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ABSTRACT
Restoring low-quality fundus images, especially the recovery of
vessel structures, is crucial for clinical observation and diagnosis.
Existing state-of-the-art methods use standard convolution and
window based self-attention block to recover low-quality fundus
images, but these feature capturing approaches do not effectively
match the slender and tortuous structure of retinal vessels. There-
fore, these methods struggle to accurately restore vessel structures.
To overcome this challenge, we propose a novel low-quality fundus
image restoration method called Masked Snake Attention Network
(MSANet). It is designed specifically for accurately restoring vessel
structures. Specifically, we introduce the Snake Attention module
(SA) to adaptively aggregate vessel features based on the morpho-
logical structure of the vessels. Due to the small proportion of vessel
pixels in the image, we further present the Masked Snake Attention
module (MSA) to more efficiently capture vessel features. MSA
enhances vessel features by constraining snake attention within
regions predicted by segmentation methods. Extensive experimen-
tal results demonstrate that our MSANet outperforms the state-
of-the-art methods in enhancement evaluation and downstream
segmentation tasks.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
Fundus Image Restoration, Vessel Preservation, Attention

1 INTRODUCTION
Retinal vessel characteristics, such as vessel diameter, branching
angles, and branching lengths, are important biomarkers for many
retinal and systemic diseases, including diabetic retinopathy [34],
glaucoma [23], macular degeneration [37], hypertension [15], and
cardiovascular diseases [10]. Unfortunately, there are many factors
that lead to the degradation of fundus image quality, such as imper-
fections in the fundus camera optics, improper camera adjustment,
or defocusing during the exam. Low-quality fundus images result
in unclear retinal vessel structures, hindering reliable diagnosis
by ophthalmologists and affecting automated image analysis. The
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performance of vessel semantic segmentation collapses greatly on
low-quality fundus images, as shown in Fig. 1(a).

Recently, many deep learning-based methods [7, 26, 31] for low-
quality image restoration have been proposed, achieving good re-
sults in natural scenes. However, fundus images contain specific
anatomical structures such as vessels, these methods treat each
pixel equally important without restoring the key retinal vessel
structures, making them unsuitable for low-quality fundus image
restoration tasks. Some methods [4, 6, 22] based on GANs [11] uti-
lize discriminators to align the restored images with high-quality
images. However, these methods often restore images with a similar
style to high-quality images, making it challenging to accurately
restore vessels. To guide the network in preserving retinal ves-
sel structure, existing methods [12, 17–20, 29, 36] utilize kinds of
priors to constrain retinal structures in the enhancement model.
Some methods [12, 29, 36] such as CofeNet [29] introduced pre-
trained ResNet-34 [14] to provide semantic information, but these
approaches come with additional training time and data cost. To
avoid these costs, other methods such as PCE-Net [20] use Lapla-
cian Pyramid [1] to provide the structure information. They directly
concatenate prior information at the feature level of the enhance-
ment model in a data-agnostic manner, disregarding the fine, long,
and continuous morphological characteristics of the vessels. This
oversight results in the full potential of the prior information not
being fully realized.

Ideally, one would expect to enhance retinal vessel features by se-
lectively attending tomore informative regions on a data-dependent
basis under the guidance of prior information and domain knowl-
edge. Vessel is a kind of thin and tortuous tubular structures, and
accounts for only a small proportion of the overall image with
limited pixel composition. In response to this specificity of tubular
structures, DSCNet [25] proposes a dynamic snake convolution to
achieve accurate segmentation of tubular structures by more flexi-
bly focusing on slender and tortuous local structures with the help
of deformable offset [5, 39]. But dynamic snake convolution [25]
lacks the element relation modeling mechanism. This motivates us
to explore a flexible attention pattern in low-quality fundus image
restoration tasks to assist the network in adaptively enhancing
vessel features under the guidance of domain knowledge of vessel,
thus better preserving vessel structures.

