Rp(λ, ϕ, ϕ) = c̃p(−λ;ϕ)(ṽp(λ, ϕ, ϕ) + 1)

= α2

1

(1 + vp(λ, ϕ))2

1− ϕ
1

(1 + vp(λ, ϕ))2
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=
α2

(1− ϕ)vp(λ, ϕ)2 + 2vp(λ, ϕ) + 1
.

Let g(ϕ) = (1− ϕ)vp(λ, ϕ)
2 + 2vp(λ, ϕ) + 1. Taking the derivative with respect to ϕ yields

g′(ϕ) =

(√
(ϕ+ λ− 1)2 + 4λ− λ− ϕ+ 1

)
4λ2
√
(λ+ ϕ− 1)2 + 4λ

·
(
λ+ 3(ϕ− 1)

√
λ2 + 2λ(ϕ+ 1) + ϕ2 − 2ϕ+ 1− λ2 − 4λ(ϕ+ 1)− 3(ϕ− 1)2

)
=:

(√
(ϕ+ λ− 1)2 + 4λ− λ− ϕ+ 1

)
4λ2
√
(λ+ ϕ− 1)2 + 4λ

h(ϕ).

By simple calculations, one can show that h′(ϕ) < 0 and h(ϕ) ≤ h(0) < −2λ when λ > 0. Therefore, we have g′(ϕ) < 0
and Rp is strictly increasing over ϕ ∈ (0,∞).

(3) General cases when α2 > 0. Note that

Rp(λ, ϕ, ϕ) = σ2ṽp(λ, ϕ, ψ) + c̃p(−λ;ϕ)(ṽp(λ, ϕ, ϕ) + 1)

=: f1(ϕ) + f2(ϕ),

where f1 first increases and then decreases in ϕ, and f2 is a strictly increasing function. Note that only f1 depends on σ2.
Because for any λ > 0 and ϕ ∈ (λ+ 1,∞), f ′1(ϕ) < 0 and its scale is proportional to σ2, we have that for all ϵ > 0, there
exists σ2 > 0 such that −f ′1(ϕ) > f ′2(ϕ) + ϵ. This implies that

max
σ2,ϕ∈(0,∞)

min
λ≥0

∂R(λ, ϕ)

∂ϕ
≤ −ϵ,

which completes the proof.

E.4. Proof of Theorem 4.4

Theorem 4.4 (Optimal ensemble versus ridge regression under negative regularization). Let R∗∗ :=
minψ≥ϕ,λ≥λmin(ϕ) R(λ, ϕ, ψ). Then the following statements hold:

1. (Underparameterized) When ϕ < 1 and β0 = β, λ∗ ≥ 0,

R∗∗ = min
λ≥0

R(λ, ϕ, ϕ) = min
ψ≥ϕ

R(0;ϕ, ψ).

2. (Overparameterized) When ϕ ≥ 1, λ∗ ≥ λmin(ϕ),

R∗∗ = min
λ≥λmin(ϕ)

R(λ, ϕ, ϕ) = min
ψ≥ϕ

R(λmin(ϕ);ϕ, ψ).

Proof. We split the proof into different parts.

Part (1) Risk characterization. From Lemma E.2, we have R(β̂λk,∞) ≃ Rp(λ, ϕ, ψ).

Part (2) Risk equivalence. From Lemma F.4, for any ψ ∈ [ϕ,+∞], there exists a unique λ ≥ λmin(ϕ) such that

1

v
= λ+ ϕ

∫
r

1 + vr
dHp(r), and

1

v
= ψ

∫
r

1 + vr
dHp(r). (44)

For any pair of (λ1, ψ1) and (λ2, ψ2) on the path P(λ;ϕ, ψ) as defined in (55), we have that:

Rp(λ1;ϕ, ψ1) = Rp(λ2;ϕ, ψ2).
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Part (3) Optimal risk. From (49), we have that for any λ ≥ λmin(ϕ), there exists ψ ≥ 1 such that |Rp(λmin(ϕ);ϕ, ψ)−
Rp(λ, ϕ, ϕ)|

a.s.−−→ 0. From Lemma F.1 and Lemma F.3, 1/vp(−λ;ψ) ∈ [−rmin,∞] and

lim
ψ→ϕ

Rp(λmin(ϕ);ϕ, ψ) = lim
λ→λmin(ϕ)+

Rp(λ, ϕ, ϕ) = +∞.

Similar to the proof of Lemma 28 from Bellec et al. (2023), one can show that the sequence of functions
{Rp(λmin(ϕ);ϕ, ψ(λ)) − Rp(λ, ϕ, ϕ)}p∈N is uniformly equicontinuous on λ ∈ Λ = [λmin(ϕ) + ϵ,∞] almost surely
for some small ϵ > 0 such that Rp(λ, ϕ, ψ) is no larger than the null risk Rp(+∞;ϕ, ϕ) when λ ∈ [λmin(ϕ) + ϵ,+∞].
From Theorem 21.8 of Davidson (1994), it further follows that the sequences converge to zero uniformly over Λ almost
surely. This implies that

0 = lim sup
p

max
λ≥λmin(ϕ)+ϵ

[Rp(λmin(ϕ);ϕ, ψ(λ))−Rp(λ, ϕ, ϕ)]

≥ min
ψ≥ϕ

lim sup
p

max
λ≥λmin(ϕ)+ϵ

[Rp(λmin(ϕ);ϕ, ψ)−Rp(λ, ϕ, ϕ)]

≥ lim sup
p

min
ψ≥ϕ

max
λ≥λmin(ϕ)+ϵ

[Rp(λmin(ϕ);ϕ, ψ)−Rp(λ, ϕ, ϕ)]

= lim sup
p

[
min
ψ≥ϕ

Rp(λmin(ϕ);ϕ, ψ)− min
λ≥λmin(ϕ)+ϵ

Rp(λ, ϕ, ϕ)

]
.

