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Abstract
Online learning of quantum states with the logarithmic loss (LL-OLQS) is a quantum generaliza-
tion of online portfolio selection (OPS), a classic open problem in online learning for over three
decades. This problem also emerges in designing stochastic optimization algorithms for maximum-
likelihood quantum state tomography. Recently, Jézéquel et al. (2022, arXiv:2209.13932) proposed
the VB-FTRL algorithm, the first regret-optimal algorithm for OPS with moderate computational
complexity. In this paper, we generalize VB-FTRL for LL-OLQS. Let d denote the dimension and
T the number of rounds. The generalized algorithm achieves a regret rate of O(d2 log(d+ T ))
for LL-OLQS. Each iteration of the algorithm consists of solving a semidefinite program that can
be implemented in polynomial time by, for example, cutting-plane methods. For comparison, the
best-known regret rate for LL-OLQS is currently O(d2 log T ), achieved by an exponential weight
method. However, no explicit implementation is available for the exponential weight method for
LL-OLQS. To facilitate the generalization, we introduce the notion of VB-convexity. VB-convexity
is a sufficient condition for the volumetric barrier associated with any function to be convex and is
of independent interest.
Keywords: Online learning of quantum states, VB-FTRL, logarithmic regret, volumetric barrier.

1. Introduction

A quantum state is characterized by a density matrix, which is a Hermitian positive semi-definite
matrix with unit trace. Denote by Dd the set of density matrices in Cd×d. Consider the following
sequential game between two strategic players, say Physicist and Reality:

• There are in total T rounds.

• In the t-th round,

1. First, Physicist announces a density matrix ρt ∈ Dd;

2. then, Reality announces a Hermitian positive semi-definite matrix At ∈ Cd×d;
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3. finally, Physicist suffers a loss of value ft(ρt), where the loss function ft is given by
ft(ρ) := − log tr(Atρ).

• The goal of Physicist is to attain a regret that is as small as possible against all possible
strategies of Reality. The regret is given by

RegretT :=
T∑
t=1

ft(ρt)− min
ρ∈Dd

T∑
t=1

ft(ρ).

The game arises in the design of efficient stochastic optimization algorithms for maximum-likelihood
quantum state tomography and approximating the permanents of positive semi-definite matrices
(Lin et al., 2021; Tsai et al., 2024). It is also an instance of the problem of online learning of quan-
tum states proposed by Aaronson et al. (2018, 2019). For convenience, we will refer to the game as
“online learning of quantum states with the logarithmic loss,” abbreviated as LL-OLQS.

In their seminal work, Aaronson et al. (2018, 2019) considered the absolute loss and suggested
studying online learning of quantum states with other loss functions as a direction for future re-
search. Assuming that the loss functions are convex and Lipschitz continuous, existing results in
the literature have demonstrated that standard online convex optimization algorithms and their regret
guarantees readily apply to the problem of online learning of quantum states (Aaronson et al., 2018,
2019; Bansal et al., 2024; Chen et al., 2022; Yang et al., 2020)1. Unfortunately, it is easily verified
that the logarithmic losses in LL-OLQS violate the Lipschitz continuity assumption, so standard
results in online convex optimization (Hazan, 2023; Orabona, 2023) do not directly apply.

To illustrate the challenges of addressing LL-OLQS, consider its classical counterpart, where
all matrices involved share a common eigenbasis. In this case, rather than working directly with the
matrices, it suffices to consider the vectors of their eigenvalues. The set Dd can be replaced with
the probability simplex ∆d in Rd. The outputs of Physicist and Reality can then be replaced with
xt ∈ ∆d and at ∈ [0,+∞)d, respectively. The loss functions become ft(x) := − log ⟨at, xt⟩. As
noted by Lin et al. (2021) and Zimmert et al. (2022), this classical formulation corresponds to the
problem of online portfolio selection.

Designing an online portfolio selection algorithm—optimal in both regret and computational
complexity—has remained a classic open problem for over 30 years. The interested reader is re-
ferred to, for example, the discussions by van Erven et al. (2020) and Jézéquel et al. (2022), along
with the references therein. While the optimal regret for online portfolio selection is known to be
O(d log T ), the sole algorithm known to achieve this optimal regret, Universal Portfolio (Cover,
1991; Cover and Ordentlich, 1996), suffers from a high per-round computational complexity of
O(d4T 13) (Kalai and Vempala, 2002). On the other hand, the lowest per-round computational com-
plexity achievable, which is O(d), is met by several existing algorithms (Helmbold et al., 1998;
Nesterov, 2011; Orseau et al., 2017; Tsai et al., 2023a,b); however, these algorithms do not achieve
logarithmic (in T ) regret rates.

Due to the non-commutativity nature of the quantum setup, LL-OLQS is even more challeng-
ing than online portfolio selection. For LL-OLQS, the optimal regret has remained unclear. The
best-known regret rate for LL-OLQS is O(d2 log T ), achieved using a direct extension of Universal

1. Notice that quantum density matrices are complex; this introduces subtle issues in analyzing online convex opti-
mization algorithms. Most of these works base their novelty primarily on handling complex variables. We show in
Appendix A that such additional efforts are not necessary.
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Portfolio (Zimmert et al., 2022). However, this algorithm requires evaluating a high-dimensional
integral in each round, and no explicit implementation is currently available. The Schrodinger’s
BISONS algorithm achieves a regret rate of O(d3 log2(T )) with a per-round computational com-
plexity of Õ(poly(d)) (Zimmert et al., 2022). The Q-Soft-Bayes and Q-LB-OMD algorithms
achieve a regret rate of Õ(

√
dT ) with a significantly lower per-round computational complexity

of Õ(d3) (Lin et al., 2021; Tsai et al., 2023a). These three trade-offs between regret and compu-
tational efficiency represent the current “regret-efficiency frontier” of existing algorithms. In other
words, achieving a lower regret rate necessitates a higher computational complexity, and vice versa.

Recently, Jézéquel et al. (2022) proposed an efficient and regret-optimal algorithm for OPS,
named VB-FTRL. This algorithm achieves a regret rate of O(d log(d+ T )) with a per-round com-
putational complexity of Õ(d2(T + d)). Compared to the regret-optimal Universal portfolio al-
gorithm, VB-FTRL achieves the same regret rate when T > d but with significantly lower per-
round computational complexity. This prompts the question: Can VB-FTRL be generalized for
LL-OLQS?

In this paper, we prove the following theorem.

Theorem 1 There is an algorithm that achieves a regret rate of O(d2 log(d+ T )) for LL-OLQS.
Each iteration of the algorithm consists of solving a semidefinite program.

Notice that semidefinite programs can be solved in polynomial time by, for example, cutting-
plane methods (Lee and Vempala, 2025, Chapter 3). We provide an implementation of the algorithm
in Appendix F, which uses a cutting-plane method and has a per-round computational complexity
of O(Td8 + d10). Jézéquel et al. (2022) designed a quasi-Newton method to implement VB-FTRL
with a per-round computational complexity of Õ(d2(T + d)), significantly faster than cutting-plane
methods. We leave generalization of the quasi-Newton method for the quantum setup as a future
research direction.

Two challenges emerge in proving Theorem 1. The first challenge is addressing the affine repa-
rameterization step in the regret analyses for both LL-OLQS (Jézéquel et al., 2022) and its classical
counterpart, online portfolio selection (van Erven et al., 2020). The affine reparameterization step
enables one to directly apply existing results for self-concordant functions (Nesterov, 2018). Unfor-
tunately, it does not extend to the quantum setup. We adapt the proof strategy of Tsai et al. (2023b)
to our analysis to bypass the affine reparameterization step.

The second challenge lies in verifying convexity of the volumetric barrier (VB) associated with
the regularized cumulative loss in our algorithm. Jézéquel et al. (2022) accomplished a similar
verification for the classical case. Their explicit calculations, nevertheless, appear to be challenging
in the quantum case. Generalizations of the VB for semidefinite programming, or the quantum
setup from our perspective, have been studied by Nesterov and Nemirovskii (1994) and Anstreicher
(2000), but their assumptions do not hold in our case. To this end, we introduce the notion of
VB-convexity and prove that the VB associated with any VB-convex function is necessarily convex.
Then, we verify that the regularized cumulative loss in our algorithm is actually VB-convex. The
notion of VB-convexity is of independent interest.