In such context, we propose a novel approach named Masked
Snake Attention Network (MSANet), as shown in Fig. 2, towards a
fundus image restoration model that can accurately preserve retinal
vessel structures. The core of our MSANet is a novel Masked Snake
Attention module(MSA), which adaptively aggregates vessel fea-
tures in the regions indicated by the prior information (as shown in
Fig. 4). To be specific, we first use traditional segmentation method
Optimally Oriented Flux (OOF) [16] on low-quality images to obtain
vessel segmentation masks as prior information without training
cost. Then, because vessels account for only a small proportion of
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Figure 1: Three kinds of fundus images and their retinal
vessel segmentation results on DRIVE [30]. (a) Low-quality
fundus image, (b) Restored fundus image by Restormer [38],
(c) Restored fundus image by our MSANet. All of the seg-
mentation results are applied by a pretrained U-Net [27] on
corresponding fundus images.

the overall image with limited pixel composition, we apply snake
attention on localized features centered around predicted segments
by a predefined threshold. This allows the network to capture vessel
features under the guidance of prior information. In the interme-
diate layers of the network’s decoder, we apply Snake Attention
module (SA) to adaptively aggregate vessel features based on the
morphological structure of the vessels without any semantic prior
information. Specifically, we employ an iterative strategy and off-
sets to flexibly select the continuous key/value for a given query
under the continuous constrain, thereby enhancing the network’s
capability of modeling vessel geometric transformations. The main
contributions of this paper are summarized as follows:

(1) We design a noval method called Masked Snake Attention
Network (MSANet) specifically to address the issue of re-
taining retinal vessel preservation in low-quality fundus
image restoration tasks.

(2) Taking into account the thin, long, and tortuous shape char-
acteristic of vessels, we design a novel feature aggregation
module called Snake Attention to adaptively aggregate ves-
sel features based on the morphological structure of the
vessels. Guided by semantic prior information provided by
traditional semantic segmentation method, we further pro-
pose Masked Snake Attention to restrict the snake attention
on localized features centered around predicted segments.

(3) Experimental results demonstrate that our proposedmethod
achieves superior performance compared to state-of-the-art
approaches in enhancing low-quality fundus images and
downstream segmentation tasks.

2 RELATEDWORK
2.1 Fundus Image Restoration
Fundus image restoration methods have two main categories: hand-
crafted methods and deep learning based methods.

Hand-crafted methods. Traditional fundus image enhance-
ment methods are mainly based on hand-crafted priors. Contrast
enhancement can widen the dynamic ranges of images, thereby
improving image readability. Therefore, Contrast Limited Adaptive
Histogram Equalization (CLAHE) is a popular method for restoring
degraded fundus images. For instance, Setiawan et al. [28] applied
CLAHE in the green channel to enhance the quality of color retinal
images. Instead of simply considering the color and texture infor-
mation, some approaches [9, 24, 33] decompose the reflection and
illumination, achieving image enhancement and correction by esti-
mating the solution in an alternate minimization scheme. Moreover,
SGRIF[3] is a method based on Guided Image Filtering (GIF) [13],
which can improve the contrast of the image and maintain the
edges when restoring cataract-affected fundus images. These hand-
crafted prior-based methods heavily rely on global image statistics,
leading to their sensitivity to data and unsatisfactory performance
on low-quality fundus images in real-world scenarios.

Deep learning based methods. Recently, deep learning has
become the mainstream method in the field of computer vision
due to its superiority in image representation. Deep learning-based
methods have achieved satisfactory performance in many image
restoration tasks such as image denoising [26], image dehazing [7],
and low-light image enhancement [31]. However, due to the rich
retinal vessel characteristics present in fundus images, which are
critical for disease diagnosis, these deep learning methods designed
for natural scenes are not suitable for fundus image restoration.
Some methods [4, 6, 22] designed within the Generative Adver-
sarial Network (GAN) [11] framework attempt to learn a suitable
mapping from a low-quality domain to a high-quality domain. How-
ever, these GAN-based methods tend to generate images that are
similar in style to high-quality images without effectively preserv-
ing the important details of vessels. To address this issue, many
methods [12, 29, 36] have introduced semantic priors. For exam-
ple, Cofe-Net [29] is designed to preserve the retinal structures in
the low-quality fundus image restoration process by introducing
a semantic segmentation network for vessels. However, pretrain-
ing a semantic segmentation network requires a certain amount
of annotated data and training time cost. Other methods [17–20]
utilize structural priors such as high-frequency features, thus avoid-
ing additional training and annotation costs. These prior-based
methods [12, 17–20, 29, 36] typically directly concatenate prior in-
formation into the features of the enhancement model, limiting
the potential of the prior information. In contrast, we introduce
a flexible module named Masked Snake Attention to explore the
potential of priors and thus produce visually pleasing enhanced
results.

