
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PanoptiChrome: A Modern In-browser Taint Analysis Framework
Anonymous

ABSTRACT
Taint tracking in web browsers is a problem of profound interest
because it allows developers to accurately understand the flow
of sensitive data across Javascript (JS) functions. Given that mod-
ern websites load JS functions from either the web server or from
other third-party sites, this problem has acquired a much more
complex and pernicious dimension. Sadly, for the latest version of
the Chromium browser (used by 75% of users), there is no dynamic
taint propagation engine primarily because it is extremely complex
to build one. The nearest competing work in this space was pub-
lished in 2018 for version 57; we are now at Chromium version 117,
and the current version is very different from the 2018 version. We
outline the details of a multi-year effort in this paper that led to
PanoptiChrome, which accurately tracks information flow across
an arbitrary number of sources and sinks, and is to a large extent,
portable across platforms.

We experimentally show that we can discover fingerprinting
APIs that can uniquely identify the browser and sometimes the
user, which are missed by state-of-the-art tools, owing to our com-
prehensive dynamic analysis methodology. For the top 20,000 most
popular websites, we discover a total of 362 APIs that have the
potential to be used for fingerprinting – out of these, 208 APIs were
previously not reported by state-of-the-art tools.

KEYWORDS
Javascript taint tracking, Chromium browser, fingerprinting

1 INTRODUCTION
As of today, JavaScript (JS) is a ubiquitous programming language
which has a very rich set of APIs for creating interactive web ap-
plications, streaming media and server-side code. Specifically, the
NodeJS APIs for handling file systems, asynchronous operations,
DNS resolution, and threading are important building blocks of
any server-side solution. Prominent examples of sites that are built
on Node JS include Netflix, NASA, PayPal LinkedIn, Twitter and
Medium [14]. Javascript’s realm of usage is further enhanced by
the Electron framework that allows web developers to create full-
fledged desktop and mobile applications using a combination of
JavaScript, HTML and CSS. Almost all websites and a lot of very
popular desktop applications such as Microsoft Teams[8], Zoom[5],
and Visual Studio Code[9] use this framework. According to a de-
veloper study conducted by StackOverflow[6], JavaScript is the
most popular programming language, with over seventy percent of
developers using JavaScript for development.

Unpublished working draft. Not for distribution.
This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
WWW 2024(X), 1–9
© 2024 Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

Because of its wide usage, there are a plethora of JavaScript
third-party libraries for client, server, desktop and mobile applica-
tions. Most websites contain third-party JS libraries from various
domains. These libraries provide an interface for collecting user
analytics (tracking and performance), session record and replay,
advertisements, dynamic form management, social media sharing,
shopping carts and a host of other features. All of these libraries
can access the shared page state (DOM, JS variables); they have
equal privileges and can alter and access data from other co-located
scripts. Apart from software bugs and vulnerabilities, the security
and privacy threat to the hosting site increases manifold when third
and fourth-party libraries (included by third parties) get included.
As per a recent survey [1], 37% of third-party scripts are known to
contain undisclosed vulnerabilities – this puts all kinds of personal
data such as passwords, medical data and credit card details at risk.
Along with explicit information leakage, side channels and other
implicit sources of information can be used to uniquely identify
browsers and characterize user behavior such as using battery level
indicators [33]. The entire area of browser fingerprinting [20] relies
on such implicit sources of information that can help an adversary
identify a user or browser with a reasonable degree of accuracy.
Hence, to summarize, a comprehensive security analysis tool at the
client side is necessary to identify JS APIs and websites that display
such malicious behavior.

Taint analysis in web browsers is an established problem. Here,
the flow of information is tracked from a sensitive source such as a
password field to a sink, which can potentially exfiltrate the data
to an unauthorized party. Analyses can either be static [27, 31] or
dynamic [29, 36, 37]. A criticism of static analysis approaches is that
they are either overly conservative or they miss out on capturing
dynamic information, which is of vital importance in Java script.
A lot of information is not available at compile time such as the
contents of third-party APIs and the results of eval calls, where
a JS statement is created dynamically. Dynamic analysis, on the
other hand, is difficult to implement because it involves invasive
changes to the code of the web browser and JavaScript engine (V8
in the case of Chromium). To put matters in perspective, the code
size of Chromium and the V8 engine are 35 million lines and 3
million lines, respectively. Moreover, they have complex memory
allocation and garbage collection (GC) mechanisms, which make it
very difficult to add additional metadata to objects and track the
flow of information (especially implicit flows).

Hence, many researchers [21, 25] have opted for simpler methods
where they annotate JS APIs and then log their executions. This can
be easily detected or it requires a complete reimplementation of the
entire runtime in JavaScript. Furthermore, these methods often miss
many subtle interactions and control flow based dependences. As a
result, the gold standard in this area is to track flows by modifying
the browser and the JS engine, which is what our nearest competing
work, Mystique, did for Chrome version 57. We are currently at ver-
sion 117 and in the last 60 generations a lot of fundamental changes
have been made in the source code. For instance, Chromium has

2023-10-13 09:25. Page 1 of 1–9. 1

https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW 2024(X) Anon et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

transitioned from a stack-based to a register-based virtual machine,
the execution pipeline has changed, and the memory management
and GC systems have been completely overhauled.

We thus propose a bespoke dynamic taint analysis framework
called PanoptiChrome, which adds roughly 7,000 lines of code to
the existing V8 engine. Its novel features are as follows.

❶ It accurately captures all kinds of information flows (explicit
and implicit) while supporting a variable number of sources and
sinks that can be changed at runtime. ❷ It is mostly portable across
Chromium versions (requires minor changes) and is platform agnos-
tic. ❸ From a software engineering point of view, PanoptiChrome
is fairly self-contained, where all the changes are limited to the V8
engine’s Ignition module (interpreter part) only. ❹ Our solution
works with V8’s complex garbage collection andmemory relocation
framework.❺We test the efficacy of PanoptiChrome for the problem
of identifying fingerprinting APIs across the top 20,000 websites.
We identify 164 hitherto undiscovered APIs that are potentially
fingerprinting.

