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Abstract

Causal discovery from observational data is a challenging task that can only be solved up
to a set of equivalent solutions, called an equivalence class. Such classes, which are often large
in size, encode uncertainties about the orientation of some edges in the causal graph. In this
work, we propose a new set of assumptions that constrain possible causal relationships based
on the nature of variables, thus circumscribing the equivalence class. Namely, we introduce
typed directed acyclic graphs, in which variable types are used to determine the validity of
causal relationships. We demonstrate, both theoretically and empirically, that the proposed
assumptions can result in significant gains in the identification of the causal graph. We also
propose causal discovery algorithms that make use of these assumptions and demonstrate
their benefits on simulated and pseudo-real data.

Keywords: causal discovery, structure learning, identification, background knowledge

1. Introduction

Can the temperature of a city alter its altitude (Peters et al., 2017)? Can a light bulb change
the state of a switch? Can the brakes of a car be activated by their indicator light (de Haan
et al., 2019)? Chances are, you did not need to think very hard to answer these questions,
since you intuitively understand the implausibility of causal relationships between certain
types of entities. This form of prior knowledge has been shown to play a key role in causal
reasoning (Griffiths et al., 2011; Schulz and Gopnik, 2004; Gopnik and Sobel, 2000). In fact,
in the absence of evidence (e.g., data), humans tend to reason inductively and use domain
knowledge to generalize known causal relationships to new, similar, entities (Kemp et al., 2010).

Nonetheless, the elucidation of causal relationships often goes beyond human intuition. The
abundance of large-scale scientific endeavors to understand the causes of diseases (1KGP, 2010)
or natural phenomena (Runge et al., 2019) are good examples. In such cases, computational
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methods for causal discovery may help reveal causal relationships based on patterns of associ-
ation in data (see Heinze-Deml et al. (2018) for a review). The most common setting consists
of representing causal relationships as a directed acyclic graph where vertices correspond to
variables of interest and edges indicate causal relationships. Additional assumptions, like the
faithfulness condition, are then made to enable reasoning about graph structures based on
conditional independences in the data. While these enable data-driven causal discovery, the
underlying causal graph can only be identified up to its Markov equivalence class (Peters et al.,
2017), which can often be very large (He et al., 2015) thus leaving many edges unoriented.

Inspired by how humans use types to reason about causal relationships, this work explores
how prior knowledge about the nature of the variables can help reduce the size of such equiv-
alence classes. Building on the theoretical foundations of causal discovery in directed acyclic
graphs, we propose a new theoretical framework for the case where variables are labeled by
a type. Such types can be attributed based on prior knowledge, e.g., via a domain expert. We
then make assumptions on how types can interact with each other, which constrains the space
of possible graphs and leads to reduced equivalence classes. We show, both theoretically and
empirically, that when such assumptions hold in the data, significant gains in the identification
of causal relationships can be made.

Contributions:

• We propose a new theoretical framework for causal discovery where possible causal
relationships are constrained based on the type of variables (Section 4).

• We prove theoretical results that guarantee the orientation of all inter-type edges and, in
certain conditions, the convergence of the equivalence class to a singleton (identification),
when the number of vertices tends to infinity and the number of types is fixed (Section 5).

• We present simple algorithms to incorporate our type-based assumptions in causal
discovery, along with theoretical results that guarantee their consistency (Section 6).

• We present an empirical study that illustrates the benefits of our proposed algorithms
over a baseline that does not consider variable types (Section 7).

2. Problem formulation

Causal graphical models. In this work, we adopt the framework of causal graphical models
(CGM) (Peters et al., 2017). Let X = (X1, . . . , Xd) be a random vector with distribution PX .
LetG = (V,E) be a directed acyclic graph (DAG) with vertices V = {v1, . . . , vd}. Each vertex
vi ∈ V is associated to variable Xi and a directed edge (vi, vj) ∈ E represents a direct causal
relationship from Xi to Xj . We assume that PX can be factorized according to G, that is,

p(x1, . . . , xd) =
d∏
i=1

p(xi | paGi ),

where paGi denotes the parents ofXi inG.1 From this graph, it is possible to estimate quantities
of causal nature (e.g., via do-calculus (Pearl, 1995)). However, in many situations, the structure
of G is unknown and must be inferred from data.

1. This is a slight abuse of language. Here, we mean the parents of vertex vi in G.
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Causal discovery. The task of causal discovery consists of learning the structure of G
based on observations from PX . Some assumptions are required to make this possible. By
adopting the CGM framework, we assume: (i) causal sufficiency, which states there is no
unobserved variable that causes more than one variable in X and (ii) the causal Markov
property, which states that Xi |= GXj | Z =⇒ Xi |= PX

Xj | Z, where Z is a set composed
of variables in X, Xi |= GXj | Z indicates that Xi and Xj are d-separated by Z in G, and
Xi |= PX

Xj | Z indicates that Xi and Xj are independent conditioned on Z. Additionally,
we assume (iii) faithfulness, which states that Xi |= PX

Xj | Z =⇒ Xi |= GXj | Z. Hence,
conditional independences in the data can be used to learn about the structure of G.

Equivalence classes. Even with these assumptions,G can only be recovered up to a Markov
equivalence class (MEC) (Peters et al., 2017), which is the set of all the DAGs that encode
exactly the same conditional independences as G. The MEC is often characterized graphically
using an essential graph or Completed Partially Directed Acyclic Graph (CPDAG), which
corresponds to the union of all Markov equivalent DAGs (Andersson et al., 1997). While two
DAGs are Markov equivalent if and only if they have the same skeleton and v-structures (also
called immoralities) (Verma and Pearl, 1990), the CPDAG can contain other oriented edges,
resulting from constraints such as not creating cycles or additional v-structures.2 In some
cases, e.g., for sparse graphs, the size of the MEC can be huge (He and Yu, 2016; He et al.,
2015), significantly limiting inference about the direction of edges in G. Hence, it is a problem
of key importance to find new realistic assumptions to shrink the equivalence class.

There have been a wealth of approaches to alleviate this problem. For instance, some have
made progress by including data collected under intervention (Hauser and Bühlmann, 2012),
making assumptions about the functional form of causal relationships (Peters et al., 2014;
Shimizu et al., 2006) or including background knowledge on the direction of edges (Meek,
1995). In this work, we propose an alternative approach, based on background knowledge,
where types are attributed to variables and the interaction between types is constrained.

3. Related work

The inclusion of background knowledge in causal discovery aims to reduce the size of the solution
space by adding or ruling out causal relationships based on expert knowledge. Several forms of
background knowledge have been proposed, which place various levels of burden on the expert.
Below, we outline those most relevant to our work (see Constantinou et al. (2021) for a review).

Hard background knowledge. This type of background knowledge is “hard” in the sense
that it must be respected in the inferred graph structures. Previous works have considered: sets
of forbidden and known edges (Meek, 1995), a known ordering of the variables (Cooper and
Herskovits, 1992), partial orderings of the variables (Andrews, 2020; Scheines et al., 1998), and
ancestral constraints (Li and Beek, 2018; Chen et al., 2016). Among these, partial orderings
(or tiered background knowledge) are the most similar to our contribution. In this setting, it is
assumed that an expert partitions the variables into sets called tiers, and orders the tiers such
that variables in a later tier cannot cause variables in an earlier tier. In contrast, while we
require an expert to partition variables into sets (by type), we do not assume that an ordering
is known a priori (see Appendix E.1 for examples).

2. For our terminology related to graphs, we refer the reader to the Appendix A of Andersson et al. (1997).

3



Brouillard Taslakian Lacoste Lachapelle Drouin

t-edge orientations

a

cb

a)

c2

a1

c1b1

c2

a1

c1b1

b) Consistent t-DAG c) Inconsistent t-DAG

tt

t

Figure 1: (a) Representation of t-edges orientations, where colors represent the different
types ta, tb, and tc. Representation of a t-DAG that is consistent and follows the
orientation of the t-edges in (a). (c) Representation of a t-DAG that is not consistent:
the red dotted edge vc2 → vb1 is not consistent with vb1 → vc1 (Definition 3).