2.2 Deformable CNN and attention
Deformable convolution [5, 39] is a powerful mechanism to attend
to flexible spatial locations conditioned on input data. Recently, it
has been applied to design various attention mechanisms [32, 35,
40]. Deformable DETR [40] incorporates the sparse spatial sam-
pling of deformable convolution, allowing it to achieve better per-
formance than DETR[2] with fewer iterations. DAT [35] motivated
by Deformable convolution [5, 39] presents a simple and efficient
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Figure 2: Pipeline of our Masked Snake Attention Network (MSANet).

deformable self-attentionmodule which is used for designing a pow-
erful backbone for various vision tasks. Wang et al. [32] borrowed
the sampling strategy of Deformable DETR [40] and extended it to
the video domain by leveraging motion cues stored in compressed
video to identify the most salient patches in frames different from
the query patch. These methods designed based on Deformable
convolution [5, 40] have achieved satisfactory performance across
multiple applications, fully demonstrating their ability to focus on
relevant regions in a data-dependent manner and capture more
informative features in natural scenes. However, vessels are thin,
long, and curved structures, making it difficult for these methods
based on deformable convolution to efficiently focus on the thin
tubular structures. Qi et al. [25] considered the snake-like morphol-
ogy of tubular structures and designed a Snake convolution, which
can stably enhance the perception of tubular structures in the fea-
ture extraction process. This inspires us to design a deformable
attention module for low-quality fundus image restoration tasks to
assist the network in adaptively enhancing vessel features under
the guidance of prior information, thereby better preserving vessel
structures.

3 METHODOLOGY
In this section, we present in detailMasked SnakeAttention(MSANet),
which consists of Snake Attention module and Masked Snake At-
tention module, as illustrated in Fig. 2. Details of each module are
discussed in the following.

3.1 Motivation and Overview
As depicted in Fig.2, MSANet is constructed upon Restormer [38],
which is a U-Net-like Transformer model. The encoder comprises
four layers of Transformer blocks, while the decoder comprises
three layers of Transformer blocks. To assist the recovery process,
the encoder features are concatenated with the decoder features

via skip connections [27]. In the decoder section, we introduce one
Masked Snake Attention module (MSA) and two Snake Attention
modules (SA) to accurately preserve thin, long, and continuous
vessel structures. Both MSA and SA select key and value positions
in a data-dependent manner to adaptively aggregate vessel features
based on the morphological structure of the vessels. Because priors
can provide a wealth of information for enhancing performance,
we introduce MSA at the top layer of the decoder to enhance vessel
features by constraining snake attention within regions predicted
by the Optimal Oriented Flux (OOF) [16] mask. Therefore, MSA and
SA can adaptively aggregate features in a manner that fits the vessel
structure, thus helping the network preserve vessel structures.

3.2 Snake Attention
Dynamic snake convolution [25] can improve network’s ability to
adapt to the geometric variations of tubular structures by offsetting
the grid sampling locations of standard convolution with displace-
ments learned with respect to the preceding feature maps. Prior
work in [25] has shown the effectiveness of dynamic snake convolu-
tion in segmenting tubular structures in various seniors. However,
dynamic snake convolution lacks the element relation modeling
mechanism. To deal with it, we propose Snake Attention module
(SA), which combines the advantage of the sparse spatial sampling
of dynamic snake convolution and the relation modeling capability
of Transformers. In this section, we discuss how to perform SA to
flexibly extract the local vessel features.

