
Under review as a conference paper at ICLR 2023

HYPERTIME: IMPLICIT NEURAL REPRESENTATION
FOR TIME SERIES
–SUPPLEMENTARY MATERIAL –

Anonymous authors
Paper under double-blind review

1 ADDITIONAL RELATED WORK

Implicit Neural Representations INRs (or coordinate-based neural networks) have recently gained
popularity in computer vision applications. The usual implementation of INRs consists of a fully-
connected neural network (MLP) that maps coordinates (e.g. xyz-coordinates) to the corresponding
values of the data, essentially encoding their functional relationship in the network. One of the
main advantages of this approach for data representation, is that the information is encoded in a
continuous/grid-free representation, that provides a built-in non-linear interpolation of the data. This
avoids the usual artifacts that arise from discretization, and has been shown to combine flexible and
accurate data representation with high memory efficiency (Sitzmann et al., 2020b; Tancik et al., 2020).
Whilst INRs have been shown to work on data from diverse sources, such as video, images and
audio (Sitzmann et al., 2020b; Chen et al., 2021; Rott Shaham et al., 2021), their recent popularity
has been motivated by multiple applications in the representation of 3D scene data, such as 3D
geometry (Park et al., 2019; Mescheder et al., 2019; Sitzmann et al., 2020a; 2019) and object
appearance (Mildenhall et al., 2020; Sztrajman et al., 2021). In early architectures, INRs showed
a lack of accuracy in the encoding of high-frequency details of signals. Mildenhall et al. (2020)
proposed positional encodings to address this issue, and Tancik et al. (2020) further explored them,
showing that by using Fourier-based features in the input layer, the network is able to learn the full
spectrum of frequencies from data. Concurrently, Sitzmann et al. (2020b) tackled the encoding of
high-frequency data by proposing the use of sinusoidal activation functions (SIREN: Sinusoidal
Representation Networks), and Benbarka et al. (2022) showed the equivalence between Fourier
features and single-layer SIRENs. Our INR architecture for time series data (Section 3) is based on
the SIREN architecture by Sitzmann et al. In Section 4 we compare the performance of different
activation layers, in terms of reconstruction accuracy and training convergence speed, for both
univariate and multivariate time series.

Hypernetworks A hypernetwork is a neural network architecture designed to predict the weight
values of a secondary neural network, denominated a HypoNetwork (Sitzmann et al., 2020a). The
concept of hypernetwork was formalized by Ha et al. (2017), drawing inspiration from methods in
evolutionary computing (Stanley et al., 2009). Moreover, while convolutional encoders have been
likened to the function of the human visual system (Skorokhodov et al., 2021), the analogy cannot
be extended to convolutional decoders, and some researchers have argued that hypernetworks much
more closely match the behavior of the prefrontal cortex (Russin et al., 2020). Hypernetworks have
been praised for their expressivity, compression due to weight sharing, and for their fast inference
times(Skorokhodov et al., 2021). They have been leveraged for multiple applications, including
few-shot learning (Rusu et al., 2019; Zhao et al., 2020), continual learning (von Oswald et al., 2020)
and architecture search (Zhang et al., 2019; Brock et al., 2018). Moreover, in the last two years
some works have started to leverage hypernetworks for the training of INRs, enabling the learning of
latent encodings of data, while also maintaining the flexible and accurate reconstruction of signals
provided by INRs. This approach has been implemented with different hypernetwork architectures,
to learn priors over image data (Sitzmann et al., 2020b; Skorokhodov et al., 2021), 3D scene
geometry (Littwin & Wolf, 2019; Sitzmann et al., 2019; 2020a) and material appearance (Sztrajman
et al., 2021). Tancik et al. (2021) leverage hypernetworks to speed-up the training of INRs by
providing learned initializations of the network weights. Sitzmann et al. (2020b) combine a set
encoder with a hypernetwork decoder to learn a prior over INRs representing image data, and apply it
for image in-painting. Our hypernetwork architecture from Section 3 is similar to Sitzmann et al.’s,

1

Under review as a conference paper at ICLR 2023

however we learn a prior over the space of time series and leverage it for new data synthesis through
interpolation of the learned embeddings. Furthermore, our architecture implements a Fourier-based
loss, which we show to be crucial for the accurate reconstruction of time series datasets (Section 4).

Interpretable Time Series Seasonal-trend decomposition techniques are standard tools in time
series analysis used to decompose a time series into trend, seasonal, and remainder components.
The trend component encapsulates the slow time-varying behavior of the time series, while seasonal
components capture recurring (i.e., periodic) fluctuations in the data. These techniques enable an
intuitive and interpretable analysis of time series data which play an important role in a variety of
downstream tasks, including forecasting and anomaly detection. The classic approach for performing
the decomposition is the widely used STL algorithm (Cleveland et al., 1990). To account for
outliers and distributional shifts, a robust version of the algorithm, called Robust STL, has also
been proposed (Wen et al., 2019). Additional challenges in seasonal-trend decomposition involve
dealing with complex time series data that exhibit multiple seasonal components, to which techniques
such as multiple STL (MSTL) have been proposed (Bandara et al., 2022). The ability to break
time series into interpretable components has been a topic of recent interest in the context of
anomaly detection, forecasting, and generation. Relevant to this work is the recently proposed N-
BEATS architecture (Oreshkin et al., 2020), a deep learning-based univariate time series forecasting
solution that provides time series interpretability capabilities without considerable loss in predictive
performance. The N-BEATS architecture explicitly encodes seasonal-trend decomposition into the
network by defining two blocks: a trend block which uses a small ordered polynomial to capture slow
varying behaviors, and a seasonality block which uses a Fourier series to capture cyclical patterns.
Little work, however, has been done in the design of generation schemes that allow for decomposition
of time series data into interpretable components. While TimeVAE (Desai et al., 2021) proposes
a VAE architecture where the decoder has trend and seasonality blocks to allow for interpretable
generation, no results highlighting the advantage of this capability were demonstrated.