Soft background knowledge. A setting similar to ours, where the type of each variable
dictates its possible causal relationships, is presented by Mansinghka et al. (2012). They
propose a Bayesian method to use this prior knowledge in causal discovery. Their work shows
the benefits of such priors, but does not investigate this space of graphs and their properties
w.r.t. to structure identifiability.

Grouping variables. Parviainen and Kaski (2017) explore a setting similar to ours, where
variables representing different “views” on the same entity are aggregated into groups. The
authors address the problem of learning causal relationships between groups of variables,
which they represent as group DAGs. Our work is conceptually different. First, variables of a
given type could correspond to different entities that are similar, rather than multiple views
on a common entity. Second, our focus is different: their goal is to recover a group DAG, while
ours is to make assumptions that facilitate the identification of the causal graph in the variable
space. Note, however, that their strong group causality assumption leads to graphs that are a
subset of the consistent t-DAGs that we will present.

Interestingly, several recent works applying causal discovery to real-world problems rely
on expert knowledge that is compatible with our proposed framework. For example, in their
work on Alzheimer’s disease, Shen et al. (2020) claim that “edges from biomarkers or diagnosis
to demographic variables are prohibited” and that “edges among demographic variables are
prohibited”, clearly reasoning about relationships between types of variables. Similarly, the
work of Flores et al. (2011) outlines an application of tiered background knowledge in a medical
case study. Converting this setting to ours simply involves considering each tier as a variable
type. Hence, the typing assumptions that we propose in this work, and the associated theoretical
results, constitute a way of incorporating expert knowledge that is applicable in practice.

4. Typed directed acyclic graphs

Our work builds on two fundamental structures: typed directed acyclic graphs (t-DAG), which
are essentially DAGs with typed vertices; and t-edges, which are sets of edges relating vertices
of distinct types. Formal definitions follow.
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Definition 1 (t-DAG) A t-DAG DT with k types is a DAG D := (V,E) augmented with
a mapping T : V → T such that the type of vi ∈ V is T (vi) = tj ∈ T , where |T | = k.

Definition 2 (t-edge) A t-edge E(ti, tj) is the set of edges that goes from a vertex of type ti
to a vertex of type tj. More formally, E(ti, tj) = {(vk, vl) ∈ E | T (vk) = ti, T (vl) = tj} for
any pair of types ti, tj ∈ T , s.t., ti 6= tj.

For example, the graphs illustrated in Fig. 1 (b) and (c) are t-DAGs where colors represent
types and the set E(ta, tc) = {(va1 , vc1), (va1 , vc2)} is a t-edge between types ta and tc.

3

4.1. Assumptions on type interactions

We now introduce a new assumption: type consistency, which constrains the possible causal
relationships that may arise between typed variables. Put simply, this assumption states that
causal relationships between two types of variables can only arise in one common direction.4

Definition 3 (Consistent t-DAG) A consistent t-DAG is a t-DAG where, for every pair
of distinct types ti, tj, if t-edge E(ti, tj) 6= ∅ then we have that E(tj , ti) = ∅. We refer to this

structural constraint as type consistency. For conciseness, ti
t−→ tj denotes E(ti, tj) 6= ∅.

In Fig. 1 (b), we present an example of a consistent t-DAG. In contrast, the t-DAG shown
in Fig. 1 (c) is not consistent: the t-edge E(tc, tb) (purple to white) contains the edge (vc2 , vb1),
while the reverse t-edge, E(tb, tc), is not empty since it contains (vb1 , vc1). Notice how the
orientation of all t-edges (Fig. 1 (a)) fully determines the orientation of edges between variables
of distinct types in a consistent t-DAG.

Note that alternative assumptions could have been considered. For instance, we could have
assumed that t-edges form a DAG (i.e., the types have a partial ordering). However, the assump-
tions considered here are less restrictive and, as we demonstrate later, lead to interesting results.

4.2. Equivalence classes for consistent t-DAGs

We define the equivalence classes MEC and t-MEC as the set of DAGs and the set of consistent
t-DAGs that are Markov equivalent, respectively.

Definition 4 (MEC) The MEC of a t-DAG DT is M(DT ) := {D′ | D′ ∼ DT } where “∼”
denotes Markov equivalence.

Definition 5 (t-MEC) The t-MEC of a consistent t-DAG DT is MT (DT ) := {D′T | D′T
t∼

DT } where “
t∼” denotes Markov equivalence limited to consistent t-DAGs with the same type

mapping T .

3. To keep the figures simple and readable, throughout the paper we label the vertices of the t-DAGs with
the subscripts of the variables (or types) they represent. For example, vertex ai refers to variable vai and
vertex a refers to type ta.

4. See Appendix E.2 for a discussion of variations and relaxations of this typing assumption.
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Figure 2: (a) The two-type fork structure. In this illustration, the vertices va1 and va2 are of
type ta (purple) and vb1 is of type tb (orange). (b) Orientation rule: if this structure
is encountered in an essential graph, it must be oriented in the t-essential graph.

To represent an equivalence class, we can use an essential graph, which corresponds to
the union of equivalent DAGs. The union over graphs is defined as the union of their vertices
and edges: G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2). Also, if (vi, vj), (vj , vi) ∈ E1 ∪ E2, then the edge
is considered to be undirected.

Definition 6 (Essential graph) The essential graph D∗ associated to the consistent t-DAG
DT is

D∗ :=
⋃

D∈M(DT )

D.

Definition 7 (t-Essential graph) The t-essential graph D∗T associated to the consistent
t-DAG DT is

D∗T :=
⋃

D∈MT (DT )

D.

4.3. t-Essential graph properties and size of t-MEC

We consider some statements that can directly be made about t-essential graphs and the size
of t-MEC with respect to their non-typed counterparts. Proofs for the propositions can be
found in Appendix A. First note that for t-DAGs with k types and d vertices, in the limit
cases where each variable belongs to a distinct type (k = d) or all variables belong to a single
type (k = 1), type consistency does not impose structural constraints on t-DAGs, i.e., any
t-DAG is type-consistent and the t-essential graph is identical to the essential graph.

However, in general, the t-essential graph is a version of the essential graph with more
oriented edges, thanks to the type consistency assumption:

Proposition 8 Let D∗T and D∗ be, respectively, the t-essential and essential graphs of an
arbitrary consistent t-DAG DT . Then, DT ⊆ D∗T ⊆ D∗.

Indeed, type consistency synchronizes the orientation of some edges, resulting in a reduced
set of possible orientations. Some structural properties of the graph may also force the
orientation of edges in the t-essential graph. For instance, akin to v-structures in essential
graphs, two-type forks (see Fig. 2) must be oriented in t-essential graphs.

Proposition 9 If a consistent t-DAG DT contains vertices va1 , va2 , vb1 with types T (va1) =
T (va2) = ta, T (vb1) = tb and ta 6= tb, with edges va1 ← vb1 → va2 (va1 , va2 not adjacent), then
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the t-edge tb
t−→ ta is directed in the t-essential graph, i.e., the direction of causation between

types tb and ta is known.

To see this, note that, under type consistency, there are only two possible orientations:
va1 → vb1 ← va2 and va1 ← vb1 → va2 . The first is a v-structure and, thus, must be oriented
in the essential graph. If it is not, there is only one possible alternative orientation. Therefore,
such edges are always oriented in the t-essential graph.

Furthermore, we can upper bound the size of the t-MEC based on the number of undirected
edges in the t-essential graph, as stated in the following proposition.