Given the standard window-based self-attention block is formu-
lated as:

𝑞 = 𝑥𝑊𝑞, 𝑘 = 𝑥𝑊𝑘 , 𝑣 = 𝑥𝑊𝑣, (1)

𝑧 = 𝜎

(
𝑞𝑘⊤/

√
𝑑

)
𝑣 (2)

𝑧 = 𝑧𝑊𝑜 (3)
3
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Figure 3: Architecture of the Snake Attention module (SA)
from x-axis and y-axis directions.

where 𝜎 (·) denotes the softmax function, and 𝑑 = 𝐶 is the dimen-
sion of 𝑥 . 𝑧 denotes the embedding output, 𝑞, 𝑘, 𝑣 ∈ R𝑁×𝐶 denotes
query, key, value embeddings respectively.𝑊𝑞,𝑊𝑘 ,𝑊𝑣,𝑊𝑜 ∈ R𝐶×𝐶

are projection matrices.
To enable the network to focus on complex geometric features

of the target, inspired by [5, 39], we introduce deformable offsets.
As illustrated in Fig. 4 the input feature map 𝑥 ∈ R𝐻×𝑊 ×𝐶 is firstly
projected linearly to obtain the query tokens 𝑞 = 𝑥𝑊𝑞 , where𝐻 ,𝑊
and 𝐶 are respectively the height, width and channel of the feature
map in decoder. And then 𝑞 is fed into a light weight sub-network
𝜃𝑜 𝑓 𝑓 𝑠𝑒𝑡 (·) to generate the offsets Δ𝑝 = 𝜃𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑞). Additionally,
we constrain the offsets within a certain range, such as [−1, 1].
However, considering the unique geometric characteristics of ves-
sels, the deformation offsets without any additional constraints
can easily cause the deformed features to stray outside the ves-
sel. Inspired by [25], we adopt an iterative strategy to select the
subsequent position to be observed in turn for each target to be
processed, ensuring the continuity of deformed feature. Then the
features are sampled at the locations of deformed points as keys
and values, followed by projection matrices:

𝑞 = 𝑥𝑊𝑞, �̃� = 𝑥𝑊𝑘 , �̃� = 𝑥𝑊𝑣, (4)

with Δ𝑝 = 𝜃𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑞) , 𝑥 = 𝜙

(
𝑥 ; 𝑝 +

∑︁
Δ𝑝

)
. (5)

where 𝑥 is deformed from 𝑥 , �̃� and �̃� represent the deformed key
and value embeddings respectively. As the offset Δ𝑝 is typically
fractional, we set the sampling function 𝜙 (·, ·) to a bilinear interpo-
lation to make it differentiable:

𝜙 (𝑥 ;𝑝) = ∑
(𝑟𝑥 ,𝑟𝑦 )𝐺 (𝑝, 𝑟 )𝑥 (𝑟 ) (6)

where 𝑝 denotes a fractional location, 𝑟 enumerates all integral
spatial locations, and𝐺 (·; ·) is the bilinear interpolation kernel and
it is separated into two one-dimensional kernels as:

𝐺 (𝑝, 𝑟 ) = 𝑔(𝑝𝑥 , 𝑟𝑥 )𝑔(𝑝𝑦, 𝑟𝑦) (7)
where 𝑔 (𝑎, 𝑏) =𝑚𝑎𝑥 (0, 1 − |𝑎 − 𝑏 |) .

We get 𝑥 along the x-axis and y-axis respectively as shown in
Fig. 3. Taking the x-axis direction as example, the specific position
of each pixel in 𝑝𝑖±𝑐 is represented as: 𝑝𝑖±𝑐 = (𝑝𝑖±𝑐𝑥 , 𝑝𝑖±𝑐𝑦 ), where
𝑐 = {0, 1, 2, 3, 4} denotes the horizontal distance from the central

Figure 4: Architecture of theMasked SnakeAttentionmodule
(MSA) and Snake Attention module (SA). The dotted line
denotes the masked operation which is used for MSA.

