
Appendix for “R-Drop: Regularized Dropout for
Neural Networks”

A Detailed Experimental Settings

We provide more detailed settings for the experiments of each task in this part.

A.1 Neural Machine Translation

For all the NMT tasks, we use the public datasets from IWSLT competitions1 and WMT competitions2.
We tokenize all the datasets with byte-pair-encoding (BPE) [11] approach with the dictionary built
jointly upon the source and target sentence pairs except the IWSLT17 En↔Zh translation dataset
that is built separately. After tokenization, the resulted vocabularies for IWSLT datasets are near 10k,
while for WMT datasets, the vocabulary size is about 32k.

To train the Transformer based NMT models, we use transformer_iwslt_de_en configuration
for IWSLT translations, which has 6 layers in both encoder and decoder, embedding size 512,
feed-forward size 1, 024, attention heads 4, dropout value 0.3, weight decay 0.0001. For the WMT
experiments, the transformer_vaswani_wmt_en_de_big setting has 6 layers in encoder and
decoder, embedding size 1, 024, feed-forward size 4, 096, attention heads 16, dropout value 0.1,
attention dropout 0.1 and relu dropout 0.1. The training is optimized with Adam [5] with β1 =
0.9, β2 = 0.98, ε = 10−9. The learning rate scheduler is inverse_sqrt with default learning
rate 0.0005 and warmup steps 4, 000. Label smoothing [12] is adopted with value 0.1. Our code
implementation is based on open-source Fairseq3. We train the IWSLT translations on 1 GEFORCE
RTX 3090 card and the WMT translations on 8 GEFORCE RTX 3090 cards.

To evaluate the performance, we use multi-bleu.perl4 to evaluate IWSLT14 En↔De and all
WMT tasks for a fair comparison with previous works [15, 9]. For other NMT tasks, we use
sacre-bleu5 [10] for evaluation. When inference, we follow [13] to use beam size 4 and length
penalty 0.6 for WMT14 En→De, beam size 5 and penalty 1.0 for other tasks. We further report
the sacre-bleu evaluated BLEU score on WMT14 En→De and En→Fr tasks to show advanced
comparisons, where the corresponded results are 29.5 and 41.8, respectively.

A.2 Abstrative Summarization

For summarization, we take the pre-trained BART [6] model as backbone and fine-tune on the
CNN/DailyMail dataset6. BART is a pre-trained sequence-to-sequence model based on the masked
source input and autoregressive target output, which contains 12 layers of Transformer encoder and
12 layers of Transformer decoder, the embedding size is 1, 024, and the feed-forward size is 4, 096.
Dropout value is 0.1. During fine-tuning, we follow the hyper-parameters used in [6]. The pre-trained

1https://iwslt.org/
2https://www.statmt.org/wmt14/translation-task.html
3https://github.com/pytorch/fairseq/tree/master/examples/translation
4https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.

perl
5https://github.com/mjpost/sacrebleu
6https://github.com/abisee/cnn-dailymail
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Hyper-parameter CoLA MRPC RTE SST-2 MNLI QNLI QQP STS-B
Learning Rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

Max Update 5336 2296 3120 20935 123873 33112 113272 3598

Max Sentence (Batch) 16 16 8 32 32 32 32 16

Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Coefficient α 0.5 1.0 1.0 1.0 0.5 1.0 0.5 1.0
Table 1: Hyper-parameters when fine-tuning our models on GLUE benchmark.
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Figure 1: Results on 8 GLUE tasks with different random seeds.

model and the backbone implementations are all from Fairseq7. The training is conducted on 8
GEFORCE RTX 3090 GPU cards.

A.3 Language Modeling

For language modeling, we train on the Transformer decoder [13] and Adaptive Input Transformer [1]
models. The configuration for Transformer is transformer_lm_gpt, which contains 12 layers with
embedding size 768 and feed-forward size 3, 072, attention heads 12. Dropout and attention dropout
are 0.1. For Adaptive Input Transformer, the configuration is transformer_lm_wiki103 with 16
layers, embedding size 1, 024, feed-forward size 4, 096, attention heads 16, dropout 0.3, attention
dropout 0.1, gelu dropout 0.1 and adaptive softmax dropout 0.2. We train Transformer model for
50k steps and Adaptive Input Transformer for 286k steps. The development is based on the code
base Fairseq8. The training is on 8 Tesla V100 GPU cards.