Conversely, since for any ψ ≥ ψ(λmin(ϕ) + ϵ), there exists λ ≥ λmin(ϕ) + ϵ such that |Rp(λmin(ϕ);ϕ, ψ) −
Rp(λ(ψ);ϕ, ϕ)|

a.s.−−→ 0. Similarly, we can show that {Rp(λmin(ϕ);ϕ, ψ)−Rp(λ(ψ);ϕ, ϕ)}p∈N is uniformly equicontinu-
ous on ψ ∈ Ψ = [ψ(λmin(ϕ) + ϵ),∞] almost surely. This also implies that

0 = lim inf
p

min
ψ≥ψ(λmin(ϕ)+ϵ)

[Rp(λmin(ϕ);ϕ, ψ)−Rp(λ(ψ);ϕ, ϕ)]

≤ max
λ≥λmin(ϕ)

lim inf
p

min
ψ≥ψ(λmin(ϕ)+ϵ)

[Rp(λmin(ϕ);ϕ, ψ)−Rp(λ, ϕ, ϕ)]

≤ lim inf
p

max
λ≥λmin(ϕ)

min
ψ≥ψ(λmin(ϕ)+ϵ)

[Rp(λmin(ϕ);ϕ, ψ)−Rp(λ, ϕ, ϕ)]

= lim inf
p

[
min

ψ≥ψ(λmin(ϕ)+ϵ)
Rp(λmin(ϕ);ϕ, ψ)− min

λ≥λmin(ϕ)
Rp(λ, ϕ, ϕ)

]
.

Combining the previous two inequalities implies that

min
λ≥λmin(ϕ)+ϵ

Rp(λ, ϕ, ϕ) ≃ min
ψ≥ψ(λmin(ϕ)+ϵ)

Rp(λmin(ϕ);ϕ, ψ).

Since

min
λ≥λmin(ϕ)+ϵ

Rp(λ, ϕ, ϕ) = min
λ≥λmin(ϕ)

Rp(λ, ϕ, ϕ)

min
ψ≥ψ(λmin(ϕ)+ϵ)

Rp(λmin(ϕ);ϕ, ψ) = min
ψ≥ϕ

Rp(λmin(ϕ);ϕ, ψ),

we further have

min
λ≥λmin(ϕ)

Rp(λ, ϕ, ϕ) = min
ψ≥ϕ

Rp(λmin(ϕ);ϕ, ψ),

which holds for ϕ ∈ (0,∞). This finishes the proof of the second conclusion.

Part (4) Optimal risk when ϕ < 1. When β0 = β, the excess bias term S ≡ 0. From Lemma D.4, we have that the bias
component c̃p(λ, ϕ, ϕ) of the risk equivalent is minimized at λ = 0 when ϕ < 1. Since ṽp(λ, ϕ, ϕ) is a strictly increasing
function in vp(λ, ϕ) and vp(λ, ϕ) is a strictly decreasing function in λ, we see that ṽp(λ, ϕ, ϕ) is a strictly decreasing
function in λ. Thus, we have that

min
λ∈[λmin,0]

Rp(λ, ϕ, ϕ) ≥ Rp(0;ϕ, ϕ).

This implies that
min

λ≥λmin

Rp(λ, ϕ, ϕ) ≥ min
λ≥0

Rp(0;ϕ, ϕ),

which finishes the proof of the first conclusion.
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E.5. Helper Lemmas

Lemma E.1 (Monotonicity of generalized prediction risk with optimal ridge regularization). Suppose Assumption 2.2 hold.
Define the generalized mean squared risk for a estimator β̂ as:

R(β̂;A, b, β0) = ∥LA,b(β̂ − β0)∥22, (45)

where LA,b(β) = Aβ + b is a linear functional and (A, b) is independent of (X, y) such that ∥A∥op and ∥b∥2 are almost
surely bounded. Then, as k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and p/k → ψ ∈ [ϕ,∞], there exists a sequence of
random variables {Qp(λ, ϕ, ψ)}∞p=1 that is asymptotically equivalent to the risk of the full-ensemble ridge predictor,

R(β̂λk,∞;A, b, β0) ≃ Qp(λ, ϕ, ψ) := c̃p(λ, ϕ, ψ,A
⊤A) + ∥fNL∥2L2

ṽp(λ, ϕ, ψ,A
⊤A), (46)

where the non-negative constants c̃p(λ, ϕ, ψ,A⊤A) and ṽp(λ, ϕ, ψ,A⊤A) are defined through the following equations:

1

vp(λ, ψ)
= λ+ ψ

∫
r

1 + vp(λ, ψ)r
dHp(r),

ṽp(λ, ϕ, ψ,A
⊤A) =

ϕ tr[A⊤AΣ(vp(λ, ψ)Σ + I)−2]

vp(λ, ψ)
−2 − ϕ

∫
r2

(1 + vp(λ, ψ)r)2
dHp(r)

,

c̃p(λ, ϕ, ψ,A
⊤A) = β⊤

0 (vp(λ, ψ)Σ + I)−1(ṽp(λ, ϕ, ψ,A
⊤A)Σ +A⊤A)(vp(λ, ψ)Σ + I)−1β0.