pixel 𝑝𝑖 = (𝑝𝑖𝑥 , 𝑝𝑖𝑦). The whole selection of each 𝑝𝑖±𝑐 is a cumulative
process, which means each 𝑝𝑖±𝑐 is determined by the previous
𝑝𝑖±(𝑐−1) . Specifically, we add vertical offsets together to ensure the
continuity of the deformed point. The formulation for deformed
points 𝑝𝑖±𝑐 along the x-axis is as follows:

𝑝𝑖±𝑐 =

{
(𝑝𝑖+𝑐𝑥 , 𝑝𝑖+𝑐𝑦 ) = (𝑝𝑖𝑥 + 𝑐, 𝑝𝑖𝑦 +∑𝑖+𝑐

𝑖 △𝑝𝑦)
(𝑝𝑖−𝑐𝑥 , 𝑝𝑖−𝑐𝑦 ) = (𝑝𝑖𝑥 − 𝑐, 𝑝𝑖𝑦 +∑𝑖

𝑖−𝑐 △𝑝𝑦)
(8)

The formulation for deformed points along the y-axis is as fol-
lows:

𝑝 𝑗±𝑐 =

{
(𝑝 𝑗+𝑐𝑥 , 𝑝

𝑗+𝑐
𝑦 ) = (𝑝𝑖𝑥 +∑𝑖+𝑐

𝑖 △𝑝𝑥 , 𝑝𝑖𝑦 + 𝑐)
(𝑝 𝑗−𝑐𝑥 , 𝑝

𝑗−𝑐
𝑦 ) = (𝑝 𝑗𝑥 +∑𝑖

𝑖−𝑐 △𝑝𝑥 , 𝑝𝑖𝑦 − 𝑐)
(9)

We perform attention on 𝑞, �̃� and �̃� along the x-axis and y-axis.
The output of snake attention is formulated as:

Attention(𝑥) = 𝜎

(
𝑞�̃�⊤/

√
𝑑

)
�̃� (10)

𝑧 = Attention𝑖 (𝑥) + Attention𝑗 (𝑥) (11)
𝑧 is projected through𝑊𝑜 to get the final output 𝑧 as Eq. 3. As

shown in Fig. 4 and Fig. 5, our snake attention covers a 9 × 9 range
during the deformation process due to the two-dimensional (x-axis,
y-axis) changes.

3.3 Masked Snake Attention
Semantic priors can provide a wealth of information for improving
the enhancement performance, we design the Masked Snake At-
tention module(MSA) to apply snake attention on masked regions
as shown in Fig. 5. In our method, we choose traditional semantic
segmentation method Optimal Oriented Flux (OOF) [16] to provide
semantic prior information without annotated data and training
time cost. Specifically, as illustrated in Fig. 2, we use the OOF masks
predicted on low-quality fundus images to determine the regions
for snake attention based on a predefined threshold.

We define M ∈ [0, 1]𝐻×𝑊 is the vessel segmentation mask
predicted by OOF [16]. We can obtain the attention mask M ∈
{0, 1}𝐻×𝑊 based on the predefined threshold(q-th quantiles ofM
is uesed as 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , where 𝑞 = 90%) at query features location
(𝑟𝑥 , 𝑟𝑦):

4
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Figure 5: Comparison of Masked Snake Attention, Snake
Attention and Local Window Attention. The red and blue
stars note the query, the red and blue squares note corre-
sponding receptive regions, and the green squares denote
the vessel regions which the queries in Masked Snake Atten-
tion attend. (a)Local Window Attention aim to extract local
features. (b)Snake Attention can capture features adaptively
based on vessel structures. (c)Masked Snake Attention can
more accurately capture vessel features under the guidance
of mask than Snake Attention.

M(𝑟𝑥 , 𝑟𝑦) =
{
0 ifM(𝑟𝑥 , 𝑟𝑦) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

−∞ otherwise
(12)

According to Eq. 10, our Masked Snake Attention modulates the
attention matrix via

Attention(𝑥) = 𝜎

(
𝑞�̃�⊤/

√
𝑑 +M

)
�̃� (13)

4 EXPERIMENTS
4.1 Datasets
The experiments used three datasets:

EyeQ [8]: a public dataset based on the Kaggle Diabetic Retinopa-
thy Detection dataset [32] contains 28,792 samples (16,817 ‘Good’,
6,435 ‘Usable’, and 5,540 ‘Reject’) sorted according to image quality.
We follow the degradation pipeline described in [29] to synthe-
size corresponding low-quality images based on images labeled as
‘Good’ as training dataset.

