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Figure 4: Training a linear VAE with 32 latent variables with 64 categories on dynamically binarized
MNIST, FashionMNIST, and Omniglot datasets by maximizing the ELBO. We plot the train ELBO
(left column), the test 100-sample bound (middle column), and the variance of the gradient estimator
(right column). For a fair comparison, the variance of all the gradient estimators was computed along
the training trajectory of the RLOO estimator. We plot the mean and one standard error based on 5
runs from different random initializations.

D
yn

am
ic

M
N

IS
T

200K 250K 300K 350K 400K 450K 500K
Training Step

110

108

106

104

Tr
ai

n 
EL

BO

Default
Descending
Ascending

200K 250K 300K 350K 400K 450K 500K
Training Step

105

104

103

102

101

100

Te
st

 1
00

-S
am

pl
e 

Bo
un

d Default
Descending
Ascending

100K 200K 300K 400K 500K
step10

3
10

2
Va

ria
nc

e 
of

 G
ra

di
en

ts

Default
Descending
Ascending

Fa
sh

io
nM

N
IS

T

100K 200K 300K 400K 500K
Training Step

245

244

243

242

241

240

239

Tr
ai

n 
EL

BO

Default
Descending
Ascending

100K 200K 300K 400K 500K
Training Step

245

244

243

242

241

240

239

Te
st

 1
00

-S
am

pl
e 

Bo
un

d Default
Descending
Ascending

0 100K 200K 300K 400K 500K
step10

3
10

2
Va

ria
nc

e 
of

 G
ra

di
en

ts

Default
Descending
Ascending

O
m

ni
gl

ot

200K 250K 300K 350K 400K 450K 500K
Training Step

130

128

126

124

122

Tr
ai

n 
EL

BO

Default
Descending
Ascending

200K 250K 300K 350K 400K 450K 500K
Training Step

130

128

126

124

122

Te
st

 1
00

-S
am

pl
e 

Bo
un

d Default
Descending
Ascending

0 100K 200K 300K 400K 500K
step

10
3

10
2

Va
ria

nc
e 

of
 G

ra
di

en
ts

Default
Descending
Ascending

Figure 5: The effect of logit ordering on the performance of DisARM-SB. We sort the encoder logits
in the ascending (Green) or descending (Red) order, and compare against the default ordering (Blue).

A.1 Experiments with linear categorical VAEs

We evaluate the three proposed gradient estimators, DisARM-IW, DisARM-SB, and DisARM-Tree,
by training linear variational auto-encoders with categorical latent variables on dynamically bina-
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Figure 6: Training non-linear categorical VAEs with different model sizes on dynamically binarized
FashionMNIST. Left: 5 latent variables of 64 categories. Middle: with 32 latent variables with 64
categories. Right: 32 latent variables with 16 categories.

Table 3: Training a non-linear VAE with categorical latents using multi-sample estimators. Mean
variational lower bounds and the standard error of the mean computed based on 5 runs of 5×105-steps
training from different random initializations. The best performing method (up to the standard error)
for each task is in bold.

#Pairs Dataset DisARM-Tree DisARM-SB DisARM-IW RLOO

5
Dynamic MNIST −91.36± 0.11 −91.67± 0.08 −91.85± 0.04 −92.35± 0.10
Fashion MNIST −231.01± 0.14 −231.38± 0.14 −231.14± 0.17 −231.78± 0.16
Omniglot −109.00± 0.10 −108.90± 0.09 −108.83± 0.11 −109.73± 0.07

10
Dynamic MNIST −90.81± 0.06 −91.01± 0.06 −90.95± 0.08 −91.86± 0.15
Fashion MNIST −230.95± 0.21 −231.21± 0.18 −231.25± 0.29 −231.59± 0.21
Omniglot −108.27± 0.03 −108.19± 0.07 −108.08± 0.06 −108.95± 0.17

rized MNIST, FashionMNIST, and Omniglot datasets. As in (Dong et al., 2020), we benchmark
the proposed estimators against the 2-sample REINFORCE estimator with the leave-one-out base-
line (RLOO; Kool et al., 2019). The linear model has a single layer of 32 categorical latent variables,
each with 64 categories. We find no significant difference in performance between the proposed esti-
mators and the RLOO baseline in this setting (Appendix Table 4 and Appendix Figure 4). However,
as we noted in the maintext, Dong et al. (2020) found that for multi-layer linear models in the binary
case, DisARM showed increasing improvement over RLOO for models with deeper hierarchies. So it
would be interesting to see whether this holds for the categorical case in future work.