2 DATASETS

We use publicly available univariate and multivariate time series datasets from the UCR archive (Bag-
nall et al., 2017). We selected four univariate datasets andv two datasets that were used in Fourier
Flows (Alaa et al., 2021), Google stocks data and UCI Energy data, which we downloaded from the
project’s Github repository. Additionally we use three multivariate datasets with different characteris-
tics, which are summarized in Table 1.

Table 1: Main characteristics of the datasets used.

Dataset Number of Samples Length of Time series No of Features Source

Crop 7200 46 1

URLNonInvasiveFetalECGThorax1 1800 750 1
PhalangesOutlinesCorrect 1800 80 1
FordA 3601 500 1

Stock 3585 100 1 URLEnergy 19635 100 1

Cricket 108 1197 6

URLMotorImagery 278 3000 64
PhonemeSpectra 3315 217 11

3 FOURIER-BASED LOSS

As part of the training of our HyperTime architecture, we propose a Fourier spectrum reconstruction
loss. For a discrete-time signal f = {f0 = f(0), f1 = f(1), . . . , fN = f(N)}, the N -point discrete
Fourier transform (DFT) is utilized to obtain the corresponding frequency domain representation of f
through the following operation:

Fk = [FT {f}]k =

N−1∑
n=0

fne
−2πj(kn

N), 0 ≤ k ≤ N − 1,

2

http://www.timeseriesclassification.com/Downloads/Archives/Univariate2018_ts.zip
https://drive.google.com/drive/folders/1UILaMFnZpRUf_IhOIkxK2wzBjWBTB86G
http://www.timeseriesclassification.com/Downloads/Archives/Multivariate2018_ts.zip

Under review as a conference paper at ICLR 2023

where j =
√
−1 corresponds to the imaginary unit of a complex number. The coefficient Fk ∈ C

quantifies the strength in representation of the kth frequency component of the signal. The DFT has a
time complexity of O(N2). In practice, an algorithm called the fast Fourier transform (FFT) is used
to compute the DFT due to its lower time complexity (i.e., O(N logN)). Using the FFT to obtain the
frequency domain representations of two discrete-time signals f and f̂ , we introduce a Fourier-based
reconstruction loss as follows:

LFFT =
1

N

N−1∑
k=0

∥Fk − F̂k∥.

Here, we utilized the PyTorch implementation of the FFT to obtain the DFT for each signal. It is
important to note that the DFT is only well-defined for regularly sampled signals. In the case of this
work, the discrete-time signal f is obtained by deterministically sampling the function f(t) via a
discretized grid of time steps t ∈ {0, 1, . . . , N}.

3.1 ANALYSIS OF FOURIER-BASED LOSS

Figure 1: Left: t-SNE visualization of ground truth and generated data on two univariate datasets
(NonInv and FordA), using HyperNet with and without the Fourier-based loss LFFT (Eq. 3). Right:
Standard deviation of the power spectra for the time series of the same two datasets. FordA shows a
considerably larger number of variations in the distributions of the power spectra, which explains the
difficulty of HyperTime to learn patterns from the data.

Here, we analyze in more detail the importance of the Fourier-based loss LFFT from equation 3 on the
training of HyperTime. In Figure 1-left we display t-SNE visualizations of time series synthesized by
HyperTime with and without the use of the FFT loss during training, for two datasets (NonInv and
FordA). In order to visualize the datasets better, we use 3000 samples for generated and original data,
instead of the 1000 samples that we used in Figure 5. In both cases, the addition of the LFFT loss
results in an improved matching between ground truth and generated data. However, in the case of
FordA, the addition of this loss becomes crucial to guide the learning process. This is also reflected
in the numerical evaluations from Table 2, which shows steep improvements in performance for the
FordA dataset.

A likely explanation for the difficulty of the network to learn meaningful patterns from the data of
this dataset is provided by the right plot in Figure 1. Here we show the standard deviation of the
power spectrum for both datasets, as a function of the frequency. The difference in the distributions
indicates that FordA is composed of spectra that present larger variability, while NonInv’s spectra are
considerably more clustered. Further research on the characteristics of the datasets that benefit the
more from the LFFT loss should be further investigated, especially focusing on non-stationary time
series.

3

Under review as a conference paper at ICLR 2023

4 RECONSTRUCTION

4.1 UNIVARIATE

For each dataset, we sample 100 time series, train the INR and average the metrics. Figure 2 shows
the comparison of the losses running over many epochs. We can see that iSIREN and SIREN
converge quickly, so for all subsequent experiments we used 1500 epochs for training. In the case
of iSIREN, we first train the trend block for 100 epochs and then train both blocks for 1400 epochs.
Figure 3 shows the reconstruction error of the power spectral density for this configuration. We show
an extended version of reconstruction results in Table 2, with the comparison of reconstruction of
iSIREN with other INRs across all datasets, with standard deviations in parenthesis.

Figures 4 to 9 show additional results accross all datasets of the output of iSIREN and its trend and
seasonality blocks.

