
A Supporting Lemmas

Lemma A.1. (Lemma 11 in Abbasi-Yadkori et al. (2011)) Let {Xt}∞t=1 be a sequence in Rd, V be a
d× d positive definite matrix, and define V̄t = V +

∑t
s=1 XsX

⊤
s . Then, we have

log

(
det
(
V̄n

)
det(V )

)
≤

n∑
t=1

∥Xt∥2V̄ −1
t−1

.

Further, if ∥Xt∥2 ≤ L for all t, then
n∑

t=1

min
{
1, ∥Xt∥2V̄ −1

t−1

}
≤ 2

(
log det

(
V̄n

)
− log detV

)
≤ 2

(
d log

((
trace(V ) + nL2

)
/d
)
− log detV

)
.

Finally, if λmin(V ) ≥ max(1, L2), then
n∑

t=1

∥Xt∥2V̄ −1
t−1

≤ 2 log
det
(
V̄n

)
det(V )

.

Lemma A.2. (Lemma 12 in Abbasi-Yadkori et al. (2011)). Let A,B, and C be positive semi-definite
matrices such that A = B + C. Then, we have

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)
.

Theorem A.1. (Theorem 2 in Abbasi-Yadkori et al. (2011)). Let {Fi}∞i=0 be a filtration. Let
{xi}∞i=1 be an Rd-valued stochastic process such that xi is Fi−1-measurable and ∥xi∥ ≤ 1 almost
surely. Let {ϵi}∞i=1 be a real-valued stochastic process such that εi is Fi-measurable and is sub-
Gaussian with variance proxy 1 when conditioned on Fi−1. Fix θ ∈ Rd such that ∥θ∥ ≤ 1. Let
An = I +

∑n
i=1 xix

⊤
i , ri = x⊤

i θ + εi, and θ̂n = A−1
n

∑n
i=1 rixi. For every δ > 0, we have

P

[
∀n ≥ 0 :

∥∥∥θ̂n − θ
∥∥∥
An

≤ 1 +

√
d ln

(
1 + n

δ

)]
≥ 1− δ,

where we define ∥x∥A =
√
x⊤Ax. Furthermore, when the above event holds, we have for every

n ≥ 0 and any vector x ∈ Rd that∣∣∣x⊤(θ̂n − θ)
∣∣∣ ≤ (1 +√d ln

(
1 + n

δ

))√
x⊤A−1

n x.

Lemma A.3. (Adapted from Lemma B.1 in He et al. (2022a)) Under the setting of Theorem 5.1,
establish C = 1/M2, α0 = 1 +

√
d ln(2M2T/δ). In layer 0, with probability at least 1 − δ, the

good event E0 happens:

E0 ≜
{∣∣∣xi⊤

t,aθ̂
i
t,s − xi⊤

t,aθ
∣∣∣ ≤ wi

t,s,a,∀i ∈ [M ], a ∈ [K], t ∈ [T ], s = 0
}
.

Lemma A.4. (Lemma 31 in Ruan et al. (2021)). Given θ, x1, x2, . . . , xn ∈ Rd such that ∥θ∥ ≤ 1,
for all i ∈ [n], let ri = x⊤

i θ + ϵi where ϵi is an independent sub-Gaussian random variable with
variance proxy 1. Let A = I +

∑n
i=1 xix

⊤
i , and θ̂ = A−1

∑n
i=1 rixi. For any x ∈ Rd and any

α > 0, we have
P
[
|x⊤(θ − θ̂)| > (α+ 1)∥x∥A−1

]
≤ 2 exp

(
−α2/2

)
.

B Lemmas for the SupLinUCB Subroutine

We present several useful lemmas that are based on Algorithm 2. Recall that Ψt,s represents the index
set of rounds up to and including round t during which an action is taken in layer s. That is,

Ψt,s = {t′ ∈ [t] : ∃i ∈ [M ], ait′ is chosen in layer s},∀s ∈ [0 : S].

Similar to Lemma 4 in Chu et al. (2011), we claim that the rewards associated with rounds within
each Ψt,s, s ∈ [S] (excluding layer 0) are mutually independent.

13



Lemma B.1. For each t ∈ [T ] each s ∈ [S], given any fixed sequence of contexts {xi
t,a, t ∈ Ψt,s},

the rewards {rit,s,a, t ∈ Ψt,s} are independent random variables with means E[rit,s,a] = θ⊤xi
t,s,a.

Proof of Lemma B.1. For each s ∈ [S] and each time t, the procedure of generating Ψt,s only
depends on the information in previous layers ∪σ<sΨt,σ and confidence width {wi

t,s,a, a ∈ [K]}.
From its definition, wi

t,s,a only depends on {xτ,aτ
, τ ∈ Ψt−1,s} and on the current context xi

t,a. Thus
the procedure of generating Ψt,s does not depend on rewards {rτ,aτ , τ ∈ Ψt−1,s}, and therefore the
rewards are independent random variables when conditioned on Ψt,s.