A.4 Language Understanding

For language understanding tasks, we follow the popular pre-training and fine-tuning methodology,
and the fine-tuned sets are the GLUE [14] benchmark. We follow previous works [2, 7] to work on
the 8 tasks, including singe-sentence classification tasks (CoLA, SST-2), sentence-pair classification
tasks (MNLI, QNLI, RTE, QQP, MRPC), and the sentence-pair regression task (STS-B). The detailed
data statistics can be found from the original paper [14].

The pre-trained BERT-base model is the Transformer [13] encoder network, which contains 12 layers
with embedding size 768, feed-forward size 3, 072 and attention heads 12. Correspondingly, the
Roberta-large model contains 24 layers with embedding size 1, 024, feed-forward size 4, 096 and
attention heads 16. During fine-tuning, we use Adam [5] as our optimizer with β1 = 0.9, β2 = 0.98,
ε = 10−6, and L2 weight decay of 0.01. We select the learning rate in range {5× 10−6, 10−5} and
batch size in {8, 16, 32}. Other hyper-parameter settings are mostly same as previous works [7]. The
pre-trained model and the backbone implementations are all from Huggingface Transformers9. We

7https://github.com/pytorch/fairseq/tree/master/examples/bart
8https://github.com/pytorch/fairseq/tree/master/examples/language_model
9https://github.com/huggingface/transformers
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α 0.1 0.5 1.0 1.5
MRPC 84.30 86.03 86.51 85.78
SST-2 92.54 92.77 93.02 92.43
MNLI 84.20 84.48 83.44 82.27
QNLI 91.21 91.92 92.01 91.12

Table 2: Comparison of the effect of different α for some GLUE tasks.

report the specific settings of several important hyper-parameters in Table 1, including the dropout
value. The fine-tuning experiments are conducted on 1 GEFORCE RTX 3090 GPU card.

Further, to give a clear comparison of our R-Drop based fine-tuning and vanilla fine-tuning, we
plot the performance changes from different random seeds over the pre-trained BERT model on
each GLUE task. The curves are shown in Figure 1. We can see that consistent improvements are
achieved on different random seeds, which means our R-Drop can robustly help improve the model
generalization and model performance. Besides, we also provide some task performances of different
α values, shown in Table 2. This result demonstrated that α indeed is a sensitive hyper-parameter for
each GLUE task, while α = 1.0 is a good choice for most tasks.

MSE Regularization Our R-Drop is presented under the KL-divergence between two distributions.
To extend our method into the regression task, such as STS-B in GLUE, we introduce the MSE-based
regularization. For input data (x, y), we forward the x two times similarly as in classification and
obtain the two predicted values y′1 and y′2. Then we regularize these two predicted values with MSE
as follow:

Lmser = ||y′1 − y′2||2, (1)

and we add Lmser with conventional MSE loss: Lmse = ||y − y′1||2 + ||y − y′2||2. The final
optimization objective is:

L = Lmse + αLmser . (2)

A.5 Image Classification

The image classification task is evaluated with the recent popular Vision Transformer (ViT) [4] model,
which is the same as Transformer but with the image patch data as input. We take the two publicly
released models10, ViT-B/16 and ViT-L/16, which are pre-trained on ImageNet-21k [3] dataset with
21k classes and 14M images in total. ViT-B/16 is a Transformer model with 12 Transformer encoder
layers, embedding size 768, feed-forward size 3, 072 and attention heads 12, while ViT-L/16 with
24 layers, 1, 024 embedding size, 4, 096 feed-forward size and 16 attention heads. We only conduct
the fine-tuning stage experiments on CIFAR-100 and ImageNet. Note that the ImageNet results
are computed without additional techniques (Polyak averaging and 512 resolution images) used to
achieve results in [4]. During fine-tuning, the dropout values are 0.1 for both models. Fine-tuning is
on 8 GEFORCE RTX 3090 GPU cards.

B Theoretical Discussion of R-Drop

In this section, we provide the proof for Proposition 2.1 in the main paper and make some discussions.