Table 2: Comparison using MSE on time space and MAE in frequency space (FFT) of implicit
networks using different activation functions and of iSIREN on univariate and multivariate datasets
(standard deviations are shown in parenthesis).

Dataset iSIREN (Ours) SIREN P.E. ReLU Tanh
FFT MSE FFT MSE FFT MSE FFT MSE FFT MSE

Univariate

Crop 1.4e-3 5.6e-6 1.4e-3 1.6e-6 6.8e-4 7.3e-7 5.4e-1 2.1e-2 8.6e-1 6.0e-2
(6.7e-3) (3.4e-5) (3.7e-3) (8.1e-6) (3.0e-3) (4.6e-6) (3.2e-1) (2.1e-2) (4.4e-1) (5.4e-2)

Energy 4.1e-3 5.3e-6 1.8e-2 1.2e-5 1.3e-1 7.7e-4 1.5e+0 4.9e-2 1.9e+0 8.3e-2
(9.0e-3) (1.9e-5) (1.7e-2) (1.7e-5) (1.2e-1) (1.2e-3) (3.8e-1) (2.2e-2) (4.6e-1) (3.7e-2)

FordA 1.7e-2 4.9e-6 1.9e-2 6.2e-6 3.1e-1 2.1e-3 2.5e+0 1.3e-1 2.8e+0 1.4e-1
(9.5e-3) (1.1e-5) (1.1e-2) (1.2e-5) (2.5e-1) (4.5e-3) (5.2e-1) (3.1e-2) (5.3e-1) (3.4e-2)

NonInv 3.6e-2 1.2e-5 4.0e-2 1.3e-5 1.1e-1 1.3e-4 1.0e+0 2.2e-2 1.3e+0 4.6e-2
(8.7e-3) (8.0e-6) (1.1e-2) (7.1e-6) (3.4e-2) (9.9e-5) (1.8e-1) (7.7e-3) (1.6e-1) (1.4e-2)

Phalanges 1.4e-3 2.1e-6 3.8e-3 1.8e-6 7.6e-3 1.2e-5 2.4e-1 3.8e-3 7.5e-1 8.4e-2
(4.0e-3) (1.4e-5) (3.9e-3) (1.0e-5) (1.3e-2) (5.2e-5) (1.5e-1) (5.5e-3) (1.8e-1) (3.9e-2)

Stock 2.5e-3 5.1e-6 4.4e-3 1.4e-6 4.3e-2 1.2e-4 6.2e-1 1.2e-2 8.9e-1 3.8e-2
(9.1e-3) (2.6e-5) (4.0e-3) (3.0e-6) (3.9e-2) (2.1e-4) (2.5e-1) (7.1e-3) (3.2e-1) (2.2e-2)

Multivariate

Cricket 3.9e-1 4.1e-4 4.5e-1 4.2e-4 1.7e+0 3.7e-3 3.5e+0 1.7e-2 3.9e+0 3.1e-2
(2.5e-1) (5.9e-4) (2.4e-1) (5.9e-4) (7.4e-1) (2.2e-3) (1.2e+0) (8.7e-3) (1.2e+0) (1.1e-2)

MotorImagery 5.1e+0 2.1e-3 7.2e+0 6.2e-3 1.1e+1 2.4e-2 1.0e+1 2.6e-2 1.1e+1 3.0e-2
(8.5e-1) (7.7e-4) (9.6e-1) (1.8e-3) (1.3e+0) (5.3e-3) (1.6e+0) (6.3e-3) (1.8e+0) (6.9e-3)

PhonemeSpectra 2.9e-2 2.1e-6 4.2e-1 2.7e-4 1.8e+0 5.9e-3 3.0e+0 1.5e-2 3.4e+0 2.0e-2
(1.5e-2) (3.2e-6) (1.9e-1) (2.3e-4) (8.0e-1) (3.6e-3) (1.0e+0) (5.5e-3) (9.9e-1) (6.8e-3)

4

Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000 12000

Epochs

10−6

10−5

10−4

10−3

10−2

10−1

100
M

S
E

(l
og

sc
al

e) iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(a) NonInv

0 2000 4000 6000 8000 10000 12000

Epochs

10−13

10−11

10−9

10−7

10−5

10−3

10−1

M
S

E
(l

og
sc

al
e) iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(b) Crop

0 2000 4000 6000 8000 10000 12000

Epochs

10−13

10−11

10−9

10−7

10−5

10−3

10−1

M
S

E
(l

og
sc

al
e) iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(c) Phalanges

0 2000 4000 6000 8000 10000 12000

Epochs

10−13

10−11

10−9

10−7

10−5

10−3

10−1

M
S

E
(l

og
sc

al
e) iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(d) Energy

0 2000 4000 6000 8000 10000 12000

Epochs

10−13

10−11

10−9

10−7

10−5

10−3

10−1
M

S
E

(l
og

sc
al

e) iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(e) Stock

0 2000 4000 6000 8000 10000 12000

Epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E
(l

og
sc

al
e) iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(f) FordA

Figure 2: Comparison of reconstruction of iSIREN with other INR encodings fitting multiple time
series.

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

10−6

10−5

10−4

10−3

10−2

10−1

100

P
S

D
M

A
E

iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(a) NonInv

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

10−5

10−4

10−3

10−2

10−1

100

P
S

D
M

A
E

iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(b) Crop

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

10−5

10−4

10−3

10−2

10−1

100

101

P
S

D
M

A
E

iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(c) Phalanges

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

10−4

10−3

10−2

10−1

100

P
S

D
M

A
E

iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(d) Energy

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

10−5

10−4

10−3

10−2

10−1

100

101

P
S

D
M

A
E

iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(e) Stock

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

10−5

10−3

10−1

101

P
S

D
M

A
E

iSIREN

SIREN

P.E.