Given the above-mentioned statistical independence property, and by referring to Lemma A.4, we
can establish the following lemma for each layer s ∈ [S].
Lemma B.2. Suppose the time index set Ψt,s is constructed so that for fixed xτ,aτ

with τ ∈ Ψt,s, the
rewards {rτ,aτ

} are independent random variables with mean E[rτ,aτ
] = θ⊤xτ,aτ

. For any round
t ∈ [T ], if client it = i is active and chooses arm at in layer s ∈ [S], then with probability at least
1− δ

MT ln d , we have for any at ∈ [K]:∣∣r̂t,s,at
− θ⊤xi

t,at

∣∣ ≤ wi
t,s,at

= αs∥xi
t,at
∥(Ai

t,s)
−1 .

For layer 0, we employ the self-normalized martingale concentration inequality as outlined in He
et al. (2022a). By resorting to Lemma A.3, we obtain the following:
Lemma B.3. For any round t ∈ [T ], given that client it = i is active in round t and arm at is chosen
in layer 0, with probability at least 1− δ, we have for any at ∈ [K]:∣∣r̂t,0,at

− θ⊤xi
t,at

∣∣ ≤ wi
t,0,at

= α0∥xi
t,at
∥(Ai

t,0)
−1 .

Summarizing the discussions presented in Lemma B.2 and Lemma B.3, we now proceed to define the
following good event:
Lemma B.4. Define the good event E as:

E ≜
{∣∣r̂t,s,a − xi⊤

t,aθ
∣∣ ≤ wi

t,s,a,∀i ∈ [M ], a ∈ [K], t ∈ [T ], s ∈ [0 : S]
}
. (2)

We have P[E ] ≥ 1− δ.

Conditioned on the good event E , the ensuing lemma illustrates that the optimal arm persists in the
candidate set, and that the regret experienced in each layer aligns with the order of the confidence
width.
Lemma B.5. Conditioned on the good event E , for t ∈ [T ], assume that client i is active and chooses
an action at ∈ As, and recall (ait)

∗ represents the optimal arm in the current round. For any s′ ≤ s,
we have:

(ait)
∗ = arg max

a∈[K]
θ⊤xi

t,a = arg max
a∈As′

θ⊤xi
t,a.

Proof of Lemma B.5. For any time step t ∈ [T ], when the good event E holds, by the arm elimination
rule in layer 0, we have

r̂t,0,a∗ + wt,0,a∗ ≥ max
a∈[K]

θ⊤xt,a ≥ max
a̸=a∗

θ⊤xt,a ≥ max
a̸=a∗

(r̂t,0,a − wt,0,a).

Thus, a∗ ∈ A0. For each layer s′ < s, we have:

r̂t,s′,a∗ + wt,s′,a∗ ≥ max
a∈As′

θ⊤xt,a ≥ max
a ̸=a∗,a∈As′

θ⊤xt,a ≥ max
a ̸=a∗,a∈As′

(r̂t,s′,a − wt,s′,a).

Thus, we derive r̂t,s′,a∗ ≥ maxa∈As′ (r̂t,s′,a) − 2ws′ , which follows from wt,s′,a ≤ ws′ for all
a ∈ As′ by the arm elimination rule in Line 10 Algorithm 2. Therefore, arm eliminations will
preserve the best arm.

The forthcoming lemma demonstrates that, under the good event, the regret experienced in each layer
aligns with the order of the corresponding confidence width.

14



Lemma B.6. Conditioned on the good event E , for t ∈ [T ] client i ∈ [M ] and s ∈ [S], it holds that:

I[at is chosen in layer 0](max
a∈A0

θ⊤xt,a − θ⊤xt,at) ≤ 4wt,0,at , (3)

I[at is chosen in layer s](max
a∈As

θ⊤xt,a − θ⊤xt,at) ≤ 8ws. (4)

Proof of Lemma B.6. If an action is taken in layer 0, we have that

at = arg max
a∈A0,wt,0,a>w0

wt,0,a,

and

max
a∈A0

θ⊤(xt,a − θ⊤xt,at
) ≤ max

a∈A0

θ⊤xt,a − min
a∈A0

θ⊤xt,a

≤ max
a∈A0

(θ̂⊤0 xt,a + wt,0,a)− min
a∈A0

(θ̂⊤0 xt,a − wt,0,a)

≤ 4 max
a∈A0

wt,0,a

= 4wt,0,at .

The second inequality is conditioned on the good event E , and the third inequality arises from the
arm elimination rule. If an action is taken in layer s, we establish the following:

at = arg max
a∈As,wt,s,a>ws

wt,s,a,

and

max
a∈As

(θ⊤xt,a − θ⊤xt,at
) ≤ max

a∈As−1

(θ̂⊤s−1xt,a + wt,s−1,a)− min
a∈As−1

(θ̂⊤s−1xt,a − wt,s−1,a)

≤ 2 max
a∈As−1

wt,s−1,a + max
a∈As−1

θ̂⊤s−1 − min
a∈As−1

θ̂⊤s−1xt,a

≤ 2 max
a∈As−1

wt,s−1,a + 2ws−1

≤ 4ws−1 ≤ 8ws.

