
Under review as a conference paper at ICLR 2024

Appendix

A FULL PSEUDO-CODE

A.1 COMSD

We provide the ComSD’s full pseudo-code. It also serves as an example to demonstrate the process
of general unsupervised skill discovery.

Algorithm 1 Pseudo-code of ComSD.
###UNSUPERVISED SKILL DISCOVERY BY COMSD
Require: Reward-free environment Ef , the uniform skill distribution p(z), unsupervised pre-
training environment steps Ip, and the RL batch size Ib.
Initialize: The state encoder fθ1(·), the skill encoder fθ2(·), the skill-conditioned policy (actor)
π(a|s, z), the critic Q(a, concat(s, z)), and the replay buffer D.

1: for t = 1, ..., Ip do
2: Sample a skill vector from uniform distribution zt ∼ p(z).
3: Obtain current action at ∼ π(·|st, zt) based on current observation st.
4: Interact with reward-free environment Ef with at to get next observation st+1.
5: Add the transition (st, zt, at, st+1) into replay buffer D.
6: Sample Ib transitions from D (after enough data collection).
7: Compute contrastive learning loss LNCE shown in Eq.(7) with fθ1(·) and fθ2(·).
8: Use backpropogation to update fθ1(·) and fθ2(·).
9: Compute exploitation reward rintrexploitation with Eq.(8).

10: Compute exploration reward rintrexploration with Eq.(10).
11: Compute the final intrinsic reward rintrComSD with Eq.(12).
12: Augment sampled transition batch by the rintrComSD.
13: Use DDPG to update π(a|s, z) and Q(a, concat(s, z)) over Ib intrinsic-reward transitions.
14: end for
Output: the discovered skills (trained skill-conditioned policy) π(a|s, z).

13



Under review as a conference paper at ICLR 2024

A.2 SKILL COMBINATION EVALUATION

Algorithm 2 Pseudo-code of skill combination evaluation.
###ADAPTION EVALUATION OF PRE-TRAINED SKILLS BY SKILL COMBINATION

Require: Reward-specific environment Es, the pre-trained skill-conditioned policy π(a|s, z), envi-
ronment adaption steps Ia, and the RL batch size Ib.
Initialize: The meta-controller (actor) π′(z|s), the critic Q(z, s), and the replay buffer D.

1: Freeze the learned skills π(a|s, z).
2: for t = 1, ..., Ia do
3: Obtain current skill vector zt ∼ π(·|st) based on current observation st.
4: Obtain current action at ∼ π(·|st, zt) based on st and zt.
5: Interact with reward-specific environment Es with at to get next observation st+1 and the

extrinsic reward rextr.
6: Add the transition (st, zt, rextr, st+1) into replay buffer D.
7: Sample Ib transition batch from D.
8: Use DDPG to update π′(z|s) and Q(z, s) over Ib transitions.
9: end for

Output: The performance of π′(z|s) serves as the skill combination evaluation result.

A.3 SKILL FINETUNING EVALUATION

Algorithm 3 Pseudo-code of skill finetuning evaluation.
###ADAPTION EVALUATION OF PRE-TRAINED SKILLS BY SKILL FINETUNING

Require: Reward-specific environment Es, the pre-trained skill-conditioned policy π(a|s, z), envi-
ronment adaption steps Ia, skill choice steps Ic, and the RL batch size Ib.
Initialize: The critic Q(a, concat(s, z)), and the replay buffer D.

1: Choose a skill vector zi in Ic steps by your algorithm (e.g., a fixed choice in CIC and ComSD)
and save the corresponding Ic extrinsic-reward transitions into D.

2: Freeze the chosen skill vector zi.
3: for t = 1, ..., Ia − Ic do
4: Obtain current action at ∼ π(·|st, zi) based on st and zi.
5: Interact with reward-specific environment Es with at to get next observation st+1 and the

extrinsic reward rextr.
6: Add the transition (st, zi, at, rextr, st+1) into replay buffer D.
7: Sample Ib transition batch from D.
8: Use DDPG to update π(a|st, zi) and Q(a, concat(s, z)) over Ib transitions.
9: end for

Output: The performance of π(a|s, zi) serves as the skill finetuning evaluation result.