ReLU

Tanh

Sigmoid

(f) FordA

Figure 3: Comparison of frequency reconstruction of iSIREN with other INR encodings fitting
multiple time series evaluating MAE of power spectral density.

5

Under review as a conference paper at ICLR 2023

0 200 400 600

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

0 200 400 600

Time

-0.4

-0.2

0.0

0.2 TREND BLOCK

0 200 400 600

Time

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

0 200 400 600

Time

-0.4

-0.2

0.0

0.2 TREND BLOCK

STL: TREND

0 200 400 600

Time

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

STL: S + R

0 200 400 600

Time

-1.0

-0.5

0.0

0.5

1.0
GT

RECONSTRUCTED

0 200 400 600

Time

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
TREND BLOCK

0 200 400 600

Time

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

0 200 400 600

Time

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
TREND BLOCK

STL: TREND

0 200 400 600

Time

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

STL: S + R

0 200 400 600

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

(a) Reconstruction

0 200 400 600

Time

-0.4

-0.2

0.0

TREND BLOCK

(b) Trend

0 200 400 600

Time

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

(c) Seasonality

0 200 400 600

Time

-0.4

-0.2

0.0

TREND BLOCK

STL: TREND

(d) STL: trend

0 200 400 600

Time

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

STL: S + R

(e) STL: seas

Figure 4: Additional outputs of iSIREN on the NonInv dataset. Each row is a randomly selected
sample. Column (a) shows the actual value (GT) and the iSIREN reconstruction. Columns (b) and
(c) show the output of the trend and seasonality blocks, respectively; the reconstruction is their
summation. Columns (d) and (e) show the comparison of the interpretable blocks with classic STL
decomposition.

0 10 20 30 40

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

0 10 20 30 40

Time

-0.8

-0.5

-0.2

0.0

0.2

TREND BLOCK

0 10 20 30 40

Time

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

0 10 20 30 40

Time

-0.5

0.0

0.5

TREND BLOCK

STL: TREND

0 10 20 30 40

Time

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

STL: S + R

0 10 20 30 40

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

0 10 20 30 40

Time

-1.5

-1.0

-0.5

0.0

TREND BLOCK

0 10 20 30 40

Time

-0.5

0.0

0.5

SEASONALITY BLOCK

0 10 20 30 40

Time

-1.5

-1.0

-0.5

0.0

0.5

TREND BLOCK

STL: TREND

0 10 20 30 40

Time

-0.5

0.0

0.5

SEASONALITY BLOCK

STL: S + R

0 10 20 30 40

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

(a) Reconstruction

0 10 20 30 40

Time

0.0

0.2

0.4

TREND BLOCK

(b) Trend

0 10 20 30 40

Time

-1.0

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

(c) Seasonality

0 10 20 30 40

Time

-0.2

0.0

0.2

0.4

0.6 TREND BLOCK

STL: TREND

(d) STL: trend

0 10 20 30 40

Time

-1.0

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

STL: S + R

(e) STL: seas

Figure 5: Additional outputs of iSIREN on the Crop dataset. Each row is a randomly selected
sample. Column (a) shows the actual value (GT) and the iSIREN reconstruction. Columns (b) and
(c) show the output of the trend and seasonality blocks, respectively; the reconstruction is their
summation. Columns (d) and (e) show the comparison of the interpretable blocks with classic STL
decomposition.

6

Under review as a conference paper at ICLR 2023

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

TREND BLOCK

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

TREND BLOCK

STL: TREND

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

STL: S + R

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

0 20 40 60 80

Time

-0.5

0.0

0.5

TREND BLOCK

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

SEASONALITY BLOCK

0 20 40 60 80

Time

-0.5

0.0

0.5

TREND BLOCK

STL: TREND

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

SEASONALITY BLOCK

STL: S + R

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

(a) Reconstruction

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

TREND BLOCK

(b) Trend

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

(c) Seasonality

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

TREND BLOCK

STL: TREND

(d) STL: trend

0 20 40 60 80

Time

-1.0

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

STL: S + R

(e) STL: seas

Figure 6: Additional outputs of iSIREN on the Phalanges dataset. Each row is a randomly selected
sample. Column (a) shows the actual value (GT) and the iSIREN reconstruction. Columns (b) and
(c) show the output of the trend and seasonality blocks, respectively; the reconstruction is their
summation. Columns (d) and (e) show the comparison of the interpretable blocks with classic STL
decomposition.