Proposition B.1. For a linear model Pw(y|x) = softmax(Norm(wTx)) where Norm(·) denotes the
normalization layer and x ∈ Rd, with the constraint in Equation (6) in the main paper, we have
|Lnll(w)− Eξ[Lnll(w, ξ)]| ≤ c

√
ε, where Lnll(w),Lnll(w, ξ) are the empirical loss calculated by

the full model and a random sub model respectively, c is a constant related to the Liptschtz constant
of the softmax operator.

10https://github.com/jeonsworld/ViT-pytorch
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Figure 2: Results of R-Drop and Transformer with a doubled batch size.

Proof: Here, the normalization operator normalize the row of the weight matrix w to be 1. According
to the Lipschitz continuity of the loss, we have

|Lnll(w)− Eξ[Lnll(w, ξ)]| ≤ c1 ·
1

n

n∑
i=1

Eξ‖wTxi −
1

p
· (wTxi)� ξ‖ (3)

= c1 ·
1

n

n∑
i=1

(1− p)‖wTxi‖ (4)

where c1 is the Lipshitz constant.
According to the condition 1

n

∑n
i=1 Eξ(1),ξ(2) [DKL(Pwξ(1)(yi|xi)||P

w
ξ(2)

(yi|xi)))] ≤ ε , we have

1

2n

n∑
i=1

Eξ(1),ξ(2)‖Pwξ(1)(yi|xi)− P
w
ξ(2)(yi|xi))‖1 ≤

√
ε

2
, (5)

because the relation between the KL-divergence and the total variation distance. Since we constrain
the norm of w, for fixed x, the softmax operator is a bijection from wTx to softmax

(
wTx

)
. Suppose

c2 is the Lipschitz constant of the inverse function from softmax
(
wTx

)
to wTx, we have

1

2n

n∑
i=1

Eξ(1),ξ(2)
∥∥1
p
· wTxi � ξ1 −

1

p
· wTxi � ξ2

∥∥ ≤ c2√ ε

2
(6)

For the left term in Eq.(5), we have 1
2np

∑n
i=1 Eξ(1),ξ(2)

∥∥wTxi � ξ1 − wTxi � ξ2
∥∥ =

1−p
n

∑n
i=1 ‖wTxi‖, because ξ(1), ξ(2) independently follow Bernoulli distribution. Then we have

1
n

∑n
i=1 ‖wTxi‖ ≤

c2
1−p
√

ε
2 . Combined with Eq.(4), we have

|Lnll(w)− Eξ[Lnll(w, ξ)]| ≤ c1c2
√
ε

2
(7)

Let c =
√

1
2c1c2, we can get the result.

C More Studies

C.1 Batch Size Doubled Training

As discussed in Section 2.2, we implement the algorithm by repeating input data x once and
concatenating the x with repeated one in the same mini-batch to forward once. This is similar to
enlarging the batch size to be double at each step. The difference is that half of the data are the
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Minutes 10min 30min 60min 90min 150min 200min 300min

Baseline 27.14 33.62 34.18 34.54 - - -
R-Drop 16.06 31.56 33.61 34.91 35.74 36.13 36.39

Table 3: Comparison Baseline and R-Drop (reduced half-batch training) BLEU score along with
training time on IWSLT14 De→En translation.

Model Acc (CIFAR-100) BLEU (IWSLT14 De→En)

Baseline 77.1 34.78
FD [16] 77.6 35.04
R-Drop 78.13 37.25

Table 4: Comparison of Baseline, FD and R-Drop on IWSLT14 De→En and CIFAR-100 tasks.

same as the other half, while directly doubling the batch size, the data in the same mini-batch are
all different. Therefore, we are still interested in the result of directly doubling the batch size to
see the performance. We conduct experiments on IWSLT14 De→En translation with Transformer,
and the batch size is enlarged from 4, 096 to be 8, 192. The result is 34.93 BLEU score. We can
see that though slight improvement is achieved (compared to baseline 34.64), it falls far behind our
strong performance 37.25. For the detailed training cost for each step, we present the number here:
Transformer + Double Batch costs near 9ms per step, while Transformer + DR costs about 10ms
per step. The additional cost is from the KL-divergence loss backward computation. We can see
the cost is 1.1 times, which is a negligible cost. We also plot the valid BLEU curves along with
the training for this study. The curves are shown in Figure 2. Compared to this batch size doubled
training and our R-Drop, we can clearly see the advantage of R-Drop. With similar training costs,
R-Drop gradually improves the performance to a much stronger one. In the figures, we also plot the
curve for Transformer with the original batch size training (e.g., 4, 096) for a better comparison.