Section 2 describes the background, Section 3 elaborates on the
design of PanoptiChrome, Section 4 shows the evaluation results,
Section 5 describes the related work and finally we conclude in
Section 6.

2 BACKGROUND
In the following section, we begin with an overview of information
flow analysis and its usage in various aspects of web privacy and
security. We then present the reasons for adopting a static+dynamic
taint analysis algorithm over static taint analysis approaches. Fur-
thermore, we establish the need to instrument the runtime system,
specifically the V8 engine.

2.1 Browser APIs and WebIDL
Browser APIs allow a website to access certain features such as the
browser type, current date and time, hardware and software config-
uration, screen dimensions, etc. Since different browsers might offer
different capabilities with differing syntax, the WebIDL standard
formalizes the interfaces and properties that need to be offered by
a compliant browser. In Chromium, these APIs are implemented
as a part of the Blink rendering engine; they are exposed to web
applications using the standard Web IDL specification.

Due to the variability in the nature of the devices that access a
given site, along with geographical differences (detected from the
IP address and time zone), browser APIs typically return different
kinds of information for different devices. These values obtained
from browser APIs, along with the meta information about the de-
vice allow the site to create a unique fingerprint for each device. The
site can then use this fingerprint to track the user across different
sessions and websites, even if the network used to access the site
changes.

2.2 Information Flow Analysis
There are two kinds of information transfer channels: an explicit
channel (the information is directly transferred from one object
to the other via an immediate assignment) and an implicit chan-
nel (information transmission through direct and indirect control
flows).

V8 EngineWeb APIs

Blink Rendering Engine

WebIDL

Chromium

Ignition
Interpreter

Figure 1: Overview of the Chromium architecture

JavaScript uses an asynchronous event-driven programming
model, where functions are registered as event handlers and in-
voked when the corresponding event happens such as a “mouse
hover” or a “mouse click”. As a result, static analysis approaches
aren’t very effective and seldom generate accurate information/-
control flow information. Another factor that complicates static
analyses is the fact that JS is a deeply object oriented language
where properties (variables/functions) can be added and removed
dynamically from parent classes, and functions are treated as ob-
jects. They also may take a variable number of arguments. To
complicate matters, JS has the eval[3] function that allows the in-
terpreter to execute strings provided at runtime as code, which
makes static analysis nearly impossible. Finally, the reflection API
(introduced in ES6[2]) allows code to be self-modifying and have
mutating properties of objects. Hence, dynamic analysis is required.

Approaches that instrument the code instead of the runtime
cannot add hooks to all the objects’ properties without a priori
information about the properties themselves. Further, there are
multiple API calls like document.location that a proxy object with
hooks cannot wrap. Hence, all calls to the document.location API
call cannot be intercepted. Such hooks can easily be detected by an
adversary.

Mystique [16] is our nearest competing work that added dy-
namic information flow analysis (taint propagation) to the Chromium
browser (in 2018). Mystique uses custom APIs that modify the un-
derlying components of the JavaScript engine – this makes it hard
to maintain it as the architecture of the web browser changes over
time. Furthermore, Mystique tracks the information flow of only
browser extensions and cannot track flows in the context of the
hosting site or other third-party scripts. Moreover, Mystique col-
lects variable dependencies at the granularity of functions. For
explicit flows (due to assignments), an edge is created in the Data
Flow Graph (DFG) from the R-value to the L-value. Implicit flows
where there is data transfer from caller to callee parameters during
function calls and returns are also handled in a similar manner. To
handle control dependencies, all the variables in the branch path
are tainted.

The limitations of Mystique are that it does not handle dynamic
sources and sinks, is not designed for a register-based machine,

2 2023-10-13 09:25. Page 2 of 1–9.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

PanoptiChrome: A Modern In-browser Taint Analysis Framework WWW 2024(X

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

)

Taint Sources
and Sinks

Taint MarkingTaint PropagationInstrumentation Blink Runtime

JavaScript Code

Bytecode
Generator

AST
Generator

Instrumented
Code AST

Hybrid Taint
Propagation

AST Object
Mapping Tables

API Call Logic
Bluetooth

Navigator

Cookie

Sources,
Sinks,
Leaks logConfigurable

Parameters

Logging

Function Call

Figure 2: Overview of PanoptiChrome

modifies the garbage collection andmemory relocator, has extended
object liveness and requires changes in the Blink rendering engine
of Chromium – all of these changes reduce the portability of the
design. Furthermore, because of its limited set of sinks, it misses
many information leakage paths.

3 DESIGN OF PANOPTICHROME
3.1 Design Overview
To detect data leakage from the browser, PanoptiChrome needs to
identify and mark all the values obtained from a known subset
of browser APIs as tainted. ❶ We instrument the code generated
for API methods and property (variable) accesses and add hooks
(callback functions). ❷ The custom TaintMarking Engine(TME)
handles the marking of tainted values as these APIs get accessed.
❸ Once we have identified and marked the taint sources (browser
APIs), the Taint Propagation System (TPS) disseminate the taint
tags via explicit and implicit flows to all the objects that somehow
use the tainted value (directly or indirectly). Multiple tables that are
accessed using the hash of the in-memory addresses of the tainted
objects are used to disseminate taint information. ❹ On invocation
of an API labeled sink, all the parameters passed to the API are
checked for their taint status. If we find a parameter to contain data
from a tainted source, the source, sink and the parameters, we log
this information to a file. The patches to Chromium’s V8 engine
developed for PanoptiChrome are available here.

3.2 Code Instrumentation and Data Structures
The Bytecode Generator in V8 walks the AST (Abstract Syntax
Tree) generated by the JS parsing and analysis phase to emit inter-
mediate code that the Ignition engine interprets. The Ignition
engine in V8 is a register-based interpreter with handlers for around
230 bytecodes. 60 bytecode builders responsible for emitting the
properly formatted bytecode along with 85 visitors that walk the
AST, generate handlers for these 230 bytecodes. PanoptiChrome
needs to modify only three builders and eight AST visitors to
track the flow of tainted information through the execution of
the JavaScript code.