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

0 25 50 75 100

Time

-0.8

-0.6

-0.4 TREND BLOCK

0 25 50 75 100

Time

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

0 25 50 75 100

Time

-0.8

-0.6

-0.4

-0.2 TREND BLOCK

STL: TREND

0 25 50 75 100

Time

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

STL: S + R

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5

1.0
GT

RECONSTRUCTED

0 25 50 75 100

Time

-1.0

-0.8

-0.6

TREND BLOCK

0 25 50 75 100

Time

0.0

0.5

1.0

1.5 SEASONALITY BLOCK

0 25 50 75 100

Time

-1.0

-0.8

-0.6

-0.4

TREND BLOCK

STL: TREND

0 25 50 75 100

Time

0.0

0.5

1.0

1.5 SEASONALITY BLOCK

STL: S + R

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5

1.0
GT

RECONSTRUCTED

(a) Reconstruction

0 25 50 75 100

Time

-0.8

-0.6

-0.4

TREND BLOCK

(b) Trend

0 25 50 75 100

Time

-0.5

0.0

0.5

1.0

1.5
SEASONALITY BLOCK

(c) Seasonality

0 25 50 75 100

Time

-0.8

-0.6

-0.4

TREND BLOCK

STL: TREND

(d) STL: trend

0 25 50 75 100

Time

-0.5

0.0

0.5

1.0

1.5
SEASONALITY BLOCK

STL: S + R

(e) STL: seas

Figure 7: Additional outputs of iSIREN on the Energy dataset. Each row is a randomly selected
sample. Column (a) shows the actual value (GT) and the iSIREN reconstruction. Columns (b) and
(c) show the output of the trend and seasonality blocks, respectively; the reconstruction is their
summation. Columns (d) and (e) show the comparison of the interpretable blocks with classic STL
decomposition.

7

Under review as a conference paper at ICLR 2023

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5

TREND BLOCK

0 25 50 75 100

Time

-0.4

-0.2

0.0

0.2

0.4 SEASONALITY BLOCK

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5

TREND BLOCK

STL: TREND

0 25 50 75 100

Time

-0.4

-0.2

0.0

0.2

0.4

SEASONALITY BLOCK

STL: S + R

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5

1.0

GT

RECONSTRUCTED

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5 TREND BLOCK

0 25 50 75 100

Time

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5 TREND BLOCK

STL: TREND

0 25 50 75 100

Time

-0.5

0.0

0.5

1.0 SEASONALITY BLOCK

STL: S + R

0 25 50 75 100

Time

-1.0

-0.5

0.0

0.5

1.0
GT

RECONSTRUCTED

(a) Reconstruction

0 25 50 75 100

Time

-0.5

0.0

0.5

1.0 TREND BLOCK

(b) Trend

0 25 50 75 100

Time

-0.4

-0.2

0.0

0.2

0.4

SEASONALITY BLOCK

(c) Seasonality

0 25 50 75 100

Time

-0.5

0.0

0.5

1.0 TREND BLOCK

STL: TREND

(d) STL: trend

0 25 50 75 100

Time

-0.4

-0.2

0.0

0.2

0.4

SEASONALITY BLOCK

STL: S + R

(e) STL: seas

Figure 8: Additional outputs of iSIREN on the Stock dataset. Each row is a randomly selected
sample. Column (a) shows the actual value (GT) and the iSIREN reconstruction. Columns (b) and
(c) show the output of the trend and seasonality blocks, respectively; the reconstruction is their
summation. Columns (d) and (e) show the comparison of the interpretable blocks with classic STL
decomposition.

8

Under review as a conference paper at ICLR 2023

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0
GT

RECONSTRUCTED

0 200 400

Time

-0.1

-0.1

-0.1

TREND BLOCK

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0 SEASONALITY BLOCK

0 200 400

Time

-0.1

-0.0

-0.0

0.0 TREND BLOCK

STL: TREND

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0 SEASONALITY BLOCK

STL: S + R

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0
GT

RECONSTRUCTED

0 200 400

Time

-0.1

-0.0

-0.0

TREND BLOCK

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0

SEASONALITY BLOCK

0 200 400

Time

-0.1

-0.1

-0.0

-0.0

TREND BLOCK

STL: TREND

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0 SEASONALITY BLOCK

STL: S + R

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0
GT

RECONSTRUCTED

(a) Reconstruction

0 200 400

Time

-0.0

-0.0

0.0

0.0
TREND BLOCK

(b) Trend

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0
SEASONALITY BLOCK

(c) Seasonality

0 200 400

Time

-0.1

-0.1

-0.0

0.0

0.0

TREND BLOCK

STL: TREND

(d) STL: trend

0 200 400

Time

-1.0

-0.5

0.0

0.5

1.0 SEASONALITY BLOCK

STL: S + R

(e) STL: seas

Figure 9: Additional outputs of iSIREN on the FordA dataset. Each row is a randomly selected
sample. Column (a) shows the actual value (GT) and the iSIREN reconstruction. Columns (b) and
(c) show the output of the trend and seasonality blocks, respectively; the reconstruction is their
summation. Columns (d) and (e) show the comparison of the interpretable blocks with classic STL
decomposition.

4.2 MULTIVARIATE

Additionally, Figure 10 shows the reconstruction of random samples of the multivariate dataset using
iSIREN.

4.3 IMPLEMENTATION & REPRODUCIBILITY DETAILS

Architecture We use a three-layer MLP architecture with 60 neurons for all experiments.

Hyperparameters We train for 12000 epochs using Adam optimizer with a learning rate of 1e-4 to
generate the plots in Fig. 2 and Fig. 3. The results on Table 2 are generated training for 1500 epochs.

Runtime It takes approximately 50 minutes to train 100 INRs for 12000 iterations.

Hardware The experiments are run using a g4dn.2xlarge AWS instance with a NVIDIA T4 GPU.

4.4 CODE

The code can be provided upon request and will be placed on a public repository after the revision
period.

5 TIME SERIES GENERATION

Table 3 shows an extended version of generation results, with standard deviations in parenthesis and
including training and inference times (in seconds).

Figure 11 shows generated time series using HyperTime and compares it with random samples of
original time series for different datasets. We can see that the generated time series show a strong
resemblance with the original time series and is in line with the t-SNE visualization on Figure 5 of
the paper.