For the ridge predictor when k = n and λmin(ϕ) defined in (5), the optimal risk equivalence minλ≥λmin(ϕ)Qp(λ, ϕ, ϕ) is
monotonically increasing in ϕ.

Proof. Given an observation (x, y), recall the decomposition y = fLI(x) + fNL(x) explained in Section 2. For n i.i.d.
samples from the same distribution as (x, y), we define analogously the vector decomposition:

y = fLI + fNL, (47)

where fLI = Xβ0 and fNL = [fNL(xi)]i∈[n].

Note that

R(β̂λk,∞;A, b, β0) = R(β̂λk,∞;A, 0, β0) + 2b⊤A(β̂λk,∞ − β0) + ∥b∥22.

By Theorem 3 of Patil & Du (2023), the cross term vanishes, that is, b⊤A(β̂λk,∞ − β0)
a.s.−−→ 0. We then have

|R(β̂λ1

k1,∞;A, b, β0)−R(β̂λ2

k2,∞;A, b, β0)|
a.s.−−→ |R(β̂λ1

k1,∞;A, 0, β0)−R(β̂λ2

k2,∞;A, 0, β0)|.

Thus, it suffices to analyze R(β̂λk,∞;A, 0, β0). To simplify the notation, we define

Rp(λ, ϕ, ψ) := R
(
β̂λ1

⌊p/ψ⌋,∞;A, 0p, β0
)

(48)

to indicate the dependency solely on p and (λ, ϕ, ψ). We split the proof into different parts.

Part (1) Risk characterization. Under Assumption 2.2, from Equation (11) of Patil & Du (2023), we have that for λ ≥ 0,

R(β̂λk,∞;A, b, β0) ≃ Qp(λ, ϕ, ψ)

where Qp is defined in (46). Note that for λ ∈ [λmin, 0), the fixed-point solution vp(λ, ψ) satisfies the same fixed-point
equation as the one for λ ≥ 0. Since the above deterministic equivalent depends on λ only through vp(λ, ψ), it also applies
to λ ∈ [λmin, 0).
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Part (2) Risk equivalence. From Lemma F.4, we have that, for any ψ ∈ [ϕ,+∞], there exists λ uniquely defined through
(44). For any pair of (λ1, ψ1) and (λ2, ψ2) on the path P(λ;ϕ, ψ) as defined in (55), the generalized risk functionals (45) of
the full-ensemble estimator are asymptotically equivalent:

Rp(λ1;ϕ, ψ1) ≃ Qp(λ1;ϕ, ψ1) = Qp(λ2;ϕ, ψ2) ≃ Rp(λ2;ϕ, ψ2). (49)

Part (3) Risk monotonicity. Note that from Lemma F.10 (3) and Lemma F.11 (3) Du et al. (2023), vp(λ, ψ)−2−ϕ
∫
r2(1+

vp(λ, ψ)r)
−2 dHp(r) is non-negative. Then we have

ṽp(λ, ϕ, ψ,A
⊤A) =

tr[A⊤AΣ(vp(λ, ψ)Σ + I)−2]

ϕ−1vp(λ, ψ)
−2 −

∫
r2

(1 + vp(λ, ψ)r)2
dHp(r)

is increasing in ϕ ∈ (0, ψ] for any fixed ψ. Thus, Qp(λ, ϕ, ψ) is increasing in ϕ for any fixed (λ, ψ). Furthermore, since
Qp(λ, ϕ, ψ) is a continuous function of ϕ and v(λ;ψ), it follows that for 0 < ϕ1 ≤ ϕ2 <∞,

min
ψ≥ϕ1

Qp(λ, ϕ1, ψ) ≤ min
ψ≥ϕ2

Qp(λ, ϕ1, ψ) ≤ min
ψ≥ϕ2

Qp(λ, ϕ2, ψ),

where the first inequality follows because {ψ : ψ ≥ ϕ1} ⊇ {ψ : ψ ≥ ϕ2}, and the second inequality follows because
Qp(λ, ϕ, ψ) is increasing in ϕ for a fixed ψ. Thus, minψ≥ϕQp(λ, ϕ, ψ) is a continuous and monotonically increasing
function in ϕ.

Part (4) Optimal subsampling and regularization. From (49), we have that for any λ ≥ λmin(ϕ), there exists ψ ≥ 1

such that |Qp(λmin(ϕ);ϕ, ψ) − Rp(λ, ϕ, ϕ)|
a.s.−−→ 0. From Lemma F.1 and Lemma F.3, 1/vp(−λ;ψ) ∈ [−rmin,∞] and

limψ→ϕQp(λmin(ϕ);ϕ, ψ) = +∞. Similarly to the proof of Lemma 28 from Bellec et al. (2023), one can show that the
sequence of functions {Qp(λmin(ϕ);ϕ, ψ(λ))−Rp(λ, ϕ, ϕ)}p∈N is uniformly equicontinuous on λ ∈ Λ = [λmin(ϕ)+ϵ,∞]
almost surely for some small ϵ > 0 such that |Qp(λmin(ϕ);ϕ, ψ(λ))| is not greater than the null risk Qp(+∞;ϕ, ϕ) when
λ ∈ [λmin(ϕ) + ϵ,+∞]. From Theorem 21.8 of Davidson (1994), it further follows that the sequences converge to zero
uniformly over Λ almost surely. This implies that