We conclude the introduction with a discussion on the optimality of Theorem 1. Unlike in
online portfolio selection, the minimax optimal regret rate for LL-OLQS remains unclear. While
the Universal Portfolio algorithm is known to be regret-optimal for online portfolio selection, to
the best of our knowledge, no optimality guarantee has been proven for the O(d2 log T ) regret rate
achieved by its quantum generalization. Note that there is a gap of d between the regret rate of
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the Universal Portfolio, which is O(d log T ), and that of its quantum generalization. Therefore, the
optimality of the former does not imply the optimality of the latter. We suspect that a regret rate
of O(d2 log T ) is minimax optimal for LL-OLQS. If so, the regret rate of the proposed algorithm,
which will be detailed in Section F, would also be minimax optimal when T > d. Characterizing
the minimax regret rate would be an essential next step following this work.

1.1. Notation

As density matrices are complex, defining notions like ∇f , ∇2f can be tricky. The reader is referred
to Section A for formal definitions and discussions.

For any complex matrix M , we denote its transpose by MT and its conjugate transpose by M∗.
We will use I to represent the identity matrix. Let Hd denote the set of Hermitian matrices in Cd×d.
For any A,B ∈ Hd, we write A ≥ B if the matrix A−B is positive semi-definite. We use A⊗B
to denote the Kronecker product of A and B.

For any matrix M ∈ Hd, we write vec(M) for the vectorization of M , i.e., the vector formed by
stacking the columns of the matrix M on top of one another. For any function φ : Hd ⊆ Cd×d → R,
we write φ : Cd2 → R for the function φ such that φ(M) = φ(vec(M)) for any M ∈ Hd.
Therefore, for example, ∇φ(vec(M)) is a d2-dimensional vector and ∇2φ(vec(M)) is a d2 × d2

matrix. For convenience, we write ∇−2f for the inverse of the Hessian of the function f .
For any vector v ∈ Cd and Hermitian positive definite matrix A ∈ Cd×d, we write ∥v∥A for the

norm defined by A, i.e., ∥v∥A :=
√

⟨v,Av⟩, where ⟨v,Av⟩ = v∗Av and v∗ denotes the conjugate
transpose of v.

2. VB-Convex Functions

The notion of a VB was originally defined with respect to a polytope (Vaidya, 1996). For any
polytope, let LB(x) denote the associated logarithmic barrier; the VB is given by the function
(1/2) log det∇2 LB(x). For convenience of presentation, we will refer to “the VB associated with
a function f(x)” as the function (1/2) log det∇2f(x) and denote it by VBf (x) throughout this
paper.

To motivate the notion of VB-convexity, let us start by reviewing the relevant part in the analysis
of VB-FTRL by Jézéquel et al. (2022) for online portfolio selection. Online portfolio selection is
an online convex optimization problem in which the constraint set is the probability simplex in Rd,
and the loss function for the t-th round is given by − log ⟨at, x⟩, where at are adversarially chosen
entry-wise non-negative vectors. Consider the function

ℓt(x) := −
t∑

τ=1

log ⟨aτ , x⟩ −
d∑

i=1

log x[i],

where x[i] denotes the i-th entry of the vector x; the function is the cumulative loss regularized
by the Burg entropy. As the probability simplex is a (d − 1)-dimensional object, Jézéquel et al.
(2022) introduced an affine transformation A : Rd−1 → Rd and considered the function ℓ̃t(u) :=
ℓt(Au). The regret analysis of VB-FTRL requires the function VBℓ̃t

(u) to be convex. Notice that
the function ℓ̃t is indeed the logarithmic barrier of a (d − 1)-dimensional polytope. The convexity
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of VBℓt(x) immediately follows from the following lemma (Vaidya, 1996) (see also the discussion
by Jézéquel et al. (2022, Lemma C.4) 2.

Lemma 2 (Vaidya (1996, Lemma 3)) Let LB(x) be the logarithmic barrier associated with a full-
dimensional polytope. Then, it holds that Q(x) ≤ ∇2VBLB(x) ≤ 5Q(x) for some positive definite
matrix-valued function Q(x).

A natural generalization of the Burg entropy for density matrices is the negative log-determinant
function

R(ρ) := − log det ρ, ∀ρ ∈ Dd. (1)

Define

Lt(ρ) :=

t∑
τ=1

fτ (ρ) + λR(ρ), ∀t ∈ N,

where fτ (ρ) = − log tr(Aτρ) is the loss function in LL-OLQS. Our analysis will require the con-
vexity of the VB associated with the function Lt; note that we have introduced vectorization here.

Whereas there are generalizations of VB for semi-definite programming, existing results do not
directly apply. Nesterov and Nemirovskii (1994) proved that the VB associated with the function
− log det(A·) is self-concordant for any linear mapping A : Rn → Rd×d under the assumption that
d > n; Anstreicher (2000) proved that the VB associated with the function − log detS(·) is self-
concordant for any affine mapping S(x) :=

∑d2

i=1 x(i)Ai−C : Rd2 → Rd×d under the assumptions
that Ai and C are symmetric matrices. It is easily verified that both assumptions fail for VBR.

To this end, we introduce the notion of VB-convexity. We prove that VBφ is necessarily convex
for any VB-convex function φ; moreover, VB-convexity is closed under addition. Then, we verify
that the negative log-determinant function (1) and the loss functions in LL-OLQS (Section 1) are
indeed VB-convex. These results imply the VB-convexity of the function Lt (recall that Lt(·) =
Lt(vec(·))), which has two implications. First, this implies that the algorithm in Theorem 1 only
needs to solve a convex optimization problem in each iteration, which can be implemented by
cutting-plane methods as described in Appendix F. Second, the convexity of the volumetric barrier
is utilized in Section 3.2.3 to analyze the regret, similarly to what is done in the proof of Jézéquel
et al. (2022) .

2.1. General Theory

Below we present the definition of VB-convexity. It is easily to check that the negative logarithmic
function − log x satisfies the following definition with equality.

Definition 3 (VB-Convexity) Let H be a real Hilbert space. Consider a function φ : H → R such
that φ ∈ C4(domφ). We say that φ is VB-convex if it is strictly convex and

D4φ(x)[u, u, v, v]D2φ(x)[v, v] ≥ 3

2

(
D3φ(x)[u, v, v]

)2
, ∀x ∈ domφ, u, v ∈ H.

2. To be precise, Jézéquel et al. (2022) considered a function that slightly differs from the ℓt(x) defined here. They
considered a version where weights are applied to

∑d
i=1 log x[i]. As a result, additional work is required to adjust

the proof of Vaidya’s lemma. However, the modification is relatively straightforward and it is unnecessary to develop
a new theory such as our VB-convexity.
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Below are two useful properties of VB-convex functions. The first is immediate from the defi-
nition. The proof for the second can be found in Section D.

Lemma 4 VB-convexity is affine invariant. That is, if a function φ(x) is VB-convex, then the
function φ(Ax) is also VB-convex for any affine operator A.

Lemma 5 Let φ1 and φ2 be VB-convex functions and α, β > 0. Then, the function φ := αφ1+βφ2

is also a VB-convex function.

These two properties together with Definition 3 are reminiscent of self-concordant functions (see
Definition 18 and Lemma 20 ). Definition 3 is indeed inspired by the definition of self-concordant
functions. However, we were unable to identify any clear relation between self-concordance and
VB-convexity.

We now proceed to prove the convexity of the VB associated with any VB-convex function
(Corollary 8). The following technical lemma is necessary for its proof, whose proof can be found
in Appendix D.

Lemma 6 Let A, B, and C be d× d Hermitian matrices. Suppose that A is positive semi-definite,
B is positive definite, and

⟨v,Av⟩ ⟨v,Bv⟩ ≥ ⟨v, Cv⟩2 , ∀v ∈ Cd.

Then, it holds that
tr
(
AB−1

)
≥ tr

(
B−1CB−1C

)
.

Theorem 7 Let φ be an VB-convex function. Define the associated volumetric barrier as

VBφ(x) :=
1

2
log det∇2φ(x).

Let Q(x) be a Hermitian positive semi-definite matrix defined via the equality

⟨u,Q(x)u⟩ = 1

2
tr
(
∇−2φ(x)D4φ(x)[u, u]

)
, ∀u ∈ Cd.

Then, it holds that
1

3
Q(x) ≤ ∇2VBφ(x) ≤ Q(x), ∀x ∈ domφ. (2)

Proof Let S(x) be a Hermitian matrix defined via the equality

⟨u, S(x)u⟩ = 1

2
tr
(
∇−2φ(x)D3φ(x)[u]∇−2φ(x)D3φ(x)[u]

)
, ∀u ∈ Hd.