The first inequality is based on the good event E , the third inequality follows the arm elimination rule,
and the fourth inequality is due to wt,s−1,a ≤ ws−1 for all a ∈ As−1.

C Supporting Lemmas and Proofs for Async-FedSupLinUCB

Lemma C.1. (Lemma 6.2 in He et al. (2022a)) In any epoch from round Tn,s to round Tn+1,s − 1,
the number of communications is at most 2(M + 1/C).

Proof outline of Async-FedSupLinUCB. First, we reorganize the arrival pattern, demonstrating
that the rearranged system parallels the original system, and present the requisite definitions for our
analysis. Second, we deploy a virtual global model encapsulating information about all clients up
to round t, subsequently interconnecting the local models with this global model. Lastly, we derive
upper bounds on the regret and communication cost in each layer s ∈ [0 : S] prior to aggregating
them to yield the total regret and communication costs, respectively.

Suppose that client i communicates with the server at rounds t1, t2 with t1 < t2 and does not
communicate during the rounds in between. The actions and information gained by client i at the
rounds t1 < t < t2 do not impact other clients’ decision-making, since the information is kept local
without communication. Therefore, we can reorder the arrival of clients appropriately while keeping
the reordered system equivalent to the original system.

More specifically, suppose client i communicates with the server at two rounds tm and tn and does
not communicate in the rounds in between (even if she is active). We reorder all the active rounds
of client i in tm < t < tn and place them sequentially after the round tm. Hence, the arrival of
clients can be reordered such that each client communicates with the server and keeps active until the
next client’s communication begins. We assume that the sequence of communication rounds in the
reordered arrival pattern is 0 = t0 < t1 < t2 < · · · < tN = T , where in rounds ti ≤ t < ti+1, the

15



active client is the same. Details of the reordering process are given in Definition C.2. Due to the
equivalence between the original system and the reordered system, we carry out the proofs in the
reordered system. Note that only one client it is active at round t, we will write at = aitt , xt = xit

t,at

and rt = rit,at
for simplicity.

Definition C.1. Client information. Recall for each client i ∈ [M ], we denote by Li(t) the last
round when client i communicated with the server before and including round t. E.g., Li(t) = t
if client i communicates at round t. For each round t each client i and each layer s, the in-
formation that has been uploaded by client i to the server is: Ai,up

t,s =
∑Li(t)

t′=1 xt′x
⊤
t′ I{it′ =

i, at in layer s}, bi,upt,s =
∑Li(t)

t′=1 rt′xt′I{it′ = i, at in layer s}, and the local information in
the buffer that has not been uploaded to the server is: ∆Ai

t,s =
∑t

t′=Li(t)+1 xt′x
⊤
t′ I{it′ =

i, at in layer s},∆bit,s =
∑t

t′=Li(t)+1 rt′xjI{it′ = i, at in layer s}.

Server information. The information in the server is the data uploaded by all clients up to round t:
Aser

t,s = I +
∑M

i=1 A
i,up
t,s , bsert,s =

∑M
i=1 b

i,up
t,s .

Time index set. Denote by Ψt,s the time index set when the action ait is chosen in layer s. It can be
expressed as Ψt,s = {t′ ∈ [t], ait′ in layer s, i ∈ [M ]}, s ∈ [0 : S]}.
Virtual global information. We define a virtual global model that contains all the information up to
round t as: Aall

t,s = I +
∑

t′∈Ψt,s
xt′x

⊤
t′ , b

all
t,s =

∑
t′∈Ψt,s

rt′xt′ .

The information that is stored on the server and all the information that has not yet been uploaded
by clients are combined to generate the global information: Aall

t,s = Aser
t,s +

∑M
i=1 ∆Ai

t,s, b
all
t,s =

bsert,s +
∑M

i=1 ∆bit,s.

Before presenting the proof, we define good event E as

E ≜
{∣∣∣xi⊤

t,aθ̂
i
t,s − xi⊤

t,aθ
∣∣∣ ≤ wi

t,s,a,∀i ∈ [M ], a ∈ [K], t ∈ [T ], s ∈ [0 : S]
}
.

Recall θ̂it,s is the estimate of θ by client i, and xi
t,a and wi

t,s,a is the corresponding context and
confidence width of the action taken at round t. The following lemma shows the good event happens
with high probability, similar to the result in Lemma B.4.
Lemma C.2. It holds that P[E ] ≥ 1− δ.

Conditioned on the good event, to upper bound the regret, we bound the confidence width in each
layer via the size of each time index set in the lemma below.
Lemma C.3. Conditioned on the good event E , for each s ∈ [0 : S − 1] we have:∑

t∈ΨT,s

wi
t,s,a ≤ αs

√
2(1 +MC)

√
2d|ΨT,s| log |ΨT,s|+ αsdM log(1 + T/d).

