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SUPPLEMENTARY MATERIAL FOR POINT CLOUD
SELF-SUPERVISED LEARNING VIA 3D TO MULTI-VIEW
MASKED LEARNER
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Method ScanObjectNN (Uy et al., 2019b) ModelNet40 (Wu et al., 2015)

OBJ-BG OBJ-ONLY PB-T50-RS w/o Vote w/ Vote

I2P-MAE (Zhang et al., 2023) 94.15 91.57 90.11 93.7 94.1

Ours (I2P-MAE) 95.72 (↑ 1.57) 94.28 (2.71 ↑) 91.36 (1.25 ↑) 94.0 (0.3 ↑) 94.3 (0.2 ↑)

ReCon (Qi et al., 2023) 95.18 93.63 90.63 94.1 94.5
Ours (ReCon) 96.03 (↑ 0.85) 95.32 (1.69 ↑) 92.06 (1.43 ↑) 94.3 (0.2 ↑) 94.7 (0.2 ↑)

Table 1: Experiment results of apply our method on I2P-MAE and ReCon. Shape classification
performance on ScanObjectNN and ModelNet40, measured by accuracy (%).

A COMPARISON AND COMPATIBLE WITH MODELS TRAINED VIA
FOUNDATION MODELS

Comparison with I2P-MAE (Zhang et al., 2023), ReCon (Qi et al., 2023), and ShapeLLM (Qi
et al., 2025).

I2P-MAE, ReCon, and ShapeLLM focus primarily on two types of features: 3D geometric fea-
tures and semantic/textual representations. They employ MAE-based structures to reconstruct the
original point clouds, thereby capturing detailed 3D geometric data. Additionally, they utilize tech-
niques such as contrastive learning or knowledge distillation to extract semantic and textual features
from 2D images and language models. These methods directly adopt existing 3D MAE frame-
works—specifically, I2P-MAE utilizes Point-M2AE, while ReCon and ShapeLLM leverage Point-
MAE for geometric representation—and their innovation lies in the novel use of foundation models
for knowledge distillation.

I2P-MAE performs pixel-to-3D token knowledge distillation by adding additional layers after the
M2AE encoder, calculating MSE loss between the point tokens and 2D pixel-level features derived
from foundation models. ReCon uses Point-MAE as the base structure to reconstruct original point
clouds from masked point cloud inputs, while also incorporating instance-level contrastive learning
to distill knowledge from both text and image foundation models. ShapeLLM builds upon ReCon
by using larger models with more parameters, leveraging large language models to enable advanced
3D reasoning. In contrast, our approach focuses on advancing geometric learning in 3D self-
supervised learning (SSL), emphasizing the use of the inherent multi-view attributes in point cloud
data to enhance geometric understanding, solely within the 3D modality. Due to the fundamental
differences in goals and methodologies, a direct comparison with I2P-MAE and ReCon would not
provide a fair evaluation.

Compatible with I2P-MAE (Zhang et al., 2023) and ReCon (Qi et al., 2023). While I2P-MAE
and ReCon primarily focus on leveraging foundation models for knowledge distillation, our method
centers on advancing 3D geometric learning. To demonstrate the generality of our approach, we
integrate it into both I2P-MAE and ReCon, enhancing their ability to capture 3D geometric infor-
mation. Specifically, we incorporate our proposed 3D-to-multi-view projection into the original
encoder of I2P-MAE and ReCon and introduce the MSMH module to enable the reconstruction of
multi-view images solely from 3D input. Experimental results indicate that our approach improves
the performance of these foundation model distillation methods. We attribute this improvement to
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the fact that foundation models like CLIP are primarily trained to capture semantic information but
lack a deep understanding of 3D geometric structures. In contrast, our method leverages the inherent
multi-modality of point cloud data to enhance geometric understanding, making it complementary
to foundation models and improving 3D representation learning.

B COMPARISON WITH 3D GEOMETRIC LEARNING SSL METHODS

Our work focuses on 3D geometric learning without leveraging foundation models, similar to meth-
ods like Point-M2AE (Zhang et al., 2022), Point-GPT (Chen et al., 2024), Pi-MAE (Chen et al.,
2023), Joint-MAE (Guo et al., 2023), and TAP (Wang et al., 2023), which aim to learn pure 3D
geometric representations without relying on knowledge distillation from foundation models. Exist-
ing MAE-based 3D geometric learning methods generally follow two modification directions: (1)
Encoder structure modification, as seen in methods like Point-M2AE and Point-GPT, and (2) In-
corporating 2D information into the reconstruction process, as done by Pi-MAE, Joint-MAE, and
TAP.