Table 4: Training a linear VAE with categorical latents using the proposed estimators and the RLOO
baseline. Mean variational lower bounds and the standard error of the mean computed based on 5
runs of 5× 105-steps training from different random initializations. The best performing method (up
to the standard error) for each task is in bold.

Training set ELBO

DisARM-IW DisARM-Tree DisARM-SB RLOO

Dynamic MNIST −115.64± 0.09 −115.59± 0.16 −115.48± 0.14 −115.50± 0.18
Fashion MNIST −254.23± 0.19 −254.56± 0.22 −254.05± 0.20 −254.18± 0.15
Omniglot −124.64± 0.02 −124.52± 0.11 −124.82± 0.21 −125.10± 0.11
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Figure 7: Training a non-linear categorical VAE with 128 latent variables and 16 categories, using
multi-sample objectives, on dynamically binarized MNIST, FashionMNIST, Omniglot datasets by
maximizing the ELBO. The examples in the top 2 rows are using 5 pairs of samples, while the ones
in the bottom 2 rows are using 10 pairs.

A.2 Experimental Details

We use the same model structure as in (Yin et al., 2019). The model has a single layer of categorical
latent variables which are mapped to Bernoulli logits using an MLP with two hidden layers of 256
and 512 of LeakyReLU units (Xu et al., 2015) with negative slope of 0.2. The encoder mirrors the
structure, having two hidden layers of 512 and 256 LeakyReLU units.

For a fair comparison of the variance of the gradient estimators, we train a model with the RLOO
estimator and evaluate the variance of all the estimators at each step along the training trajectory of
this model. Based on preliminary experiments, the results were independent of the gradient estimator
used to generate the model trajectory. We report the average per-parameter variance based on the
parameter moments estimated with an exponential moving average with decay rate 0.999.

Each experiment run takes around 12 hours on an NVIDIA Tesla P100 GPU. Our implementation
was biased towards readability instead of computational efficiency, so we expect that significant
improvements in runtime could be achieved.

A.3 Importance Weighting Derivation

We consider proposal distributions that factorize across dimensions p(z, z̃) =
∏
k p(zk, z̃k)

and that are couplings such that the marginals are maintained p(zk) = p(z̃k) = q(zk).
In general, qθ(z)qθ(z̃) has full support, but we know that the integrand qθ(z)qθ(z̃)(f(z) −
f(z̃)) (∇θk log qθ(zk)−∇θk log qθ(z̃k)) vanishes when zk = z̃k by inspection, so we allow p(zk, z̃k)
to put zero mass on zk = z̃k configurations, and require p(zk, z̃k) > 0 otherwise.
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Then with z, z̃ ∼ p, we show that gDisARM-IW (Eq. 3) is an unbiased estimator. First,

Ep(z,z̃)
[
1

2

qθ(zk)qθ(z̃k)

pθ(zk, z̃k)
(f(z)− f(z̃)) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

]
= Ep(z−k,z̃−k)Ep(zk,z̃k)

[
1

2

qθ(zk)qθ(z̃k)

pθ(zk, z̃k)
(f(z)− f(z̃)) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

]
= Ep(z−k,z̃−k)

∑
zk,z̃k∈supp p(zk,z̃k)

1

2
qθ(zk)qθ(z̃k)(f(z)− f(z̃)) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

= Ep(z−k,z̃−k)
∑
zk,z̃k

1

2
qθ(zk)qθ(z̃k)(f(z)− f(z̃)) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

= Ep(z−k,z̃−k)Eqθ(zk)qθ(z̃k)
[
1

2
(f(z)− f(z̃)) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

]
,

using the fact that the integrand vanishes outside the support of p(zk, z̃k). Then,

Ep(z−k,z̃−k)Eqθ(zk)qθ(z̃k)
[
1

2
(f(z)− f(z̃)) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

]
= Eqθ(zk)qθ(z̃k)

[
1

2
(Ep(z−k,z̃−k) [f(z)− f(z̃)]) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

]
= Eq(zk)q(z̃k)

[
1

2
(Ep(z−k,z̃−k) [f(z)]− Ep(z−k,z̃−k) [f(z̃)]) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

]
= Eq(zk)q(z̃k)

[
1

2
(Eq(z−k) [f(z)]− Eq(z̃−k) [f(z̃)]) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

]
= Eq(z)q(z̃)

[
1

2
(f(z)− f(z̃)) (∇θk log qθ(zk)−∇θk log qθ(z̃k))

]
,

following from the linearity of the expectation and the fact that the coupling preserves marginals.

