
You Never Cluster Alone

Supplementary Material

Summary of Revision

We introduce several additional unsupervised clustering articles, including deep consensus clustering,
IDFD and SCAN [13, 16, 18].

We slightly improve the statement regarding the cluster-wise augmentations according to the review-
ers’ responses.

We provide additional results on Tiny ImageNet [8] and comparison with more contrastive baselines
such as SwAV [2] in Appendix D.

A The Instance-Level ELBO

Being not the main contribution of this paper, we are detailing our instance-level contrastive ELBO
in the appendix to keep the main content concise. Here we reuse the inference model qθ(k|x) as
the pivot to bridge the cluster-level objective with the instance-level one. Similar to many VAE-like
objectives [6], our ELBO can be derived with the Jensen’s inequality logE[·] ≥ E[log(·)] as:
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=Eqθ(k|x) [log pθ(i|x, k)]−KL(qθ(k|x)||pθ(k|x))
=Eq. (6) in the main body.

(1)

As discussed in the main body, the true distribution is pθ(k|x) is unavailable in unsupervised learning.
We use a uniform distribution as surrogate pθ(k|x) = p(k) = 1/K. We also apply the Gumbel
softmax trick [4, 11] as a relaxation to replace Eqθ(k|x)[·]. Thus, the gradients can be estimated by
the reparametrization trick [6]. We write the full form of the final ELBO after relaxation as:

Eε [log pθ(i|x, c)]−KL(qθ(k|x)||p(k)). (2)

In our experiments, we sample a single Gumbel random variable ε for each image for TCC so that we
can use a single-track memory bank for contrastive learning. This can be regarded as a stochastic
layer added to the model for additional random augmentation. A similar spirit has been witnessed
in [7] where a random noise model applies to enhance the robustness of the learnt representation.
Sec. 5.4 shows that a one-sample solution obtains on-par performance as the multiple sampling
baseline.
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B Detailed Relations to Existing Models

We elaborate on the relations and differences between TCC and the most recent works [10, 17]. It is
notable that we have discussed them in Sec. 3.4, and here provides more technical details. In addition,
by the time of writing, [10] is yet a pre-print version.

B.1 MiCE [17]

We notice that [17] leverages a CVAE-like [15] lower-bound

Eqθ(k|x,i) [log pθ(i|x, k)]−KL(qθ(k|x, i)||pθ(k|x)) (3)

for instance-level contrast, and analytically computes the expectation term. Inference with MiCE
yields a K-fold inference solution to obtain:

qθ(k|x, i) =
pθ(k|x)pθ(i|x, k)∑K

k′=1 pθ(k
′|x)pθ(i|x, k′)

(4)

TCC derives a simpler version of instance-level contrast, and directly parametrizes the inference
model qθ(k|x) with neural networks. Note that the inference model in Eq. (3) directly describes a
simple fully-connected layer with softmax activation. We show the complexity in Sec. 3.3.

On the other hand, MiCE does not consider cluster-level context learning, which counts the main
contribution of this paper.

B.2 CC [10]

CC [10] introduces similar concepts as this paper in terms of (1) instance-level contrast with assign-
ments and (2) literally ‘cluster-level’ contrast.

B.2.1 Instance-Level Objectives as VIB [1]

We firstly show the relation between TCC (proposed) and CC [10] in the instance-level objective with
the help of variational information bottleneck (VIB) [1].

If we remove the dependency between the likelihood pθ(i|x, c) and x, in Eq. (2) to have pθ(i|x, c) :=
pθ(i|c), the expectation of our instance-level ELBO becomes:

Ex [Eε [log pθ(i|c)]−KL(qθ(k|x)||p(k))] ≤ I(I, C)− I(C,X), (5)

which is a special case of the ELBO of the information bottleneck I(I, C) − βI(C,X) [1], with
β = 1. CC [10] considers an even simpler deterministic version of this by removing the stochasticity.
To this extent, the instance-level objective of CC can be regarded as a simplified version of our model.

The main difference here is whether we make the contrastive loss dependent on the image x. We argue
this dependency is of importance to inject discriminative information to identify each image. The
category variables alone are not revealing the instance-level identities. This vision is also endorsed
by MiCE [17]. In our experiments, we have shown that even without the cluster-level loss, TCC
still obtains similar performance as CC [10] on CIFAR-10 (Sec. 5.4). Note that CC [10] comes
with stronger random augmentations and is trained with larger image sizes. This result implicitly
legitimates our instance-level design.

B.2.2 Cluster-Level Objectives and Representations

Literally, CC [10] involves a cluster-level contrastive learning process. Hence, we compare the cluster
representations as follows:

CC [10]: rk = [π1(k), · · · , πB(k)]

TCC (Ours): rk = L2Normalize

(
B∑
i=1

πi(k)fθ(xi)

)
.

(6)

We use B to indicate the batch size. For CC [10], the degrees of relevance of the data in the batch to
a cluster shape the corresponding representation. Note that this solution is not reflecting the latent
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Figure 1: CNN backbone structure.

semantics of a cluster, as reordering a batch would result in absolutely different vectors. The proposed
TCC aggregates the features fθ(x) according to the relevance π(k) queried by the corresponding
prototypes {µk}. Reordering a batch does not change the content of the resulted rk. In Sec. 3.1, we
have discussed that our aggregation is semantically anchored by the prototypes {µk}. Though the
actual values throughout different batches are slightly different, our cluster representations always
reflect the same latent topics that are defined by {µk}.
Our design is similar to pooling by multihead attention (PMA) in set transformer [9], which is also
related to deep set representations [20]. The only difference here is that we are not normalizing the
‘attention weights’ πi(k) along the axis of i with softmax, as we are not expecting any datum to
dominate the final cluster representation.