In prior work, the taint marking was done when the render-
ing engine called a JS function. However, in our scheme we track
dependences at a finer level and we can change the sources and
sinks at runtime. Hence, in our case, the taint marking step needs
to be intertwined the taint propagation step. For every JS object
(defined in the source code), there is a runtime object (internal to
V8). Whenever, we access a method or property in a JS object, we
need to use the TME engine to find if we need to taint the status of
the corresponding runtime object. The TME engine needs to check
the list of current sources.

3.2.1 Data Structures Used. PanoptiChrome uses multiple hash
tables to store the taint status of JS objects and their corresponding
runtime objects. The Object Taint Table (OTT) stores the “taint
metadata” of the runtime object and is indexed using the ptr (tagged
heap pointer) data member of the runtime object. This hash table
stores information about all the taint sources for the given runtime
object. There is an important design decision here. Should we store
a list of all methods/properties via which the taint flowed to a given
object’s method or property? Given that prior work considers few
sources, they indeed store this information. This is not a scalable
solution because references to all the objects on the path will remain
live, and the GC will not be able to remove them – this results in a
large memory footprint.

We thus maintain two references in each OTT row: reference to
the runtime object and a reference to the string encoding (runtime
object) of taint sources (the runtime objects on the path are not
stored). If the OTT is reachable, then all the runtime objects that
it points to will also remain alive, which is something that we do
not want because many objects will not have valid references to
them in the original JS code left. Note that all the data structures
that we add are extra ones and thus their references do not have
the same degree of legitimacy as references in the JS code itself.
V8 has the option of creating “weak references”, which is a pointer
where the destination object can be garbage collected because its
reference count is not incremented due to the reference. Such weak
references are used here. The crux of the idea here is to use two
weak references: one to the runtime object and one to the string
encoding of the taint sources. The Ephemeron hash table ensures that

2023-10-13 09:25. Page 3 of 1–9. 3

https://anonymous.4open.science/r/PanoptiChrome--007/panoptichrome_patches.diff

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW 2024(X) Anon et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

if the runtime object is alive (because of references in the JS code),
then the string encoding will also be alive (not garbage collected).
This guarantees the existence of the string object (corresponding
to the taint sources) once we reach the sink because the sink needs
to be obviously alive.

The AST Taint Table stores the taint status of the nodes in
the AST parsed for the functions in the current activation stack.
PanoptiChrome implements AST Taint Table in the same fashion
as Mystique. It uses a multi-level HashTable in which the first level
is indexed by the frame pointer of the currently executing function,
while the second level is indexed using the unique location of the
node in the AST.

The link between the AST node and the corresponding runtime
object is maintained using the SimpleNumberDictionary (internal
to V8) that maps the location and type (VariableProxy, Property or
Call) of the AST node to the corresponding runtime object. Like the
AST Taint Table, the AST to Object Map Table contains multiple
levels wherein the current frame pointer indexes the first level
while the second level stores the actual mapping.

3.2.2 Liveness of Objects. All the tables that we add can be garbage
collected, which needs to be avoided at all costs. Mystique modifies
the GC itself, which is a very invasive change and harms portabil-
ity and maintainability. We start with observing that all runtime
objects in V8 can be referenced with the help of Handles. These
are themselves not garbage collected. The Handles are stored in
a HandleScope that is responsible for deallocating the Handles
when the scope is destroyed. To make sure that the Handles re-
sponsible for taint tables are not deallocated, we store them in a
custom PersistentHandle that is aware of the special tables and is
not deallocated until the PersistentHandle is explicitly reset. The
custom PersistentHandle is created at the start of the execution
and is destroyed only when the execution ends. The stock V8 engine
does not allow the deletion or updation of Handles added to the
PersistentHandle list; hence, we introduce new interfaces that
allow us to replace the unused handles with null runtime objects.

Stack

Persistent
Handle

Heap

Object Taint Sources

Object Taint Table

ptr
ptr ptr

Weak Reference

Runtime Object String Object

Strong
Reference

Handle

ptr

Handle
Scope

Scoped
Reference

Figure 3: Liveness in the Object Taint Table

3.3 Taint Marking Engine (TME)
The role of the TaintMarking Engine(TME) in PanoptiChrome is to
identify the sources and sinks defined in the configuration files and

taint the corresponding runtime objects. The dynamic configuration
files (user-defined) contain the object’s name and corresponding
methods and properties to be considered as sources or sinks. Panop-
tiChrome provides the same expressiveness as OpenWPM[21] for
specifying the configuration with the ability to selectively allow
or deny specific properties or methods of an object. TME also fil-
ters out contexts where the sources should not be tainted. These
contexts include native built-in functions (called for initial setup)
and Chromium’s intrinsic functionalities (like settings or a new
tab). The TME receives details about the object, the API to access,
values of all the parameters passed to the API and the return value.
Based on the information received and the context derived from
the object, TME sets the taint for the return value.

A simple lookup of the object and member name (property or
method) in the custom taint configuration database is insufficient
since members can be references to runtime objects. Furthermore,
prototypal inheritance in JavaScript allows a child object to access
all the members of superclassses. To solve these problems, TME
actually needs the name of the object (similar to runtime type
information in C++). The constructor’s name is sufficient for this
purpose. Using the constructor, the TME walks up the inheritance
chain and finds the object in which the member is defined (the
WebIDL specification is used to speed up this process). In some
cases, when only amember is provided, the default object isWindow
(regular JS semantics). Once we find the object we check whether
it is a tainted source or not. This is more elegant and generic than
Mystique, which required patching all the Blink endpoints (7000+
at the time of writing this paper) and then subsequently tracking
their accesses.

3.4 Taint Propagation System (TPS)
To ensure that the original execution is not affected while propagat-
ing taint information, PanoptiChrome follows a caller-saved scheme
– store the original values in a set of virtual registers and allocate
independent registers for storing taint metadata before starting the
taint propagation routines. After the routines return, the original
state is restored. To ensure proper taint propagation, we include
vital information about object constructors (see Section 3.3) in the
parameters that we pass to the taint routines as opposed to ear-
lier frameworks like Mystique that did not do so. Because of their
restrictive nature (fixed set of sources and sinks) and limitations
imposed by the stack-based Javascript VM, this wasn’t easy to do.