Proposition 10 (Upper bound on the size of the t-MEC) For any consistent t-DAGDt,
we have |MT (DT )| ≤ 2u

∏
ti∈T 2uti , where u and uti are respectively the number of undirected

t-edges and the number of undirected edges between variables of type ti (intra-type edges) in
the t-essential graph of Dt.

From this bound, we can also directly conclude that if the t-essential graph contains no
undirected edges, then |MT (DT )| = 1. In other words, DT is identified.

5. Identification for random graphs

In this section, we explore the benefits of variable typing in causal graph identification
through the study of a class of graphs generated at random based on a process inspired by
the Erdős-Rényi random graph model (Erdős and Rényi, 1959).

Assume we are given a set of k types t1, . . . , tk, probabilities p1, . . . , pk ∈ (0, 1)k of observing
each type s.t.

∑
pi = 1, and a type interaction matrix A ∈ [0, 1]k×k where each cell (i, j) is

the probability pij that a variable of type ti is a direct cause of a variable of type tj . As per
Definition 3 (type consistency), we impose that ∀i 6= j, if pij > 0, then pji = 0.

Definition 11 (Random sequence of growing t-DAG) We define a random sequence
of t-DAGs (Dn

Tn)∞n=0 with Dn
Tn = (V n, En) and |V n| = n, such that D0

T 0 = (∅, ∅). Each new

t-DAG Dn
Tn in the sequence is obtained from Dn−1

Tn−1 as follows: Create a new vertex vn and sam-
ple its type t from a categorical distribution with probabilities p1, ..., pk. Let V n = V n−1⋃{vn}.
Let Tn(vn) = t and Tn(vj) = Tn−1(vj), ∀vj ∈ V n−1; To obtain En, for every vertex vi ∈ V n−1,
add the edge (vi, vn) to En−1 with probability pTn(vi),Tn(vn).

Our main theorem below states that as we add more vertices to such a growing sequence
of random t-DAGs, we eventually discover the orientation of all t-edges. We defer the proof
to Appendix B.1.

Theorem 12 Let (Dn
Tn)∞n=0 be a random sequence of growing t-DAGs as defined in Defini-

tion 11, let U be the number of unoriented t-edges, and let rij = −1
3 max

[
ln(1− pi), ln

(
1−

pjpij(1− pjj)
)]

. For n ≥ 3, pi, pj ∈ (0, 1), and pij , pjj ∈ [0, 1], we have:

P (U > 0) ≤ 4
∑

i,j : i 6=j,pij>0

e−rijn.
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To give an intuition of the proof, recall Proposition 9, which tells us that any two-type fork
structure must be oriented in the t-essential graph, thereby orienting the associated t-edge.
We thus argue that, as we add more vertices, the probability of observing a two-type fork for
arbitrary type pairs converges to 1. This argument relies on the fact that the number k of
types remains constant throughout as the random t-DAG grows.

From Theorem 12 we can derive a result for the case where variables of the same type do
not interact (pii = 0,∀i). In this case, the t-MEC collapses to a singleton as the graph grows,
resulting in identification of the true t-DAG.

Corollary 13 Let (Dn
Tn)∞n=0 be a random sequence of growing t-DAGs as defined in Defi-

nition 11 and let rij = −1
3 max

[
ln(1 − pi), ln

(
1 − pjpij

)]
. For n ≥ 3, pi, pj ∈ (0, 1), and

pij ∈ [0, 1], the size of the t-MEC converges to 1 exponentially fast:

P (|MT (Dn
Tn)| > 1) ≤ 4

∑
i,j : i 6=j,pij>0

e−rijn.

5.1. Empirical validation

We conduct an empirical study to validate these theoretical results and further compare the
size of the MEC and t-MEC for the case where pii > 0. As such, we consider t-DAGs of various
sizes, randomly generated according to the process described in Definition 11. Let k be the
number of types in the t-DAG. We attribute uniform probability to each type, i.e., pi = 1/k,
∀i ∈ {1, ..., k}. The type interaction matrix A is defined as follows. For each pair of types
(ti, tj), s.t., i 6= j, the direction of the t-edge is sampled randomly with uniform probability

and we use a fixed probability of interaction pinter. For example, if the direction ti
t−→ tj is

sampled, then Aij = pinter and Aji = 0. Furthermore, for each type ti, we attribute a fixed
probability pintra for the occurrence of edges between variables of type ti.

Fig. 3 shows results for t-DAGs with n = {10 . . . 100} vertices, k = 10 types, pinter = 0.2,
and various values for pintra (see Appendix B.2 for additional results). In Fig. 3(a), we clearly see
that as, the number of vertices grows, the number of unoriented t-edges tends to zero irrespective
of the value of pintra, supporting the statement of Theorem 12. Furthermore, Fig. 3(b) clearly
shows that for the case where pintra = 0, the size of the t-MEC tends to 1 (identification) as
the number of vertices grows, supporting the statement of Corollary 13. In sharp contrast,
the size of the MEC grows with the number of vertices. Finally, Fig. 3(c) shows that the size
of the t-MEC can be much smaller than that of the MEC, even when the t-DAG contains
intra-type edges (pintra > 0), for which we do not have orientation guarantees. Interestingly,
this also holds when the t-DAGs are dominated by intra-type edges (e.g., pintra = 0.5).

It remains an open question to formally quantify the size of the t-MEC vs. the MEC when
the graphs contain intra-type edges. The results in Fig. 3(c) suggests that their ratio may
be bounded by a quantity that depends on pintra.

6. Causal discovery algorithms for t-essential graphs

Causal discovery algorithms, such as the PC algorithm (Spirtes et al., 2000), are typically
consistent w.r.t. the MEC. That is, given infinite samples from the observational distribution
entailed by a causal graph, they are guaranteed to recover its essential graph. Given that
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Figure 3: (a) Number of unoriented t-edges w.r.t. the number of vertices (b) Size of the MEC
and the t-MEC w.r.t. the number of vertices when pintra = 0 (c) Ratio of the size
of t-MEC and the size of MEC w.r.t. the number of vertices.

the t-MEC is often a small subset of the MEC, it is desirable to find algorithms that can
consistently recover t-essential graphs. In this section, we present such algorithms.

6.1. From essential to t-essential graph

Given an essential graph, one can recover the t-essential graph by enumerating all Markov
equivalent consistent t-DAGs and taking their union. We propose a slightly more efficient
approach that propagates t-edge orientations based on the Meek (1995) orientation rules:

Algorithm 1: t-Propagation(G,T )

1. Enforce type consistency: If there exists an oriented edge between any pair of variables

with types ti, tj ∈ T in G, assume ti
t−→ tj and orient all edges between these types.

2. Apply the Meek (1995) orientation rules R1-R4 (see their Section 2.1.2) to propagate
the edge orientations derived in Step (1).

3. Repeat from Step (1) until the graph is unchanged.

4. Enumerate all t-DAGs that can be produced by orienting edges in the resulting graph.
Reject any inconsistent t-DAGs and take the union of all remaining t-DAGs to obtain
the t-essential graph (see Definition 7).

If G is a graph with the same skeleton, v-structures, and type mapping T as the t-essential
graph D∗T , then Algorithm 1 is guaranteed to recover the corresponding t-essential graph
MT (DT ) (see Appendix C.1).

Thus, Algorithm 1 can be used in conjunction with any MEC-consistent causal discovery
algorithm to obtain one that is t-MEC-consistent. However, one major caveat is that, for finite
sample sizes, the output of the MEC-consistent algorithm may violate type consistency and
cause an irrecuperable failure of t-Propagation (impossibility of orienting t-edges consistently).
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Another limitation of this algorithm is its non-polynomial time complexity due to the
enumeration in Step (4). Without it, the algorithm would be sound, i.e., it would not orient
edges that are unoriented in the t-essential graph, but not complete, i.e. some edges that
should be oriented in the t-essential graph would remain unoriented. To see this, consider the
two-type fork illustrated in Fig. 2(a). The essential graph for this t-DAG would be completely
undirected since it contains no v-structures. This would result in a case where none of the
Meek (1995) rules are applicable and thus, Step (2) would not orient any edges. The algorithm
would therefore stop and return a fully undirected graph. However, according to Proposition 9,
the two-type fork should have been oriented.