Noting that |ΨT,s| ≤ T naturally holds, we give a tighter (dimension-dependent) bound on the size
of ΨT,0 so as to mitigate the larger coefficient α0 as follows.
Lemma C.4. The size of ΨT,0 can be bounded by |ΨT,0| ≤ T log T log(2MT/δ)/d.

We postpone the proofs of Lemma C.3 and Lemma C.4 until the end of this section, and instead focus
on presenting the regret analysis next. Equipped with the previous lemmas, we are ready to analyze
the total regret.

Proof of Theorem 5.1. (Regret analysis) The total regret can be decomposed w.r.t. layers as follows:

RT = E
∑

t∈ΨT,0

(ri
t,ai,∗

t
− rit,at

) +

S∑
s=1

E
∑

t∈ΨT,s

(ri
t,ai,∗

t
− rit,at

).

Conditioned on the good event E , we first bound the regret in layer 0 by

E
∑

t∈ΨT,0

(ri
t,ai,∗

t
− rit,at

) ≤
∑

t∈ΨT,0

4wt,0,at

16



≤ 4α0

√
2(1 +MC)

√
2d|ΨT,0| log |ΨT,0|+ 4α0dM log(1 + T/d)s ≤ Õ(

√
(1 +MC)dT ).

The first inequality follows Lemma B.6, the second inequality is from Lemma C.3, and the last
inequality is due to Lemma C.4. We next bound the regret in each layer s ∈ [1 : S − 1] similarly by∑

t∈ΨT,s

E
[
ri
t,ai,∗

t
− rit,at

]
≤

∑
t∈ΨT,s

8ws ≤
∑

t∈ΨT,s

8wt,s,at

≤ 8αs

√
2(1 +MC)

√
2d|ΨT,s| log |ΨT,s|+ 8αsdM log(1 + T/d) ≤ Õ(

√
(1 +MC)dT )

where the first inequality follows Lemma B.6, the second inequality is from the arm selection rule in
line 13 Algorithm 2, and the third inequality is from Lemma C.3. For the last layer S, we have:∑

t∈ΨT,S

E
[
ri
t,ai,∗

t
− rit,at

]
≤

∑
t∈ΨT,S

8wS ≤ 8wS |ΨT,S | ≤ 8wST ≤ 8
√
dT .

Finally, with Lemma C.2, we have RT ≤ Õ(
√
(1 +MC)dT ).

(Communication cost analysis) Next, we study the communication cost in an asynchronous setting.
For each layer s, i ≥ 0, we define Tn,s = min{t ∈ [T ]|det

(
Aser

t,s

)
≥ 2i}. We divide rounds in

each layer into epoch {Tn,s, Tn,s + 1, ..,min(T, Tn+1,s − 1)}, and the communication rounds in
the epoch Tn,s ≤ t ≤ Tn+1,s − 1 can be bound by Lemma C.1. Let N ′ be the largest integer
such that TN ′,s is not empty. According to Lemma A.1 that log

(
det
(
Aall

t,s

))
≤ d log(1 + |ΨT,s|/d),

N ′ ≤ d log(1 + T/d). The total number of epochs of layer s is bounded by d log(1 + T/d). By
lemma C.1 the communication rounds in layer s is bounded by O((M + 1/C))d log T . There are
S = ⌈log d⌉ in the FedSupLinUCB algorithm, the total communication cost is thus upper bound by
O(d(M + 1/C) log d log T ). Plugging in C = 1/M2 proves the result.

Definition C.2. (Reorder function) Without loss of generality, we assume all clients communi-
cate with the server at round t0 = 0, and the sequence of rounds that clients communicate
with the server in the original system is 0 ≤ t0 < t1 < t2 < ... < tN ≤ T . Define
It,i = I(client i communicates with the server at round t). Denote by Li(t) the last communica-
tion round of client i before and including round t:

Li(t) := inf{u :

u∑
t′=0

It′,i =

t∑
t′=0

It′,i}.

Denote by Ni(t) the next communication round of client i including and after round t:

Ni(t) := inf{u :

u∑
t′=t

It′,i = 1}.

The round t ∈ [T ] in the original system is placed in round ϕ(t) by the reordering function ϕ : [T ]→
[T ]. We first reorder the communication round, suppose two consecutive communication rounds tn
and tn+1 with tn < tn+1, and client i is active at round tn and client j is active at round tn+1.

ϕ(tn+1) = ϕ(tn) +
∑Ni(tn)

t′=tn
I(it′ = i)− 1.

Then we reorder the no-communication rounds, assuming client i is active at round t and does not
communicate at this round. We first find the last communication round of client i as Li(t), and place
round t by ϕ(t):

ϕ(t) = ϕ(Li(t)) +
∑t

t′=Li(t)
I(it′ = i)− 1.