A.4 Stick-Breaking Coupling

A.4.1 Computing Importance Weights

To simplify the notation in this subsection, we consider a single dimension at a time and omit the
dimension index. To compute qθ(z)qθ(z̃)

pθ(z,z̃)
, it is helpful to work with the logits of the binary variables

αi = logit q(z=i)∑C
j=i+1 q(z=j)

. First, we know that q(z = i) =
∏i−1
j=1 σ(−αj)σ(αi). For a pair of

antithetic binary variables (bi, b̃i), the coupling joint probability is

p(bi, b̃i) =


max(1− 2σ(αi), 0) bi = b̃i = 0

max(2σ(αi)− 1, 0) bi = b̃i = 1

σ(−|αi|) o.w.
.

Since the categories are arranged in the ascending order of probability, αi ≤ 0 for i < C, so the joint
probability simplifies to

p(bi, b̃i) =


1− 2σ(αi) bi = b̃i = 0

0 bi = b̃i = 1

σ(αi) o.w.
,

for i < C. We do not need to compute the entries for z = z̃ as the integrand already vanishes.
Because of symmetry, without loss of generality, assume z < z̃. From the construction of z and z̃ in
terms of the binary variables, we can reason about their values. We know that for i < z, we must
have bi = b̃i = 0. Then, for i = z, we must have bi = 1 and for z ≤ i < z̃, b̃i = 0, and finally, for
i = z̃, b̃ = 1. Putting this together yields

p(z, z̃) =

[
z−1∏
i=1

(1− 2σ(αi))

]
σ(αz)

 z̃−1∏
j=z+1

σ(−αj)

σ(αz̃).
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Thus, the importance weights are

qθ(z)qθ(z̃)

pθ(z, z̃)
=

[∏z−1
i=1 σ(−αi)

]
σ(αz)

[∏z̃−1
j=1 σ(−αj)

]
σ(αz̃)[∏z−1

i=1 (1− 2σ(αi))
]
σ(αz)

[∏z̃−1
j=z+1 σ(−αj)

]
σ(αz̃)

=

[∏z−1
i=1 σ(−αi)2

]
σ(−αz)∏z−1

i=1 (1− 2σ(αi))
.

A.4.2 Unbiasedness of gDisARM-SB

Recall the gDisARM-SB estimator. We have binary variables bk,1 ∼ Bernoulli(σ(αk,1)), . . . , bk,C ∼
Bernoulli(σ(αk,C)) and independently sampled antithetic pairs {b̃k,c} such that z = h(b) and
z̃ = h(b̃). The estimator is

gDisARM-SBk,c =


1
2 (f(z)− f(z̃))

(
(−1)b̃k,c1bk,c 6=b̃k,cσ(|(αk,c|)

)
c ≤ min(zk, z̃k)

1
2 (f(z̃)− f(z))∇αk,c log qθ(b̃k,c) zk < c ≤ z̃k
1
2 (f(z)− f(z̃))∇αk,c log qθ(bk,c) z̃k < c ≤ zk
0 c > max(zk, z̃k)

.

We claim that for any b−k,c and b̃−k,c,

Ebk,c,b̃k,c
[
gDisARM-SBk,c

]
=

1

2
Ebk,c

[
f(h(b))∇αk,c log qθ(bk,c)

]
+
1

2
Eb̃k,c

[
f(h(b̃))∇αk,c log qθ(b̃k,c)

]
,

which immediately implies unbiasedness. Importantly, the conditions defining the estimator can be
determined solely based on b−k,c and b̃−k,c, so it suffices to verify that the estimator is unbiased
for each case separately. In the first case, gDisARM-SB is the DisARM estimator from (Dong et al.,
2020) which was previously shown to be unbiased. The second and third cases are reminiscent of
the 2-sample RLOO estimator, however, in the coupled case, such an estimator must be justified as
unbiased. In the second case,

Ebk,c,b̃k,c

[
1

2
(f(z̃)− f(z))∇αk,c log qθ(b̃k,c)