On function exit, the AST Taint Table and AST to Runtime Object
Map are dropped (since every invocation requires a fresh AST Taint
Table and map). In contrast, the Object Taint Table persists across
invocations to further propagate the taint status.

Once the TME has marked the values obtained from a select set
of browser APIs as taint sources, TPS sends the taint tags to other
objects that receive information from the labeled “tainted” sources.
PanoptiChrome performs an order-independent, intra-procedural
analysis on the source code received by the V8 engine for execution
to create the flow graph (FG) (combination of the data and control
flow graphs).

Initially, an Abstract Syntax Tree(AST) is generated at the level
of an individual function. Analysis at the function level is sound
since even the top-level scope is considered a function(unnamed).

4 2023-10-13 09:25. Page 4 of 1–9.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

PanoptiChrome: A Modern In-browser Taint Analysis Framework WWW 2024(X

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

)

PanoptiChrome repurposes the parser and generator used by the
V8 JavaScript engine to create the ASTs. Then, the generated AST
is cached for future invocations. This AST is then used to construct
the Flow Graph (FG) in which the vertices are nodes from the
AST (56 such types in version 11.7 of V8) that represent either a
property access or an API call. The FG contains directed edges
between the AST nodes if there is an explicit flow of information
(via the assignment operator) or an implicit flow (via conditional
statements).

To reduce the overhead of taint propagation, PanoptiChrome does
not create an FG unless at least one tainted source has been visited in
the scope of the function under analysis. Once an API call has been
marked tainted by the TME, TPS marks the corresponding AST
node in the FG as tainted with the help of the 𝑜𝑏 𝑗𝑒𝑐𝑡 → ⟨𝐴𝑆𝑇𝑛𝑜𝑑𝑒⟩
mapping table (see Section 3.2).

Taint propagation routines are invoked only when one of the
following conditions is true: ❶ an API marked as a sink is called,
or ❷ the function returns and an object/array is created by the
function. Taint propagation is then carried out by following the
outgoing edges from the tainted AST node and updating the taint
status of each node in the forward slice (transitive closure of nodes
in the FG). Also, whenever a node is marked as tainted in the FG,
the corresponding object is marked as tainted with the help of a
reverse mapping table (AST node to object).

3.5 Logging Data
The V8 engine utilizes the concept of an Isolate to separate dif-
ferent execution contexts on the same web page. These multiple
execution contexts get created due to the inclusion of numerous
iframes in the same web page. An iframe is a separate webpage
loaded from an entirely different origin that gets embedded in the
parent website (used for advertisements, videos and analytics). For
every iframe, a separate Isolate is instantiated with its individual
copy of the global objects and built-in functions. Distinct isolates on
the same web page execute concurrently using separate threads and
behave as individual sandboxed instances of the V8 runtime. Since
PanoptiChrome attaches all the tables required for taint marking
and propagating with the Isolate, multiple runtime instances can
execute in parallel without treading on each other’s data. We log all
the data for each isolate separately in a different file similar to Visi-
ble V8 [25]; hence, the problem of inter-process synchronization is
solved by design.

For every Isolate PanoptiChrome logs all the origins (multiple
sub-domains can be loaded in the same Isolate as long as they
share the same origin) along with the tainted source APIs and
sink APIs invoked during the execution. Additionally, the leaks
are logged (along with the string-encoded list of taint sources)
whenever data from a tainted source flows into a sink API.

4 EVALUATION
4.1 Setup
We use an AMD EPYC 7702P powered workstation with 64 physical
cores and 128 GB RAM for crawling and post-processing tasks.
Log files, averaging 150KB per website, are stored on a 1 TB SSD.
The crawling process utilizes the latest Chromium browser (ver-
sion 117.0) compiled with our custom V8 engine (PanoptiChrome).

Fi
lt

e
ri

n
g

C
o
lle

ct
io

n
A

n
a
ly

si
s

Live URLs

URLs Connection Testing

Task
Manager

Sources, Sinks

List of suspicious
sensitive-APIs

Analyzer

Custom Crawler

Logs

Figure 4: Overview of the data collection pipeline

Websites are loaded concurrently in independent browser windows
with transient user profiles that get erased after each website visit.
Additionally, navigation and website loading are facilitated through
a commercial off-the-shelf ISP that is used by more than 38% of the
active internet users in the country.

4.2 Crawling Methodology
As discovered by VisibleV8 [25] and OmniCrawl[15], websites fre-
quently access various inbuilt objects and properties of the browser
for various purposes such as bot detection and for optimizing their
execution. Approaches that employ browser automation, like using
driver frameworks such as Selenium and Chromedriver are prone
to report inaccurate site statistics due to bot detection measures. To
alleviate this problem, we instantiate each browser instance from
the command line and pass the website URL as a parameter. Since
we do not use any automation framework, our approach is virtu-
ally indistinguishable from a normal user accessing the site. The
driver script to generate command line parameters and instantiate
a browser is written in Python v3.7 and is responsible for closing
the browser after a preset time (180 seconds).

For data collection, we use the top 20,000 websites from the
Tranco list [7] as the seed URLs. We perform a connection test for
each URL by requesting the HTTP header from the website. To
request the HTTP header containing the website’s status code, we
initially attempt to connect to the website by appending HTTPS://
with the domain name from the Tranco list. If the connection suc-
ceeds, we log the schema and URL to the list of reachable URLs. If
we fail to connect to the site within 15 seconds, we try with the
HTTP protocol for the next 15 seconds. If we still fail, we log the
URL with the corresponding error code.

Crawling results From our network vantage point, 61.91% of
the Tranco top 20,000 websites were reachable (status code 200).
Around 14% returned a 404 (not found) error, and around 24% timed
out with both the HTTPS and HTTP protocols. Table 1 represents
the status codes for the URLs in the list. Our crawler could log 12,846
unique origins and recorded 45,942,545 API calls and 24,486 leak
entries. Furthermore, the recorded origins invoked 5,673 unique
APIs, where 3,426 are DOM manipulation APIs.