0 = lim sup
p

max
λ≥λmin(ϕ)+ϵ

[Qp(λmin(ϕ);ϕ, ψ(λ))−Rp(λ, ϕ, ϕ)]

≥ min
ψ≥ϕ

lim sup
p

max
λ≥λmin(ϕ)+ϵ

[Qp(λmin(ϕ);ϕ, ψ)−Rp(λ, ϕ, ϕ)]

≥ lim sup
p

min
ψ≥ϕ

max
λ≥λmin(ϕ)+ϵ

[Qp(λmin(ϕ);ϕ, ψ)−Rp(λ, ϕ, ϕ)]

= lim sup
p

[
min
ψ≥ϕ

Qp(λmin(ϕ);ϕ, ψ)− min
λ≥λmin(ϕ)+ϵ

Rp(λ, ϕ, ϕ)

]
.

Conversely, since for any ψ ≥ ψ(λmin(ϕ) + ϵ), there exists λ ≥ λmin(ϕ) + ϵ such that |Qp(λmin(ϕ);ϕ, ψ) −
Rp(λ(ψ);ϕ, ϕ)|

a.s.−−→ 0. Similarly, we can show that {Qp(λmin(ϕ);ϕ, ψ) − Rp(λ(ψ);ϕ, ϕ)}p∈N is uniformly equicon-
tinuous on ψ ∈ Ψ = [ψ(λmin(ϕ) + ϵ),∞] almost surely. This also implies that

0 = lim inf
p

min
ψ≥ψ(λmin(ϕ)+ϵ)

[Qp(λmin(ϕ);ϕ, ψ)−Rp(λ(ψ);ϕ, ϕ)]

≤ max
λ≥λmin(ϕ)

lim inf
p

min
ψ≥ψ(λmin(ϕ)+ϵ)

[Qp(λmin(ϕ);ϕ, ψ)−Rp(λ, ϕ, ϕ)]

≤ lim inf
p

max
λ≥λmin(ϕ)

min
ψ≥ψ(λmin(ϕ)+ϵ)

[Qp(λmin(ϕ);ϕ, ψ)−Rp(λ, ϕ, ϕ)]

= lim inf
p

[
min

ψ≥ψ(λmin(ϕ)+ϵ)
Qp(λmin(ϕ);ϕ, ψ)− min

λ≥λmin(ϕ)
Rp(λ, ϕ, ϕ)

]
.

Combining the previous two inequalities implies that

min
λ≥λmin(ϕ)+ϵ

Rp(λ, ϕ, ϕ) ≃ min
ψ≥ψ(λmin(ϕ)+ϵ)

Qp(λmin(ϕ);ϕ, ψ).
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Since

min
ψ≥ψ(λmin(ϕ)+ϵ)

Qp(λmin(ϕ);ϕ, ψ) = min
ψ≥ψ(λmin(ϕ))

Qp(λmin(ϕ);ϕ, ψ) = min
ψ≥ϕ

Qp(λmin(ϕ);ϕ, ψ),

we further have

min
λ≥λmin(ϕ)+ϵ

Rp(λ, ϕ, ϕ) ≃ min
ψ≥ϕ

Qp(λmin(ϕ);ϕ, ψ).

From the second part, we know that the latter is continuous and monotonically increasing in ϕ, which finishes the proof.

Lemma E.2 (Out-of-distribution full-ensemble risk asymptotics). Under Assumption 2.2, as k, n, p → ∞ such that
p/n→ ϕ ∈ (0,∞) and p/k → ψ ∈ [ϕ,∞], for λ ≥ λmin(ϕ), it holds that

R(β̂λk,∞) ≃ Rp(λ, ϕ, ψ)

:= Qp(λ, ϕ, ψ)− 2β⊤(vp(λ, ϕ)Σ + I)−1Σ0(β − β0) + [(β0 − β)⊤Σ0(β0 − β) + σ2
0 ]. (50)

where

Qp(λ, ϕ, ψ) := c̃p(λ, ϕ, ψ,Σ0) + ∥fNL∥2L2
ṽp(λ, ϕ, ψ,Σ0),

where the non-negative constants c̃p(λ, ϕ, ψ,Σ0) and ṽp(λ, ϕ, ψ,Σ0) are defined through the following equations:

1

vp(λ, ψ)
= λ+ ψ

∫
r

1 + vp(λ, ψ)r
dHp(r),

ṽp(λ, ϕ, ψ,Σ0) =
ϕ tr[Σ0Σ(vp(λ, ψ)Σ + I)−2]

vp(λ, ψ)
−2 − ϕ

∫
r2

(1 + vp(λ, ψ)r)2
dHp(r)

,

c̃p(λ, ϕ, ψ,Σ0) = β⊤(vp(λ, ψ)Σ + I)−1(ṽp(λ, ϕ, ψ,Σ0)Σ + Σ0)(vp(λ, ψ)Σ + I)−1β.