Nevertheless, even with an additional rule to orient such structures in Step (2) (as illustrated
in Fig. 2(b)), the algorithm would not be complete without Step (4). In Appendix C.1.2, we show
more complex counterexamples (non-local and involving multiple t-edges). It thus remains an
open question whether it is possible to design a polynomial-time algorithm to find the t-essential
graph, as Meek (1995) and Andersson et al. (1997) did for essential graphs. Note, however,
that the non-polynomial time complexity was found to be non-prohibitive in our experiments.

6.2. Typed variants of the PC algorithm

The previous algorithm suffices to achieve consistency w.r.t. the t-MEC, but it may fail to
produce type-consistent outputs when used with finite sample sizes. Here, we show that it
is possible to modify the PC algorithm (Spirtes et al., 2000) to obtain a t-MEC-consistent
algorithm that always produces type-consistent outputs.

Recall how the PC algorithm works; it proceeds in three phases: 1) infer the graph’s
skeleton using conditional independence tests5, 2) orient all v-structures in the skeleton, 3)
apply the Meek (1995) rules to orient as many edges as possible given the edges oriented in
Phase (2). To ensure type-consistent outputs, it suffices to modify Phases (2) and (3) to ensure
that, when applicable, we orient whole t-edges instead of single edges.

For Phase (3), the modification is simple: replace the usual procedure by t-Propagation
(Algorithm 1). For Phase (2), one must deal with errors that may arise when applying
conditional independence tests to samples of finite size. Indeed, it is possible to observe edges
from the same t-edge involved in both v-structures and two-type forks (see Fig. 2), suggesting
multiple orientations when only one is possible. We consider two simple strategies for dealing
with such ambiguities that we outline below. These lead to two Typed-PC (TPC) algorithms
that are both t-MEC-consistent, but differ in their empirical performance, as we show in
Section 7. Pseudo-codes and proofs of consistency are given in Appendix C.2.

• TPC-naive: Use the first encountered structure (v-structure or two-type fork) to orient
each t-edge. Naturally, this naive strategy is error-prone.

• TPC-majority: We know that only one orientation is possible for t-edges. Hence, look
at each structure that would trigger an orientation (v-structures and two-type forks)
and choose the orientation based on the most frequent type of structure.

5. The conditional independence test must be chosen based on the nature of the data. We use FIT (Chalupka
et al., 2018), since it is non-parametric and applies to both continuous and discrete data.

10
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Figure 4: Results on simulated data shown as improvement in SHD w.r.t. the PC baseline
(lower is better). The title of each subplot indicates the (pinter, pintra) configuration.

7. Experiments

We conduct causal structure learning experiments6 to compare the performance of our proposed
t-MEC-consistent algorithms with that of a baseline which does not make use of variable
types. The t-MEC-consistent algorithms are: TPC-naive and TPC-majority (Section 6.2)
and PC (Spirtes et al., 2000) augmented with t-Propagation (Section 6.1). The baseline is the
classical PC algorithm. The methods are compared in terms of Structural Hamming Distance
(SHD) between their output and the ground-truth t-essential graph (see Appendix D.2 for
details). We base the comparison on synthetic and pseudo-real datasets.

Synthetic data. We consider graphs randomly generated according to Section 5.1 with 20
vertices and 5 types.7 The probabilities of connection pinter and pintra vary in {(0.2, 0), (0.4,
0), (0.3, 0.1), (0.2, 0.2)}. The (0.2, 0) configuration results in sparse graphs with no intra-type
edges. The others configurations lead to denser graphs with similar densities, but which differ
in the abundance of intra-type edges. For each type of graph, we explore multiple parametric
forms for the causal relationships: linear, nonlinear additive noise model (ANM) (Bühlmann
et al., 2014), and nonlinear non-additive model using neural networks (NN) (Kalainathan
et al., 2018). Finally, for each type of graph and parametric form, we generate 50 different
consistent t-DAGs and draw 10k samples from their observational distribution.

Pseudo-real data. We consider the following Bayesian networks from the Bayesian Network
Repository (number of variables in parentheses): sachs (11), child (20), insurance (27),
alarm (37), hailfinder (56), win95pts (76). For each network, the conditional probabilities
are fitted to real-world data sets, enabling the generation of pseudo-real data. To assign types
to variables, we randomly partition their topological ordering into groups of expected size 5
(see Appendix D.1.2). We consider 50 random type assignments and for each, we sample 50k
observations from the Bayesian network.

6. Implementations of the algorithms and code for the experiments are available at
https://github.com/ElementAI/typed-dag.

7. See Appendix D.3 for additional results.
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Figure 5: Results on pseudo-real data shown as improvement in SHD w.r.t. the PC baseline
(lower is better). The title of each subplot indicates the underlying network.

Results. The results reported in Figs. 4 and 5 show the improvement in SHD w.r.t. PC. As
expected, all t-MEC-consistent algorithms generally outperform this type-agnostic baseline,
achieving lower SHD w.r.t. the t-essential graph. The PC + t-Propagation method sometimes
underperforms compared to the TPC algorithms, mainly because it fails to produce a type-
consistent output8 (49% of the time). Finally, as expected, TPC-majority tends to yield better
or equal performance compared to TPC-naive, since it is less vulnerable to errors in t-edge
orientations that may arise at Phase (2) of the algorithm (see Section 6.2).

8. Discussion

In this work, we address an important problem in causal discovery: the fact that it is often
impossible to identify the causal graph precisely, due to the size of its Markov equivalence class.
This is particularly true for sparse graphs, where the size of the MEC grows super-exponentially
with the number of vertices (He et al., 2015). Our theoretical and empirical results clearly
demonstrate that there exist conditions under which our variable-typing assumptions greatly
shrink the size of the equivalence class. Hence, when such assumptions hold in the data, gains
in identification are to be expected. We also propose methods to recover the t-essential graph
from data and, using several synthetic and pseudo-real data sets, show that these perform
better than their type-agnostic counterparts.

We note that the new assumptions that we introduce can be used in conjunction with other
strategies to shrink the size of equivalence classes, such as considering interventions (Hauser
and Bühlmann, 2012), hard background knowledge on the presence/absence of edges (Meek,
1995), or functional-form assumptions (Peters et al., 2014; Shimizu et al., 2006).

While this work focuses on causal discovery, it would be interesting to explore the impli-
cations of our theoretical framework for causal inference, i.e., the estimation of causal effects.
For instance, the small size of t-MECs in comparison to MECs could improve the accuracy
of methods that estimate causal effects based on equivalence classes, such as the IDA variant
of Perkovic et al. (2017). Also, Anand et al. (2022) recently proposed a method to estimate
causal effects in graphs where clusters of variables have unknown relationships. This may
prove particularly useful to estimate causal effects based on t-essential graphs with oriented
t-edges, but unoriented intra-type edges, since these could be treated as clusters.

8. In this case, it simply returns the output of PC.

12
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In addition, we believe that this work may stimulate new advances at the intersection of ma-
chine learning and causality (Schölkopf et al., 2021; Schölkopf, 2019). In fact, machine learning
algorithms excel at classification, and thus it may be interesting to explore a setting where the
variable types are learned based on some variable features. Type assignments could be learned
in parallel with causal discovery using recent methods for differentiable causal discovery (Brouil-
lard et al., 2020; Zheng et al., 2018). This may further reduce the burden on human experts
in cases where types are hard to assign. As an example, consider the task of learning causal
models of gene regulatory networks. One could train a model to assign types to genes, based
on features of their DNA sequence or their categorization in the gene ontology (Gene Ontology
Consortium, 2004), in a process where types are assigned such as to help causal discovery.