Lemma C.5. (Adapted from Lemma 6.5 in He et al. (2022a)) For each round t ∈ [T ] each layer
s ∈ [0 : S] and each client i ∈ [M ] , we have:

Aser
t,s = I +

M∑
i=1

Ai,up
t,s ⪰

1

C
∆Ai

t,s.

17



Further averaging the inequality above over M clients, we have:

Aser
t,s = I +

M∑
i=1

Ai,up
t,s ⪰

1

MC

M∑
i=1

∆Ai
t,s.

Proof of Lemma C.5. Without loss of generality, we consider client i and fix any round t ∈ [T ]. Let
t1 ≤ t be the last round such that client i was active at round t1. If client i communicated with the
server at round t1, and chose action at1 at layer s, then we have

Aser
t,s = I +

M∑
i=1

Ai,up
t,s ⪰

1

C
∆Ai

t1,s = 0

for other layers s′ ̸= s, according to the determinant-based communication criterion, we have:

det
(
Ai

t1,s′ +∆Ai
t1,s′

)
< (1 + C) det

(
Ai

t1,s′
)
.

By Lemma A.2 we have

Ai
t,s′ = Ai

t1,s′ ⪰
1

C
∆Ai

t1,s′ .

Otherwise, if no communication happened at round t1, by the communication criterion, at the end
of round t1, for each layer s ∈ [0 : S], we have Ai

t1,s ⪰
1
C∆Ai

t1,s. Note that {Ai
t1,s, s ∈ [0 : S]}

are the downloaded gram matrices from last communication before round t1, so it must satisfy
Ai

t1,s ⪯ Aser
t1,s for all s ∈ [0 : S]. For round t, since client i is inactive from round t1 to t, we have for

all s ∈ [0 : S]:

Aser
t,s ⪰ Aser

t1,s ⪰ Ai
t1,s ⪰

1

C
∆Ai

t1,s =
1

C
∆Ai

t,s

where the last equality holds for inactivation, which completes the proof of the first claim. Further
average the above inequality over all clients i ∈ [M ], and we get:

Aser
t,s = I +

M∑
i=1

Ai,up
t,s ⪰

1

MC

M∑
i=1

∆Ai
t,s.

Recall that client i utilizes Ai
t,s and bit,s to make the decision at round t, which were received from

the server during the last communication. The following lemma establishes a connection between the
gram matrix of the virtual global model and the gram matrix in the active client at round t.

Lemma C.6. In the reordered arrival pattern, for any 1 ≤ t1 < t2 ≤ T , suppose client i communi-
cates with the server at round t1, and keep active during rounds t1 ≤ t ≤ t2 − 1. Then for rounds
t1 + 1 ≤ t ≤ t2 − 1, it holds that for each s ∈ [0 : S]:

Ai
t,s ⪰

1

1 +MC
Aall

t,s.

Proof of Lemma C.6. Client i is the only active client from round t1 to t2−1 and only communicated
with the server at round t1, which implies that for t1 + 1 ≤ t ≤ t2 − 1∀s ∈ [0 : S], we have

Ai
t,s = I +

M∑
i=1

Ai,up
t1,s = I +

M∑
i=1

Ai,up
t,s ⪰

1

1 +MC
(I +

M∑
i=1

Ai,up
t,s +

M∑
i=1

∆Ai
t,s) ⪰

1

1 +MC
Aall

t,s

where the second equality holds due to the fact that no clients communicate with the server from
round t1 + 1 to t2 − 1, and the first inequality follows Lemma C.5.

Proof of Lemma C.3. For t ∈ ΨT,s, if no communication happened at round t, under Lemma C.6
and Lemma A.2, we can connect confidence width at the local client with the global gram matrix as:

∥xit
t,a∥(Ait

t,s)
−1 ≤

√
1 +MC∥xi

t,a∥(Aall
t,s)

−1 .

18



It remains to control the communication rounds in ΨT,s. We define

Tn = min
{
t ∈ ΨT,s | det

(
Aall

t,s

)
≥ 2n

}
,

and let N ′ be the largest integer such that TN ′ is not empty. According to Lemma A.1, we have:

log
(
det
(
Aall

t,s

))
≤ d log(1 + |ΨT,s|/d).

Thus, N ′ ≤ d log(1 + T/d). For each time interval from Tn to Tn+1 and each client i ∈ [M ], suppose
client i communicates with the server more than once, and communication rounds sequentially are
Tn,1, Tn,2, . . . , Tn,k ∈ [Tn, Tn+1). Then for each j = 2, . . . , k, since client i is active at rounds
Tn,j−1 and Tn,j , we have

∥xTn,j
∥(Ai

Tn,j,s
)−1 ≤ ∥xTn,j

∥(Ai
Tn,j−1+1,s)

−1 ≤
√
1 +MC∥xTn,j

∥((Aall
Tn,j−1+1,s)

−1 .