Proof. Similar to the proof of Proposition 2.4, we have the decomposition

R(β̂λk,∞) = (β̂λk,∞ − β0)
⊤Σ0(β̂

λ
k,∞ − β0) + σ2

0

= (β̂λk,∞ − β)⊤Σ0(β̂
λ
k,∞ − β) + 2(β̂λk,∞ − β)⊤Σ0(β − β0) + [(β0 − β)⊤Σ0(β0 − β) + σ2

0 ]

≃ Qp(λ, ϕ, ψ) + 2EI∼Ik
[(β̂(I)− β)⊤Σ0(β − β0) | Dn] + [(β0 − β)⊤Σ0(β0 − β) + σ2

0 ]

≃ Qp(λ, ϕ, ψ)− 2β⊤(vp(λ, ψ)Σ + I)−1Σ0(β − β0) + [(β0 − β)⊤Σ0(β0 − β) + σ2
0 ],

where the first asymptotic equivalent is from Lemma E.1 and the second is from Patil & Du (2023, Lemma D.1 (1)). This
finishes the proof.

F. Technical Lemmas
F.1. Fixed-Point Equations for Minimum Ridge Penalty

Recall that under Assumption 2.2, the minimum ridge penalty λmin = λmin(ϕ) can be determined by the following
equations:

1 = ϕ

∫ (
v0r

1 + v0r

)2

dP (r), −rmin < v−1
0 ≤ 0,

1

v0
= λmin + ϕ

∫
r

1 + v0r
dP (r),

or equivalently

1 = ϕ

∫ (
r

µ0 + r

)2

dP (r), −rmin < µ0 ≤ 0,

39



Optimal Ridge Regularization for Out-of-Distribution Prediction

µ0 = λmin + ϕ

∫
µ0r

µ0 + r
dP (r).

We next analyze the properties of µ0 in ϕ.
Lemma F.1 (Continuity properties with the minimum regularization parameter). Let a > 0 and b <∞ be real numbers.
Let P be a probability measure supported on [a, b]. Consider the function v0(·) : ϕ 7→ µ0(ϕ), over (0,∞), where
−a ≤ µ0(ϕ) ≤ 0 is the unique solution to the following fixed-point equation:

1 = ϕ

∫ (
r

µ0(ϕ) + r

)2

dP (r), (51)

Then the following properties hold:

(1) The range of µ0(ϕ) is [−a,∞).
(2) µ0(ϕ) is continuous and strictly increasing over ϕ ∈ (0,∞). In addition, µ0(ϕ) has a root at ϕ = 1.
(3) λmin(ϕ) = µ0(ϕ)(1 − ϕ

∫
r/(µ0(ϕ) + r) dP (r)) is non-positive over ϕ ∈ (0,∞) with zero obtained when ϕ = 1.

Furthermore, it is strictly increasing over ϕ ∈ (0, 1) and strictly decreasing over ϕ ∈ (1,∞).

Proof. The existence of the solution v0(ϕ) = 1/µ0(ϕ) to the fixed-point equation

1

ϕ
=

∫ (
v0(ϕ)r

1 + v0(ϕ)r

)2

dP (r)

follows from Theorem 3.1 of LeJeune et al. (2024). Next, we split the proof into different parts.

Part (1). Define h(x) =
∫
(xr)2/(1 + xr)2 dP (r).

When ϕ < 1, h(v0(ϕ)) = 1/ϕ > 1, which implies that 1/v0(ϕ) ∈ [−a, 0). When ϕ = +∞, 1/v0(ϕ) = −a if P (a) > 0.

When ϕ ≥ 1, h(v0(ϕ)) = 1/ϕ ≤ 1, which implies that v0(ϕ) ∈ (0,∞], with infinity obtained when ϕ = 1, or equivalently,
1/v0(ϕ) ∈ [0,∞).

Part (2). Since g(t) = h(t−1)−1 is positive, strictly increasing and continuous over t ∈ [−a,∞), by the continuous
inverse theorem, we have that 1/v0(ϕ) = g−1(ϕ) is strictly increasing and continuous over ϕ ∈ (0,∞). From Part (1), we
also have 1/v0(1) = 0, which finishes the proof.

Part (3). Consider the function f(x) = 1 − ϕ
∫
r/(x + r) dP (r). When ϕ < 1, we know that f(µ0(ϕ)) > 0 because

from (51),

1 = ϕ

∫ (
r

µ0(ϕ) + r

)2

dP (r) > ϕ

∫
r

µ0(ϕ) + r
dP (r),

which holds because µ0(ϕ) < 0 from Part (2). Analogously, when ϕ > 1, f(µ0(ϕ)) < 0. Therefore, λmin(ϕ) =
µ0(ϕ)f(µ0(ϕ)) ≤ 0 with equality obtained when ϕ = 1.

Because f(x) is strictly decreasing in both ϕ and x, combining the sign properties, we further find that λmin(ϕ) =
µ0(ϕ)f(µ0(ϕ)) is strictly increasing over ϕ ∈ (0, 1) and strictly decreasing over ϕ ∈ (1,∞).

F.2. Properties of Fixed-Point Equations under Negative Regularization

Our analysis involves v(λ, ϕ) as a unique solution to the fixed-point equation in

1

v(λ, ϕ)
= λ+ ϕ

∫
r

1 + v(λ, ϕ)r
dHp(r). (52)

Define µ(λ, ϕ) = 1/v(λ, ϕ). Equivalently, we have that µ(λ, ϕ) is a unique solution to the following fixed-point equation:

µ(λ, ϕ) = λ+ ϕ

∫
µ(λ, ϕ)r

µ(λ, ϕ) + r
dHp(r). (53)

The analytic properties of the function λ 7→ v(λ, ϕ) on (λmin(ϕ),+∞) for ϕ ∈ (1,∞) are detailed in Lemma F.2.
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Lemma F.2 (Analytic properties in the regularization parameter). Let 0 < a ≤ b < ∞ be real numbers. Let P be a
probability measure supported on [a, b]. Let ϕ > 0 be a real number. For λ > λmin(ϕ), let v(λ, ϕ) > 0 denote the solution
to the fixed-point equation

µ(λ, ϕ) = λ+ ϕ

∫
µ(λ, ϕ)r

r + µ(λ, ϕ)
dP (r).