]
=

1

2
Eb̃k,c

[
f(z̃)∇αk,c log qθ(b̃k,c)

]
− 1

2
Eb̃k,c

[
Ebk,c|b̃k,c [f(z)]∇αk,c log qθ(b̃k,c)

]

=
1

2
Eb̃k,c

[
f(z̃)∇αk,c log qθ(b̃k,c)

]
−

0︷ ︸︸ ︷
1

2
Eb̃k,c

[
f(z)∇αk,c log qθ(b̃k,c)

]

=
1

2
Eb̃k,c

[
f(z̃)∇αk,c log qθ(b̃k,c)

]
+

0︷ ︸︸ ︷
1

2
Ebk,c

[
f(z)∇αk,c log qθ(bk,c)

]
.

f(z) depends on b̃k,c through the coupled sample bk,c, however the condition c > zk implies
that z does not depend on bk,c, so f(z) is a constant with respect to both bk,c and b̃k,c, resulting
in the vanishing terms. The third case follows by symmetry. In the fourth case, the condition
c > max(zk, z̃k) implies that neither z nor z̃ depend on bk,c or b̃k,c hence the gradient vanishes.

A.5 Tree-Structured Coupling

We construct a categorical sample based on a binary sequence arranged as a balanced binary tree.
Considering a binary sequence b = [b0, b1, b2, · · · , bC−1], we interpret as a binary tree recursively
with root b[0] and left subtree b[1 : len(b)//2 + 1] and right subtree b[len(b)//2 + 1 :]. The binary
variables correspond to internal routing decisions in the binary tree with the categories as the leaves,
so that T (b) is defined by the following recursive function (assuming C is a power of 2)

def T ( b ) :
h a l f = l e n ( b ) / / 2 + 1
i f not b :

re turn 1
e l i f b [ 0 ] == 0 :
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re turn T ( b [ 1 : h a l f ] )
e l s e :

re turn h a l f + T ( b [ h a l f : ] )

For each binary variable bi, we can find all the categories residing in its left subtree (Left(i)) and
all the categories in its right subtree Right(i). We would like the probability of traversing the right
subtree σ(αi) to be such that

σ(αi) =

∑
j∈Right(i) q(z = j)∑

j∈Right(i) q(z = j) +
∑
j∈Left(i) q(z = j)

Hence,

αi = log

∑
j∈Right(i) q(z = j)∑
j∈Left(i) q(z = j)

.

Recall, the estimator from the maintext. Given binary variables b1, . . . , bC−1, let I(b1, . . . , bC−1)
be the set of variables used in routing decisions (|I(b1, . . . , bC−1)| = log2 C). With a pair of
antithetically sampled binary sequences (b, b̃), the following is an unbiased estimator:

gDisARM-Treek,c =


1
2 (f(z)− f(z̃))

(
(−1)b̃k,c1bk,c 6=b̃k,cσ(|(αk,c|)

)
c ∈ I(bk,·) ∩ I(b̃k,·)

1
2 (f(z̃)− f(z))∇αk,c log qθ(b̃k,c) c ∈ I(b̃k,·)− I(bk,·)
1
2 (f(z)− f(z̃))∇αk,c log qθ(bk,c) c ∈ I(bk,·)− I(b̃k,·)
0 c /∈ I(bk,·) ∪ I(b̃k,·)

. (6)

Closely following the argument from the previous section, we claim that for any b−k,c and b̃−k,c,

Ebk,c,b̃k,c
[
gDisARM-Treek,c

]
=

1

2
Ebk,c

[
f(h(b))∇αk,c log qθ(bk,c)

]
+
1

2
Eb̃k,c

[
f(h(b̃))∇αk,c log qθ(b̃k,c)

]
,

which immediately implies unbiasedness. Importantly, the conditions defining the estimator can be
determined solely based on b−k,c and b̃−k,c, so it suffices to verify that the estimator is unbiased
for each case separately. In the first case, gDisARM-Tree is the DisARM estimator from (Dong et al.,
2020) which was previously shown to be unbiased. The second and third cases are reminiscent of
the 2-sample RLOO estimator, however, in the coupled case, such an estimator must be justified as
unbiased. In the second case, f(z) depends on b̃k,c through the coupled sample bk,c, however the
condition c ∈ I(b̃k,·) − I(bk,·) implies that z does not depend on bk,c, so f(z) is a constant with
respect to both bk,c and b̃k,c, resulting in the vanishing terms. Thus, we can apply the same argument
as in the previous section. The third case follows by symmetry. In the fourth case, the condition
c /∈ I(bk,·) ∪ I(b̃k,·) implies that neither z nor z̃ depend on bk,c or b̃k,c hence the gradient vanishes.