Our work follows the second direction but addresses significant limitations in existing methods
that leverage 2D information for 3D geometric learning. Specifically, approaches like Pi-MAE,
Joint-MAE, and TAP do not fully exploit the multi-view properties of 3D point clouds and their
inherently multi-modal attributes. For example, a point cloud can be directly projected into multi-
view images using pose information. Incorporating masked 2D images as input, as done by Pi-MAE
and Joint-MAE during the MAE training process, is unnecessary and potentially detrimental, as it
can cause the network to over-rely on visible 2D information to predict masked content rather than
developing a comprehensive understanding of multi-view geometry, ultimately degrading the quality
of learned 3D representations. Moreover, TAP uses a pre-trained VAE to reconstruct 2D images
from 3D inputs but fails to effectively leverage multi-view information. In contrast, our method
introduces a unified approach that uses masked point clouds to reconstruct both multi-view 2D
images and the original point clouds, ensuring a more comprehensive understanding of 3D geometry
while effectively utilizing the multi-view attributes of 3D data. Furthermore, we propose MSMH
decoder to better global and local features and a two-stage self-training method to learn well-aligned
representations. It is worth to mention that during the fine-tuning and inference stages, we remove
additional components, such as the projection layers and MSMH decoder, maintaining the same
architecture as Point-MAE to ensure a fair comparison.

C ADDITIONAL ABLATION STUDY

The Effectiveness of Poses Pool Size. The pose pool size represents the total number of poses
that can be leveraged in our 3D to multi-view MAE method. The ablation study detailed in Table 2
investigates the impact of varying the number of views in the network on 3D object classification per-
formance, using the ScanObjectNN dataset. The study examines a range of views: 3, 6, 12, 24, and
36 to understand how they affect classification accuracy. The results reveal a notable trend: as the
number of views increases, there’s generally an improvement in classification accuracy, achieving
the best performance at 12 views. Beyond this optimal point, however, the performance decreases
with the increase of projected views. This pattern indicates that while increasing the number of
views contributes positively to the network’s understanding and representation of 3D objects, there
is a point beyond which additional views do not yield further benefits. This is because too many
views introduce the redundancy of view-specific information, leading to a slight decrease in the
network’s efficiency.

Effectiveness of Image Type. In the ablation study presented in Table 4 , we analyze two commonly
used image types for 3D understanding: rendered images and depth images. The results indicate that
using depth images yields the best performance, which aligns with findings from previous work,
such as Joint-MAE.

The Effectiveness of Network Reconstructed View Numbers. Our method enhances multi-view
understanding by randomly selecting several view poses from the pose pool mentioned above, en-
abling the model to reconstruct corresponding multiple projected depth images. This ablation study
focuses on finding the optimal number of reconstructed views for enhancing 3D representation learn-
ing in the ScanObjectNN (Uy et al., 2019b) dataset. We examined the impact of the number of re-
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# Pose Pool Size PB-T50-RS
3 87.17
6 88.29

12 88.93
24 88.54
36 87.76

Table 2: Ablation study for the number of
pose pool size on the 3D object classification
tasks in ScanObjectNN dataset.

# Recon View Size PB-T50-RS
1 87.05
2 88.41
3 88.93
4 88.12
5 87.58

Table 3: Ablation study for the number of
reconstructed views on the 3D object classi-
fication task in ScanObjectNN dataset.

Image Type PB-T50-RS
Depth Image 88.93

Rendered Image 88.12

Table 4: Ablation study for the image type on
the 3D object classification tasks in ScanOb-
jectNN dataset.

View Configuration PB-T50-RS
Circular 88.93
Spheric 87.97

Spheric & Circular 88.35
Random 87.41

Table 5: Ablation study for the view configuration
of the depth images on the 3D object classification
tasks in ScanObjectNN dataset.

constructed views from one to five on classification performance in PB-T50-RS setting. According
to the results in Table 3, accuracy consistently increases with the number of views, peaking at 3
views. Beyond this point, however, the trend indicates a decrease in performance. This suggests
that multiple reconstructed views enhance the network’s understanding of multi-view information.
However, too many reconstructed views will make the length of the input sequences processed by
the decoder very large, thus impacting the network’s learning efficiency and capacity.