Then, a direct calculation using the chain rule (Lemma 17) gives

DVBφ(x)[u] =
1

2
tr
(
∇−2φ(x)D3φ(x)[u]

)
,

D2VBφ(x)[u, u] = ⟨u,Q(x)u⟩ − ⟨u, S(x)u⟩ .
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We now check the positive definiteness of the matrices Q(x) and S(x) by using the fact that
tr(AB) ≥ 0 for Hermitian positive semi-definite matrices A and B. By Definition 3, the ma-
trix ∇−2φ(x) is positive definite and D4φ(x)[u, u] is positive semi-definite. This implies that
the matrix Q is positive semi-definite. Given the positive definiteness of ∇−2φ(x), the matrix
D3φ(x)[u]∇−2φ(x)D3φ(x)[u] is also positive definite, ensuring that the matrix S(x) is positive
definite.

The right-hand side of the inequality (2) follows from S(x) is positive definite. For the left-hand
side, it suffices to prove that Q(x) ≥ (3/2)S(x), or equivalently,

tr
(
∇−2φ(x)D4φ(x)[u, u]

)
≥ 3

2
tr
(
∇−2φ(x)D3φ(x)[u]∇−2φ(x)D3φ(x)[u]

)
.

Let A = (2/3)D4φ(x)[u, u], B = ∇2φ(x), and C = D3φ(x)[u]. Then, by the definition of
VB-convexity (Definition 3), we have

⟨v,Av⟩ ⟨v,Bv⟩ ≥ ⟨v, Cv⟩2 , ∀v ∈ Cd.

The left-hand side of the inequality (2) follows from Lemma 6.

The following corollary immediately follows since the matrix Q(x) in Theorem 1 is positive
semi-definite.

Corollary 8 The volumetric barrier associated with any VB-convex function is convex.

2.2. VB-Convexity of Lt

We show that the loss functions in LL-OLQS and the negative log-determinant function are both
VB-convex.

Lemma 9 Let ft be the loss functions in the LL-OLQS game (Section 1). Then, the functions f t

are VB-convex.

Proof It is easily verified that φ(x) := − log x is VB-convex. Then, the lemma follows from the
affine invariance of VB-convexity (Lemma 4).

We will use the following lemma to establish the VB-convexity of the log-determinant function
in Lemma 11.

Lemma 10 For any n× n Hermitian matrices A and B, it holds that

tr
(
A2B2

)
≥ tr(ABAB).

Proof Since A and B are Hermitian, the matrices ABA, B, A2, and B2 are Hermitian. Therefore,
both tr(ABAB) and tr

(
A2B2

)
are real numbers. Notice that for any skew-Hermitian matrix M , we

have tr
(
M2
)
= −⟨M,M⟩HS ≤ 0. Taking M = AB − BA, which is obviously skew-Hermitian,

we write
0 ≥ 1

2
tr
(
(AB −BA)2

)
= tr(ABAB)− tr

(
A2B2

)
.
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Lemma 11 Denote by R the negative log-determinant function, i.e., R(ρ) := − log det ρ. Then,
the function R is VB-convex.

Proof We aim to verify the inequality

D4R(vec(ρ))[u, u, v, v]D2R(vec(ρ))[v, v] ≥ 3

2

(
D3R(vec(ρ))[u, v, v]

)2
.

Define U := vec−1(u) and V := vec−1(v). By Lemma 24, we have

D2R(vec(ρ))[v, v] = tr
(
ρ−1V ρ−1V

)
,

D3R(vec(ρ))[u, v, v] = −2 tr
(
ρ−1V ρ−1V ρ−1U

)
,

D4R(vec(ρ))[u, u, v, v] = 4 tr
(
ρ−1Uρ−1Uρ−1V ρ−1V

)
+ 2 tr

(
ρ−1Uρ−1V ρ−1Uρ−1V

)
.

Define N := ρ−1Uρ−1V ρ−1 + ρ−1V ρ−1Uρ−1. Then, we have

tr(NV ) = 2 tr
(
ρ−1V ρ−1V ρ−1U

)
= −D3R(vec(ρ))[u, v, v].

Applying Lemma 10 with A = ρ−1/2Uρ−1/2 and B = ρ−1/2V ρ−1/2, we write

D4R(vec(ρ))[u, u, v, v]

=
[
4 tr

(
ρ−1Uρ−1Uρ−1V ρ−1V

)
+ 2 tr

(
ρ−1Uρ−1V ρ−1Uρ−1V

)]
≥
[
3 tr

(
ρ−1Uρ−1Uρ−1V ρ−1V

)
+ 3 tr

(
ρ−1Uρ−1V ρ−1Uρ−1V

)]
=

3

2
tr (NρNρ) .

By the Cauchy-Schwarz inequality, we write

D4R(vec(ρ))[u, u, v, v]D2R(vec(ρ))[v, v]

=
3

2
tr (NρNρ) tr

(
ρ−1V ρ−1V

)
=

3

2
⟨ρ1/2Nρ1/2, ρ1/2Nρ1/2⟩HS ⟨ρ

−1/2V ρ−1/2, ρ−1/2V ρ−1/2⟩HS

≥ 3

2

(
⟨ρ1/2Nρ1/2, ρ−1/2V ρ−1/2⟩HS

)2
=

3

2
tr(NV )2

=
3

2

(
D3R(vec(ρ))[u, v, v]

)2
.

We conclude this section with the following corollary, which states that the function Lt is VB-
convex, and hence the function − log det∇2Lt(·) is convex.

Corollary 12 The function Lt(ρ) is VB-convex.

Proof Lemma 9 and Lemma 11 establish the VB-convexity of the functions f t and R, respectively.
Since VB-convexity is closed under addition (Lemma 5), the function Lt =

∑t
τ=1 f τ + R is also

VB-convex.
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3. Proof of Theorem 1

3.1. Algorithm

The algorithm we propose is a direct generalization of VB-FTRL (Jézéquel et al., 2022) for LL-
OLQS, except that it gets rid of the affine reparameterization step in VB-FTRL (see Section 3.2.3
for details). Notice that when all matrices involved share a common eigenbasis, our algorithm
specializes to an OPS algorithm. Define R(ρ) := − log det ρ. The algorithm proceeds as follows:

• Let P0(ρ) := λR(ρ) for some λ > 0.

• At the t-th round, the algorithm outputs

ρt ∈ argmin
ρ∈Dd

Pt−1(ρ),

where

Pt(ρ) := Lt(ρ) + µVt(ρ),

Lt(ρ) :=
t∑

τ=1

fτ (ρ) + λR(ρ),

Vt(ρ) :=
1

2
log det∇2Lt(vec(ρ)).

3.2. Regret Analysis

Our goal in this sub-section is to prove the following theorem, which implies Theorem 1.

Theorem 13 The algorithm in the previous sub-section achieves a regret rate of O(d2 log(T + d))
with λ = 300 and µ = 10.

The following regret analysis essentially follows the strategy of Jézéquel et al. (2022). As
discussed in Section 1, two major differences are:

1. We avoid the affine reparametrization step.

2. We establish the convexity of Vt, the VB associated with Lt, via the approach in Section 2.

Notice that P0(ρ) = − log det(ρ) ≥ 0 by definition. We decompose the regret as

RegretT =
T∑
t=1

ft(ρt)− min
ρ∈Dd

T∑
t=1

ft(ρ)

≤
T∑
t=1

(
ft(ρt) + min

ρ∈Dd

Pt−1(ρ)− min
ρ∈Dd

Pt(ρ)

)
− min

ρ∈Dd

T∑
t=1

ft(ρ) + min
ρ∈Dd

PT (ρ)

=
T∑
t=1

(Pt(ρt) + µVt−1(ρt)− µVt(ρt)− Pt(ρt+1))− min
ρ∈Dd

T∑
t=1

ft(ρ) + min
ρ∈Dd

PT (ρ).

9
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Then, we have

RegretT ≤ BiasT +

T∑
t=1

(Gaint +Misst) ,

where

BiasT := min
ρ∈Dd

PT (ρ)− min
ρ∈Dd

T∑
t=1

ft(ρ),

Gaint := µ (Vt−1(ρt)− Vt(ρt)) , and

Misst := Pt(ρt)− Pt(ρt+1).

