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BIDRN: BINARIZED 3D WHOLE-BODY HUMAN MESH
RECOVERY

A MATHEMATICS OF PARAMETRIC MODEL SMPL-X

SMPL-X (Pavlakos et al., 2019) utilizes standard vertex-based linear blend skinning with learned
corrective blend shape, which is an extension of SMPL (Loper et al., 2023) with fully articulated
hands and an expressive face. It contains N=10, 475 vertices and K=54 joints, including joints for
the neck, jaw, eyeballs, and fingers. SMPL-X is a parametric model with pose parameters θ (consists
of θbody , θhand, and θface), shape parameters β, and facial expression parameters ψ, defined by

M(θ, β, ψ) : R|θ|×|β|×|ψ| 7→ R3N . (1)

SMPL-X first defines the shape blend, pose blend, and expression blend shape functions as

BS(β;S) =
|β|∑
n=1

βnSn, (2)

BP (θ;P) =

9K∑
n=1

(Rn(θ)−Rn(θ
∗))Pn, (3)

BE(ψ; E) =
|ψ|∑
n=1

ψnE , (4)

where Sn,Pn ∈ R3N are orthonormal principle components of vertex displacements, R : R|θ| 7→
R9K is a function mapping the pose vector θ to a vector of concatenated part-relative rotation ma-
trices, θ∗ is the pose vector of the rest pose. These functions add corrective vertex displacements to
the template mesh T̄ (Loper et al., 2023) by

TP (β, θ, ψ) = T̄ +BS(β;S) +BP (θ;P) +BE(ψ; E). (5)

Since different body shapes have a variety of 3D joint locations, the 3D joint locations J is defined
as a function of body shape, with the following form:

J(β) = J (T̄ +BS(β;S)), (6)

where J is a sparse linear regressor that can regress 3D joint locations from mesh vertices.

Finally, the 3D whole-body human mesh is constructed with the above elements as

M(β, θ, ψ) =W (TP (β, θ, ψ), J(β), θ,W), (7)

where W (·) is a standard linear blend skinning function that rotates the vertices in TP (·) around the
estimated joints J(β) smoothed by blend weights W ∈ RN×K .

B MORE DETAILS OF OUR PROPOSED BIDRN

Binarized whole-body mesh recovery pipeline. Given a single RGB human image I ∈
R3×H×W , our BiDRN extracts body, hands, and face features Fb, Fh, and Ff , where the hands
and face input images are cropped and resized from the high-resolution human image I by applying
RoIAlign (He et al., 2017). BiDRN replaces the BasicBlock and Bottleneck in ResNet with our pro-
posed BiDRB, which can preserve full-precision information as much as possible in the binarization
network. Then following Moon et al. (2022), we utilize these features to estimate the corresponding
body, hands, and face parameters Θ = {θbody, β, t, θhand, θface, ψ} by Pose2Pose architecture and
GAP-based regressor. Specifically, θbody ∈ R22×3 is the 3D body joint rotation parameters, β ∈ R10

is the body shape parameters, t ∈ R3 is the 3D global translation parameters, θhand ∈ R30×3 is the
3D left and right hands joint rotation parameters (each hand contains 15 joints), θface ∈ R3 is the 3D
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Figure 1: Generalization of four redesign convolutional modules, including (G-I) General Down
Scale Residual (G-DScR), (G-II) General Fusion Up Residual (G-FUR), (G-III) General Fusion
Down Residual (G-FDR), and (G-IV) General Down Sample Residual (G-DSaR). The orange arrow
denotes the full-precision information flow. For simplicity, both batch normalization and Hardtanh
pre-activation are omitted.

jaw rotation parameters and ψ ∈ R10 is the facial expression parameters. Finally, these parameters
Θ are fed into a SMPL-X layer (Pavlakos et al., 2019) to obtain the 3D whole-body human mesh.

General Local Convolution Residual. We redesign four kinds of convolution modules (DScR,
FUR, FDR, and DSaR) based on the Local Convolution Residual (LCR) to tackle the dimension
mismatched problem. Note that we have already described the basic condition (double or half the
dimension) in the main paper. Here we further consider the more complex and general conditions, as
shown in Figure 1. Specifically, we introduce a reshape-parameter τ ∈ Z+ and generalize these four
convolution modules to the conditions where channel-wise and spatial-wise dimensions are changed
based on 2τ . We depict and formulate the general versions of them as below.