14



Under review as a conference paper at ICLR 2024

B BASELINE DETAILS

DIAYN (Eysenbach et al., 2018) is one of the most classical and original unsupervised skill
discovery algorithms, trying to maximize the MI between skills and states. It employs the first MI
decomposition, Eq.(1). It uses a discrete uniform prior distribution to guarantee the maximization
of skill entropy H(z). The negative state-conditioned entropy −H(z|s) is estimated by a trainable
discriminator logp(z|s) which computes the intrinsic reward. As a foundational work, it provides
several reasonable evaluations of skill adaptation, of which skill finetuning and skill combination
are employed in our experiments.

SMM (Lee et al., 2019) aims to learn a policy for which the state marginal distribution matches
a given target state distribution. It optimizes the objective by reducing it to a two-player, zero-sum
game between a state density model and a parametric policy. Like DIAYN, it is also based on the
first decomposition (Eq.(1)) of MI and employs discriminator training. The difference is that SMM
explicitly maximizes the state entropy with intrinsic reward, which inspires lots of recent advanced
works and our ComSD.

APS (Liu & Abbeel, 2021a) first employs the second MI decomposition Eq.(2) for a better MI
estimation. For state entropy estimation, it employs a popular particle-based entropy estimation
proposed by APT (Liu & Abbeel, 2021b), which is proven effective and supports many advanced
works (Laskin et al., 2022b; Yarats et al., 2021b) and our ComSD. For skill-conditioned entropy, it
chooses the successor feature (Hansen et al., 2019), introducing it into the final intrinsic reward for
an explicit maximization. The weight between different entropy estimations is fixed in APS. APS
can’t guarantee the behavioral quality (exploration) well. Different from APS, our ComSD employs
contrastive learning for better conditioned entropy estimation and designs a novel dynamic weight-
ing algorithm (SMW) to overcome the exploration drop brought by explicit conditioned entropy
maximization.

CIC (Laskin et al., 2022b) is a state-of-the-art robot behavior discovery method. It first intro-
duces contrastive learning (Chen et al., 2020) into unsupervised skill discovery. It chooses the
second MI decomposition, Eq.(2) with APT particle-based estimation for state entropy, like APS.
The contrastive learning between state transitions and skill vectors is conducted for implicit skill-
conditioned entropy maximization. The encoder learned by contrastive learning is further used for
APT reward improvement. The behaviors produced by CIC are of high activity but not distinguish-
able. Different from CIC, we employ the contrastive results as diversity intrinsic rewards for explicit
conditioned entropy maximization to improve behavioral diversity, with SMW to balance two en-
tropy estimations for exploratory ability maintenance.

BeCL (Yang et al., 2023) is another state-of-the-art method on URLB (Laskin et al., 2021) and 2D
exploration (Campos et al., 2020). It tries to mitigate the exploitation problem in CIC by a novel MI
objective, I(s1, s2), where s1 and s2 denote different states generated by the same skill. It provides
theoretical proof to show that their novel MI objective serves as the upper bound of the previous
MI objective. However, BeCL can’t generate enough dynamic robot behaviors, and their intrinsic
reward computational consumption is also much larger than other approaches.

15



Under review as a conference paper at ICLR 2024

C DETAILED EXPERIMENTAL SETTINGS

C.1 COMSD HYPER-PARAMETERS

Table 2: Hyper-parameter settings of ComSD in unsupervised skill discovery.

Hyper-parameter Setting
Skill vector dimensions 64
Skill vector space [0, 1] continuous
Skill update frequency 50
State embedding MLP in fθ1(·) dim(s) → 1024 → 1024 → 64
Predictor (MLP) in fθ1(·) 64× 2 → 1024 → 1024 → 64
State encoder activation ReLU
Skill encoder (MLP) fθ2(·) 64 → 1024 → 1024 → 64
Skill encoder activation ReLU
β upper bound whigh 2
β lower bound wlow 0
fhigh for walker & quadruped 1
flow for walker & quadruped 0
Fixed coefficient α for walker 0.25
Fixed coefficient α for quadruped 1e− 3
fhigh for hopper & cheetah 2/3
flow for hopper & cheetah 1/3
Fixed coefficient α for hopper 1.25
Fixed coefficient α for cheetah 1
RL backbone algorithm DDPG
Number of pre-training frames 2000000
RL replay buffer size 1000000
Action repeat 1
Seed (random) frames 4000
Return discount 0.99
Number of discounted steps for return 3
Batch size 1024
Optimizer Adam
Learning rate 1e− 4
Actor network (MLP) dim(s) + 64 → 1024 → 1024 → dim(a)
Actor activation layernorm(Tanh) → ReLU → Tanh
Critic network (MLP) dim(s) + 64 + dim(a) → 1024 → 1024 → 1
Actor activation layernorm(Tanh) → ReLU
Agent update frequency 2
Target critic network EMA 0.01
Exploration stddev clip 0.3
Exploration stddev value 0.2