2023-10-13 09:25. Page 5 of 1–9. 5

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW 2024(X) Anon et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

D
O

M

Lo
ca

tio
n

U
se

r A
ge

nt
Ba

ck
gr

ou
nd

Ta
sk

s

Sc
re

en

Pe
rfo

rm
an

ce

W
eb

St
or

ag
e

H
ist

or
y

C
SS

O
M

XM
LH

�p
Re

qu
es

t
Tr

us
te

d
Ty

pe
s

W
eb

C
ry

pt
o

U
RL

C
ha

nn
el

M
es

sa
gi

ng

Pl
ug

in

Web API Category

0

20

40

60

80

100

%
of

si
te

s

Access
Leaks

Figure 5: API access and leak in sites vs top 15 Web API categories (based on access)

Table 1: Status Codes for the top 20,000 Tranco URLs

Status Code Number of Sites Percentage
200-299 (Success) 12382 61.91%

300-399 (Redirection) 5 0.03%
400-499 (Client Error) 2770 13.85%
500-599 (Server Error) 141 0.7%

Exception 4701 23.5%
Total sites : 20000

4.3 Web API Categorization
Web API categorization is required to identify the DOM manipula-
tion APIs that are used to get the static properties of elements in
the web page. The values returned by these APIs is always same
for a particular element across browsers and hence cannot be used
to fingerprint the user. In our information flow analysis, we do
not consider these APIs as the sources of sensitive information. To
classify the APIs, the category was decided using the developer
documentation provided by Mozilla Developer Network (MDN)[4]
. Out of 5,673 unique API in our crawl, MDN had no categorization
for 1,246 which we manually classify after analyzing the documen-
tation. The complete list of API categories can be found here. Also,
for APIs categorized in multiple categories, we give the lowest
priority to the DOM category and classify the API into the higher
priority bin.

4.4 Data Leakage from APIs
We define data leakage as the flow of information from any web
API to any sink (storage, network). Every API invocation marks the
returned data as tainted. An entry is logged whenever any tainted
data reaches a sink. Out of the 5,673 unique web APIs that are
accessed by 12,846 origins, our analysis reveals that data from a
total of 675 unique APIs is leaked. We observe that on an average,
115 unique APIs are accessed on a website and data from 11 unique
APIs is leaked. The maximum number of APIs accessed from a
single origin is 531, whereas the maximum single origin leakage
was found to be 144.

DOM-related APIs (such as NodeList.length) are leaked on
33.84% of the sites, followed by the Location, the Background
Tasks and the User Agent category (30.31%, 19.74% and 17.15%
respectively).

In the Location category the HTMLAnchorElement.hostname
and the Window.location are the most commonly leaked APIs.
These APIs are used to get to domain name of the page for con-
structing dynamic links or fetching web resources. In the Back-
ground Tasks the Window.setTimeout API is used to execute a
JS function after a set amount of time. Window.navigator and
Navigator.userAgent from the User Agent category are used to
customize the website for different screen resolutions and sizes.
The complete category wise distribution of API access and leaks
for the top 15 Web API categories (based on access) is shown in
Figure 5.

6 2023-10-13 09:25. Page 6 of 1–9.

https://anonymous.4open.science/r/PanoptiChrome--007/api_category.json
https://anonymous.4open.science/r/PanoptiChrome--007/all_leaked_apis.md

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

PanoptiChrome: A Modern In-browser Taint Analysis Framework WWW 2024(X

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

)

Out of all the APIs that get leaked on a site, 55.58% belong to the
DOM category. The average distribution of API categories (in the
remaining 44.42%) that get leaked per site is shown in the Figure 6.

Location

32.4

Performance
21.6

Screen

12.1
User Agent

7.0

Background Tasks4.3

XMLH�pRequest4.0
History2.2
Plugin2.2

Others
14.2

Figure 6: Average API leak distribution per site apart from
DOM APIs

4.5 Fingerprinting APIs
Sensitive APIs are those APIs that can be potentially used for fin-
gerprinting. PanoptiChrome analyzes all the parameters passed to
a sink and records the sources from which the information sent
over a sink is generated. Out of the 675 unique APIs that get leaked,
269 APIs are DOM related that are invoked for DOM manipulation.
These are unrelated to fingerprinting because they always return
the same value. 121 APIs from the remaining 406 APIs have been
already classified by the previous work [35] as sensitive and 33 have
been categorized as URL or sink-related APIs that are used for fin-
gerprinting indirectly (as a means of ferrying already fingerprinted
data).

For classification of the remaining APIs (252 APIs), we followed
a method similar to prior work [35], where we investigated known
fingerprinting websites for the use of the discovered APIs. In total,
78 APIs were confirmed to be fingerprinting using this method. For
the remaining 186 APIs, we manually consulted the documentation
for each API and the source code of the websites that use the API to
establish the associationwith fingerprinting. 82 APIs weremanually
classified to have the potential to be used for fingerprinting, while
48 APIs were classified as sinks or providing URL-related data. To
summarize, we discover a total of 362 APIs (121 + 33 + 48 + 78
+ 82) that are probably being used for fingerprinting or have the
potential to be misused. The complete list of APIs can be accessed
here. Out of these 362 APIs, 208 APIs were previously unreported
by state-of-the-art works.

4.5.1 Effect of Co-location of API Calls on Precision and Recall. Out
of the 675 APIs that are leaked by the sites, 39.85% are used for
DOM manipulation and 89.16% of the remaining APIs (total minus
DOM) were confirmed to have the potential to be used as finger-
printing vectors (sensitive). For each sink, PanoptiChrome reports
a list of sources that are used to compute the tainted value. For
each such list, we check if it contains more APIs than a pre-defined

threshold. For this experiment we do the following: if this thresh-
old is breached, we mark all the APIs in the list as sensitive. This
follows from the observation in [12, 24] that browser fingerprinting
often clubs data from multiple sources together to form a unique
identifier. After removing DOM manipulation APIs, we vary the
threshold from 0 (all sources included) to 12 (maximum number
of seeds found in a single leak) and plot the resulting distribution
of percentage of suspicious APIs found in Figure 7. It can be ob-
served that the percentage of APIs detected to be sensitive increases
with the threshold (precision increases at the cost of recall). With
a threshold of 0, 406 APIs are marked for further analysis (with
89.16% being sensitive), while with a threshold of 10, only 92 APIs
are marked for further analysis. Out of the 92 APIs marked, 96.74%
are confirmed to be sensitive.