The Effectiveness of View Configurations. In the ablation study shown in Table 5, different view
configurations of depth images for our method in 3D representation learning are analyzed using
the ScanObjectNN dataset. The most common view configurations for depth image projection are
circular which alignes viewpoints on a circle around the object (Su et al., 2015; Yu et al., 2018)
and spherical which alignes equally spaced viewpoints on a sphere surrounding the object (Wei
et al., 2020; Kanezaki et al., 2018). We test Circular, Spheric, a combination of both, and Random
configurations. The Circular configuration proves most effective, achieving the highest accuracies
of 88.93 in PB-T50-R, likely due to its comprehensive coverage and consistent viewing angles.
The Spheric configuration, while offering a broad perspective, falls slightly short in comparison.
Combining Spheric and Circular views improves performance but does not outperform the Circular
configuration alone. The Random configuration shows the least effectiveness. This study highlights
the Circular view configuration’s superiority in providing a balanced and thorough representation of
3D objects, essential for better representation learning.

The Effectiveness of Pose Type. The ablation study detailed in Table 6 critically examines the
influence of pose type on the accuracy of 3D object classification within the ScanObjectNN dataset.
It delves into two distinct pose types: Index and Camera Matrix, assessing their effectiveness in
PB-T50-R setting of the ScanObjectNN dataset. The Index pose type employs fixed indexes to
denote specific pose views, whereas the Camera Matrix approach directly inputs the camera matrix
into the pose encoding process to derive pose embeddings. Notably, both pose types demonstrate
commendable performance, with the Index slightly surpassing the Camera Matrix. This marginal
difference underscores the robustness of the classification method to variations in pose type input,
suggesting a flexible adaptability to different pose representation strategies in 3D representation
learning.

The Effectiveness of Reconstruction Type. In this research, we leverage the student branch to
reconstruct the representations of masked tokens based on guidance from the teacher branch. Our
ablation study, presented in Table 7, meticulously evaluates the influence of various reconstruction
(Rec) methodologies on the 3D object classification accuracy using the ScanObjectNN dataset. This
study differentiates between three reconstruction types: ’Masked Only’, ’Full’, and ’Visible Only’.
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Pose Type PB-T50-RS
Index 88.93

Camera Matrix 88.33

Table 6: Ablation study for the pose type on the
3D object classification tasks in ScanObjectNN
dataset.

Rec Type PB-T50-RS
Masked Only 88.93

Full 88.41
Visible Only 87.74

Table 7: Ablation study for the feature recon-
struction type on the 3D object classification
tasks in ScanObjectNN dataset.

The findings indicate that focusing on reconstructing only the masked features yields the most fa-
vorable outcomes. In contrast, the approach of reconstructing only the visible features, similar to the
previous state-of-the-art method I2P-MAE, results in the least effective performance. These results
underscore the effectiveness of our proposed method in more accurately aligning the latent spaces
of the teacher and student models and the better ability to fully utilize the multi-view information.

Masking Ratio PB-T50-RS
0.6 88.02
0.65 88.46
0.7 88.93
0.75 88.15
0.8 87.62

Table 8: Ablation study for the masking
ratio on the 3D object classification tasks
in ScanObjectNN dataset.

The Effectiveness of Masking Ratio. The ablation
study outlined in Table 8 evaluates the effect of dif-
ferent masking ratios on 3D representation learning
in the ScanObjectNN dataset. Five masking ratios
are tested: 0.6, 0.65, 0.7, 0.75, and 0.8, assessing
their impact on performance in PB-T50-RS setting
in the ScanObjectNN dataset. The results indicate a
clear pattern. As the masking ratio decreases from
0.6 to 0.7, classification accuracy consistently im-
proves. The best performance is observed at a mask-
ing ratio of 0.7, with accuracies reaching 88.93%.
However, reducing the masking ratio further to 0.8
results in a slight decrease in accuracy. These findings suggest that an optimal masking ratio exists,
where a balance is struck between challenging the network sufficiently to learn robust features and
retaining enough information for accurate classification. Too much masking may obscure critical
details, while too little may not provide enough complexity for effective learning.

D ADDITIONAL EXPERIMENTS

D.1 PART SEGMENTATION

As shown in Table 9, we report mean IoU (mIoU) for all instances, with IoU for each category. Our
method achieves the best performance in all categories.

D.2 LINEAR SVM RESULT

To evaluate the transfer capacity, we directly utilize the features extracted by I2P-MAE’s encoder for
linear SVM on the synthetic ModelNet40 (Wu et al., 2015) without any fine-tuning or voting. The
results on ModelNet40 are shown in Table 10. It shows that our RECON outperforms the last SOTA
method I2P-MAE (Zhang et al., 2023) by 0.3% even without using pre-trained foundation models.
This improvement in SVM classification performance underscores the efficacy of our approach in
learning superior quality 3D representations and highlights the value of the inherent multi-view
property of 3D data.