Another interesting future direction would be to use our typing assumptions to perform
causal discovery on multiple graphs at once, i.e., multi-task causal discovery. In fact, assume
that we are given data for multiple groups of variables that correspond to disjoint systems
(no interactions across groups), but that share similar types. It would be possible to use type
consistency (Definition 3) to propagate t-edge orientations across graphs.

In conclusion, our type consistency assumption can result in significant gains in identifica-
tion that can readily be leveraged by modified versions of common causal discovery algorithms.
We believe that assumptions based on types are truly important since, in addition to facilitating
causal discovery, they are likely to be a key component of causal reasoning in intelligent agents.
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Inferring causation from time series in earth system sciences. Nature communications, 10
(1):1–13, 2019.

Richard Scheines, Peter Spirtes, Clark Glymour, Christopher Meek, and Thomas Richardson.
The tetrad project: Constraint based aids to causal model specification. Multivariate
Behavioral Research, 33(1):65–117, 1998.

Bernhard Schölkopf. Causality for machine learning. arXiv preprint arXiv:1911.10500, 2019.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings
of the IEEE, 109(5):612–634, 2021.

15



Brouillard Taslakian Lacoste Lachapelle Drouin

Laura E Schulz and Alison Gopnik. Causal learning across domains. Developmental psychology,
40(2):162, 2004.

Xinpeng Shen, Sisi Ma, Prashanthi Vemuri, and Gyorgy Simon. Challenges and opportunities
with causal discovery algorithms: application to alzheimer’s pathophysiology. Scientific
reports, 10(1):1–12, 2020.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-gaussian
acyclic model for causal discovery. Journal of Machine Learning Research, 7(Oct):
2003–2030, 2006.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation,
prediction, and search. MIT press, 2000.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-climbing
bayesian network structure learning algorithm. Machine learning, 65(1):31–78, 2006.

Tom S Verma and Judea Pearl. On the equivalence of causal models. arXiv preprint
arXiv:1304.1108, 1990.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Dags with NO TEARS:
continuous optimization for structure learning. In Advances in Neural Information
Processing Systems 31, pages 9492–9503, 2018.

16



Typing assumptions improve identification in causal discovery

Appendix A. Proof of propositions

Proposition 8 Let D∗T and D∗ be, respectively, the t-essential and essential graphs of an
arbitrary consistent t-DAG DT . Then, DT ⊆ D∗T ⊆ D∗.

Proof It is clear that DT ⊆ D∗T and DT ⊆ D∗ since D∗T and D∗ are obtained by undirecting
edges from DT . Also, since enforcing type consistency can only orient more edges in D∗, we
have that D∗T ⊆ D∗.

Proposition 9 If a consistent t-DAG DT contains vertices va1 , va2 , vb1 with types T (va1) =
T (va2) = ta, T (vb1) = tb and ta 6= tb, with edges va1 ← vb1 → va2 (va1 , va2 not adjacent), then

the t-edge tb
t−→ ta is directed in the t-essential graph, i.e., the direction of causation between

types tb and ta is known.

Proof To prove the statement we show that among all possible orientations tb
t−→ ta, tb

t←− ta,
and tb

t
– ta of the t-edge, the last two are not valid.

For the sake of contradiction, assume tb
t←− ta is directed in the t-essential graph of DT .

This means that there exists a consistent t-DAG D1, having t-edge tb
t←− ta, that is Markov

equivalent to DT . Recall that two graphs are Markov equivalent if and only if they have the

same skeleton and the same v-structures (Verma and Pearl, 1990). Given that tb
t←− ta, then

D1 has the structure va1 → vb1 ← va2 , which forms a v-structure. But since DT does not
contain this v-structure, this contradicts the fact that D1 is Markov equivalent to DT .

Now, suppose that tb
t
– ta is not directed in the t-essential graph of DT . This means that

there exist two consistent t-DAGs D1 and D2 that are Markov equivalent to DT , having the

t-edge orientations tb
t←− ta and tb

t−→ ta, respectively. As per the argument in the previous
case, the existence of D1 leads to a contradiction.

Therefore, the only possible orientation for t-edge between the types ta and tb is tb
t−→ ta.

Proposition 10 For any consistent t-DAG DT , we have |MT (DT )| ≤ 2u
∏
ti∈T 2uti , where u

and uti are respectively the number of undirected t-edges and the number of undirected edges
between variables of type ti (intra-type edges) in the t-essential graph of DT .

Proof A t-essential graph is the union of consistent t-DAGs. First, note that for edges
between variables of different types, we do not have to consider every edge of a consistent
t-DAG independently since, by consistency, we have that all the edges included in a t-edge of
DT will always take the same orientation. Thus, if a t-edge is undirected in D∗T , it means that
there exists at least one consistent t-DAG in MT (DT ) for each orientation of the t-edge. Since
each of the u undirected t-edges can take on two directions, there are 2u possible combinations.
For edges between variables of the same type ti, we have the same upper bound 2uti where
uti is the number of undirected edges between variables of type ti. The total of possible
combinations is the product of these bounds: 2u

∏
ti∈T 2uti . Note that this is only an upper

bound — some of these orientations are not part of the equivalence class, since they create
either a cycle or new v-structures not present in DT .
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Appendix B. Identification results for random graphs

B.1. Proof of Convergence

Theorem 12 Let (Dn
Tn)∞n=0 be a random sequence of growing t-DAGs as defined in Defini-

tion 11, let U be the number of unoriented t-edges, and let rij = −1
3 max

[
ln(1− pi), ln

(
1−

pjpij(1− pjj)
)]

. For n ≥ 3, pi, pj ∈ (0, 1), and pij , pjj ∈ [0, 1], we have:

P (U > 0) ≤ 4
∑

i,j : i 6=j,pij>0

e−rijn.

Proof To prove the theorem, we leverage Proposition 9, which states that a t-edge from type
ti to type tj is oriented when we observe a two-type fork structure. Hence, we upper-bound
with an exponential function the probability of not observing such an event as n grows (see
Fig. 6). Without loss of generality, we assume that a vertex of type ti causes a vertex of type tj .

a

c

b

A

X

B

C

n/3

n/3

n/3

Figure 6: Sketch of the proof. We upper-bound the probability of not observing this
two-type fork. The colors correspond to types.

Event AAA Let A be the event of observing at least 1 node of type ti in the first m = n/3
nodes. Using α = 1− pi as the probability of not sampling a node of type i when we sample
a new node, we have:

P (A = 1 | m) = 1− αm. (1)

If event A occurs, we define va as the first vertex of type ti.

Event BBB Assuming that event A occurred, we define B as the event of having at least 1
vertex of type tj caused by va during the sampling of the m = n/3 nodes that follow. For every
new vertex, pj · pij represents the probability of this new node being of type tj and connecting
to vertex va. Using β = 1− pj · pij as the inverse of such probability, we have:

P (B = 1 | A = 1,m) = 1− βm. (2)

If B occurs, we define vb as the first vertex of type tj connecting to va.
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EventCCC Finally, assuming eventA andB occurred, we define event C as the event of having
at least 1 vertex of type tj caused by va and not connecting to vb, during the sampling of the
last m = n/3 vertices. For every new vertex, pj · pij · (1− pjj) represents the probability of
this new vertex satisfying these conditions. Using γ = 1 − pj · pij · (1 − pjj) as the inverse
of this probability, we have:

P (C = 1 | A = 1, B = 1,m) = 1− γm. (3)

Let Fij be the event of orienting the t-edge E(ti, tj). We thus have:

p(Fij | n) ≥ P (A = 1, B = 1, C = 1 | n)

= P (A = 1 | m)P (B = 1 | A = 1,m)P (C = 1 | A = 1, B = 1,m)

= (1− αm)(1− βm)(1− γm)

= 1− αm − βm − γm − αmβmγm+αmβm + αmγm + βmγm

≥ 1− αm − βm − γm − αmβmγm

The first inequality arises from the fact that many events could lead to t-edges orientation,
but we focus only on a subset of them as a sufficient condition. In the last inequality, we drop
positive terms to simplify the proof.