0 1 2 3 4 5 6 7 8 9 10 11 12

Threshold

80

85

90

95

100

%
Se

ns
it

iv
e

A
PI

s

89.16
91.5

93.19

96.22 95.97 96.74 96.74

Figure 7: Relationship of the #sensitive APIs found with the
threshold value

Comparison with State-of-the-art:
For comparative analysis with the state-of-the-art tool for fin-

geprinting – BFAD[35] – we collected the API logs using Visi-
bleV8 [25] for the Tranco top 1000 sites. The results are shown
in Figure 8. Only 608 of these 1000 sites were reachable from our
network vantage point. BFAD confirms a total of 68 APIs that can
potentially be used for fingerprinting (are sensitive). PanoptiChrome
discovers a total of 438 unique APIs from which the data is leaked.
Out of these 438 APIs, 183 APIs are used for DOM manipulation,
hence are not considered for fingerprinting. In the remaining 255
APIs, we verify 237 APIs to be a potential vector for fingerprinting
either manually or by using the known fingperinting approaches.

PanoptiChrome BFAD198 39 29

Figure 8: Comparison with the state-of-the-art, BFAD[35]

2023-10-13 09:25. Page 7 of 1–9. 7

https://anonymous.4open.science/r/PanoptiChrome--007/leaked_dom_manipulation_apis.md
https://anonymous.4open.science/r/PanoptiChrome--007/sinks_uri_related_apis.md
https://anonymous.4open.science/r/PanoptiChrome--007/

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW 2024(X) Anon et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Summary of information flow analysis in different JavaScript runtimes. FGTT stands for fine-grained taint tracking

Work FGTT Implicit flows Custom sources Completeness Upgradability Platform agnostic
Vogt et al.[37] ✓ ✓ ✗ ✗ ✗ ✗

DOMsday[32] ✓ ✗ ✗ ✗ ✗ ✗

WebPol[10] ✓ ✓ ✓ ✓ ✗ ✓

Runtime monitoring[13] ✗ ✗ ✗ ✗ ✓ ✓

Crowdflow[28] ✓ ✗ ✗ ✓ ✗ ✗

FPDetective[11] ✗ ✗ ✗ ✗ ✓ ✓

JSgraph[30] ✗ ✗ ✗ ✗ ✓ ✓

Visible V8[25] ✗ ✗ ✗ ✗ ✓ ✓

Mystique[16] ✓ ✓ ✗ ✓ ✗ ✗

25 million flows[29] ✓ ✗ ✗ ✗ ✗ ✗

PanoptiChrome ✓ ✓ ✓ ✓ ✓ ✓

5 RELATEDWORK
Dennings [18, 19] pioneered the formalization of static analysis
approaches in 1970s. Fenton [22] then studied purely dynamic mon-
itors for managing information flows. Much of the later work has
focused on adapting the work of Denning and Fenton to different
languages and proposing solutions with various limitations.

Dynamic analysis techniques using virtual machines [23], source
code instrumentation [34], and runtime instrumentation [13] have
been employed for numerous use cases ranging from JS execution
visualization [30] and record/replay [34] to privacy and security
analysis of browser extensions [16] and policy enforcement[10].
Table 2 summarizes the features and limitations of existing infor-
mation flow approaches for JavaScript engines.

5.1 Augmenting Browsers with Taint Tracking
Capabilities

Vogt et al.[37] supplement dynamic taint tracking with static anal-
ysis to detect DOM-XSS vulnerabilities. They use static analysis to
propagate taint information along implicit flows. On the same lines,
in reference [29], the authors instrument the Chromium browser
to track tainted strings (limited use case). Their goal was to de-
tect and validate DOM-XSS vulnerabilities. Based on the source
and context of the tainted data, they automatically generate the
breakout sequence to validate the vulnerability. Like [29], Domsday
[32] also instruments the Chromium browser to detect DOM-XSS
vulnerabilities. The authors add one byte to each string object to
keep track of the encoding and decoding functions and also the
provenance of data. This is also a limited use case. Another such
work is FP-Detective [11] that only looks at font-related APIs.

Bauer et al. [13] treat the V8 JavaScript engine as a black box and
track information flow only across the Blink-V8 boundary; this can
be used to sandbox scripts based on their respective origins. Their
coarse-grained information flow approach cannot handle implicit
flows and cannot reason if a source API is exploited for illegitimate
use. In Crowdflow [28], the authors aim to minimize the limita-
tions of information flow tracking by probabilistically switching
between partial taint tracking and information flow monitoring in
a distributed setting. The clients report a violation to an aggregator
that takes appropriate action. Similar to Domsday [32], CrowdFlow

employs heavyweight instrumentation and uses fixed set of sources
and sinks that are tailored to detect XSS-based vulnerabilities.

PanoptiChrome is much more generic than all the prior work
and is not meant to target taint information for any specific kind
of data types (or object types). Its taint tracking is also much more
fine-grained. Unlike prior work, it does not rely on any custom JS
engine that only handles a subset of the language; it can handle
any site that the Chromium browser can handle.

5.2 Study of Third-Party Data Exfiltration
In this space, the closest approaches that are similar to Panop-
tiChrome are Mystique[16], Jest [17], Ichnaea [26], and JSFlow [23].
JSFlow [30] uses a bespoke JS interpreter for a subset of JavaScript.
Jest [17] is a source-code instrumentation-based approach that con-
verts every statement and expression to a function call, and these
instrumented functions are responsible for implementing the dy-
namic analysis methods. Ichnaea [26] is built on top of Jalangi [34],
which is also a source-code instrumentation-based approach. The
instrumentations proposed by both Jest and Ichnaea can be detected
easily by an adversary [15].