The term BiasT represents the bias of using the volumetric barrier and the negative log-determinant
function as regularizers. The term Gaint measures the benefit of introducing the volumetric barrier
Vt , which depends on the number of rounds t. The term Misst arises because the algorithm does
not have access to the loss function ft at the t-th round; that is, the algorithm can only follow the
regularized leader rather than be the regularized leader. Define

Ht(ρ) := ∇2Lt(vec(ρ)), πt(ρ) :=
∥∥∇f t(vec(ρ))

∥∥2
[Ht(ρ)]

−1 ,

Ht := Ht(ρt), πt := πt(ρt).

The rest of analysis, to be presented in the following three subsections, consists of three parts.

1. We prove that BiasT = O(d2 log(T + d)).

2. We prove that Gaint ≤ −(µ/2)πt.

3. We prove that Misst ≤ (µ/2)πt.

The three results together imply the regret bound in Theorem 13.

3.2.1. BOUNDING BiasT

We start with the decomposition BiasT = VolBiasT + LogBiasT , where

VolBiasT := min
ρ∈Dd

Pt(ρ)− min
ρ∈Dd

Lt(ρ), LogBiasT := min
ρ∈Dd

Lt(ρ)− min
ρ∈Dd

T∑
t=1

ft(ρ).

Here, VolBiasT and LogBiasT are the biases due to the volumetric barrier and the negative log-
determinant function, respectively.

We first bound VolBiasT . Let ρ⋆T ∈ argminρ∈Dd
LT (ρ). Then, we write

VolBiasT ≤ Pt(ρ
⋆
T )− Lt(ρ

⋆
T )

= µVT (ρ
⋆
T )

=
µ

2
log det∇2Lt(vec(ρ

⋆
T )).

10
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The function Lt is strictly convex so λmax(∇2Lt(vec(ρ
⋆
T ))), the largest eigenvalue of its Hessian,

is strictly positive. We obtain

VolBiasT ≤ µd2

2
log λmax(∇2Lt(vec(ρ

⋆
T ))). (3)

By Lemma 27, Lemma 29 and Lemma 30, we write

∇2Lt(vec(ρ
⋆
T )) =

T∑
t=1

∇2f t(vec(ρ
⋆
T )) + λ∇2R(vec(ρ⋆T ))

≤ (T + λ)∇2R(vec(ρ⋆T ))

= (T + λ)
(
((ρ⋆T )

−1)T ⊗ (ρ⋆T )
−1
)

≤ (T + λd)3

λ2
(I ⊗ I).

Therefore,

VolBiasT ≤ µd2

2
log

(T + λd)3

λ2
= O(d2 log(T + d)). (4)

We then bound LogBiasT . Define

ρ◦T := argmin
ρ∈Dd

T∑
t=1

ft(ρ), [ρ◦T ]α := (1− α)ρ◦ +
α

d
I.

By Lemma 31, we write

LogBiasT = min
ρ∈Dd

Lt(ρ)− min
ρ∈Dd

T∑
t=1

ft(ρ)

≤ Lt([ρ
◦
T ]α)−

T∑
t=1

ft(ρ
◦
T )

= Lt([ρ
◦
T ]α)−

T∑
t=1

ft([ρ
◦
T ]α) +

T∑
t=1

ft([ρ
◦
T ]α)−

T∑
t=1

ft(ρ
◦
T )

≤ λR([ρ◦T ]α) +
α

1− α
T

≤ −λd log
(α
d

)
+

α

1− α
T.

Let α = λd/(T + λd). We obtain

LogBiasT ≤ −λd log

(
λ

T + λd

)
+ λd = O(d log(T + d)). (5)

Combining the two inequalities (4) and (5), we conclude that BiasT = O(d2 log(T + d)).

11
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3.2.2. BOUNDING Gaint

By the fact that det(AB) = det(A) det(B), we write

Gaint = µ (Vt−1(ρt)− Vt(ρt))

=
µ

2

[
log det

(
∇2Lt−1(vec(ρt))

)
− log det

(
∇2Lt(vec(ρt))

)]
=

µ

2

[
log det

(
Ht −∇2f t(vec(ρt))

)
− log det (Ht)

]
=

µ

2
log det

(
I −H

−1/2
t ∇2f t(vec(ρt))H

−1/2
t

)
,

where strict convexity of Lt ensures the existence of H−1/2
t . We can further simplify this represen-

tation of Gaint by observing that

∇2f t(vec(ρt)) =
vec(At)vec(At)

∗

(tr(Atρ))
2 = ∇f t(vec(ρt))∇f t(vec(ρt))

∗. (6)

Therefore, the matrix H
−1/2
t ∇2f t(vec(ρt))H

−1/2
t is single-ranked and has two distinct eigenval-

ues: One eigenvalue is 0 of multiplicity (d2 − 1); the other eigenvalue is

tr
(
H

−1/2
t ∇2f t(vec(ρt))H

−1/2
t

)
= ⟨∇f t(vec(ρt)), H

−1
t ∇f t(vec(ρt))⟩ = πt.

of multiplicity 1. Then, the matrix (I−H
−1/2
t ∇2f t(vec(ρt))H

−1/2
t ) has eigenvalue 1 of multiplic-

ity (d2 − 1) and (1− πt) of multiplicity 1 and hence we obtain

Gaint =
µ

2
log(1− πt).

By Lemma 33 and the fact that log(1− x) ≤ −x for all 0 ≤ x < 1, we obtain

Gaint ≤ −µ

2
πt.

3.2.3. BOUNDING Misst

Define
P t(ρ) := Lt(ρ) + µ

(
Vt(ρt) + ⟨∇V t(vec(ρt), ρ− ρt)⟩

)
.

By Corollary 12, the function Vt is convex. Consequently, P t(ρ) ≤ Pt(ρ), and we have

Misst = Pt(ρt)− Pt(ρt+1) ≤ P t(ρt)− P t(ρt+1),

where we have used the fact that Pt(ρt) = P t(ρt).
The following lemma allows us to bypass the affine reparameterization step in the regret analysis

by Jézéquel et al. (2022). Its proof is analogous to that in Tsai et al. (2023b, Lemma D.1) and is
deferred to Appendix E (Lemma 34).

Lemma 14 It holds that

P t(ρt)− P t(ρt+1) ≤
∥∥∇f t(vec(ρt)) + µ

(
∇V t(vec(ρt))−∇V t−1(vec(ρt))

)∥∥2
H−1

t

if ∥∥∇f t(vec(ρt)) + µ
(
∇V t(vec(ρt))−∇V t−1(vec(ρt))

)∥∥
H−1

t
≤ 1

2
.

12
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It remains to show that∥∥∇f t(vec(ρt)) + µ
(
∇V t(vec(ρt))−∇V t−1(vec(ρt))

)∥∥
H−1

t
≤ min

{
1

2
,
µ

2
πt

}
. (7)

Similarly as in Section 3.2.2, we have

Vt(ρt)− Vt−1(ρt) = −1

2
log(1− πt(ρt)).

A tedious calculation then gives

∇V t(vec(ρt))−∇V t(vec(ρt)) =
πt∇f t(vec(ρt)) + (1/2)wt

1− πt
,

where we define

wt :=
∇φt(vec(ρt))

tr(Atρt)
2 ,

φt(ρ) := ∥vec(At)∥2Ht(ρ)−1 . (8)

By the triangle inequality, we obtain∥∥∇f t(vec(ρt)) + µ
(
∇V t(vec(ρt))−∇V t−1(vec(ρt))

)∥∥
H−1

t

≤ 1

(1− πt)2

[
(1 + (µ− 1)πt)

√
πt +

µ

2
∥wt∥H−1

t

]2
. (9)

It remains to bound πt and ∥wt∥H−1
t

. By Lemma 33, we have πt ≤ 1/(λ + 1). The following
lemma bounds ∥wt∥H−1

t
. Its proof is deferred to Appendix E (Lemma 35).

Lemma 15 It holds that ∥wt∥H−1
t

≤ 2πt.

Plugging the upper bounds of πt and ∥wt∥H−1
t

into the inequality (9), we write∥∥∇f t(vec(ρt)) + µ
(
∇V t(vec(ρt))−∇V t−1(vec(ρt))

)∥∥
H−1

t

≤ 1

(1− πt)2
[(1 + (µ− 1)πt)

√
πt + µπt]

2

≤
(
λ+ 1

λ

)2

[(1 + (µ− 1)πt)
√
πt + µπt]

2

≤
(
λ+ 1

λ

)2(
1 +

µ− 1

λ+ 1
+

µ√
λ+ 1

)2

πt

≤ λ+ 1

λ2

(
1 +

µ− 1

λ+ 1
+

µ√
λ+ 1

)2

.