To show the convergence rate, we upper-bound the inverse of the probability of event Fij
with an exponential function. Since n ≥ 3, m ≥ 1, β ≤ γ, and α, β, γ ∈ (0, 1), we have:

1− p(Fij | n) ≤ αm + βm + γm + αmβmγm

= em lnα + em lnβ + em ln γ + em ln(αβγ)

≤ 4em ln[max(α,β,γ,αβγ)]

= 4em ln[max(α,γ)] (4)

= 4e−n·rij (5)

Using the union bound for all t-edges, we conclude the proof. We note that the bound is
vacuous for small n, but converges to zero exponentially fast.

B.2. Additional empirical results

For the case where pintra = 0, we performed additional experiments to understand how the
size of MECs and t-MECs compare w.r.t. different parameters. The t-DAGs that we consider
are randomly generated according to the process described at Definition 11. Unless otherwise
specified , the number of vertices is 50, the number of types is 10, and the probability pinter is 0.2.

In Figs. 7(a), 7(b) and 7(c), the size of the equivalence classes are compared with respect
to the number of vertices, the number of types, and the density, respectively. All boxplots
are calculated over 100 random consistent t-DAGs.

First, in Fig. 7(a) we see that as the number of vertices increases (and the number of types
remains constant), the size of the t-MEC converges to 1, as demonstrated in Section 5. In
contrast, the size of the MEC first increases and then remains near-constant. Notice how the
size of the MEC and the t-MEC are identical when the number of vertices equals the number
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Figure 7: Size of the equivalence classes (MEC and t-MEC) w.r.t.various graph properties.
a) Number of vertices: the t-MEC shrinks with the number of vertices, while the
MEC does not. b) Number of types: The t-MEC grows with the number of types
since fewer constraints are placed on the structure of the graphs. The size of the
MEC is mostly constant. c) Edge density (i.e., probability of connectivity p): The
MEC and t-MEC both shrink as connectivity increases.

of types; this is because type consistency does not constrain the graph structure. Second, in
Fig. 7(b), as the number of types increases, the size of the t-MEC increases. This is expected
because as the number of types approaches the number of vertices, type consistency imposes
fewer structural constraints. Further, notice that the size of the MEC changes with the number
of types, even though it is agnostic to type consistency. This is because t-DAGs with fewer
types (e.g., 2) are more likely to contain v-structures, leading to smaller MECs. Third, in
Fig. 7(c), as the density increases, the size of the MEC and the t-MEC both decrease. This
is in line with the observations of He et al. (2015).

In summary, when pintra = 0, all our experiments indicate that the size of the t-MEC is
smaller or equal to that of the MEC for random t-DAGs. The difference is particularly striking
when the number of types is small and the number of vertices is large. Of particular interest
are the results shown in Fig. 7(a), as they provide empirical evidence for the correctness of
Corollary 13.

Appendix C. Causal discovery algorithms

C.1. t-Propagation

C.1.1. Consistency

Theorem 14 Given any partially oriented DAG G and t-DAG DT that has the type map-
ping T (see Definition 1) with the same skeleton and v-structures, and such that DT ⊆ G,
t-Propagation(G,T ) is guaranteed to return the t-essential graph of DT .

Proof First, note that according to Verma and Pearl (1990), since G and DT have the same
skeleton and v-structures, they are Markov equivalent. Thus, we are sure that Step 4 is by
definition (see Definition 7) sound and complete when applied to G. In order to prove that the
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overall algorithm is sound and complete, we just need to show that the previous steps are sound.
In other words, edges oriented by the three first steps should have the same orientation in DT .

If the enforcement of type consistency (Step 1) were not sound, then it would imply that
some edge is not type consistent in DT , which is a contradiction of the t-DAG consistency.

For the Meek rule (Step 2), we show that every orienting rule (R1, R2, R3 and R4) is
consistent withDT . By contradiction, we suppose that the orientation va → vb given by the rule
is wrong and thus va ← vb ∈ DT . We show that it leads to v-structures not present inG or cycles.

• R1. The pattern vc → va − vb, leads to va → vb. If va ← vb ∈ DT then it would form
the new v-structure vc → va ← vb.

• R2. The pattern va → vc → vb and va − vb, leads to va → vb. If va ← vb ∈ DT then it
would imply a cycle.

• R3. The pattern va − vc → vb, va − vd → vb and va − vb, leads to va → vb. If
va ← vb ∈ DT then it would form the new v-structure vc → va ← vd resulting by
applying R2 twice in order to avoid creating a cycle.

• R4. The pattern va − vd → vc → vb, va − vb and any type of edge between va and vc,
leads to va → vb. If va ← vb ∈ DT then it would form the new v-structure vb → va ← vd
resulting by applying R2 twice in order to avoid creating a cycle.

The step 3 is also sound since it is simply the repetition of step 1 and step 2. Since the
three first steps are sound and the last step is sound and complete, the algorithm is guaranteed
to output the t-essential graph.

C.1.2. Additional counterexamples for completeness without enumeration

In this section, we give two additional examples where the t-propagation algorithm presented
in Section 6.1 would not orient some edges that are oriented in the t-essential graph if the step
4 (enumeration and union) was removed.

Our first example is interesting because it shows that in order to decide the orientation of
a t-edge sometimes several t-edges (possibly not local) have to be considered simultaneously.
The second counterexample shows that looking only for the direct parent or child of a t-edge
is not always sufficient.

The first example is presented in Fig. 8. Note that vertices denoted by the same letter have

the same type. The algorithm orients the t-edge ta
t−→ tc since one of its edges in the t-DAG

is part of an v-structure. All other edges are unoriented because they are not covered by any

rules. However, in the t-essential graph (see Fig. 8 c) the t-edge tb
t−→ tc is oriented. To see

why this is the case, consider the four possible orientations of the t-edges ta
t
– tb and tb

t
– tc

(recall that an orientation cannot create a cycle or a new v-structure):

1. ta
t−→ tb, tb

t−→ tc possible.

2. ta
t−→ tb, tb

t←− tc impossible (creates an v-structure that is not present in the original
t-DAG).
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Figure 8: An example where the algorithm would not orient some edges oriented in the
t-essential graph. In this case, the orientation of the t-edge is forced by the fact
that the reverse orientation would either create a cycle or a new v-structure. (a)
The original t-DAG, (b) the algorithm output (which is supposed to be equal to
the t-essential graph), (c) the ground-truth t-essential graph

t-DAGa) b) Algorithm output c) t-essential graph

a1 a2

b1 b2

a1 a2

b1 b2

a1 a2

b1 b2

Figure 9: A second example where the algorithm would not orient some edges oriented in
the t-essential graph. In this case, the orientation of the t-edge is forced by the
fact that the reverse orientation would create a new v-structure. (a) The original
t-DAG, (b) the algorithm output (which is supposed to be equal to the t-essential
graph), (c) the ground-truth t-essential graph

3. ta
t←− tb, tb

t−→ tc possible.

4. ta
t←− tb, tb

t←− tc impossible (creates a cycle).

In the two configurations that are possible, the t-edge tb
t
– tc is always oriented as tb

t−→ tc.
Thus, this is an essential edge that should have been recovered by the algorithm.