General Down Scale Residual (G-DScR) compresses the spatial dimension by 1/2τ . To match the
output dimension, the full-precision activation is first fed into an average pooling function with
kernel-size 2τ and stride 2τ . Then it is added to the output of binarized Down Scale convolution as

o′ = BatchNorm(RPReLU(o) + AvgPoolτ (af )), (8)

where o′,o ∈ RC× H
2τ ×W

2τ ,af ∈ RC×H×W .
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General Fusion Up Residual (G-FUR) increases the channel dimension by 2τ times. Therefore, we
first feed the activation to 2τ distinct Base Residuals, and then concatenate the output of them as

o′ = BatchNorm(Concat(o′
1,o

′
2, . . . ,o

′
2τ )), (9)

where o′ ∈ R2τC×H×W ,o′
1,o

′
2, . . . ,o

′
2τ ∈ RC×H×W .

General Fusion Down Residual (G-FDR) compresses the channel dimension by 1/2τ . As it is the
inverse of G-FUR, we first channel-wise split and feed the activation to 2τ Base Residuals, and then
sum up their output as

o′ = BatchNorm(

2τ∑
k=1

o′
k), (10)

where o′ ∈ R C
2τ ×H×W ,o′

1,o
′
2, . . . ,o

′
2τ ∈ R C

2τ ×H×W .

General Down Sample Residual (G-DSaR) compresses the spatial dimension by 1/2τ while increas-
ing the channel dimension by 2τ times. As it is the mix of G-DScR and G-FUR, we first apply the
average pooling with reshape-parameter τ to the activation and then concatenate the output of 2τ
distinct Base Residuals as

o′
k = BaseLCRk(AvgPoolτ (af )), (11)

o′ = BatchNorm(Concat(o′
1,o

′
2, . . . ,o

′
2τ )), (12)

where o′ ∈ R2τC× H
2τ ×W

2τ ,o′
1,o

′
2, . . . ,o

′
2τ ∈ RC× H

2τ ×W
2τ , af ∈ RC×H×W , k = 1, 2, . . . , 2τ , and

BaseLCRk denotes the k-th Base Local Convolution Residual.

Note that τ=1 is the basic condition in our paper and the proposed BiDRN involves the conditions
τ=1 and τ=2. Compared to previous work, we further extend and address the dimension mismatched
problem in general conditions.

Mapping Table. As shown in Table 1, we present a mapping table from ResNet-18 and ResNet-50
backbones to our proposed modules in BiDRN.

Table 1: Mapping table from ResNet-18 and ResNet-50 backbones to our BiDRN.

ResNet-18 (face) ResNet-50 (body and hands)
from to from to
conv1 conv1 conv1 conv1

bn bn bn bn
relu tanh relu tanh

MaxPool MaxPool MaxPool MaxPool
AvgPool AvgPool AvgPool AvgPool

BasicBlock 1 LCR BR Bottleneck 1
LCR + FUR

BRLCR FDR + FUR

BasicBlock 2 DSaR + LCR BR FDR + FUR
LCR

Bottleneck 2

FDR + DScR + FUR

BRBasicBlock 3 DSaR + LCR BR FDR + FUR
LCR FDR + FUR

BasicBlock 4 DSaR + LCR BR FDR + FUR
LCR

Bottleneck 3

FDR + DScR + FUR

BR

FDR + FUR
FDR + FUR
FDR + FUR
FDR + FUR
FDR + FUR

Bottleneck 4
FDR + DScR + FUR

BRFDR + FUR
FDR + FUR

3



Supplementary Materials

(a) BNN (c) BiDRN (Ours)

Binarized Conv
k = 3, s = 1

𝐶×𝐻×𝑊

𝐶×𝐻×𝑊

Sign w/ linear approx.

RPReLU

𝐶×𝐻×𝑊

𝐶×𝐻×𝑊

Sign w/ poly approx.

Binarized Conv
k = 3, s = 1

(b) Bi-Real

𝐶×𝐻×𝑊

𝐶×𝐻×𝑊

Sign w/ poly approx.

Binarized Conv
k = 3, s = 1

Figure 2: A comparison of Identity Layer (where input and output share the same dimensions)
between BNN, Bi-Real, and our proposed BiDRN, with batch normalization omitted for clarity.
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Figure 3: A comparison of Down Sample Layer (where input and output have different dimensions)
among BNN, Bi-Real, and our proposed BiDRN, with batch normalization omitted for clarity. Since
the output dimension differs from the input, the residual connection in Bi-Real cannot be applied
under these conditions. However, our BiDRN introduces a Down Sample Residual (DSaR) mecha-
nism, which effectively bypasses full-precision activation.