It is then easily checked that the desired inequality (7) holds with λ = 300 and µ = 10.
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Rémi Jézéquel, Dmitrii M. Ostrovskii, and Pierre Gaillard. Efficient and near-optimal online port-
folio selection. 2022. arXiv:2209.13932 [math.OC].

Adam Kalai and Santosh Vempala. Efficient algorithms for universal portfolios. J. Mach. Learn.
Res., 3:423–440, 2002.

Yin Tat Lee and Santosh Vempala. Techniques in Optimization and Sampling. January 2025. URL
https://github.com/YinTat/optimizationbook. Book draft.

14

https://github.com/YinTat/optimizationbook


ONLINE LEARNING QUANTUM STATES WITH LOGARITHMIC LOSS

Chien-Ming Lin, Yu-Ming Hsu, and Yen-Huan Li. An online algorithm for maximum-likelihood
quantum state tomography. 2021. arXiv:2012.15498.

Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Applications in Statistics
and Economics. Wiley, Hoboken, NJ, 2019.

Yurii Nesterov. Barrier subgradient method. Math. Program., Ser. B, 127:31–56, 2011.

Yurii Nesterov. Lectures on Convex Optimization. Springer, Cham, CH, second edition, 2018.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. SIAM, Philadelphia, PA, 1994.

Francesco Orabona. A modern introduction to online learning. 2023. arXiv:1912.13213v6.

Laurent Orseau, Tor Lattimore, and Shane Legg. Soft-Bayes: Prod for mixtures of experts with
log-loss. In Proc. 28th Int. Conf. Algorithmic Learning Theory, pages 372–399, 2017.

Chung-En Tsai, Hao-Chung Cheng, and Yen-Huan Li. Online self-concordant and relatively smooth
minimization, with applications to online portfolio selection and learning quantum states. In Proc.
34th Int. Conf. Algorithmic Learning Theory, pages 1481–1483, 2023a.

Chung-En Tsai, Ying-Ting Lin, and Yen-Huan Li. Data-dependent bounds for online portfolio
selection without Lipschitzness and smoothness. In Adv. Neural Information Processing Systems
36 (NeurIPS 2023), 2023b.

Chung-En Tsai, Hao-Chung Cheng, and Yen-Huan Li. Fast minimization of expected logarithmic
loss via stochastic dual averaging. In Proc. 27th Int. Conf. Artificial Intelligence and Statistics,
2024.

Pravin M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Math.
Program., 73:291–341, 1996.

Tim van Erven, Dirk van der Hoeven, Wojciech Kotłowski, and Wouter M. Koolen. Open problem:
Fast and optimal online portfolio selection. In Proc. 33rd Conf. Learning Theory, 2020.

Feidiao Yang, Jiaqing Jiang, Jialin Zhang, and Xiaoming Sun. Revisiting online quantum state
learning. In Proc. AAAI Conf. Artificial Intelligence, 2020.

Julian Zimmert, Naman Agarwal, and Satyen Kale. Pushing the efficiency-regret Pareto frontier
for online learning of portfolios and quantum states. In Proc. 35th Conf. Learning Theory, pages
182–226, 2022.

Appendix A. Convex Analysis and Calculus with Density Matrices

Notice that the action sets for Physicist in this work and previous ones (Aaronson et al., 2018, 2019;
Bansal et al., 2024; Chen et al., 2022; Yang et al., 2020) are all subsets of the set of Hermitian
complex matrices. Therefore, the loss functions are defined on complex variables. If we adopt the
complex analysis perspective, extend the domains of the loss functions, and view them as general
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complex-valued functions of complex matrices, then two subtle issues arise. First, the field of com-
plex numbers C is not ordered, so existing inequalities for real-valued convex functions does not di-
rectly apply. Second, we may require the loss functions to be holomorphic (complex-differentiable)
to adopt existing strategies for regret analyses.

Let f be the loss function considered in this or any of the previous works. A simple solution is
to consider the function φx,v(t) := f(x + tv) for any Hermitian matrices x, v. It is easily checked
that the function φ is always real-valued, and hence is a function from R to R. The convexity of
f then follows from those of φx,v for any Hermitian matrices x and v; standard convex analysis
results for f follows from the corresponding ones for φx,v.

We formalize the calculus notions associated with the above understanding below; the reader is
referred to the book of Bauschke and Combettes (2017) for further details. Notice that the set of
Hermitian matrices with the Hilbert-Schmidt inner product forms a finite-dimensional real Hilbert
space. Let H be any finite-dimensional real Hilbert space. We say the function f is (Gâteaux)
differentiable at a point x ∈ H if there exists a linear mapping Df(x) : H → R such that

Df(x)[v] = lim
α↓0

f(x+ αv)− f(x)

α
, ∀v ∈ H;

then, the gradient of f at x is defined as the unique vector ∇f(x) ∈ H satisfying

Df(x)[v] = ⟨∇f(x), v⟩ , ∀v ∈ H.

Similarly, we say that function f is twice differentiable at a point x ∈ H if there exists a linear
mapping D2f(x) : H → H such that

D2f(x)[v] = lim
α↓0

Df(x+ αv)−Df(x)

α
, ∀v ∈ H;

then, the Hessian of f at x is defined as the unique linear mapping ∇2f(x) : H → H such that

D2f(x)[v, v] = ⟨v,∇2f(x)v⟩ , ∀v ∈ H.

Then, standard results for convex functions on Euclidean spaces apply, such as the following.

Theorem 16 (Bauschke and Combettes (2017, Proposition 17.7)) Let f : H → (−∞,∞] be
proper for some real Hilbert space H. Suppose that dom f is open and convex, and that f is
differentiable on dom f . Then, the following are equivalent.

• The function f is convex.

• For any x, y ∈ dom f , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

• For any x, y ∈ dom f , ⟨∇f(y)−∇f(x), y − x⟩ ≥ 0.

If in addition, f is twice differentiable on dom f , then each of the above is equivalent to the follow-
ing.

• For any x ∈ dom f and v ∈ H, ⟨v,∇2f(x)v⟩ ≥ 0.
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It will be convenient to identify ∇2f with a complex matrix, as we do in Lemma 27. Let Hd be
the real Hilbert space of d × d Hermitian matrices with the Hilbert-Schmidt inner product ⟨·, ·⟩HS.
For any x, v, u ∈ Hd, denote by vec(x), vec(v), vec(u) ∈ Cd2 the vectorizations of the matrices
x, v, u ∈ Cd×d, we have

D2f(x)[v, u] = ⟨v,∇2f(x)u⟩HS = ⟨vec(v),∇2f(vec(x)) · vec(u)⟩

where ⟨·, ·⟩ is the standard inner product in Cd2 and ∇2f(vec(x)) is the unique d2 × d2 complex
matrix satisfying this identity.

The following lemma provides the chain rule for the Gâteaux derivatives. We will adopt it to
compute the derivatives of the volumetric barrier.

Lemma 17 (Bauschke and Combettes (2017, Fact 2.51)) Let H1,H2,H3 be real Hilbert spaces.
Let f : H1 → H2 and g : H2 → H3 be Gâteaux differentiable functions. Then, the composite func-
tion f ◦ g is Gâteaux differentiable and the directional derivative of it is given by

D(f ◦ g)(x)[v] = Df(g(x)) [Dg(x)[v]]

for all x, v ∈ H1.

Appendix B. Self-Concordant Functions

The following facts about self-concordant functions, necessary for proving Theorem 1, can be
found in Nesterov’s textbook (Nesterov, 2018). Notice that Nesterov (2018) already has already
discussed the theory of self-concordant functions within the framework of finite-dimensional real
Hilbert spaces. Denote by H a real Hilbert space.

Definition 18 A function f : dom f → R with an open domain is Mf -self-concordant for some
Mf > 0 if f ∈ C3(dom f) and for all x ∈ domf, u ∈ H, we have∣∣D3f(x)[u, u, u]

∣∣ ≤ 2Mf ⟨u,∇2f(x)u⟩3/2.

Lemma 19 A function f ∈ C3(dom f) is Mf -self-concordant for some Mf > 0 if and only if∣∣D3f(x)[u, v, w]
∣∣ ≤ 2Mf∥u∥∇2f(x)∥v∥∇2f(x)∥w∥∇2f(x)

for all x ∈ dom f and u, v, w ∈ H.

The weighted sum of two self-concordant functions is also a self-concordant function.