9

Under review as a conference paper at ICLR 2023

Figure 10: INR reconstructions of random samples from three multivariate datasets.

0 10 20 30 40
Time step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e
se

rie
s

va
lu

e

Crop
Original
Generated

0 100 200 300 400 500 600 700
Time step

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Ti
m

e
se

rie
s

va
lu

e

NonInvasiveFetalECGThorax1

Original
Generated

0 10 20 30 40 50 60 70 80
Time step

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Ti
m

e
se

rie
s

va
lu

e

PhalangesOutlinesCorrect
Original
Generated

0 20 40 60 80 100
Time step

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ti
m

e
se

rie
s

va
lu

e

Stock
Original
Generated

0 20 40 60 80 100
Time step

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Ti
m

e
se

rie
s

va
lu

e

Energy
Original
Generated

Figure 11: Random samples of generated time series using HyperTime, compared to random samples
of original time series.

Additionally, figures 12 to 17 show the linear interpolation in seasonality, leaving the trend fixed and
the interpolation in the trend space, leaving the seasonality fixed. The plots correspond to several
datasets, and we can see that in all cases the transition of either block is smooth.

5.1 BASELINES

We use the following methods with publicly available code as benchmark for our method:

• Fourier Flows Alaa et al. (2021): https://github.com/ahmedmalaa/
Fourier-flows

• RealNVP Alaa et al. (2021): https://github.com/ahmedmalaa/
Fourier-flows

• TimeGAN (Yoon et al., 2019): https://github.com/jsyoon0823/TimeGAN

10

https://github.com/ahmedmalaa/Fourier-flows
https://github.com/ahmedmalaa/Fourier-flows
https://github.com/ahmedmalaa/Fourier-flows
https://github.com/ahmedmalaa/Fourier-flows
https://github.com/jsyoon0823/TimeGAN

Under review as a conference paper at ICLR 2023

Table 3: Performance scores for data generation using baselines (TimeGAN, Fourier Flows, RealNVP)
and multiple hypernet models: HT (no FFT): SIREN hyponetwork, trained without spectral loss.
HT (w/FFT): SIREN hyponetwork. HT (iSIREN): iSIREN hyponetwork. iHT: interpretable HT.

Crop NonInv Phalan. Energy Stock FordA
RealNVP
MAE 0.170 0.038 0.073 0.036 0.019 0.115

(1.5e-2) (3.6e-4) (1.1e-4) (7.2e-4) (2.4e-3) (4.9e-4)
F1 Score 0.981 0.986 0.976 0.964 0.977 0.999

(7.3e-4) (3.0e-4) (1.8e-3) (2.7e-3) (3.4e-3) (8.0e-6)
Time (training) 51.9 100.3 19.6 242.6 46.3 73.1
Time (generation) 0.03 0.20 0.06 0.07 0.06 0.09

TimeGAN
MAE 0.048 – 0.108 0.056 0.173 –

(1.7e-2) (9.6e-3) (1.2e-1) (1.7e-1)
F1 Score 0.831 – 0.960 0.479 0.938 –

(2.4e-2) (4.3e-2) (2.4e-1) (1.1e-2)
Time (training) 1799 – 3177 3942 3872 –
Time (generation) 0.6 – 0.6 0.7 0.7 –

Fourier Flows
MAE 0.040 0.018 0.056 0.030 0.010 0.024

(4.5e-3) (3.3e-3) (9.1e-4) (2.9e-5) (1.5e-3) (1.7e-3)
F1 Score 0.991 0.990 0.992 0.936 0.990 0.998

(2.7e-3) (3.9e-5) (3.1e-3) (1.8e-3) (6.6e-4) (1.5e-5)
Time (training) 864.1 543.7 75.2 1652.1 172.6 607.2
Time (generation) 0.07 1.46 0.08 0.09 0.09 1.2

HyperTime

HT (no FFT)
MAE 0.040 0.005 0.023 0.058 0.012 0.17

(1.4e-4) (1.5e-4) (8.4e-4) (1.6e-3) (8.1e-4) (4.7e-5)
F1 Score 0.999 0.996 0.996 0.998 0.995 0.084

(1.4e-4) (5.9e-4) (7.1e-4) (8.0e-5) (9.0e-4) (2.7e-3)
Time (training) 211.5 145.8 64.1 466.1 92.5 210.0
Time (generation) 0.5 0.4 0.3 2.1 0.7 0.5

HT (w/ FFT)
MAE 0.040 0.005 0.023 0.057 0.013 0.007

(1.8e-4) (5.4e-5) (8.2e-4) (1.1e-3) (1.1e-3) (4.9e-5)
F1 Score 0.999 0.997 0.999 0.997 0.994 0.998

(2.5e-4) (5.9e-4) (2.7e-4) (9.3e-5) (3.8e-4) (9.2e-5)
Time (training) 218.1 147.1 64.4 477.0 95.4 213.4
Time (generation) 0.5 0.4 0.3 2.2 0.7 0.5

HT (iSiren)
MAE 0.039 0.004 0.024 0.057 0.013 0.008

(4.0e-4) (5.1e-4) (6.3e-4) (3.6e-3) (7.8e-4) (5.7e-4)
F1 Score 0.999 0.997 0.999 0.997 0.995 0.997

(9.6e-5) (1.0e-4) (1.7e-4) (6.6e-5) (4.5e-4) (1.9e-4)
Time (training) 217.8 147.8 74.7 477.9 102.7 207.1
Time (generation) 0.5 0.4 0.3 2.1 0.7 0.5

iHT
MAE 0.039 0.004 0.024 0.056 0.011 0.009

(5.9e-4) (1.5e-4) (9.2e-4) (6.4e-3) (4.1e-4) (1.8e-4)
F1 Score 0.999 0.997 0.997 0.997 0.995 0.996

(1.9e-4) (2.8e-4) (2.4e-4) (1.3e-4) (5.8e-4) (3.6e-4)
Time (training) 208.5 146.3 71.4 443.5 98.2 205.3
Time (generation) 0.5 0.4 0.3 2.1 0.7 0.5

11

Under review as a conference paper at ICLR 2023

-0.6

-0.5

-0.4

-0.3

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.05

0.00

0.05

S
ea

s.