Real Fundus (RF) [6]: a public dataset collected by Shenzhen
Eye Hospital consists of 120 LQ and HQ clinical fundus image pairs
captured by ophthalmologists using a ZEISS VISUCAM200 fundus
camera. We choose the whole dataset as our testing dataset for full
reference enhancement evaluation.

DRIVE [30]: a retinal vessel segmentation dataset consisting of
40 color retinal images with segmentation masks. We only use 20
images from test dataset for segmentation evaluation. Follow [29],
the images from DRIVE [30] are used to generate 100 low-quality
images for quantitative assessment.

4.2 Implementation Details
Our method is implemented by PyTorch, and trained on a single
NVIDIA RTX 3090 GPU. We train models with AdamW optimizer
(𝛽1 = 0.9, 𝛽2 = 0.999, weight decay 1𝑒−4) and L1 loss for 300K
iterations with the initial learning rate 1𝑒−4 gradually reduced to

Table 1: Quantitative evaluation of MSANet compared with
different methods.

Method Full reference Segmentation
PSNR SSIM IoU Dice

SGRIF[3] 20.9950 0.6855 0.4513 0.6096
StillGAN[22] 24.7611 0.7393 0.4970 0.6582
Cofe-Net[29] 18.0041 0.7532 0.5121 0.6748
I-SECRET[4] 24.7536 0.7757 0.5098 0.6731
PCE-Net[20] 19.5231 0.7240 0.5346 0.6946
RFormer[6] 24.9654 0.6277 0.5434 0.7022

Ours 25.7261 0.8068 0.5477 0.7064

1𝑒−6 with the cosine annealing [21]. All of the images are re-scaled
to the size of 512×512 for fair comparison with other methods. The
mini-batch size is set to 2. During the training procedure, fundus
images are first cropped into the patches with the size of 128 × 128.
Then the patches are fed into the model. For data augmentation,
we use horizontal and vertical flips.

For datasets with reference images, the structural similarity
(SSIM) and the peak signal to noise ratio (PSNR) are used to quantify
the enhancement performance. To further demonstrate the effec-
tiveness of the proposed restoration framework, we utilize a U-Net
[27] trained on DRIVE[30] training set to segment retinal vessels in
the degraded and restored DRIVE[30] testing sets, and compare the
segmentation results with the manually-annotated ground truth.
The segmentation accuracy is evaluated by the intersection over
union (IoU) and the Dice coefficient between the restored images
and the reference.

4.3 Comparison With State-of-the-Art
Tab. 1 compares the enhancement performance between MSANet
and the state-of-the-art methods, including traditional method
(SGRIF [3]), methods without using any prior (StillGAN[22], I-
SECRET [4] and RFormer [6]), methods based on semantic prior
(CofeNet [29]), andmethods based on structure prior (PCE-Net [20]).

Compared with the traditional method SGRIF [3], our method
achieves significantly better performance on downstream vessel
segmentation task. Specifically, our method achieves 9.64% in IoU
and 9.68% in Dice. SGRIF is a hand-crafted method tailored for
cataract-affected fundus images restoration, making it prone to
adjust image contrast but difficult in fragile vessel preservation.

I-SECRET [4] and StillGAN[22] are both based on GAN [11].
They utilize discriminator to align restored image with high-quality
image, enabling them to generalize well to real datasets such as
RF [6]. However, from I-SECRET [4] results on downstream seg-
mentation task, it is evident that only introducing an additional
decoder to assess the importance of each pixel without any prior in-
formation or domain knowledge cannot effectively preserve vessel
structures.