Since det
(
Aall

Tn+1−1,s

)
/det

(
Aall

Tn,j−1+1,s

)
≤ 2n+1/2n = 2, by the definition of Tn, we have:

∥xTn,j∥(Ai
Tn,j,s

)−1 ≤
√

2(1 +MC)∥xTn,j∥(Aall
Tn+1−1,s)

−1 ≤
√

2(1 +MC)∥xTn,j∥(Aall
Tn,j,s

)−1 ,

where the second inequality comes from Aall
Tn+1−1,s ⪰ Aall

Tn,j ,s
. Specifically, for round Ti,1 the first

communication round, we can bound the confidence width by 1. Thus, for the communication rounds
in ΨT,s, we have:∑
t∈ΨT,s,round t comm

∥xit
t,a∥(Ait

t,s)
−1 ≤MN ′ +

∑
t∈ΨT,s,round t comm

√
2(1 +MC)∥xit

t,a∥(Aall
t,s)

−1 .

Finally, we put all rounds in ΨT,s together:∑
t∈ΨT,s

wt,s,a = αs

∑
t∈ΨT,s

∥xit
t,a∥(Ait

t,s)
−1

≤ αs

∑
t∈ΨT,s

√
2(1 +MC)∥xit

t,a∥(Aall
t,s)

−1 + αsMN ′

≤ αs

√
2(1 +MC)

√
2d|ΨT,s| log |ΨT,s|+ αsdM log(1 + T/d)

where the second inequality follows Lemma A.1.

Proof of Lemma C.4. Based on the algorithm, if we choose an action in layer 0, the selected arm is

at = arg max
a∈A0,wt,0,a>w0

wt,0,a,

and the corresponding confidence width satisfies wt,0,at
> w0. Furthermore,

w0|ΨT,0| ≤
∑

t∈ΨT,0

wt,0,at
= α0

∑
t∈ΨT,0

∥xt,at
∥
(A

it
t,0)

−1

≤ α0

√
2(1 +MC)

√
2d|ΨT,s| log |ΨT,s|+ α0dM log(1 + T/d),

where the last inequality is by Lemma C.3. We can thus conclude that ΨT,0 ≤
T log T log(2MT/δ)/d.

D Supporting Lemmas and Proofs for Sync-FedSupLinUCB

Proof outline of Sync-FedSupLinUCB. To prove a high-probability regret bound, we first define
the good event E in the following lemma, under which the regret bound is derived.

Lemma D.1. Define E ≜ {
∣∣∣xi⊤

t,aθ̂
i
t,s − xi⊤

t,aθ
∣∣∣ ≤ wi

t,s,a,∀i ∈ [M ], a ∈ [K], t ∈ [Tc], 0 ≤ s ≤ S}.
Then, P[E ] ≥ 1− δ.

19



Define client i’s one-step regret at round t as regit = θ⊤(xi
t,ai∗

t
− xi

t,at
). Let regit,s = regit if action

at is chosen in layer s; otherwise regit,s = 0. The total regret can be written as

RT =

M∑
i=1

Tc∑
t=1

regit =
S∑

s=0

M∑
i=1

Tc∑
t=1

regit,s.

Fix an arbitrary s ∈ {0, 1, . . . , S}, we analyze the total regret induced by the actions taken in layer s,
i.e., Rs,Tc

=
∑M

i=1

∑Tc

t=1 reg
i
t,s. The analysis can be carried over to different s in the same manner.

We call the chunk of consecutive rounds without communicating information in layer s (except the
last round) an epoch. In other words, information in layer s is collected locally by each client and
synchronized at the end of the epoch, following which the next epoch starts. The set of rounds that at
least one client is pulling an arm in layer s can then be divided into multiple consecutive epochs, and
we further dichotomize these epochs into good and bad epochs in the following definition.
Definition D.1. (Good epoch) Suppose the set of rounds that at least one client is pulling an
arm in layer s are divided into P epochs and denoted by Aall

p,s, b
all
p,s the synchronized gram matrix

and reward-action vector at the end of the p-th epoch. P epochs can then be dichotomized into

Pgood
s ≜

{
p ∈ [P ] :

det(Aall
p,s)

det(Aall
p−1,s)

≤ 2

}
,Pbad

s ≜ [P ] \ Pgood
s , where Aall

0,s ≜ I . We say round t is

good if the epoch containing round t belongs to Pgood
s ; otherwise t is bad.

We bound regrets in layer s induced by the good and bad epochs separately in the following lemmas.
Recall Ψt,s is the time index set when the action ait is chosen in the s layer.
Lemma D.2. Conditioned on the good event E , for each layer s ∈ [0 : S], the regret induced by good

epochs of layer s is bounded as
∑

t∈ΨTc,s,t is good reg
i
t,s ≤ Õ

(
αs

√
d|ΨTc,s| log(MTc)

)
.