16



Under review as a conference paper at ICLR 2024

C.2 SKILL COMBINATION EXPERIMENTAL SETTINGS

Table 3: Hyper-parameter settings of skill combination adaptation task.

Hyper-parameter Setting
RL backbone algorithm DDPG
Meta-controller training frames 2000000
RL replay buffer size 1000000
Action repeat 1
Seed (random) frames 4000
Return discount 0.99
Number of discounted steps for return 3
Batch size 1024
Optimizer Adam
Learning rate 1e− 4
Actor network (MLP) dim(s) → 1024 → 1024 → 64
Actor activation layernorm(Tanh) → ReLU → Tanh
Critic network (MLP) dim(s) + 64 → 1024 → 1024 → 1
Actor activation layernorm(Tanh) → ReLU
Agent update frequency 2
Target critic network EMA 0.01
Training stddev clip for meta-controller 0.3
Training stddev value for meta-controller 0.2
Eval frequency 10000
Number of Eval episodes 10
Eval stddev value for meta-controller 0.2
Eval stddev value for pre-trained agent (cheetah) 0.2
Eval stddev value for pre-trained agent (others) 0

C.3 SKILL FINETUNING EXPERIMENTAL SETTINGS

Table 4: Hyper-parameter settings of skill finetuning adaptation task.

Hyper-parameter Setting
Fixed target skill for ComSD (0, 0.5, 0.5, ..., 0.5)
RL backbone algorithm DDPG
Number of finetuning frames 100000
RL replay buffer size 1000000
Action repeat 1
Seed (random) frames 4000
Return discount 0.99
Number of discounted steps for return 3
Batch size 1024
Optimizer Adam
Learning rate for walker&quadruped 1e− 4
Learning rate for hopper&cheetah 2e− 5
Actor network (MLP) dim(s) + 64 → 1024 → 1024 → dim(a)
Actor activation layernorm(Tanh) → ReLU → Tanh
Critic network (MLP) dim(s) + 64 + dim(a) → 1024 → 1024 → 1
Actor activation layernorm(Tanh) → ReLU
Agent update frequency 2
Target critic network EMA 0.01
Training stddev clip 0.3
Training stddev value 0.2
Eval frequency 10000
Number of Eval episodes 10
Eval stddev value 0

17



Under review as a conference paper at ICLR 2024

D ADDITIONAL ANALYSIS

D.1 WHAT SKILLS DO COMSD AND COMPETITIVE BASELINES DISCOVER? & WHY DOES
COMSD EXHIBIT BETTER ADAPTATION PERFORMANCE THAN OTHERS?

Flip (AKD:8.88) 

Flip (fail) (AKD:9.69) 

Flip (AKD:9.03) 

Only behaviors of high activity 

homogeneous and indistinguishable
CIC

Yoga posture 1 (AKD:0.25) 

Move leg slowly (AKD:1.31) 

Only behaviors of lazy exploration 

Distinguishable
APS

Yoga posture 2 (AKD:0.12) 

Figure 6: Visualization for representative behaviors discovered by CIC and APS. AKD is a particle-
based state entropy estimator used to evaluate skill activity, which we define in Section 4.4. Skill
AKD ranges from 7 to 10 for CIC and 0 to 2 for APS, which means they can’t discover qualified
behaviors at different activity levels.

We provide the skill visualization and corresponding skill AKD of the two most competitive base-
lines, APS (Liu & Abbeel, 2021a) and CIC (Laskin et al., 2022b), in Figure 6. The visualization and
skill AKD of our ComSD are shown in Figure 7. AKD is a particle-based state entropy estimator
used to evaluate skill activity, which we define in Section 4.4.