Then the following properties hold:

(1) (Monotonicity) For ϕ ∈ (0,∞), the function λ 7→ µ(λ, ϕ) is strictly increasing in λ ∈ (λmin(ϕ),∞).
(2) (Range) For ϕ ∈ (0, 1], limλ→λmin(ϕ)− µ(λ, ϕ) = −∞ and µ(0, ϕ) = 0. For ϕ ∈ (1,∞), limλ→λmin(ϕ)− µ(λ, ϕ) ∈

(0,∞). For ϕ ∈ (0,∞), limλ→+∞ µ(λ, ϕ) = +∞.
(3) (Differentiability) For ϕ ∈ (0,∞), the function λ 7→ µ(λ, ϕ) is differentiable over Λ.
(4) The function λ 7→ λ/µp(λ, ϕ) is strictly increasing in λ with limλ→0 λ/µp(λ, ϕ) = 0 and limλ→0 λ/µp(λ, ϕ) = 1.

Proof. Note that

λ = µ(λ, ϕ)− ϕ

∫
µ(λ, ϕ)r

r + µ(λ, ϕ)
dP (r).

Define a function f by

f(x) = x− ϕ

∫
xr

x+ r
dP (r).

Observe that µ(λ, ϕ) = f−1(λ). The claim of differentiability of the function λ 7→ µ(λ, ϕ) follows from the differentiability
and strict monotonicity of f , similar to Patil et al. (2022, Lemma S.6.14).

For the last property, from the definition of the fixed-point equation, we have

1 =
λ

µp(λ, ϕ)
+ ϕ

∫
r

r + µ(λ, ϕ)
dP (r).

Because ϕ
∫

r
r+µ(λ,ϕ) dP (r) is strictly decreasing in λ, we have that λ/µp(λ, ϕ) is strictly increasing in λ. Because

limλ→+∞ µp(λ, ϕ) = +∞, we know that

lim
λ→∞

ϕ

∫
r

r + µ(λ, ϕ)
dP (r) = 0.

and thus,

lim
λ→∞

λ

µp(λ, ϕ)
= 1.

On the other hand, because limλ→0 µp(λ, ϕ) = 0 for ϕ ∈ (0, 1] and limλ→0 µp(λ, ϕ) <∞, it directly implies that

lim
λ→0

λ

µp(λ, ϕ)
= 0.

Consequently, the conclusion follows.

Lemma F.3 (Continuity properties in the aspect ratio for ridge regression, adapted from Patil et al. (2023)). Let a > 0,
b < ∞ and λ ∈ R be real numbers. Let P be a probability measure supported on [a, b]. For λ ∈ R, let Φ(λ) = {ϕ ∈
(0,∞) | λmin(ϕ) < λ}. Consider the function µ(λ, ·) : ϕ 7→ µ(λ, ϕ), over ϕ ∈ Φ(λ) such that λmin(ϕ) ≤ λ, where
µ(λ, ϕ) ≥ −a is the unique solution to the following fixed-point equation:

µ(λ, ϕ) = λ+ ϕ

∫
µ(λ, ϕ)r

µ(λ, ϕ) + r
dP (r). (54)

Then the following properties hold:

(1) The range of the function µ(−λ; ·) is a subset of [λ,∞] when λ ≥ 0 and [−a,∞] when λ < 0.
(2) The function µ(−λ; ·) is continuous and strictly increasing over Φ(λ). Furthermore, limϕ→∞ µ(λ, ϕ) = +∞,

limϕ→0+ µ(λ, ϕ) = λ when λ ≥ 0, and limϕ→0+ µ(λ, ϕ) = −∞ when λ < 0.
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(3) The function ṽv(−λ; ·) : ϕ 7→ ṽv(λ, ϕ), where

ṽv(λ, ϕ) =

(
µ(λ, ϕ)2 − ϕ

∫
(µ(λ, ϕ)r)2(µ(λ, ϕ) + r)−2 dP (r)

)−1

,

is positive and continuous over Φ(λ).
(4) The function ṽb(−λ; ·) : ϕ 7→ ṽb(λ, ϕ), where

ṽb(λ, ϕ) = ṽv(λ, ϕ)

∫
ϕ(µ(λ, ϕ)r)2(µ(λ, ϕ) + r)−2 dP (r),

is positive and continuous over Φ(λ).

Proof. Properties (1)-(4) follow similarly to Patil et al. (2022, Lemma S.6.15).