CofeNet [29] and PCE-Net [20] respectively help the enhance-
ment network preserve vessels by introducing semantic priors and
structural priors. However, our method still improves PSNR by
up to 6.203db and SSIM by up to 0.0536 in full-reference evalua-
tion and IoU by up to 1.31% in segmentation evaluation. On one
hand, these approaches [20, 29] overlook the slender and tortuous
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Figure 6: Fundus image enhancement on RF [6] dataset.

Figure 7: Fundus image enhancement on DRIVE[30] dataset. From top to bottom, the images are the restored images and their
zoom-in, and the vessel segmentation results and their zoom-in. All of the segmentation results are provided by a pretrained
U-Net [27].

Table 2: Ablation study for modules.

Method Full reference Segmentation
PSNR SSIM IoU Dice

Baseline 25.0411 0.7874 0.5280 0.6881
Baseline + SA 25.5480 0.8055 0.5407 0.7000

Baseline+MSA(MSANet) 25.7261 0.8068 0.5477 0.7064

structural characteristics of retinal vessels. On the other hand, they
directly concatenate prior information into the network limiting
the potential of the prior information.

RFormer [6] is a Transformer-based method which uses window-
based multi-head self-attention to establish dependencies between
pixels without prior information guidance or domain knowledge.
Therefore, ourMSANet can achieve better performance than RFormer
on all evaluation metrics.

In both full-reference enhancement and segmentation evalua-
tion, our proposed MSANet method consistently outperforms these
state-of-the-art methods. Fig. 6 and Fig. 7 respectively provide vi-
sual results of various methods in full-reference and segmentation
evaluations on RF [6] dataset and DRIVE [30] dataset.

4.4 Ablation Study
To validate the effectiveness of Snake Attention and Masked Snake
Attention, we conduct ablation study, including Baseline: The base-
line model of MSANet by removing Snake Attention (SA) and
Masked Snake Attention (MSA).

Baseline+Snake Attention(Baseline+SA): A model in which we
integrate the SA module with three scales into the decoder of Base.
Comparing the results of Baseline in Tab. 2, Baseline+SA achieves
noticeable improvements in terms of SSIM, IoU and Dice. Espe-
cially for PSNR and IoU, Baseline+SA is much higher than Base by
0.5069db and 1.27%. It demonstrates that Snake Attention module
can help the network capture the key features of thin and long
vessel structures from different scales.

Baseline+Masked snake Attention(Baseline+MSA): According
to Tab. 2 and Fig. 8, jointly using SA and MSA achieves the best
overall performance, outperforming Baseline by up to 0.6850db in
PSNR and 1.97% in IoU. It shows that MSA can perform feature
aggregation more effectively and further improve performance on
full reference evaluation and segmentation than SA at the top layer
of MSANet.

4.5 Analysis of threshold
We evaluate the performance of our MSANet on RF [6] dataset at
different threshold, as shown in Fig. 9. According to Eq.12 and Eq.13,
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Figure 9: Comparison of MSANet on RF [6] dataset across
different thresholds.

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 decides the region which is applied with snake attention.
We compute the q-th quantiles of M as 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , where 𝑞 takes
values of 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0. From Fig. 9, it can be
observed that when the value of 𝑞 is too small, only a small portion
of vessel pixels are enhanced through snake attention, providing
limited assistance to the network in restoring fundus images. As the
value of 𝑞 gradually increases, more pixels are enhanced through
snake attention, improving the network’s ability to restore fundus

images. When 𝑞 is set to 0.9, the gain of Masked Snake Attention
(MSA) is maximized. However, when 𝑞 is set to 1.0, meaning M =

−∞, MSA loses its ability to model element relations.

5 CONCLUSION
We propose a novel method Masked Snake Attention Network
(MSANet) for accurately preseving vessel while restoring low-
quality fundus images. The cores of MSANet are one Masked Snake
Attention module(MSA) and two Snake Attention(SA) modules
which can adaptively capture features under the domain knowl-
edge of tubular structure morphology. Compared with SA, MSA
can apply snake attention on region guided by semantic prior to
more efficiently capture vessel features. Extensive experimental
results demonstrate that our MSANet consistently outperforms
state-of-the-art methods in terms of overall image quality and the
performance in downstream segmentation tasks.
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