A.6 Rao-Blackwellized ARS & ARSM

First, we briefly review the Augment-REINFORCE-Swap (ARS) & Augment-REINFORCE-Swap-
Merge (ARSM) estimators (Yin et al., 2019). Yin et al. (2019) use the fact that the discrete distri-
bution can be reparameterized by an underlying continuous augmentation: if π ∼

∏
k Dirichlet(1C)

and zk := argmini πk,ie
−αk,i , then zk ∼ Cat(αk); and show that ∇αk,cEqθ(z) [f(z)] =

Eπ [f(z)(1− Cπk,c)] . Furthermore, they define a swapped probability matrix πi�j
k by swapping

the entries at indices i and j in πk

πi�j
k,c :=


πk,i c = j

πk,j c = i

πk,c o.w.
,

and zi�j
k := argminc π

i�j
k,c e

−αk,c . Using these constructions, they show an important identity

∇αk,cEqθ(z) [f(z)] = Eπ

[
gARSk,c :=

[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− Cπk,j)

]
,
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which shows that gARSk,c is an unbiased estimator. To further improve the estimator, Yin et al. (2019)
average over the choice of the reference j, resulting in the ARSM estimator

gARSMk,c :=
1

C

C∑
j=1

[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− Cπk,j).

Notably, both ARS and ARSM only evaluate f at discrete values, and thus do not rely on a continuous
relaxation.

A.6.1 Rao-Blackwellization

Motivated by the approach of Dong et al. (2020), we can derive improved versions of ARS and ARSM
by integrating out the extra randomness due to the continuous variables. ARS and ARSM heavily
rely on a continuous reparameterization of the problem, yet the original problem only depends on the
discrete values. Ideally, we would integrate out π|z1�j , ..., zC�j , however, unlike in the binary case,
computing the expectation analytically appears infeasible. Instead, we analytically integrate out two
dimensions of π and use Monte Carlo sampling to deal with the rest. This is a straightforward albeit
tedious calculation

Starting with ARS, ideally, we would like to compute

Eπ|z1�j ,...,zC�j

[
gARSk,c

]
=

[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− CEπ|z1�j ,...,zC�j [πk,j ])

=

[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− CEπk,j |z1�j

k ,...,zC�j
k

[πk,j ]),

taking advantage of independence between dimensions (indexed by k). To reduce notational clutter,
we omit the dimension index in the following derivation.

We have reduced the problem to computing

Eπj |z1�j ,...,zC�j [πj ] ,

but were unable to compute the expectation analytically. Instead, we analytically integrate out some
dimensions of π and use Monte Carlo sampling to deal with the rest. First, we know that

∑
i πi = 1,

so one variable is redundant (denote this choice by l). Next, we show how to integrate the reference
index j 6= l (i.e., compute Eπj |π−j,l,z1�j ,...,zC�j [πj ], where π−j,l denotes π excluding its j-th and
l-th elements.).

The known values of π−j,l, z1�j , ..., zC�j imply lower and upper bounds on πj . First, because
1−

∑
i 6=l πi = πl ≥ 0, we conclude that πj ≤ 1−

∑
i6=j,l πi. To determine the implications of the

configurations z1�j , ..., zC�j , it is helpful to define some additional notation. Let sc�j := πc�je−α.
Let’s look at what the value of zm�j := argmini s

m�j
i tells us about πj . We need to consider two

cases:

• zm�j = m: This means that sm�j
m = πje

−αm is the smallest entry in sm�j : πje−αm ≤
mini 6=m s

m�j
i , which implies that πj ≤ mini 6=m e

αmsm�j
i .

eαmsm�j
i contains πl when m = l and i = j or m 6= l and i = l. When m = l and i = j,

we have that eαlsm�j
j = eαlπle

−αj = (1−
∑
n 6=j,l πn − πj)eαl−αj . Therefore,

πj ≤
(1−

∑
n 6=j,l πn)e

−αj

e−αj + e−αl
.