Lemma 20 ((Nesterov, 2018, Theorem 5.1.1)) Let f1 be an M1-self-concordant function and f2
be an M2-self-concordant function. For some α, β > 0, the function f(x) = αf1(x) + βf2(x) is
M -self-concordant with

M = max

{
1√
α
M1,

1√
β
M2

}
.
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Let f be a self-concordant function. Define the local norm

∥v∥∇2f(x) :=
√

⟨v,∇2f(x)v⟩, ∀x ∈ dom f.

The following lemma demonstrates that self-concordant functions possess properties that resemble
those of strongly convex functions.

Lemma 21 ((Nesterov, 2018, Theorem 5.1.8)) Let f be an Mf -self-concordant function. Then,
for all x, y ∈ dom f ,

⟨∇f(y)−∇f(x), y − x⟩ ≥
∥y − x∥2∇2f(x)

1 + ∥y − x∥∇2f(x)

and
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

M2
f

ω(Mf ∥ y − x ∥∇2f(x)),

where ω(t) := t− log(1 + t).

We will need the following properties of the function ω.

Lemma 22 ((Nesterov, 2018, Lemma 5.1.5))

1. The Fenchel conjugate of ω is given by ω∗(t) := −t− log(1− t).

2. For any t > 0, we have
t2

2(1 + t)
≤ ω(t) ≤ t2

2 + t
.

3. For any t ∈ [0, 1), we have
t2

2− t
≤ ω∗(t) ≤

t2

2(1− t)
.

We then show that the vectorized loss functions f t in LL-OLQS and the vectorized log-determinant
function are all 1-self-concordant.

Lemma 23 The vectorized loss functions f t in LL-OLQS are 1-self-concordant.

Proof This follows from the 1-self-concordance of the logarithmic function and the affine invari-
ance of self-concordance (Nesterov, 2018, Example 5.1.1 and Theorem 5.12).

Lemma 24 Let R : Hd → R be the log-determinant function, i.e., R(ρ) = − log det ρ. Then, for
any integer n ≥ 1,

DnR(ρ)[V1, . . . , Vn] =
(−1)n

n

∑
σ∈Sn

tr
(
ρ−1Vσ(1)ρ

−1Vσ(2) . . . ρ
−1Vσ(n)

)
where the sum is over all permutations σ of {1, . . . , n}. In particular,

DR(ρ)[U ] = − tr
(
ρ−1U

)
D2R(ρ)[U, V ] = tr

(
ρ−1Uρ−1V

)
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Proof The expression of DR(ρ)[U ] follows from Nesterov (2018, Lemma 5.4.6); the proof therein
considers real matrices but direct extends for the complex case. Let f : Hd → Hd be the map
f(ρ) = ρ−1, we have (Bhatia, 1997, Example X.4.2 (iii))

Df(ρ)[U ] = −ρ−1Uρ−1.

Thereby, we obtain the expression of D2R(ρ)[U,U ]. The general expression of DnR[V1, . . . , Vn]
follows from the product rule for differentiation and induction on n.

Lemma 25 Let R be the log-determinant function, i.e., R(ρ) = − log det ρ. Then, the vectorized
regularization function R is 1-self-concordant.

Proof This lemma is the vectorized version of Nesterov (2018, Lemma 5.4.3). Lemma 24 gives

D3R(vec(ρ))[vec(U), vec(U), vec(U)] = D3R(ρ)[U,U, U ] = 2 tr
(
Uρ−1Uρ−1Uρ−1

)
,

D2R(vec(ρ))[vec(U), vec(U)] = D2R(ρ)[U,U ] = tr
(
Uρ−1Uρ−1

)
.

Denote the eigenvalues of the matrix ρ−1/2Uρ−1/2 as λ1, . . . , λd2 , which may not be all distinct.
Then, it suffices to show that ∣∣∣∣∣∣

d2∑
i=1

λ3
i

∣∣∣∣∣∣ ≤ 2

 d2∑
i=1

λ2
i

3/2

.

By the Cauchy-Schwarz inequality, we write∣∣∣∣∣∣
d2∑
i=1

λ3
i

∣∣∣∣∣∣
2

≤

 d2∑
i=1

|λi|3
2

=

 d2∑
i=1

|λi||λi|2
2

≤

 d2∑
i=1

|λi|2
 d2∑

i=1

|λi|4


≤

 d2∑
i=1

|λi|2
 d2∑

i=1

|λi|2
2

=

 d2∑
i=1

|λi|2
3

,

which proves the lemma.
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Appendix C. Properties of Kronecker Product

Let A and B be m× n and k × l matrices. The Kronecker product of A and B, denoted by A⊗B,
is defined as the following mk × nl block matrixA11B · · · A1nB

...
...

Am1B · · · AmnB

 .

.
We will use the following properties of Kronecker products in Lemmas 27 and 28 to compute

the explicit forms of higher-order derivatives of − log det(ρ).

Lemma 26 Let A,B,C and D be d× d matrices. Then,

1. (A⊗B)(C ⊗D) = AC ⊗BD

2. (A⊗B)∗ = A∗ ⊗B∗

3. If A ≥ 0 and B ≥ 0, then A⊗B ≥ 0.

4. (Magnus and Neudecker, 2019, Theorem 18.5) vec(ABC) = (CT ⊗A) vec(B).

Lemma 27 Let R : Hd → R be the negative log-determinant function, i.e., R(ρ) = − log det ρ.
Then,

∇2R(vec(ρ)) = (ρ−1)T ⊗ ρ−1

Proof For all V,W ∈ Hd, by Lemma 24 and Lemma 26, we write

⟨vec(V ),∇2R(vec(ρ))vec(W )⟩ = D2R(ρ)[vecV, vecW ]

= tr
(
V ρ−1Wρ−1

)
= ⟨vec(V ), vec

(
ρ−1Wρ−1

)
⟩

= ⟨vec(V ),
(
(ρ−1)T ⊗ ρ−1

)
vec(W )⟩

for all U ∈ Hd

Lemma 28 Let R : Hd → R be the negative log-determinant function, i.e., R(ρ) = − log det ρ.
Let U ∈ Hd and u = vec(U), Then,

D3R(vec(ρ))[u] = −(ρ−1Uρ−1)T ⊗ ρ−1 − (ρ−1)T ⊗ (ρ−1Uρ−1).

Proof For all V,W ∈ Hd, let v = vec(V ), w = vec(W ). By Lemma 24,

D3R(vec(ρ))[u, v, w] = − tr
(
ρ−1Uρ−1V ρ−1W

)
− tr

(
ρ−1Uρ−1Wρ−1V

)
.
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By Lemma 26 we have

⟨vec(V ), D3R(vec(ρ))[u]vec(W )⟩
=D3R(ρ)[u, v, w]

=− tr
(
ρ−1Uρ−1V ρ−1W

)
− tr

(
ρ−1Uρ−1Wρ−1V

)
= ⟨vecV, vec

(
−ρ−1Wρ−1Uρ−1 − ρ−1Uρ−1Wρ−1

)
⟩

= ⟨vec(V ),
(
−(ρ−1Uρ−1)T ⊗ ρ−1 − (ρ−1)T ⊗ (ρ−1Uρ−1)

)
vec(W )⟩

Appendix D. Missing Proofs in Section 2

D.1. Proof of Lemma 5

By the Cauchy-Schwarz inequality and VB-convexity of φ1 and φ2,

D4φ(x)[u, u, v, v]D2φ(x)[v, v]

=
(
αD4φ1(x)[u, u, v, v] + βD4φ2(x)[u, u, v, v]

) (
αD2φ1(x)[v, v] + βD2φ2(x)[v, v]

)
≥
(
α
√

D4φ1(x)[u, u, v, v]D
2φ1(x)[v, v] + β

√
D4φ1(x)[u, u, v, v]D2φ2(x)[v, v]

)2
≥

(
α

√
3

2
D3φ1(x)[u, v, v] + β

√
3

2
D3φ2(x)[u, v, v]

)2

=
3

2

(
D3φ(x)[u, v, v]

)2
.

D.2. Proof of Lemma 6

Let v = B−1/2u. Then, we have

⟨u,B−1/2AB−1/2u⟩ ⟨u, u⟩ ≥ ⟨u,B−1/2CB−1/2u⟩2 .