E VISUALIZATION

For the second-stage design, our method focuses on feature reconstruction. Therefore, visualizing
the reconstruction across the entire two-stage process poses significant challenges. To address this,
we provide visualization results by directly integrating MAE into the stage-one framework, as de-
tailed in Table 7 of the main paper. The visualization results are presented in Fig. 1, where each row
illustrates the input point clouds, masked point clouds, reconstructed point clouds, projected depth
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Figure 1: Visualization of 3D to multi-view masked autoencoder (Stage 1 with MAE). Our method
not only can reconstruct point clouds from masked input but also generate multi-view depth images.

Method mIoUC mIoUI aero bag cap car chair e-phone guitar knife lamp laptop motorbike mug pistol rocket skateboard table
PointNet Qi et al. (2017a) 80.39 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ Qi et al. (2017b) 81.85 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
Transformer Yu et al. (2021) 83.42 85.1 82.9 85.4 87.7 78.8 90.5 80.8 91.1 87.7 85.3 95.6 73.9 94.9 83.5 61.2 74.9 80.6
Point-BERT Yu et al. (2021) 84.11 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9 85.2 95.6 75.6 94.6 84.7 63.4 76.3 81.5
Point-MAE (Pang et al., 2022) 84.19 86.1 84.3 85.0 88.3 80.5 91.3 78.5 92.1 87.4 86.1 96.1 75.2 94.6 84.7 63.5 77.1 82.4
Ours 85.66 86.9 85.1 86.0 89.3 82.7 91.4 80.5 93.4 88.7 87.4 96.8 77.1 96.1 86.3 68.8 78.5 82.4

Table 9: Part segmentation on ShapeNetPart (Yi et al., 2016). We report mean IoU for all instances
mIoU (%), with IoU (%) for each category.

images, and reconstructed images, respectively. Our method demonstrates the ability to not only
reconstruct point clouds from masked inputs but also generate multiview depth images, highlighting
its capability to effectively capture the intrinsic multi-modal information of point clouds.

F DATASETS

In our experiments, we use several datasets, including ShapeNet (Chang et al., 2015), Model-
Net40 (Wu et al., 2015), ScanObjectNN (Uy et al., 2019b), ShapeNetPart dataset (Yi et al., 2016),
and ScanNetV2 dataset (Dai et al., 2017). The ShapeNet (Chang et al., 2015) comprises about
51, 300 clean 3D models covering 55 common object categories. The widely adopted Model-
Net40 (Wu et al., 2015) consists of synthetic 3D shapes of 40 categories, of which 9, 843 samples are
for training and the other 2, 468 are for validation. The challenging ScanObjectNN (Uy et al., 2019a)
contains 11, 416 training and 2, 882 validation point clouds of 15 categories, which are captured
from the noisy real-world scenes and thus have domain gaps with the pre-trained ShapeNet (Chang
et al., 2015) dataset. ScanObjectNN is divided into three splits for evaluation, OBJ-BG, OBJ-ONLY,
and PB-T50-RS, where PB-T50-RS is the most difficult for recognition. ShapeNetPart (Yi et al.,
2016) is a widely used dataset for semantic segmentation of 3D point clouds, which consists of
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Method ModelNet40

Transformer + OcCo (Yu et al., 2021) 89.6
Point-BERT (Yu et al., 2021) 87.4
Point-MAE (Pang et al., 2022) 91.0
Joint-MAE (Guo et al., 2023) 92.4
Point-M2AE (Zhang et al., 2022) 92.9
I2P-MAE (Zhang et al., 2023) 93.4
Ours + Point-MAE 93.1
Ours + Point-M2AE 93.7

Table 10: Linear SVM Classification on ModelNet40 (Wu et al., 2015). We compare the accuracy
(%) of existing self-supervised methods.

16, 881 models across 16 categories, including objects such as chairs, tables, lamps, and airplanes.
The ScanNet (Dai et al., 2017) is an indoor scene dataset consisting of 1, 513 reconstructed meshes,
among which 1, 201 are training samples and 312 are validation samples.

G PSEUDO-CODE FOR MULTI-SCALE ATTENTION

Implementation details of Multi-Scale Attention mechanism are shown in the algorithm 1.

Algorithm 1 Multi-Scale Attention Mechanism

1: function SCALEATTENTION(Q,K, V, scalei)
2: b, n, c← shape(Q) ▷ Get dimensions
3: Q← Q.reshape(−1, scalei, c)
4: K ← K.reshape(−1, scalei, c)
5: V ← V.reshape(−1, scalei, c) ▷ Partition inputs into scales
6: X ← softmax

(
Q·KT
√
c

)
· V ▷ Compute self-attention

7: X ← X.reshape(−1, n, c) ▷ Reshape results
8: return X
9: end function
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