0 50 100

Time

-0.5

-0.4

-0.3

T
re

n
d

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

(a) Interpolation in seasonality, leaving trend fixed.

-0.6

-0.5

-0.4

-0.3

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.05

0.00

0.05

S
ea

s.

0 50 100

Time

-0.5

-0.4

-0.3

T
re

n
d

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

(b) Interpolation in trend, leaving seasonality fixed.

Figure 12: Linear interpolation in seasonality (a) and trend (b) between two time series from the
Stock dataset, leaving trend and seasonality fixed, respectively. In red are the original time series
(first column), and target seasonality/trend (last column).

5.2 IMPLEMENTATION & REPRODUCIBILITY DETAILS

Architecture HyperTime is composed of a set encoder corresponding to a SIREN with input
dimension 2, two hidden layers of 128 neurons and an output layer (embedding) of 40 neurons.
The decoder (hypernetwork) is an MLP with ReLU activations with dimensions 40 × 128 × nW ,
where nW corresponds to the number of weights of the hypo network given that the output of the
hypernetwork is a one-dimensional vector that contains the hypo network weights. The hypo networks
are MLPs, following the description of Section NUMBER.

Hyperparameters We train all datasets for 300 epochs, with Adam optimizer and a learning rate of
5e− 5. We use loss parameters λ1 = 1.0× 10−3, λ2 = 1.0 and λ3 = 1.0× 10−2. For HyperTime
using iSIREN for the HypoNet and for iHyperTime, the training is performed in two stages, in order
to improve stability. We first train 100 epochs the trend hypernetwork and trend block, using as loss
only the reconstruction between ground truth and the output of the trend block, and then we train for
200 more epochs, using both the trend and seasonality blocks.

Runtime It takes between 1 and 4 minutes to train the datasets. More details are in table 3.

Hardware The experiments are run using a g4dn.2xlarge AWS instance with a NVIDIA T4 GPU.

12

Under review as a conference paper at ICLR 2023

-0.6

-0.5

-0.4

-0.3

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.04

−0.02

0.00

0.02

0.04

S
ea

s.

0 50 100

Time

-0.6

-0.5

-0.4

-0.3

T
re

n
d

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

(a) Interpolation in seasonality, leaving trend fixed.

-0.6

-0.5

-0.4

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.04

−0.02

0.00

0.02

0.04

S
ea

s.

0 50 100

Time

-0.6

-0.5

-0.4

T
re

n
d

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

(b) Interpolation in trend, leaving seasonality fixed.

Figure 13: Linear interpolation in seasonality (a) and trend (b) between two time series from the
Stock dataset, leaving trend and seasonality fixed, respectively. In red are the original time series
(first column), and target seasonality/trend (last column).

13

Under review as a conference paper at ICLR 2023

-1.0

-0.8

-0.6

-0.4

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.2

0.0

0.2

S
ea

s.

0 50 100

Time

-0.9

-0.8

-0.7

-0.6

T
re

n
d

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

(a) Interpolation in seasonality, leaving trend fixed.

-1.0

-0.8

-0.6

-0.4

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.2

0.0

0.2

S
ea

s.

0 50 100

Time

-0.8

-0.7

-0.6

T
re

n
d

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

(b) Interpolation in trend, leaving seasonality fixed.

Figure 14: Linear interpolation in seasonality (a) and trend (b) between two time series from the
Energy dataset, leaving trend and seasonality fixed, respectively. In red are the original time series
(first column), and target seasonality/trend (last column).

14

Under review as a conference paper at ICLR 2023

-1.0

-0.8

-0.6

-0.4

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.2

0.0

0.2

S
ea

s.

0 50 100

Time

-0.9

-0.8

-0.7

-0.6

T
re

n
d

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

(a) Interpolation in seasonality, leaving trend fixed.

-1.0

-0.8

-0.6

-0.4

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.2

0.0

0.2

S
ea

s.

0 50 100

Time

-0.8

-0.7

-0.6

T
re

n
d

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

Time

0 50 100

(b) Interpolation in trend, leaving seasonality fixed.

Figure 15: Linear interpolation in seasonality (a) and trend (b) between two time series from the
Energy dataset, leaving trend and seasonality fixed, respectively. In red are the original time series
(first column), and target seasonality/trend (last column).

15

Under review as a conference paper at ICLR 2023

-0.5

0.0

0.5

1.0

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.5

0.0

0.5

S
ea

s.

0 200 400

Time

-0.1

-0.1

-0.1

-0.0

0.0

T
re

n
d

0 200 400

Time

0 200 400

Time

0 200 400

Time

0 200 400

Time

0 200 400

(a) Interpolation in seasonality, leaving trend fixed.

-0.5

0.0

0.5

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.5

0.0

0.5

S
ea

s.