Architecture Comparison. We provide an architectural comparison of BNN, Bi-Real, and our
proposed BiDRN to highlight their differences. Specifically, Identity Layer comparisons are shown
in Figure 2, where BiDRN incorporates RPReLU to redistribute the binarized output before applying
the residual connection. Additionally, in Figure 3, we compare the Down Sample Layer, where the
input and output dimensions differ. In Bi-Real, the bypass mechanism used in the Identity Layer
cannot be applied to the Down Sample Layer due to the dimension mismatch. In contrast, BiDRN
redesigns the Down Sample module to integrate the residual connection and retain as much full-
precision information as possible.

C EFFICIENCY COMPARISON WITH SOTA FULL-PRECISION METHODS

We compare the parameters (Params) and operations (OPs) of several full-precision methods, in-
cluding ExPose, PIXIE, and Hand4Whole, with our proposed BiDRN in Table 2. It can be observed
that the Params of BiDRN is just 12.7%, 8.9%, 22.1% of ExPose, PIXIE, and Hand4Whole re-
spectively. Similarly, when considering OPs, BiDRN requires merely 8.8%, 7.3%, 14.8% of them
respectively. Note that BiDRN even outperforms ExPose on the AGORA dataset (see Table 1 of the
main paper).

Table 2: Params and OPs comparison between full-precision methods and our BiDRN.

Method Params (M) OPs (G)

ExPose (Choutas et al., 2020) 135.8 28.5
PIXIE (Feng et al., 2021) 192.9 34.3
Hand4Whole (Moon et al., 2022) 77.8 16.9

BiDRN (Ours) 17.2 2.5
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D MORE EXPERIMENTAL RESULTS

Smooth Function for Sign. We conduct an experiment to compare the 2nd-order approximation
with the tanh approximation for Sign in Table 3. The results show that the 2nd-order approximation
performs better, leading us to adopt the 2nd-order smooth function.

Redistribution function. We conduct an experiment to compare PRReLU and LeakyReLU redis-
tribution functions in Table 4. We find that the performance degrades if using LeakyReLU. Consid-
ering that the Params and OPs are almost the same, it will be better to use RPReLU as redistribution
function.

Table 3: Comparison between 2nd-order approximation and tanh approximation.

Method Params (M) OPs (G) All Hand Face

BiDRN (Ours w/ 2nd-order approx.) 17.22 2.50 118.3 70.8 37.6
BiDRN (Ours w/ tanh approx.) 17.22 2.50 122.7 72.1 39.1

Table 4: Comparison between PRReLU and LeakyReLU redistribution functions.

Method Params (M) OPs (G) All Hand Face

BiDRN (Ours w/ PRReLU) 17.22 2.50 118.3 70.8 37.6
BiDRN (Ours w/ LeakyReLU) 17.21 2.50 130.6 75.2 41.1

Generalizability of our BiDRN. To demonstrate the generalizability of our proposed BiDRN, we
apply it to the classification task on the MNIST dataset, as shown in Table 5. We first performed
experiments with a full-precision ResNet-18 model, which is commonly used for MNIST classifi-
cation. We then binarized ResNet-18 using BNN’s binary convolution layers, as well as BiDRN’s
LCR, BR, and four derived modules. It can be observed that BiDRN can be extended to other tasks
with significant improvement as well. Besides the classification task, we also apply BiDRN to a
keypoint prediction task using the COCO dataset. Additionally, to validate the generalizability of
our proposed layer to other models, we integrated our modules into MobileNetv1. As shown in Ta-
ble 6, the results indicate that BiDRN is also effective for the 2D keypoint prediction task. We
believe these additional results demonstrate that our BiDRN method excels in simpler 2D/3D pose
estimation tasks.

Table 5: BiDRN on classification task.

Method Params (M) OPs (M) Test error rate ↓
ResNet-18 (full-precision) 11.2 1826.0 0.72%
BNN 0.4 40.7 2.63%
BiDRN (Ours) 0.4 40.7 1.15%

Comparison to BBCU. We conduct an experiment to compare BiDRN with the recent binariza-
tion method BBCU (Xia et al., 2023), which is also applied in ResNet-like models. As shown
in Table 7, our BiDRN also largely outperforms BBCU with fewer parameters and operations.

E MORE VISUALIZATION

We compare the mesh quality of our BiDRN with 7 SOTA BNN-based methods (including
BNN (Hubara et al., 2016), XNOR (Rastegari et al., 2016), DoReFa (Zhou et al., 2016), Bi-Real (Liu
et al., 2018), ReActNet (Liu et al., 2020), ReCU (Xu et al., 2021b), and FDA (Xu et al., 2021a)) on
the EHF dataset ( Figure 4) and AGORA ( Figure 5) dataset. Due to the page limit, the qualitative
result of break-down ablation is shown in Figure 6.