F.3. Contours of Fixed-Point Solutions under Negative Regularization

Lemma F.4 (Contours of fixed-point solutions). As n, p → ∞ such that p/n → ϕ ∈ (0,∞), let λmin : ϕ 7→ λmin(ϕ) as
defined in (5). For any ψ ∈ [ϕ,+∞], there exists a unique value λ ≥ λmin(ψ) (or conversely for λ ∈ [λmin(ϕ),∞], there
exists a unique value ψ ∈ [ϕ,∞]) such that for all (λ, ψ) on the path (as in Figure F9)

P = {(1− θ) · (λ, ϕ) + θ · (λmin(ψ), ψ) | θ ∈ [0, 1]}, (55)

it holds that

µ(λ, ψ) = µ(λ, ϕ) = µ(λmin(ψ), ψ),

where µ(λ, ψ) is as defined in (53).
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Figure F9: Heatmap of µp(λ, ψ) for isotropic covariance matrix Σ = I in the symmetric log-log scale (where the logarithmic scale
is applied symmetrically to both positive and negative values on the x-axis and y-axis). The 5 black dashed lines indicate 5 different
equivalence paths. The boundary of negative ridge penalties is given by −(1−

√
ψ)2.

Proof. Note that µ(λmin(ϕ), ϕ) = µ0(ϕ) which is the solution to the fixed-point equation (51). From Lemma F.1 (2), we
see that the function ψ 7→ µ(λmin(ψ), ψ) is strictly increasing over ψ ∈ [ϕ,∞] with the range

lim
ψ→ϕ

µ(λmin(ψ), ψ) = µ0(ϕ), lim
ψ→+∞

µ(λmin(ψ), ψ) = +∞.

From Lemma F.3, the function λ 7→ µ(λ, ϕ) is strictly increasing over λ ∈ [λmin,∞] with range

lim
λ→λmin

µ(λ, ϕ) = µ0(ϕ), lim
λ→+∞

µ(λ, ϕ) = +∞.
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For ψ ∈ [ϕ,∞], by the intermediate value theorem, there exists a unique λ ∈ [λmin(ϕ),∞] such that v(λ, ϕ) =
v(−λmin(ψ);ψ). Conversely, for λ ∈ [λmin(ϕ),∞], there also exists a unique ψ ∈ [ϕ,∞] such that v(λ, ϕ) =
v(−λmin(ψ);ψ).

Based on the definition of fixed-point solutions, it follows that

µ(λ, ϕ) = λ+ ϕ

∫
µ(λ, ϕ)r

µ(λ, ϕ) + r
dHp(r) = λmin(ϕ) + ψ

∫
µ(−λmin;ψ)r

µ(−λmin;ψ) + r
dHp(r) = µ(−λmin;ψ).

Then, for any (λ, ψ) = (1− θ)(λ, ϕ) + θ(λmin(ψ), ψ) on the path P , we have

µ(λ, ϕ) = (1− θ)µ(λ, ϕ) + θµ(λmin(ψ), ψ)

= (1− θ)λ+ (1− θ)ϕ

∫
µ(λ, ϕ)r

µ(λ, ϕ) + r
dHp(r) + θλmin(ψ) + θψ

∫
µ(−λmin(ψ);ψ)r

µ(−λmin(ψ);ψ) + r
dHp(r)

= λ+ ψ

∫
µ(λ, ϕ)r

µ(λ, ϕ) + r
dHp(r).

Because µ(λ, ψ) is the unique solution to the fixed-point equation:

µ(λ, ψ) = λ+ ψ

∫
µ(λ, ψ)r

µ(λ, ψ) + r
dHp(r),

it then follows that µ(λ, ψ) = µ(λ, ϕ) = µ(λmin(ψ), ψ). This completes the proof.

43



Optimal Ridge Regularization for Out-of-Distribution Prediction

G. Experimental Details and Additional Numerical Illustrations
The source code for reproducing the results of this paper can be found at the following location: https://github.com/
jaydu1/ood-ridge.

G.1. Additional Illustrations for Section 3

G.1.1. NUMERICAL VERIFICATION OF (8) UNDER GENERIC ALIGNMENT SCENARIOS

Under Assumption 2.2, suppose the data model has a covariance matrix Σ to be (Σar1)ij := ρ
|i−j|
ar1 with parameter

ρar1 ∈ (0, 1), and a coefficient β := 1
2 (w(1) + w(p)), where w(j) is the jth eigenvector of Σar1.

tr[ΣB] =
1

4p
(w(1) + w(p))

⊤Σ(w(1) + w(p)) =
1

4p
w⊤

(1)Σw(1) +
1

4p
w⊤

(p)Σw(p) =
1

4
(r(1) + r(p)).

On the other hand, we also have

tr[Σ] tr[B] =

p∑
j=1

r(j)

p
· ∥β∥

2
2

p
=

1

2p2

p∑
j=1

r(j)

One can numerically verify that when p = 500 and ρar1 = 0.5,

r(1) + r(p) ≈ 3.33 > 2 =
2

p

p∑
j=1

r(j)

which contradicts the implication (32) of the strict alignment condition.
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Figure G10: Numerical evaluation of b2/b3 − s2/s3 under the same data model in Figure 1, where sk = tr[Σ{µk(Σ + µI)−k}] and
bk = tr[Σβ{µk(Σ + µI)−k}] for k = 2, 3.

On the other hand, from Figure G10, we see that the general alignment condition

tr[Σβ{µ2(Σ + µI)−2}]
tr[Σβ{µ3(Σ + µI)−3}]

=
tr[Σ{µ2(Σ + µI)−2}]
tr[Σ{µ3(Σ + µI)−3}]

holds for various data aspect ratios in the noiseless setting.

G.1.2. REAL DATA ILLUSTRATION

Following the approach of Kobak et al. (2020), we consider a similar setup using random Fourier features on MNIST.