A similar computation is required for the case m 6= l and i = l.
• zm�j 6= m: This means that πje−αm is larger than the smallest entry in sm�j : πje−αm ≥
mini s

m�j
i which implies that πj ≥ mini e

αmsm�j
i . As above, we can eliminate πl from

the bounds.

Finally, we aggregate the inequalities to compute the lower and upper bounds. Because π ∼
Dirichlet(1C) is a uniform distribution over the simplex, πj |π−j,l, z1�j , ..., zC�j will be uniformly
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distributed over an interval, which means that it suffices to compute the lower and upper bounds to
compute the expectation.

We can apply the same ideas to ARSM, however, in preliminary experiments with ARS+, we
found that leveraging the symmetry (described next) was responsible for most of the performance
improvement for ARS+. So, for ARSM, we reduce the variance only by leveraging the symmetry
and call the resulting estimator ARSM+.

Furthermore, When all of the swapped zs agree on a dimension (i.e., z1�j
k = · · · = zC�j

k ), then
we will show that both gARSk,c and gARSMk,c vanish in expectation, so we can zero out these terms
explicitly. The high level intuition is that even though they may disagree in other dimensions for a
single sample because the other dimensions are independent and expectations are linear, in expectation
they cancel out. Let δk = 1z1�j

k =···=zC�j
k

. Then, we have

Eπ|δk=1

[
gARSk,c

]
= Eπ|δk

[[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− Cπk,j)

]

= Eπk|δk=1

[(
Eπ−k

[
f(zc�j)

]
− 1

C

C∑
m=1

Eπ−k
[
f(zm�j)

])
(1− Cπk,j)

]
.

Now, we claim that inside the expectation Eπ−k
[
f(zm�j)

]
is constant with respect to m. First,

we know that inside the expectation z1�j
k = · · · = zC�j

k and that the dimensions indexed by k
are independent. Because π ∼

∏
k Dirichlet(1C), Dirichlet(1C) is symmetric, and we are taking

an unconditional expectation over the remaining dimensions, the value is invariant to the swapping
operation. As a result, the entire expression vanishes. Thus, we conclude that

(1− δk)gARSk,c

is still an unbiased estimator. A similar argument holds for gARSM. This is complementary to the
approach in the previous subsection and can done in combination

gARS+k,c := Eπk,j |πk,−jl,z1�j
k ,...,zC�j

k

[
(1− δk)gARSk,c

]
,

where we choose l 6= j uniformly at random. This is the estimator we use in our experiments.

A.6.2 Evaluating Rao-Blackwellized ARS & ARSM

We train models with 10/5/3/2-category latent variables on dynamically binarized MNIST. For
comparison, we train models with ARS, ARSM, and an n-sample RLOO. To match computation,
RLOO uses C samples for comparing against ARS/ARS+, and uses C(C − 1)/2 + 1 samples for
ARSM/ARSM+, where C is the number of categories. Based on preliminary experiments with ARS+,
we found that leveraging the symmetry led to most of the performance improvement for ARS+. So,
for ARSM, we reduce the variance only by leveraging the symmetry and call the resulting estimator
ARSM+.

As shown in Figure 8 and Appendix Figure 9, the proposed estimators, ARS+/ARSM+, significantly
outperform ARS/ARSM. Surprisingly, we find that both ARS and ARSM underperform the simpler
RLOO baseline in all cases. For C = 2, ARS+ and ARSM+ reduce to DisARM/U2G and as expected,
outperform REINFORCE LOO; however, for C > 2, REINFORCE LOO is superior and the gap
increases as C does. This suggests that partially integrating out the randomness is insufficient to
account for the variance introduced by the continuous augmentation.
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Figure 8: Training a non-linear categorical VAE with latent variables with 5 categories on dynamically
binarized MNIST dataset by maximizing the ELBO. We plot the train ELBO (left column), test
100-sample bound (middle column), and the variance of gradient estimator (right column). We plot
the mean and one standard error based on 5 runs from different random initializations.
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Figure 9: Training a non-linear categorical VAE with latent variables with 10/5/3/2 categories
on dynamically binarized MNIST dataset by maximizing the ELBO. We plot the train ELBO
(left column), the test 100-sample bound (middle column), and the variance of gradient estimator
(right column). We plot the mean and one standard error based on 5 runs from different random
initializations.
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