6 CONCLUSION
We showed in this paper that it is indeed possible to build a compre-
hensive dynamic taint tracking engine that is completely generic
and is portable across platforms and browser versions to a large
extent. This was achieved by limiting the changes to a small part
(interpreter) of the V8 engine and suggesting ingenious solutions
for dynamic addition of sources/sinks, creating persistent handles
to circumvent the issues caused by the GC and memory relocation
engines and optimizing the process of taint propagation by using
an on-demand algorithm. We used PanoptiChrome to perform a de-
tailed characterization of the information leakage in the top 20,000
websites. We further use the locality information inherent in the
logs generated by PanoptiChrome to significantly reduce the set of
APIs to be considered for manual analysis. The need for having
PanoptiChrome is attested by the fact that we discover 208 APIs
that were not known to have a fingerprinting character.

8 2023-10-13 09:25. Page 8 of 1–9.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PanoptiChrome: A Modern In-browser Taint Analysis Framework WWW 2024(X

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

)

REFERENCES
[1] 2022. Thou Shalt Not Depend on Me: Analysing the Use of Outdated

JavaScript Libraries on the Web - NDSS Symposium. https://www.ndss-
symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-
analysing-use-outdated-javascript-libraries-web [Online; accessed 24. Feb.
2023].

[2] 2023. ECMAScript 2015 Language Specification – ECMA-262 6th Edition. https:
//262.ecma-international.org/6.0 [Online; accessed 11. Oct. 2023].

[3] 2023. ECMAScript® 2024 Language Specification. https://tc39.es/ecma262
[Online; accessed 11. Oct. 2023].

[4] 2023. HTMLAnchorElement: hostname property - Web APIs | MDN. https:
//developer.mozilla.org/en-US/docs/Web/API [Online; accessed 11. Oct. 2023].

[5] 2023. One platform to connect | Zoom. https://zoom.us [Online; accessed 11.
Oct. 2023].

[6] 2023. Stack Overflow Developer Survey 2023. https://survey.stackoverflow.co/
2023 [Online; accessed 11. Oct. 2023].

[7] 2023. Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manip-
ulation - NDSS Symposium. https://www.ndss-symposium.org/ndss-paper/
tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation
[Online; accessed 11. Oct. 2023].

[8] 2023. Video Conferencing, Meetings, Calling | Microsoft Teams. https://www.
microsoft.com/en-in/microsoft-teams/group-chat-software [Online; accessed 11.
Oct. 2023].

[9] 2023. Visual Studio Code - Code Editing. Redefined. https://code.visualstudio.com
[Online; accessed 11. Oct. 2023].

[10] 2023. WebPol: Fine-grained Information Flow Policies for Web Browsers (JSTools
2017) - ECOOP 2017. https://2017.ecoop.org/details/JSTools-2017-papers/6/
WebPol-Fine-grained-Information-Flow-Policies-for-Web-Browsers [Online;
accessed 24. Feb. 2023].

[11] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. 2013. FPDetective: dusting the web for fingerprint-
ers. In CCS ’13: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. Association for Computing Machinery, New York, NY,
USA, 1129–1140. https://doi.org/10.1145/2508859.2516674

[12] Pouneh Nikkhah Bahrami, Umar Iqbal, and Zubair Shafiq. 2021. FP-
Radar: Longitudinal Measurement and Early Detection of Browser Finger-
printing. Proceedings on Privacy Enhancing Technologies (2021). https:
//www.semanticscholar.org/paper/FP-Radar%3A-Longitudinal-Measurement-
and-Early-of-Bahrami-Iqbal/72bb8e71702fef660b44133d34b9a8a5456e99c3

[13] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and
Yuan Tian. 2015. Run-time Monitoring and Formal Analysis of Information Flows
in Chromium. In Network and Distributed System Security Symposium.

[14] Cordenne Brewster. 2023. 15 Companies That Use Node.js in 2023 Successfully
| Trio Developers. Trio Global Inc (Aug. 2023). https://www.trio.dev/node/
resources/companies-use-node-js

[15] Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang,
Lujo Bauer, Hsu-Chun Hsiao, Limin Jia, and Timothy Libert. 2022. Omn-
iCrawl: Comprehensive Measurement of Web Tracking With Real Desktop
and Mobile Browsers. Proceedings on Privacy Enhancing Technologies (2022).
https://petsymposium.org/popets/2022/popets-2022-0012.php

[16] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Information
Leakage from Browser Extensions. In CCS ’18: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. Association for
Computing Machinery, New York, NY, USA, 1687–1700. https://doi.org/10.1145/
3243734.3243823

[17] Andrey Chudnov and David A. Naumann. 2015. Inlined Information Flow Moni-
toring for JavaScript. In CCS ’15: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. Association for Computing Machin-
ery, New York, NY, USA, 629–643. https://doi.org/10.1145/2810103.2813684

[18] Dorothy E. Denning. 1976. A lattice model of secure information flow. Commun.
ACM 19, 5 (May 1976), 236–243. https://doi.org/10.1145/360051.360056

[19] Dorothy E. Denning and Peter J. Denning. 1977. Certification of programs for
secure information flow. Commun. ACM 20, 7 (July 1977), 504–513. https:
//doi.org/10.1145/359636.359712

[20] Peter Eckersley. 2010. How Unique Is Your Web Browser? In Privacy Enhancing
Technologies. Springer, Berlin, Germany, 1–18. https://doi.org/10.1007/978-3-
642-14527-8_1

[21] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-
site Measurement and Analysis. In CCS ’16: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. Association for Computing
Machinery, New York, NY, USA, 1388–1401. https://doi.org/10.1145/2976749.
2978313

[22] J. S. Fenton. 1974. Memoryless subsystems. Comput. J. 17, 2 (Jan. 1974), 143–147.
https://doi.org/10.1093/comjnl/17.2.143

[23] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
tracking information flow in JavaScript and its APIs. In SAC ’14: Proceedings of the
29th Annual ACM Symposium on Applied Computing. Association for Computing