CIC is able to produce continuous movements of high activity, but it can’t generate behaviors at
other activity levels (AKD range of CIC’s skills is 7-10). In addition, CIC suffers from insufficient

18



Under review as a conference paper at ICLR 2024

Lie down and struggle violently (AKD:9.46)

Flip (AKD:9.54) 

Carp kip-up (AKD:8.24)

Try to stand up (AKD:7.68)

Lie down and struggle slightly (AKD:5.51)

Fall down (AKD:3.76)

Move to a posture slowly (AKD:1.24)

Yoga posture 2 (AKD:0.17)

Yoga posture 1 (AKD:0.31)

A
ctivity

H
igh

L
ow

Qualified behaviors at different activity levels

diverse and distinguishable
ComSD

Figure 7: Visualization for representative behaviors discovered by ComSD. AKD is a particle-based
state entropy estimator used to evaluate skill activity, which we define in Section 4.4. Skill AKD
ranges from 0 to 10 for ComSD. The results demonstrate that our ComSD can produce a qualified
skill set consisting of diverse behaviors at different activity levels, which recent advanced methods
cannot.

exploitation, i.e., the generated skills are indistinguishable and homogeneous. CIC’s skills all tend
to achieve dynamic flipping, which is consistent with the good initial score on walker flip in skill
combination (see Section 4.2). However, the behavioral indistinguishability makes it difficult for
meta-controllers to learn ideal combinations for a competitive final score. APS can generate diverse

19



Under review as a conference paper at ICLR 2024

behaviors, but it suffers from lazy exploration and also can’t generate behaviors at different activity
levels (AKD range of APS’s skills is 0-2). In general, poor exploration causes poor performance in
skill finetuning evaluation. In skill combination, the diversity allows the meta-controller to complete
downstream tasks through the combination of unqualified learned skills, which coincides with the
upward trend of APS training curves. In summary, previous advanced methods can’t provide a good
balance between behavioral quality and diversity, thus failing to exhibit competitive results across
different downstream adaptation evaluations.

By contrast, our ComSD can produce diverse behaviors at different activity levels (AKD range of
ComSD’s skills is 0-10), including flipping, lying down, struggling at different speeds, various pos-
tures, and so on. This explains why our ComSD can achieve state-of-the-art adaptation performance
across both kinds of downstream tasks while other methods cannot.

D.2 BEHAVIORAL DIVERSITY ANALYSIS

In this section, we try to analyze the behavioral diversity of each method. For a skill, we use it to
sample 1k states and calculate the Mean State (MS) over all sampled states. MS can partially repre-
sent the skill to some extent. For each method, we uniformly sample 41 different walker skills. Over
41 skills, we compute the K-Th-nearest-neighbor MS Distance (KTMSD) and the All-K-nearset-
neighbor MS Distance (AKMSD) for skill entropy estimation. KTMSD computes the k-th-nearest-
neighbor MS Euclidean distance of each skill and takes the mean, while AKMSD considers all the
k-nearest neighbors of each skill and takes the mean distance of MS. (Note that in Section 4.4&Ap-
pendix D.1, KTD and AKD are employed for state entropy estimation of one skill, while KTMSD
and AKMSD are used for skill entropy estimation of one method in this section.) KTMSD and
AKMSD can partially evaluate the skill coverage of one method. In addition, we also calculate the
MS Range (MSR) for each method. These metrics are all related to behavioral diversity.

The comparison between all 6 methods on behavioral diversity is shown in Figure 8, demonstrat-
ing that ComSD has huge advantages on skill entropy (KTMSD and AKMSD). ComSD is also the
most competitive method on MSR. In fact, it’s hard to represent an exploratory skill by only MS
(exploratory behaviors have much more visited states than static postures), which puts highly ex-
ploratory methods (ComSD and CIC) at a disadvantage on these 3 metrics. In this case, ComSD
still obtains state-of-the-art evaluation results, which demonstrates that the behavior set discovered
by ComSD is of much higher diversity and coverage than other baselines.

Methods0.00

0.25

0.50

0.75

1.00

1.25

Va
lu

e

KTMSD
ComSD
CIC
APS
DIAYN
SMM
BeCL

Methods0.0

0.2

0.4

0.6

0.8

Va
lu

e

AKMSD

Methods0

1

2

3

4

5

Va
lu

e

MSR

Figure 8: The comparison between all 6 methods on behavioral diversity. ComSD discovers a much
more diverse skill set than other baselines.

20