0 200 400

Time

-0.1

-0.0

-0.0

T
re

n
d

0 200 400

Time

0 200 400

Time

0 200 400

Time

0 200 400

Time

0 200 400

(b) Interpolation in trend, leaving seasonality fixed.

Figure 16: Linear interpolation in seasonality (a) and trend (b) between two time series from the
FordA dataset, leaving trend and seasonality fixed, respectively. In red are the original time series
(first column), and target seasonality/trend (last column).

16

Under review as a conference paper at ICLR 2023

-0.5

0.0

0.5

1.0

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.5

0.0

0.5

S
ea

s.

0 200 400

Time

-0.1

-0.1

-0.1

-0.0

0.0

T
re

n
d

0 200 400

Time

0 200 400

Time

0 200 400

Time

0 200 400

Time

0 200 400

(a) Interpolation in seasonality, leaving trend fixed.

-0.4

-0.2

0.0

0.2

T
.

se
ri

es

Origin λ=0.25 λ=0.5 λ=0.75 λ=1.0 Target

−0.4

−0.2

0.0

0.2

S
ea

s.

0 200 400

Time

-0.1

-0.1

-0.0

T
re

n
d

0 200 400

Time

0 200 400

Time

0 200 400

Time

0 200 400

Time

0 200 400

(b) Interpolation in trend, leaving seasonality fixed.

Figure 17: Linear interpolation in seasonality (a) and trend (b) between two time series from the
FordA dataset, leaving trend and seasonality fixed, respectively. In red are the original time series
(first column), and target seasonality/trend (last column).

17

Under review as a conference paper at ICLR 2023

REFERENCES

Ahmed Alaa, Alex James Chan, and Mihaela van der Schaar. Generative time-series modeling with
fourier flows. In International Conference on Learning Representations, 2021.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series classification bake off:
a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge
Discovery, 31:606–660, 2017.

Kasun Bandara, Rob J. Hyndman, and C. Bergmeir. Mstl: A seasonal-trend decomposition algorithm
for time series with multiple seasonal patterns. International Journal of Operational Research,
2022.

Nuri Benbarka, Timon Höfer, Hamd ul Moqeet Riaz, and Andreas Zell. Seeing implicit neural
representations as fourier series. 2022 IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pp. 2283–2292, 2022.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rydeCEhs-.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8628–8638, 2021.

Robert B. Cleveland, William S. Cleveland, Jean E. McRae, and Irma Terpenning. Stl: A seasonal-
trend decomposition procedure based on loess (with discussion). Journal of Official Statistics, 6:
3–73, 1990.

Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational auto-
encoder for multivariate time series generation. arXiv preprint arXiv:2111.08095, 2021.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
rkpACe1lx.

Gidi Littwin and Lior Wolf. Deep meta functionals for shape representation. In IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 1824–1833, 10 2019. doi: 10.1109/ICCV.2019.
00191.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis ex-
pansion analysis for interpretable time series forecasting. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=r1ecqn4YwB.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

Tamar Rott Shaham, Michael Gharbi, Richard Zhang, Eli Shechtman, and Tomer Michaeli. Spatially-
adaptive pixelwise networks for fast image translation. In Computer Vision and Pattern Recognition
(CVPR), 2021.

Jacob Russin Russin, Randall O’Reilly, and Yoshua Bengio Bengio. Deep learning needs a prefrontal
cortex. In Bridging AI and Cognitive Science ICLR 2020 Workshop, 2020.

18

https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=r1ecqn4YwB

Under review as a conference paper at ICLR 2023

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
BJgklhAcK7.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. In Advances in Neural Information
Processing Systems, 2019.

Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf:
Meta-learning signed distance functions. In Proc. NeurIPS, 2020a.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In Proc. NeurIPS,
2020b.

Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous
images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10753–10764, June 2021.

Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A Hypercube-Based Encoding for
Evolving Large-Scale Neural Networks. Artificial Life, 15(2):185–212, 04 2009. ISSN 1064-5462.
doi: 10.1162/artl.2009.15.2.15202. URL https://doi.org/10.1162/artl.2009.15.
2.15202.

Alejandro Sztrajman, Gilles Rainer, Tobias Ritschel, and Tim Weyrich. Neural brdf representation
and importance sampling. Computer Graphics Forum, 40(6):332–346, 2021. doi: https://doi.org/
10.1111/cgf.14335. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.14335.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. NeurIPS, 2020.

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T.
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural representations.
In CVPR, 2021.

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacramento. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SJgwNerKvB.

Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo Zhu. Robuststl:
A robust seasonal-trend decomposition algorithm for long time series. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):5409–5416, Jul. 2019.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks.
In NeurIPS, 2019.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rkgW0oA9FX.

Dominic Zhao, Seijin Kobayashi, João Sacramento, and Johannes von Oswald. Meta-learning via
hypernetworks. In 4th Workshop on Meta-Learning at NeurIPS 2020 (MetaLearn 2020). NeurIPS,
2020. doi: 10.3929/ethz-b-000465883.

19

https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=BJgklhAcK7
https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/artl.2009.15.2.15202
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14335
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14335
https://openreview.net/forum?id=SJgwNerKvB
https://openreview.net/forum?id=rkgW0oA9FX
https://openreview.net/forum?id=rkgW0oA9FX

	Additional Related Work
	Datasets
	Fourier-based loss
	Analysis of Fourier-based loss

	Reconstruction
	Univariate
	Multivariate
	Implementation & Reproducibility Details
	Code

	Time Series Generation
	Baselines
	Implementation & Reproducibility Details