Denote the eigendecomposition of B−1/2CB−1/2 as
∑d

i=1 λiuiu
∗
i , where λi are eigenvalues and

ui are the associated eigenvectors. Then the set {ui } forms an orthonormal basis and we have
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I =
∑

i uiu
∗
i . We write

tr
(
AB−1

)
= tr

(
B−1/2AB−1/2

)
= tr

(
B−1/2AB−1/2

n∑
i=1

uiu
∗
i

)

=
n∑

i=1

⟨ui, B−1/2AB−1/2ui⟩ ⟨ui, ui⟩

≥
n∑

i=1

⟨ui, B−1/2CB−1/2ui⟩
2

=
n∑

i=1

λ2
i

= tr
(
B−1/2CB−1/2B−1/2CB−1/2

)
.

The inequality follows from the fact that trace is invariant under cyclic shifts.

Appendix E. Lemmas in Regret Analysis (Section 3.2)

All notations are defined as in Section 3.
Tsai et al. (2023a, Proposition 7) proved that the functions R − ft in LL-OLQS are convex on

Dd. Below is a vectorized analogue of their result.

Lemma 29 It holds that, for all positive definite ρ ∈ Dd,

∇2f t(vec(ρ)) ≤ ∇2R(vec(ρ)).

Proof
A direct calculation, as well as Lemma 27, gives

∇2f t(vec(ρ)) =
vec(At)vec(At)

∗

(tr(Atρ))
2 , ∇2R(vec(ρ)) = (ρ−1)T ⊗ ρ−1.

We desire to prove that ⟨m,∇2f t(vec(ρ))m⟩ ≤ ⟨m,∇2R(vec(ρ))m⟩ for all vectors m ∈ Cd2 .
Define M = vec−1(m) for any vector v. Then, we desire to prove that the inequality

(tr(AtM))2

(tr(Atρ))
2 ≤ ⟨m, vec(ρ−1Mρ−1)⟩ = tr

(
Mρ−1Mρ−1

)
holds for all m ∈ Rd2 , where we have used the fact that (A ⊗ B)vec(V ) = vec(BV AT) for any
matrices A, B, and V . Let ⟨·, ·⟩HS denotes the Hilbert-Schmidt inner product. By the Cauchy-
Schwarz inequality and the fact that tr

(
A2
)
≤ (tr(A))2 for any positive semi-definite matrix A, we
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write

tr
(
Mρ−1Mρ−1

)
= ⟨ρ−1/2Mρ−1/2, ρ−1/2Mρ−1/2⟩HS

≥
⟨ρ1/2Atρ

1/2, ρ−1/2Mρ−1/2⟩2HS

⟨ρ1/2Atρ1/2, ρ1/2Atρ1/2⟩HS

=
(tr(AtM))2(

tr
(
ρ1/2Atρ1/2ρ1/2Atρ1/2

))
≥ (tr(AtM))2(

tr
(
ρ1/2Atρ1/2

))2
=

(tr(AtM))2

(tr(Atρ))
2 .

This proves the lemma.

Lemma 30 Let ρ⋆T ∈ argminρ∈Dd
LT (ρ). Then, it holds that

ρ⋆T ≥ λ

T + λd
I.

Proof By the optimality condition,

tr

[(
λ(ρ⋆T )

−1 +
T∑
t=1

At

tr
(
Atρ⋆T

)) (ρ− ρ⋆T )

]
≤ 0, ∀ρ ∈ Dd.

Then, we write

λ tr
(
ρ(ρ⋆T )

−1
)
≤ λd+

T∑
t=1

tr(At(ρ
⋆
T − ρ))

tr
(
Atρ⋆T

) ≤ λd+ T, ∀ρ ∈ Dd.

Taking maximum of the left-hand side over all ρ ∈ Dd, we obtain that the largest eigenvalue of
(ρ⋆T )

−1 is bounded from above by (λd + T )/λ. This implies that the smallest eigenvalue of ρ⋆T is
bounded from below by λ/(λd+ T ).

The following lemma is a direct generalization of (Jézéquel et al., 2022, Lemma A.2) for the
quantum setup. We omit the proof as it is almost the same as that for the classical case.

Lemma 31 For any ρ ∈ Dd and α ∈ (0, 1), define [ρ]α := (1− αρ) + (α/d)I . Then, it holds that

ft([ρ]α)− ft(ρ) ≤
α

1− α
.

The following lemma is necessary to bounding πt.

Lemma 32 Let H ∈ Cd×d be a positive definite matrix. Then, for any v ∈ Cd and γ > 0, it holds
that vv∗ ≤ γH if and only if ∥v∥H−1 ≤ √

γ.
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Proof Notice that the dual norm of ∥·∥H is ∥·∥H−1 and vice versa. If vv∗ ≤ γH , then we have

∥v∥2H−1 = max
u̸=0

| ⟨u, v⟩ |2

∥u∥2H
= max

u̸=0

⟨u, vv∗u⟩
∥u∥2H

≤ γ.

On the other hand, if ∥v∥H−1 ≤ √
γ, then for all u ∈ Rd, we have

⟨u, γHu⟩ = γ∥u∥2H ≥ γ
| ⟨v, u⟩ |2

∥v∥2H−1

≥ | ⟨v, u⟩ |2 = ⟨u, vv∗u⟩ , ∀v ∈ Cd, v ̸= 0.

Lemma 33 It holds that
πt ≤ 1/(λ+ 1) < 1.

Proof By the equation (6) and Lemma 29, we write

(λ+ 1)∇f t(vec(ρt))∇f t(vec(ρt))
∗ = (λ+ 1)∇2f t(vec(ρt)) (10)

≤ λ∇2R(vec(ρt)) +∇2f t(vec(ρt)) (11)

≤ Ht. (12)

By Lemma 32, we obtain

πt =
∥∥∇f t(vec(ρt))

∥∥2
H−1

t
≤ 1

λ+ 1
.

Lemma 34 It holds that

P t(ρt)− P t(ρt+1) ≤
∥∥∇f t(vec(ρt)) + µ

(
∇V t(vec(ρt))−∇V t−1(vec(ρt))

)∥∥2
H−1

t

if ∥∥∇f t(vec(ρt)) + µ
(
∇V t(vec(ρt))−∇V t−1(vec(ρt))

)∥∥
H−1

t
≤ 1

2
.

Proof By Lemma 23, Lemma 25, and Lemma 20, the function P t after vectorization is 1-self-
concordant. By Lemma 21, we write

P t(ρt)− P t(ρt+1) ≤ ⟨∇P t, vec(ρt)− vec(ρt+1)⟩ − ω
(
∥vec(ρt)− vec(ρt+1)∥Ht

)
. (13)

By the optimality condition for ρt, we have

⟨∇P t−1(ρt), vec(ρt+1)− vec(ρt)⟩
= ⟨∇Lt−1(vec(ρt)) + µ∇V t−1(vec(ρt)), vec(ρt+1)− vec(ρt)⟩
≥ 0, ∀ρ ∈ Dd.
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Then, we write

⟨∇P t, vec(ρt)− vec(ρt+1)⟩
= ⟨∇Lt(vec(ρ)) + µ∇V t(vec(ρt)), vec(ρt)− vec(ρt+1)⟩
≤ ⟨∇f t(vec(ρt)) + µ∇V t(vec(ρt))− µ∇V t−1(ρt), vec(ρt)− vec(ρt+1)⟩
≤
∥∥∇f t(vec(ρt)) + µ∇V t(vec(ρt))− µ∇V t−1(ρt)

∥∥
H−1

t
∥vec(ρt)− vec(ρt+1)∥Ht

. (14)

where the last inequality holds because ∥ · ∥Ht and ∥ · ∥H−1
t

are dual norms. Combining the two
inequalities (13) and (14), we obtain

P t(ρt)− P t(ρt+1)

≤
∥∥∇f t(vec(ρt)) + µ∇V t(vec(ρt))− µ∇V t−1(ρt)

∥∥
H−1

t
∥vec(ρt)− vec(ρt+1)∥Ht

− ω
(
∥vec(ρt)− vec(ρt+1)∥Ht

)
.

By the definition of the Fenchel conjugate, we have

P t(ρt)− P t(ρt+1) ≤ ω∗

(∥∥∇f t(vec(ρt)) + µ∇V t(vec(ρt))− µ∇V t−1(ρt)
∥∥
H−1

t

)
.

The lemma follows from Lemma 22.

Lemma 35 It holds that ∥wt∥H−1
t

≤ 2πt.