C CNN Backbone

Fig. 1 provides the details of the CNN backbone used in our experiments. All convolutional layers
are followed by batch normalization and ReLU activation. Following [17], we disable the bias in the
convolutional layers.

D More Results

D.1 Tiny ImageNet [8]

Table 1: Results on Tiny ImageNet [8] (in percentage %).

Method NMI ACC ARI
DCCM [19] 22.4 10.8 3.8
CC [10] 34.0 14.0 7.1
TCC 43.5 30.6 15.2

We show the results on Tiny ImageNet [8] to illustrate the ability of TCC to recognize large numbers
of clusters. Only some recent models are compared in Tab. 1 as there are not many articles that
include this experiment.

D.2 More Contrastive Baselines

Table 2: Comparison with [2] on CIFAR-10 (in percentage %).

Method NMI ACC ARI
DeepCluster-V2 65.2 72.7 58.9
SwAV [2] 71.1 79.6 64.9
TCC 79.0 90.6 73.3

We notice some pre-text contrastive learning models literally involve a clustering stage as a pre-
training module to facilitate downstream tasks such as detection and segmentation, while we simply
focus on a model dedicated to clustering. Comparing with them can be also interesting. We show the
results with SwAV [2] in Tab. 2. We re-implement these baselines with the same CNN backbone as
TCC, and train them at the same resolution as we described in the main body. It can be observed
that these baselines obtain on-par performance against some recent methods. Though conceptually
including clusters in training, they still mainly focus on better instance-level general representation
learning, instead of improving the clustering assignments or preserving more cluster-level semantics.
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D.3 Paired Hypothesis Testing

Table 3: Paired hypothesis test p-values
IIC [5] MMDC [14] PICA [3] GATCluster [12] CC [10] MoCo baseline [17] MiCE [17] IDFD [16] TCC

IIC [5] 0.3213 0.0955 0.1895 0.01 0.0313 0.0048 0.0014 0.0005
MMDC [14] 0.3213 0.1649 0.4746 0.0105 0.1111 0.068 0.0228 0.0075
PICA [3] 0.0955 0.1649 0.024 0.0048 0.2876 0.1219 0.0046 0.0023
GATCluster [12] 0.1895 0.4746 0.024 0.0015 0.0551 0.0202 0.0003 0.0002
CC [10] 0.01 0.0105 0.0048 0.0015 0.0243 0.1843 0.2563 0.0191
MoCo baseline [17] 0.0313 0.1111 0.2876 0.0551 0.0243 0.0199 0.0456 0.0023
MiCE [17] 0.0048 0.068 0.1219 0.0202 0.1843 0.0199 0.121 0.0073
IDFD [16] 0.0014 0.0228 0.0046 0.0003 0.2563 0.0456 0.121 0.0778
TCC 0.0005 0.0075 0.0023 0.0002 0.0191 0.0023 0.0073 0.0778

One of our reviewer suggests showing the performance significance against the existing models. Here
we show the p-values of chi-squared test in Tab. 3.

References
[1] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information

bottleneck. In ICLR, 2017. 2
[2] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsuper-

vised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020. 1, 3
[3] Jiabo Huang, Shaogang Gong, and Xiatian Zhu. Deep semantic clustering by partition confidence

maximisation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8849–8858, 2020. 4

[4] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In ICLR,
2017. 1

[5] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information clustering for unsupervised image
classification and segmentation. In ICCV, 2019. 4

[6] Diederik Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014. 1
[7] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In ICLR, 2017. 1
[8] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015. 1, 3
[9] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer:

A framework for attention-based permutation-invariant neural networks. In ICML, 2019. 3
[10] Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. Contrastive clustering.

arXiv preprint arXiv:2009.09687, 2020. 2, 3, 4
[11] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of

discrete random variables. In ICLR, 2017. 1
[12] Chuang Niu, Jun Zhang, Ge Wang, and Jimin Liang. Gatcluster: Self-supervised gaussian-attention

network for image clustering. In ECCV, 2020. 4
[13] Jayanth Reddy Regatti, Aniket Anand Deshmukh, Eren Manavoglu, and Urun Dogan. Consensus clustering

with unsupervised representation learning. In IJCNN, 2021. 1
[14] Guy Shiran and Daphna Weinshall. Multi-modal deep clustering: Unsupervised partitioning of images. In

ICPR, 2021. 4
[15] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep

conditional generative models. In NeurIPS, 2015. 2
[16] Yaling Tao, Kentaro Takagi, and Kouta Nakata. Clustering-friendly representation learning via instance

discrimination and feature decorrelation. In ICLR, 2021. 1, 4
[17] Tsung Wei Tsai, Chongxuan Li, and Jun Zhu. Mice: Mixture of contrastive experts for unsupervised image

clustering. In ICLR, 2021. 2, 3, 4
[18] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc Van Gool.

Scan: Learning to classify images without labels. In ECCV, 2020. 1
[19] Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li, Zhouchen Lin, and Hongbin Zha. Deep

comprehensive correlation mining for image clustering. In ICCV, 2019. 3
[20] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and

Alexander J Smola. Deep sets. In NeurIPS, 2017. 3

4