Machinery, New York, NY, USA, 1663–1671. https://doi.org/10.1145/2554850.
2554909

[24] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In 2021
IEEE Symposium on Security and Privacy (SP). 1143–1161. https://doi.org/10.1109/
SP40001.2021.00017

[25] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. In IMC ’19: Proceedings of the Internet
Measurement Conference. Association for Computing Machinery, New York, NY,
USA, 393–405. https://doi.org/10.1145/3355369.3355599

[26] Rezwana Karim, Frank Tip, Alena Sochůrková, and Koushik Sen. 2018. Platform-
Independent Dynamic Taint Analysis for JavaScript. IEEE Trans. Software Eng.
46, 12 (Oct. 2018), 1364–1379. https://doi.org/10.1109/TSE.2018.2878020

[27] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, BenWiedermann, and BenHardekopf. 2014. JSAI: a static analysis
platform for JavaScript. In FSE 2014: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. Association for
Computing Machinery, New York, NY, USA, 121–132. https://doi.org/10.1145/
2635868.2635904

[28] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and
Michael Franz. 2013. CrowdFlow: Efficient Information Flow Security. In ISC 2013:
Proceedings of the 16th International Conference on Information Security - Volume
7807. Springer-Verlag, Berlin, Germany, 321–337. https://doi.org/10.1007/978-3-
319-27659-5_23

[29] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In CCS ’13: Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. Association for
Computing Machinery, New York, NY, USA, 1193–1204. https://doi.org/10.1145/
2508859.2516703

[30] Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci. 2018. JSgraph:
Enabling Reconstruction ofWeb Attacks via Efficient Tracking of Live In-Browser
JavaScript Executions. In Network and Distributed System Security Symposium.

[31] Magnus Madsen, Benjamin Livshits, and Michael Fanning. 2013. Practical static
analysis of JavaScript applications in the presence of frameworks and libraries.
In ESEC/FSE 2013: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. Association for Computing Machinery, New York, NY, USA,
499–509. https://doi.org/10.1145/2491411.2491417

[32] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting. In Network and Distributed System Security Symposium.

[33] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2016. The
Leaking Battery. In Data Privacy Management, and Security Assurance. Springer,
Cham, Switzerland, 254–263. https://doi.org/10.1007/978-3-319-29883-2_18

[34] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.
In ESEC/FSE 2013: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. Association for Computing Machinery, New York, NY, USA,
488–498. https://doi.org/10.1145/2491411.2491447

[35] Junhua Su and Alexandros Kapravelos. 2023. Automatic Discovery of Emerging
Browser Fingerprinting Techniques. InWWW ’23: Proceedings of the ACM Web
Conference 2023. Association for Computing Machinery, New York, NY, USA,
2178–2188. https://doi.org/10.1145/3543507.3583333

[36] Omer Tripp, Pietro Ferrara, and Marco Pistoia. 2014. Hybrid security analysis of
web JavaScript code via dynamic partial evaluation. In ISSTA 2014: Proceedings of
the 2014 International Symposium on Software Testing and Analysis. Association
for Computing Machinery, New York, NY, USA, 49–59. https://doi.org/10.1145/
2610384.2610385

[37] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Krügel, and Giovanni Vigna. 2007. Cross Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis. In Network and Distributed System Security
Symposium.

2023-10-13 09:25. Page 9 of 1–9. 9

https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web
https://262.ecma-international.org/6.0
https://262.ecma-international.org/6.0
https://tc39.es/ecma262
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://zoom.us
https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation
https://www.microsoft.com/en-in/microsoft-teams/group-chat-software
https://www.microsoft.com/en-in/microsoft-teams/group-chat-software
https://code.visualstudio.com
https://2017.ecoop.org/details/JSTools-2017-papers/6/WebPol-Fine-grained-Information-Flow-Policies-for-Web-Browsers
https://2017.ecoop.org/details/JSTools-2017-papers/6/WebPol-Fine-grained-Information-Flow-Policies-for-Web-Browsers
https://doi.org/10.1145/2508859.2516674
https://www.semanticscholar.org/paper/FP-Radar%3A-Longitudinal-Measurement-and-Early-of-Bahrami-Iqbal/72bb8e71702fef660b44133d34b9a8a5456e99c3
https://www.semanticscholar.org/paper/FP-Radar%3A-Longitudinal-Measurement-and-Early-of-Bahrami-Iqbal/72bb8e71702fef660b44133d34b9a8a5456e99c3
https://www.semanticscholar.org/paper/FP-Radar%3A-Longitudinal-Measurement-and-Early-of-Bahrami-Iqbal/72bb8e71702fef660b44133d34b9a8a5456e99c3
https://www.trio.dev/node/resources/companies-use-node-js
https://www.trio.dev/node/resources/companies-use-node-js
https://petsymposium.org/popets/2022/popets-2022-0012.php
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/2810103.2813684
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1093/comjnl/17.2.143
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1109/SP40001.2021.00017
https://doi.org/10.1109/SP40001.2021.00017
https://doi.org/10.1145/3355369.3355599
https://doi.org/10.1109/TSE.2018.2878020
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1007/978-3-319-27659-5_23
https://doi.org/10.1007/978-3-319-27659-5_23
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/2491411.2491417
https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/3543507.3583333
https://doi.org/10.1145/2610384.2610385
https://doi.org/10.1145/2610384.2610385

	Abstract
	1 Introduction
	2 Background
	2.1 Browser APIs and WebIDL
	2.2 Information Flow Analysis

	3 Design of PanoptiChrome
	3.1 Design Overview
	3.2 Code Instrumentation and Data Structures
	3.3 Taint Marking Engine (TME)
	3.4 Taint Propagation System (TPS)
	3.5 Logging Data

	4 Evaluation
	4.1 Setup
	4.2 Crawling Methodology
	4.3 Web API Categorization
	4.4 Data Leakage from APIs
	4.5 Fingerprinting APIs

	5 Related Work
	5.1 Augmenting Browsers with Taint Tracking Capabilities
	5.2 Study of Third-Party Data Exfiltration

	6 Conclusion
	References