The second example is presented in Fig. 9. The dashed line between va1 and va2 represents
a path that does not contain oriented edges in the t-essential graph. Thus, the t-DAG does not
contain any v-structure. Without loss of generality, let us consider the dashed line as a chain
va1 ← vc1 ← vc2 ← va2 . The algorithm does not orient any t-edges because they are not cov-

ered by any rule. However, in the t-essential graph (see Fig. 9 c) the t-edge ta
t−→ tb is oriented.

Consider the impossible orientation ta
t←− tb. Recall that the t-DAG contains no v-structure.

Thus, let us orient the edges of the chain as va1 ← vc1 ← vc2 ← va2 or va1 → vc1 → vc2 → va2 .
In both cases, a new v-structure is created (respectively, vb1 → va1 ← vc1 and vc2 → va2 ← vb2)

leading to a contradiction. Thus, the t-edge has to be oriented as ta
t−→ tb.
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C.2. Typed-PC

This section gives additional information on the Typed-PC (TPC) algorithms introduced at
Section 6.2. For Phase (1), both algorithms use the same procedure as PC (Spirtes et al., 2000)
to learn the skeleton. The algorithms differ in their behavior at Phase (2). The pseudo-codes
for the Phase (2) of TPC-naive and TPC-majority are given at Algorithm 2 and Algorithm 3,
respectively. For Phase (3), both algorithms use t-Propagation (Algorithm 1). The consis-
tency of these algorithms w.r.t. the t-MEC is demonstrated at Theorem 15 (TPC-naive) and
Theorem 16 (TPC-majority).

The pseudocodes of the algorithms make use of the following auxiliary functions:

• OrientEdge: A method that orients an edge between a pair of variables vi, vj .

• OrientTEdge: A method that orients a t-edge between two types ti, tj .

• Orient: A general orientation method that orients an edge between a pair of variables
vi, vj and, if vi and vj are of distinct types, orients all edges of the corresponding t-edge.
This is used when vi, vj are not necessarily of the same type.

• DisconnectedForks: A method that finds all triplets of vertices (vi, vj , vk) such that
vi − vk − vj is in a graph’s skeleton, but vi − vj is not.

• IsOriented: A method that returns True if there is an oriented edge between vi and vj
and False otherwise.

Algorithm 2: Orient Forks (Naive)

input : G = (V,E): skeleton of t-DAG with type mapping T : V → {t1, ..., tk}
Sij : separating sets s.t., vi |= G vj | Sij for vi, vj ∈ V and Sij ⊂ V

Output: G′, a more oriented version of G
for (vi, vj , vk) ∈ DisconnectedForks(G) do

if k 6∈ Sij then // v-structure

Orient(vi → vk);
Orient(vj → vk);

else if T (vi) = T (vj) 6= T (vk) then // Two-type fork

OrientTEdge(T (vk)
t−→ T (vi));

end

end
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Algorithm 3: Orient Forks (Majority)

input : G = (V,E): skeleton of t-DAG with type mapping T : V → {t1, . . . , tk}
Sij : separating sets s.t., vi |= G vj | Sij for vi, vj ∈ V and Sij ⊂ V

Output: G′, a more oriented version of G

I Step 1: orient all multi-type v-structures and two-type forks
changed← True;
while changed do

// Reinitialize evidence and conditional orientations

Eij ← 0,∀i, j ∈ k × k ; // t-edge orientation evidence counter

Cij ← ∅,∀i, j ∈ k × k ; // Conditional orientations

// Search for t-edge orientation evidence

for (vi, vj , vk) ∈ DisconnectedForks(G) do
if k 6∈ Sij & ¬(IsOriented(vi, vk) & IsOriented(vj , vk)) then // V-structure

// Increment t-edge orientation evidence

if T (vi) 6= T (vk) then E[T (vi), T (vk)] += 1;
if T (vj) 6= T (vk) then E[T (vj), T (vk)] += 1;
// Single-type edges to orient if a t-edge is oriented

if T (vi) = T (vk) then CT (vj),T (vk) = CT (vj),T (vk) ∪ {(vi, vk)} ;

if T (vj) = T (vk) then CT (vi),T (vk) = CT (vi),T (vk) ∪ {(vj , vk)} ;

else if T (vi) = T (vj) 6= T (vk) then // Two-type fork

// Increment t-edge orientation evidence

E[T (vk), T (vi)] += 2;

end

end
if maxE = 0 then changed← False ;
else

// Orient t-edge ti
t−→ tj with max evidence and all edges in Cti,tj

(ti, tj)← argmaxE;

orientTEdge(ti
t−→ tj);

for (vk, vl) ∈ Cti,tj do orientEdge(vk → vl) ;

end

end

I Step 2: orient all single-type v-structures
for (vi, vj , vk) ∈ DisconnectedForks(G) do

if T (vi) = T (vj) = T (vk) & vk 6∈ Sij then // V-structure

OrientEdge(vi → vk);
OrientEdge(vj → vk);

end

end
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Theorem 15 (Consistency of TPC-naive to the t-MEC) Assuming that the causal
Markov property holds, under the faithfulness and causal sufficiency assumptions (see Sec-
tion 2), given a suitable conditional independence test, and in the limit of infinite samples from
the distribution entailed by a t-DAG DT , the TPC-naive algorithm is guaranteed to recover
the t-essential graph D∗T .

Proof
Phase 1. Since we are in the population case, the conditional independence tests will per-

fectly recover conditional independences in the distribution entailed by the underlying t-DAG
DT . Since we assume faithfulness, this translates into the perfect recovery of DT ’s skeleton.

Phase 2. Let the input G of Algorithm 2 be such a perfect skeleton. Also, let the input
Sij be the set of variables that render Xi and Xj conditionally independent in the distribution.
Since Algorithm 2 iterates over all disconnected forks in the skeleton and has access to all
ground-truth Sij , all v-structures and two-type forks will be correctly identified. Their edges
will be oriented correctly in G′ via the Orient or OrientTEdge functions. If such edges are
part of t-edges, the whole t-edge will be oriented in G′. The orientation of such t-edges is
guaranteed to be correct, otherwise, DT would violate type consistency.

Phase 3. We, therefore, have a partially oriented DAG G′, that has the same type
mapping, v-structures, and skeleton as DT . Furthermore, we know that DT ⊆ G′, since the
input at Phase (2) is the true skeleton of DT (fully undirected) and we have shown that all
oriented edges inG′ will be correct w.r.t.DT . Hence, from Theorem 14, we know that applying
t-Propagation to G′ is guaranteed to return D∗T , our desired output.

Theorem 16 (Consistency of TPC-majority to the t-MEC) Assuming that the causal
Markov property holds, under the faithfulness and causal sufficiency assumptions (see Sec-
tion 2), given a suitable conditional independence test, and in the limit of infinite samples from
the distribution entailed by a t-DAG DT , the TPC-majority algorithm is guaranteed to recover
the t-essential graph D∗T .

Proof
Phase 1. Since we are in the population case, the conditional independence tests will per-

fectly recover conditional independences in the distribution entailed by the underlying t-DAG
DT . Since we assume faithfulness, this translates into the perfect recovery of DT ’s skeleton.

Phase 2.

• The input G to Algorithm 3 will be the exact skeleton of DT and the Sij will be the exact
set of variables that render Xi and Xj conditionally independent in the distribution.

• Step 1. Algorithm 3 starts by iterating through all multi-type disconnected forks. Since
the Sij and the skeleton are perfect, all v-structures and two-type forks will be correctly
identified. Notice that, it is impossible that both E[T (vi), T (vk)] and E[T (vk), T (vi)]
are greater than 0 since otherwise, DT would violate type consistency. Hence, all t-edges
involved in a v-structure or a two-type fork will be oriented correctly. Moreover, Al-
gorithm 3 keeps track of any single-type edge that is involved in a v-structure with a
multi-type edge (via Cti,tj ) and orients it correctly. Assigning an alternative orientation
to such edges would contradict the fact that there is a v-structure in the graph, which
we know with certainty.
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• Step 2. The last step of Algorithm 3 iterates through all single-type disconnected forks.
Since the Sij and the skeleton are perfect, all v-structures will be identified correctly
and their edges will be oriented accordingly.