Lemma D.3. Define D = Tc log Tc

d2M and Rs = d log
(
1 +

|ΨTc,s|
d

)
. Conditioned on the good

event E , for each layer s ∈ [0 : S], the regret induced by bad epochs of layer s is bounded as∑
t∈ΨTc,s,t is bad reg

i
t,s ≤ O

(
αsM

√
DRs

)
.

Lemma D.4. We have |ΨTc,s| ≤ Õ(MTc

d ).

Proof of Theorem 6.1. (Regret analysis) For each s ∈ [0 : S], the regret induced in layer s is
bounded by:

Rs,Tc
≤

∑
t∈ΨTc,s,t is good

regit,s +
∑

t∈ΨTc,s,t is bad

regit,s

≤ O(αs

√
d|ΨTc,s| log(MT ) + αsM

√
DRs) ≤ Õ(

√
dMTc)

where the second inequality is from Lemmas D.2 and D.3, and the last inequality is due to Lemma D.4.
The total regret can thus be bounded as RT =

∑S
s=0 Rs,Tc

= Õ(
√
dMTc).

Proof of Lemma D.2. If t is good and belongs to the p-th epoch, we have by Lemma A.2 that

wi
t,s,a = αs∥xi

t,a∥(Ai
t,s)

−1 ≤
√
2αs∥xi

t,a∥(Aall
p,s)

−1 ≤ 2αs∥xi
t,a∥(Aall

p−1,s)
−1 . (5)

Within p-th good epoch, we have

Aall
p−1,s +

M∑
i=1

∑
t∈p-th good epoch

xi
t,ai

t
(xi

t,ai
t
)⊤ = Aall

p,s,

which together with inequality (5) and the last inequality in the elliptical potential lemma (Lemma A.1)
imply that

M∑
i=1

∑
t∈p-th good epoch

∥xi
t,ai

t
∥2(Ai

t,s)
−1 ≤ 4 log

det
(
Aall

p,s

)
det
(
Aall

p−1,s

) .
20



Thus under event E , the regret induced by good epochs of layer s is∑
(i,t)∈ΨT,s,t is good

regit,s ≤
∑

(i,t)∈ΨT,s,t is good

8wi
t,s,ai

t

≤ 8

√
|ΨT,s|

∑
(i,t)∈ΨT,s,t is good

(wi
t,s,ai

t
)2

= Õ

(
αs

√
d|ΨT,s| log(MT )

)
,

where the first inequality is from Lemma B.6, the second inequality is by Cauchy-Schwartz inequality,
and the last relation is from

P∑
p=1

log
det
(
Aall

p,s

)
det
(
Aall

p−1,s

) = log det
(
Aall

P,s

)
≤ d log

(
1 +
|ΨT,s|

d

)
= Rs. (6)

Proof of Lemma D.3. Denote by Rs = d log
(
1 +

|ΨT,s|
d

)
. It follows that the number of bad epochs

is at most O(Rs). Moreover, the regret within a bad epoch of length n can be upper bounded as
O(M + αsM

√
D) by applying the elliptical potential lemma for each client i and the communi-

cation condition, where the extra 1 in the upper bound is due to that at most M clients trigger the
communication condition at the end of the p-th epoch. We thus have∑

t is bad

regit,s ≤
∑

t∈ΨT,s is bad

8wi
t,s = O

(
MRs + αsM

√
DRs

)
= O

(
αsM

√
DRs

)
.

Proof of Lemma D.4. Recall D = T log(T )
d2M . Note that if αs

√
d|ΨT,s| log(T ) = O(αsM

√
DRs),

we have |ΨT,s| = Õ(M2Dd) = Õ(MT
d ). Otherwise |ΨT,s|ws

t = O(αs

√
d|ΨT,s| log(T )), which

implies |ΨT,s| = Õ(
α2

sd
(ws

t )
2 ) = Õ(MT4s

d ).

E Variance-adaptive Async-FedSupLinUCB

The variance-adaptive SupLinUCB subroutine is presented in Alg. 5, while the complete variance-
adaptive Async-FedSupLinUCB is given in Alg. 6.

E.1 Algorithm

E.2 Supporting Lemmas and Proofs

Theorem E.1. (Theorem 4.3 in Zhou and Gu (2022)) Let {Ft}∞t=1 be a filtration, and {xt, ηt}t≥1

be a stochastic process such that xt ∈ Rd is Ft-measurable and ηt ∈ R is Ft+1-measurable. Let
σ, ϵ > 0, θ∗ ∈ Rd. For t ≥ 1, let yt = ⟨θ∗, xt⟩+ ηt and suppose that ηt, xt also satisfy

E[ηt | Ft] = 0,E[η2t | Ft] ≤ σ2, |ηt| ≤ R, ∥xt∥2 ≤ 1.