Qualitative comparisons on EHF. Images in the EHF dataset contain a single subject performing
a variety of interesting body poses, hand gestures, and facial expressions. Yet, the background of
the images is dark, which contributes to a lower contrast between the subject and the surroundings.
Therefore, the overall performance of the binarization methods is not good. It can be observed that
previous SOTA BNNs can hardly match the hands’ positions, BNN and FDA even generate totally
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Table 6: BiDRN on 2D keypoint prediction task.

Method Params (M) OPs (M) MPJPE↓
MobileNetv1 (full-precision) 3.2 583.3 176.5
BNN 0.2 17.9 338.3
BiDRN (Ours) 0.2 17.9 188.3

Table 7: Comparison between BBCU and BiDRN.

Method Params (M) OPs (G) All Hand Face

BBCU 22.04 2.68 164.9 89.7 50.3
BiDRN (Ours) 17.22 2.50 118.3 70.8 37.6

wrong rotations (the first and final row). In contrast, our BiDRN aligns the body, hands, and face
better and achieves a more stable performance among all examples.

Qualitative comparisons on AGORA. AGORA is a synthetic dataset with limited actions, such
as walking, sitting, and taking phones. It can be observed that the proposed BiDRN outperforms all
SOTA BNN-based algorithms in terms of whole-body poses, hand poses, and global orientations. In
contrast, previous BNN methods can hardly align the body in simple situations (the second row).

Qualitative comparisons of break-down ablation. As shown in Figure 6, the BaseLCR can al-
ready match the 2D image roughly, and successively adding these four modules can fine-tune the
body rotation, hand position, and leg angle step by step.

Table 8: Real inference time on hardware.

Method Params (M) OPs (G) Frame Infer Time (ms)

Hand4Whole 77.84 16.85 TF Lite 54.8
BiDRN (Ours) 17.22 2.50 daBNN (Zhang et al., 2019) 12.1

F REAL INFERENCE TIME

The comparison of inference time on real hardware may be a more intuitive way to show efficiency.
However, the general-purpose inference libraries for GPUs (e.g., TensorRT) do not support bina-
rized convolutions and linear projections, which require specific hardware. We lack such hardware,
and this is the problem we encounter. Fortunately, people who study quantification provide a bench-
mark (Zhang et al., 2019) for estimating inference time to alleviate this problem. According to Zhang
et al. (2019), we calculate the inference time (on ARM devices) of our binarization in Table 8, where
the inference time of our BiDRN is only 22.1% of the full-precision Hand4Whole. Complementary
to the theoretical analysis, this suggests the efficiency of our BiDRN from the practical perspective.

G ACADEMIC AND SOCIAL IMPACT

3D whole-body human mesh recovery is one of the core technologies to understand human behav-
iors, which is widely applied in AR/VR (Wang et al., 2021), sign language recognition (Camgoz
et al., 2020) and emotion recognition (Lin et al., 2023). With the rapid growth in the number of
pictures and videos, how to efficiently recover 3D whole-body human mesh is worth studying. Our
BiDRN is able to achieve more efficient and accurate 3D mesh estimations than existing SOTA
BNN-based algorithms. We hope this work will promote further research on efficient 3D whole-
body human mesh recovery.

Currently, both 3D whole-body human mesh recovery techniques and our proposed BiDRN do not
present any negative foreseeable societal consequences.
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Image BNN XNOR DoReFa Bi-Real ReActNet ReCU FDA BiDRN (Ours)

Figure 4: Qualitative comparison between seven existing SOTA BNN-based approaches and our
newly proposed BiDRN on the EHF (Pavlakos et al., 2019) dataset.

H LIMITATION AND FUTURE WORK

Currently, our BiDRN does not improve the estimation accuracy of different parts uniformly. Specif-
ically, the enhancement of hand estimation is smaller than that of the body and face. It is worth
studying how to further improve hand estimation accuracy in future work. Meanwhile, with the
emergence of powerful Transformer-based models (e.g.OSX (Lin et al., 2023)), how to extend our
binarization method to these Transformer-based architectures requires further study in future work
as well.
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Image BNN XNOR DoReFa Bi-Real ReActNet ReCU FDA BiDRN (Ours)

Figure 5: Qualitative comparison between seven existing SOTA BNN-based approaches and our
newly proposed BiDRN on the AGORA (Patel et al., 2021) dataset.

Image BaseLCR + DscR + FUR + FDR + DsaR

Figure 6: Visual comparison of break-down ablation study on EHF dataset.
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