C.2 Importance of KL-Divergence

Our method introduces a KL-divergence between the two distributions from the same sample. In this
study, we specifically investigate the importance of KL-divergence loss. Thus, this ablation removes
the LKL loss between the two distributions and only keeps the LNLL loss for training. Similar to
other studies, we work on IWSLT14 De→En translation, and the model is Transformer. The result
is also 34.93 BLEU score (same as above enlarged batch size), which is slightly better than the
Transformer baseline (34.64), but far worse from our R-Drop based training result 37.25 BLEU score.
This result well demonstrates the importance and effectiveness of our introduced KL-divergence loss.

C.3 Training Time and Efficiency

To fairly compare the training time between baseline and R-Drop model for the same batch size, We
reduce the batch size for the R-Drop model and provide the BLEU score along with training time
on IWSLT14 De→En translation tasks, which is shown in Table 3. From the table, we can see that
though R-Drop needs more training to converge, the final model is much better than the baseline. We
can see that the time cost is comparable for reduced half-batch training when reaching the BLEU
score equal to the baseline.

C.4 Experiments for ELD and FD

To give a better understanding of the advantages of R-Drop over hidden space regularization, we also
conduct experimental studies. Since FD [16] has shown its advantage over ELD [8], we mainly present
experimental comparisons between FD and R-Drop. The experiments are image classification on the
cifar-10 dataset (used in FD work) and IWSLT14 De→En Translation (used in R-Drop work). The
cifar10 experiments are conducted on the released code11, and we add R-Drop regularization as our
implementation. For the image classification task, the R-Drop model hyper-parameter α needs to re-
duce linearly with the learning rate implemented by torch.optim.lr_scheduler.MultiStepLR.

11https://github.com/akamaster/pytorch_resnet_cifar10
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The IWSLT experiments are on our released code, and we implement the FD same as its released
code. From Table 4, we can clearly see that R-Drop is superior to FD on both tasks, which can prove
the advantages of the KL-divergence consistency regularization.

C.5 Ensemble and Weight Averaging

Model Settings
Model Number 1 2 3 4 5 6

Transformer full-model deep ensembling 34.78 36.06 36.37 36.59 36.80 36.92
Transformer full-model weight averaging (model) 34.78 0 0 0 0 0
Transformer full-model weight averaging (checkpoint) 34.78 35.00 35.21 35.26 35.29 35.44
R-Drop full-model weight averaging (checkpoint) 37.25 37.22 37.27 37.30 37.22 37.31

Table 5: Comparison of BLEU scores achieved by model deep ensembling or weight averaging with
different model (trained with different random seed) and epoch checkpoint (trained with same seed).

We also compare our R-Drop based training with deep ensembling and weight average methods. (1)
Deep ensembling usually utilizes multiple models with different parameters, which incurs additional
inference costs, including both numbers of model parameters and inference time. (2) Parameter/weight
averaging directly averages the multiple model parameters, and it can only be useful when the
parameters are not far away from each other. In contrast, R-Drop aims to make sub models consistent
within dropout-based training. It is simple yet effective by adding a consistent regularization loss
without any other modifications. The model parameters are not increased, and the inference cost is
the same as a single model. We train several independent models with different parameters (each
with dropout) and then do deep ensembling, weight averaging on these full models. The results
are show in Table 5 . Obviously, R-Drop achieves great performance with a single full model (e.g.,
37.25), much better than weight averaging and deep ensembling. Ensemble methods improve the
independently trained full models, but the best result is still from R-Drop (at least with 6 models
ensembling here). Weight averaging can improve the performance of the base dropout model by
averaging nearby checkpoints with the same random seed, but the improvement is relatively small
compared with R-Drop. Besides, the weights average obtains an extremely low result for different
random seeds trained models (BLEU=0) due to the far difference of model parameters.
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