Proof For any u ∈ Hd, by Lemma 24 and the chain rule (Lemma 17) , we write

|⟨wt, u⟩| =
∣∣∣∣Dφ(ρt)[u]

tr(Atρt)
2

∣∣∣∣
=

∣∣∣∣∣− tr
(
H−1

t vec(At)vec(At)
∗H−1

t DHt(ρt)[u]
)

tr(Atρt)
2

∣∣∣∣∣
=

∣∣∣∣−D3Lt(vec(ρt))[u,H
−1
t vec(At), H

−1
t vec(At)]

tr(Atρt)
2

∣∣∣∣ .
where the function φt is given in Section 3.2.3 (8). Given that

∇f t(vec(ρt)) =
−vec(At)

tr(Atρt)
,

we obtain

|⟨wt, u⟩| =
∣∣−D3Lt (vec(ρt))

[
u,H−1

t ∇f t(vec(ρt)), H
−1
t ∇f t(vec(ρt))

]∣∣ .
Lemma 23 and Lemma 25 have established that the vectorized loss functions f t and vectorized
regularizer R are all 1-self-concordant. Hence, the function Lt is also 1-self-concordant by Lemma
20. By Lemma 19, we write

|⟨wt, u⟩| ≤ 2∥u∥Ht

∥∥H−1
t ∇f t(vec(ρt))

∥∥2
Ht

= 2πt∥u∥Ht
,

which implies that
wtw

∗
t ≤ 4π2

tHt.

It remains to apply Lemma 32.
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Appendix F. Implementation of VB-FTRL for LL-OLQS in Section 3.1

We use the same notation as in Section 3.1. To implement VB-FTRL for LL-OLQS, we need to
solve the following optimization problem at the t+ 1-th round,

ρt+1 ∈ argmin
ρ∈Dd

Pt(ρ). (15)

where

Pt(ρ) = Lt(ρ) + µVt(ρ),

Lt(ρ) =
t∑

τ=1

fτ (ρ) + λR(ρ),

Vt(ρ) :=
1

2
log det∇2Lt(vec(ρ)),

fτ (ρ) = − log tr(Aτρ)

R(ρ) = − log det(ρ).

It is easily checked that the function Lt is convex. By Corollary 8 and the VB-convexity of Lt

(Corollary 12), the volumetric barrier Vt(ρ) is convex, so the optimization problem (15) is convex.
This allows us to apply standard algorithms, such as cutting plane methods, to solve the convex
optimization problem (15). In particular, we summarize the ellipsoid method and its convergence
guarantee in Theorem 36. We then specialize the ellipsoid method for implementing VB-FTRL and
analyze the per-round computational complexity in Theorem 38.

F.1. Review of Ellipsoid Method

Let H be an d′-dimensional real Hilbert space. Consider the problem of minimizing a convex dif-
ferentiable function f over a non-empty closed convex set X ⊂ X . The ellipsoid method proceeds
as follows.

• Let the initial ellipsoid be

E1 = {x ∈ H | ⟨x− x1, H
−1
1 (x− x1)⟩ ≤ 1 } ,

for some x1 ∈ H and positive definite matrix H1 such that X ⊆ E1.

• For every k ≥ 1, compute

xk+1 = xk −
1

d′ + 1

Hkgk√
g∗kHkgk

,

Hk+1 =
d′2

d′2 − 1

(
Hk −

2

d′ + 1

Hkgkg
∗
kHk

g∗kHkgk

)
,

for some gk satisfying

⟨gk, x− xk⟩ ≤ 0, ∀x ∈ argmin
x∈X

f(x).
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Theorem 36 (Lee and Vempala (2025, Lemma 3.3)) Define

Ek := {x ∈ H | ⟨x− xk, H
−1
k (x− xk)⟩ ≤ 1 } .

The ellipsoid method achieves the following:

• The ellipsoids Ek contain the minimizer x⋆.

• The volume of Ek decays at a linear rate:

vol(EK+1) ≤ e−K/(2d′+2) vol(E1).

F.2. Specializing Ellipsoid Method for VB-FTRL

We now detail the implementation of the ellipsoid method for solving the optimization problem
(15). In our case, H is the space of vectorized d× d Hermitian matrices equipped with the standard
complex inner product; the set X corresponds to the set of vectorized d × d density matrices D;
and the function f to be minimized is P t. Since the set of extreme points of X coincides with the
set of rank-one projection matrices and has unit radius, we have vol(E1) = 1. Thus, Theorem 36
implies that the ellipsoid algorithm identifies an ellipsoid of volume ε containing the minimizer in
O(d2 log(1/ε)) iterations.

Then, we discuss how to set the vectors gk in the ellipsoid method.

• If vec−1(xk) is positive definite, then the optimality condition ensures that setting gk =
∇P t(xk) suffices.

• Otherwise, ∇P t(xk) is not well defined. Nevertheless, it is easily checked that setting gk =
−vec(vv∗), where v is an eigenvector of vec−1(xk) corresponding to a negative eigenvalue,
suffices.

Indeed, for the first case, it is unnecessary to compute ∇P t(vec
−1(xk)). Let Hk =

∑
j λjuju

∗
j

be the eigendecomposition of Hk. Define dj := DP t(xk)(uj). We can write the iteration rule
equivalently as

xk+1 = xk −
d2∑
j=1

 1

d2 + 1

λjdj√∑d2

j=1 λjd2j

uj

 ,

Hk+1 =
d4

d4 − 1

(
Hk −

2

d2 + 1

∑d2

j=1(λ
2
jd

2
juju

∗
j )∑d2

j=1 λjd2j

)
,

showing it suffices to compute the directional derivatives of P t. Below we provide the explicit
formula of the directional derivative.

Lemma 37 For any Hermitian positive semi-definite matrix ρ ∈ Cd×d and U ∈ Cd×d, the direc-
tional derivative of Pt is given by:

DPt(vec(ρ))[vec(U)]

= −
t∑

τ=1

tr(AτU)

tr(Aτρ)
+ λ tr

(
ρ−1U

)
+ 2µ

t∑
τ=1

tr(AτU)

(tr(Aτρ))
2 ∥vec(Aτ )∥∇−2Lt(vec(ρ))

− λµ

2
tr
(
∇−2Lt(vec(ρ))

(
(ρ−1Uρ−1)T ⊗ ρ−1 + (ρ−1)T ⊗ (ρ−1Uρ−1)

))
,

27



TSENG CHEN XIAO LI

where

∇2Lt(vec(ρ)) =

t∑
τ=1

1

(tr(Aτρ))
2vec(Aτ )vec(Aτ )

∗ + λ
[(
ρ−1
)T ⊗ ρ−1

]
. (16)

Proof Recall that P t = Lt +µV t. We derive the directional derivatives of Lt and V t separately. A
direct calculation gives

∇Lt(vec(ρ))[vec(U)] = −
t∑

τ=1

tr(AτU)

tr(Aτρ)
+ λ tr

(
ρ−1U

)
. (17)

Applying the chain rule (Lemma 17), we obtain

DVt(vec(ρ))[vec(U)] =
1

2
tr
(
∇−2Lt(vec(ρ))D

3Lt (vec(ρ)) [vec(U)]
)
. (18)

A computation similar to the one in the proof of Lemma 29 gives the formula (16). By Lemma 28,
we have

D3Lt (vec(ρ)) [vec(U)]

=
t∑

τ=1

−2
tr(AτU)

(tr(Aτρ))
3vec(Aτ )vec(Aτ )

∗ + λD3R (vec(ρ)) [vec(U)]

=
t∑

τ=1

2
tr(AτU)

(tr(Aτρ))
2vec(Aτ )vec(Aτ )

∗ + λ
(
−(ρ−1Uρ−1)T ⊗ ρ−1 − (ρ−1)T ⊗ (ρ−1Uρ−1)

)
.

(19)

The lemma follows by combining the equations (17), (18), and (19).

Finally, we analyze the per-round computational complexity of VB-FTRL for LL-OLQS as
described in Section 3.1.

Theorem 38 VB-FTRL for LL-OLQS can be implemented with a per-round computational com-
plexity of O(Td8 log(1/ε) + d10 log(1/ε)).

Proof The computational complexity of computing the trace of the product of two d2×d2 matrices
is O(d4). The computational complexity of computing the inverse of a d2 × d2 matrix is O(d6).
Therefore, computing each dj at the t-th round takes O(td4 + d6) time, and one iteration of the
ellipsoid method at the t-th round takes O(td6 + d8) time. Recall that the iteration complexity
of the ellipsoid method is O(d2 log(1/ε)). Thus, the per-round computational complexity of VB-
FTRL for LL-OLQS is O(Td8 log(1/ε) + d10 log(1/ε)).
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