Phase 3. We, therefore, have a partially oriented DAG G′, that has the same type
mapping, v-structures, and skeleton as DT . Furthermore, we know that DT ⊆ G′, since the
input at Phase (2) is the true skeleton of DT (fully undirected) and we have shown that all
oriented edges in G′ will be correct w.r.t. DT . Hence, Theorem 14, we know that applying
t-Propagation to G′ is guaranteed to return D∗T , our desired output.

Appendix D. Experiments

D.1. Data sets

D.1.1. Synthetic data sets

Consistent t-DAGs are generated according to the generative process described in Section 5.1.
From these graphs, data are generated according to the following SCM:

Xj := fj(XpaGj
, Nj), ∀j

For each variable j, the noise variables Nj are mutually independent and sampled from
N (0, σ2j ) ∀j, where σ2j ∼ U [0.01, 0.02]. If the variable is a source, then σ2j ∼ U [1, 2]. The
function fj and the sampling of their parameters is described in details for each type of function:

• The linear data sets are generated following Xj := wTj XpaGj
+Nj where wj is a vector

of |πGj | coefficients each sampled uniformly from [−1,−0.25] ∪ [0.25, 1] (to make sure
there are no w close to 0).

• The additive noise model (ANM) data sets are generated following Xj := fj(XpaGj
) +Nj

where the functions fj are fully connected neural networks with one hidden layer of 10
units and leaky ReLU with a negative slope of 0.25 as nonlinearities. The weights of
each neural network are randomly initialized from N (0, 1).

• The nonlinear with non-additive noise (NN) data sets are generated following Xj :=
fj(XπG

j
, Nj) , where the functions fj are fully connected neural networks with one hidden

layer of 20 units and tanh as nonlinearities. The weights of each neural network are
randomly initialized from N (0, 1).

D.1.2. Pseudo-real data sets

To generate the data, we used the bnlearn Python package (Version 0.4.3) and conditional
probability tables taken from the Bayesian Network Repository (.bif files). For all Bayesian
networks, the graph structure and the conditional probability come from real-world data sets.
Inspired by the method used by Constantinou et al. (2021) to simulate tiered background
knowledge, we assigned types to variables by randomly partitioning the topological ordering
of the DAGs into groups. The size of the groups can vary, but their expected size is fixed. Note
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Figure 10: An example t-DAG for the Insurance Bayesian network with an expected number
of variables per type of 5. The colors indicate the types.

that such types do not necessarily indicate similarity in the nature of the variables, but they
do capture the fact that one variable precedes the other. In Fig. 10 we show an example of
type assignments (expected group size: 5) for the insurance Bayesian network, where each
color represents a type.

D.2. SHD with respect to the ground truth t-essential graph

The Structural Hamming Distance (SHD) (Tsamardinos et al., 2006) is the number of incorrect
edges between two graphs (either superfluous, missing, or reversed edges). In our case, we
compare the output of the algorithms to what is identifiable from the data: the ground-truth
t-essential graph.
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Figure 11: Results on simulated data with 3 types shown as improvement in SHD w.r.t. the
PC baseline (lower is better). The title of each subplot indicates the (pinter, pintra)
configuration.
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Figure 12: Results on pseudo-real data with 3 types shown as improvement in SHD w.r.t.
the PC baseline (lower is better).

D.3. Additional experiments

We report additional experiments with the same settings as the main text, but where t-DAGs
with a different number of vertices and types are considered. We show, in Figs. 11 and 12, results
on simulated and pseudo-real data with 3 types (instead of 5). In Fig. 13 we report the result on
the simulated data with 50 vertices (instead of 20). For each method, 10 repeats were performed.

Overall, the main conclusions remain unchanged. Except for the data set (0.2, 0) where
PC + t-propagation seems to perform particularly well, the results on data sets with 3 types
are similar to the 5-types data sets. For the simulated data with 50 vertices, the difference
with the PC baseline seems accentuated, in line with our theoretical results.

Note that the boxplot whiskers represent Q1− 1.5 · IQR and Q3 + 1.5 · IQR, where Q1
and Q3 are the first and third quartiles and IQR is the interquartile range. Full results are
available in the code repository: https://github.com/ElementAI/typed-dag.

D.4. Hyperparameters

The algorithms compared in this work all have the same hyperparameters. For each algorithm,
we use the FIT (Chalupka et al., 2018) as the conditional independence test with α = 0.01.
We use the default parameters for FIT, as defined in the fcit Python package (Version 1.2.0).
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Figure 13: Results on simulated data with 50 vertices shown as improvement in SHD
w.r.t. the PC baseline (lower is better). The title of each subplot indicates the
(pinter, pintra) configuration.

Appendix E. Notes to practitioners

E.1. Typing variables without full knowledge of causation between types

It is reasonable to assume that experts who are able to attribute types to variables may have some
a priori intuition about how these types are related. For example, Shen et al. (2020) claim that
“edges from biomarkers or diagnosis to demographic variables are prohibited”. Our framework
is compatible with this setting, in which the orientation of some t-edges may be known a priori.
However, our results also hold in the case where such prior knowledge is either unavailable,
incomplete, or unreliable. We give two examples of practical settings where this may arise.

Example 1 - Time-related types with missing information. Consider a setting where
variables are collected over multiple days. This corresponds to a typical tiered background
knowledge setting, where we let tiers correspond to types, i.e., the day on which variables were
measured (e.g., Day 1 variables, . . . , Day n variables). Now, consider the case where the exact
date of measurement for some types is missing (or unreliable), e.g., for privacy consideration.
That is, we know which variables were collected simultaneously, but we do not know when.
While it is not possible to order such types with respect to the others, we know that their
inter-type causal relationships follow the arrow of time and that all variables in a type are
at the same position in time. In contrast with standard tiered background knowledge, our
framework allows for the inclusion of such partial information.

Example 2 - Entities as types. In some use-cases, types could be used to represent distinct
entities, each characterized by multiple measured variables. For example, such entities could be
devices on a network for which telemetry data is available, users in a social network and their be-
havioral characteristics, or machines in a manufacturing production line and their input/output
quantities (akin to Marazopoulou et al. (2016)). In such settings, the nature of the entities is
not necessarily sufficient for an expert to have an intuition about their ordering. For example,
we may know that two sets of variables are from two distinct network devices, but not how these
devices are related within the network topology. When it is reasonable to assume that entities in-
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teract in a directional manner (e.g., producer/consumer, influencer/follower relationships), our
typing assumptions can be applied by grouping the variables of each entity into a distinct type.

E.2. Variations and relaxations of the proposed typing assumption

Here, we briefly touch on two variations of our proposed theoretical framework: 1) the case
where the types of some variables are unknown and 2) the case where type consistency does
not apply to a subset of the variables.

The types of some variables are unknown. This case is adequately covered by our
current theoretical framework. Variables with unknown types should be assigned to a unique
type of which they are the only instance. This ensures that the type consistency assumption
still constrains their interactions with other types. Alternatively, one could think of assigning
all variables with unknown types to a single (common) type. However, this is incorrect, since
it forces all such variables to interact with other types in the same direction.

Type consistency does not apply to some variables. This case requires a minor exten-
sion of our framework, which we have chosen to leave out to avoid complicating the presentation.
One would need to add an “exclusion set” to the definition of t-DAGs (Definition 1), which
would contain vertices (i.e., variables) to which the type consistency assumption would not
be applied in Definition 3. Theorem 12 would still hold in this case, but the statement of
Corollary 13 would need to be restricted to the case where the exclusion set is empty.
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