Feature generation. The pixel values are normalized to the range [−1, 1]. The features are then mapped from the original
dimension of 28×28 to 1000 random Fourier features. This is achieved by multiplying the features with a 784×500 random
matrix W , where the elements are independently drawn from a normal distribution with mean 0 and standard deviation 0.2.
The real and imaginary parts of exp(−iXW ) are taken as separate features, where X ∈ Rn×784.
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Training details. For training, we randomly select n = 64 images, and for testing, we hold out 10,000 images. The
response variable y represents the digit value ranging from 0 to 9. Our model includes an intercept term, which is not subject
to penalization. To estimate the expected out-of-distribution risk, we average the risks across 100 random samples from the
training set.

Distribution shift. To generate distribution shift, we gradually exclude samples with given labels in the test set:

- Type 1: ∅
- Type 2: {4}
- Type 3: {3, 4}
- Type 4: {2, 3, 4}
- Type 5: {1, 2, 3, 4}

In other words, Type 1 represents no covariate shift, while Type 5 represents the case with potentially the most severe
covariate shift. The results are summarized in Figure G11. We observe a clear pattern where the optimal ridge penalty shifts
toward negative values, suggesting that Theorem 3.3 may occur in real-world datasets. However, for Type 5, the optimal
ridge penalty becomes positive again. This could be due to the removal of Class 1, which reduces the degree of alignment.
Also, observe that the minimum risks increase from Type 1 to 5.
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Figure G11: Effect of distribution shift on the optimal ridge penalty on MNIST. (a) The left panel illustrates the risk profile (against
the regularization penalty) of ridge regression on the MNIST dataset when subjected to different types of distribution shifts. Different
colors represent different types of shift from less severe (Type 1) to more severe (Type 5). The y-axis represents the out-of-distribution
prediction risk for the task of accurately predicting the digit value for unseen images. The figure shows a clear pattern where the optimal
ridge penalty shifts towards negative values, in the spirit of Theorem 3.4. The only exception seems to be Type 5 for which the optimal
ridge penalty becomes positive again. It is likely due to the removal of Class 1, which reduces the degree of alignment. (b) The right panel
shows the relative OOD prediction risk computed only on the excluded class, compared to the IND prediction risk of the ridge predictor
fitted only on the training data of the same class. The reason we compare the relative prediction risk is to compensate for the differences in
the conditional variances in the different classes. Observe that Class 1 (Type 5) has the lowest relative prediction risk, which partially
explains the increase in optimal regularization of Type 5 in the left panel.
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G.2. Additional Illustrations for Section 4

Experiment details. Similar to the setup in Appendix G.1.2, we further vary the number of training sample size n from
25 to 200, and inspect the OOD prediction risk of the optimal ridge predictor. The results are summarized in Figure G12.
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Figure G12: Effect of distribution shift on the risk monotonicity behavior of optimal ridge on MNIST. The figure illustrates the
risk profile (against the training sample size) of optimal ridge regression on the MNIST dataset when subjected to different types of
distribution shifts. We follow the same setup as for Table 2 (see Appendix G.1.2 for more details) and vary the number of training sample
size n from 25 to 200, and inspect the OOD prediction risk of the optimal ridge predictor. Different colors represent different types of shift
from less severe (Type 1) to more severe (Type 5). The y-axis represents the out-of-distribution prediction risk for the task of accurately
predicting the digit value for unseen images. The figure shows a clear pattern where the optimal ridge exhibits a monotonically decreasing
risk in the training sample size n.
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G.3. Additional Illustrations for Section 5 (Ridge versus Lasso Monotonicities)

G.3.1. SUBSAMPLED RIDGELESS VERSUS FULL RIDGE
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Figure G13: Ridge optimal risk monotonicity and suboptimal risk non-monotonicity. Optimal ridge has a monotonic risk in the
data aspect ratio, but the risk for fixed ridge penalty λ may not be monotonic in the data aspect ratio. The data model has Σ = Σar1

with ρar1 = 0.25 (the covariance matrix of an auto-regressive process of order 1 (AR(1)) is given by Σar1, where (Σar1)ij = ρ
|i−j|
ar1 for

some parameter ρar1 ∈ (0, 1)), β being the leading eigenvector of Σ and σ = 0.5. The leftmost panel shows the limiting risk of the
full-ensemble ridgeless regression at various data and subsample aspect ratios (ϕ, ψ). The middle panel shows the limiting risk of the
ridge predictor (on the full data) at various data aspect ratios and regularization penalties (ϕ, λ). We highlight the optimal risks at a given
data aspect ratio for the leftmost and middle panels using slender red lines. Observe that the optimal risk in both cases is increasing as a
function of ϕ.

G.3.2. SUBSAMPLED LASSOLESS VERSUS FULL LASSO
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Figure G14: Lasso optimal risk monotonicity and suboptimal risk non-monotonicity. Similar to ridge regression, optimal lasso has a
monotonic risk in the over-parameterization ratio, but the risk for fixed lasso penalty λ may not be monotonic in the data aspect ratio. The
data model has Σ = I and βj

i.i.d.∼ ϵP1/
√
ϕϵ + (1 − ϵ)P0 where the sparsity level is ϵ = 0.01 and σ2 = 1, such that SNR = 1. As for

ridge regression in Figure G13, optimal risks for each data aspect ratio are highlighted using slender red lines in the left and middle panels.
Similarly to the ridge curves in Figure G13, observe that the optimal risk in both cases is increasing as a function of ϕ.
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