For t ≥ 1, let Zt = I +
∑t

i=1 xix
⊤
i , bt =

∑t
i=1 yixi, θt = Z−1

t bt, and

βt =12
√
σ2d log (1 + tL2/(d)) log (32(log(R/ϵ) + 1)t2/δ)

+ 24 log
(
32(log(R/ϵ) + 1)t2/δ

)
max
1≤i≤t

{
|ηi|min

{
1, ∥xi∥−1

Z−1
i−1

}}
+ 6 log

(
32(log(R/ϵ) + 1)t2/δ

)
ϵ.

Then, for any 0 < δ < 1, we have with probability at least 1− δ that,

∀t ≥ 1,

∥∥∥∥∥
t∑

i=1

xiηi

∥∥∥∥∥
Z−1

t

≤ βt, ∥θt − θ∗∥Zt
≤ βt + ∥θ∗∥2.

21



Algorithm 5 Variance-adaptive SupLinUCB subroutine: VS-LUCB
1: Initialization: S ← ⌈logR+ log T ⌉, w0 = dR2, ws ← 2−sw0,∀s ∈ [1 : S],
2: α0 = Õ(

√
d), αs = 1 +

√
2 ln(2KMT ln d/δ), ρ = 1/

√
T , γ = R1/2/d1/4.

3: Input: Client i (with local information Ai, bi, ∆Ai,∆bi), contexts set {xi
t,1, . . . , x

i
t,K}

4: Ai
t,s ← Ai

s, b
i
t,s ← bis for lazy update

5: θ̂s ← (Ai
t,s)

−1bit,s, r̂it,s,a = θ̂⊤s x
i
t,a, wi

t,s,a ← αs∥xi
t,a∥(Ai

t,s)
−1 , ∀s ∈ [0 : S],∀a ∈ [K].

6: s← 0; A0 ← {a ∈ [K] | r̂it,0,a + wi
t,0,a ≥ maxa∈[K](r̂

i
t,0,a − wi

t,0,a)} ▷ Initial screening
7: repeat ▷ Layered successive screening
8: if s = S then
9: Choose action ait arbitrarily from AS

10: else if wi
t,s,a ≤ ws for all a ∈ As then

11: As+1 ← {a ∈ As | r̂it,s,a ≥ maxa′∈As
(r̂it,s,a′)− 2ws}; s← s+ 1

12: else
13: Choose at = argmax{a∈As,wi

t,s,a>ws} w
i
t,s,a

14: end if
15: until action at is found
16: Take action at and and receive reward rit,at

and variance σt

17: σt = max{σt, ρ, γ∥xi
t,at
∥1/2
(Ai

t,s)
−1}

18: ∆Ai
s ← ∆Ai

s + xi
t,at

xi⊤
t,at

/σ2
t , ∆bis ← ∆bis + rit,at

xi
t,at

/σ2
t ▷ Update local information

19: Return layer index s

Algorithm 6 Variance-adaptive Async-FedSupLinUCB
1: Initialization: T , C, S = ⌈logR+ log T ⌉
2: {Aser

s ← Id, b
ser
s ← 0 | s ∈ [0 : S]} ▷ Server initialization

3: {Ai
s ← Id,∆Ai

s, b
i
s,∆bis ← 0 | s ∈ [0 : S], i ∈ [M ]} ▷ Clients initialization

4: for t = 1, 2, ..., T do
5: Client it = i is active, and observes K contexts {xi

t,1, x
i
t,2, · · · , xi

t,K}
6: s = VS-LUCB

(
clienti, {xi

t,1, x
i
t,2, · · · , xi

t,K}
)

with the lazy update

7: if det(Ai
s+∆Ai

s)
det(Ai

s)
> (1 + C) then

8: Sync(s, server, clients i) for each s ∈ [0 : S]
9: end if

10: end for

Lemma E.1. (Adapted from Lemma B.1 in Zhou and Gu (2022)). Let {σt, βt}t≥1 be a sequence
of non-negative numbers, ρ, γ > 0, {xt}t≥1 ⊂ Rd and ∥xt∥2 ≤ 1. Let {Zt}t≥1 and {σ̄t}t≥1 be
recursively defined as follows:

Z1 = I; Zt+1 = Zt + xtx
⊤
t /σ̄

2
t , ∀t ≥ 1, σ̄t = max{σt, ρ, γ∥xt∥1/2Z−1

t

}.

Let ι = log
(
1 + T/(dρ2)

)
. Then we have

T∑
t=1

min{1, βt∥xt∥Z−1
t
} ≤ 2dι+ 2βT γ

2dι+ 2
√
dι

√√√√ T∑
t=1

β2
t (σ

2
t + ρ2).

Following a similar proof structure to Async-FedSupLinUCB, we employ a novel Bernstein-type
self-normalized martingale inequality, proposed by Zhou and Gu (2022), for layer 0 to manage the
variance information. We define α0 = βT as specified in Theorem E.1, and establish the following
lemma, analogous to Lemma B.3.
Lemma E.2. For any round t ∈ [T ], if client it = i is active in round t and arm at is chosen in layer
0, with probability at least 1− δ, with α0 = Õ(

√
d) we have for any at ∈ [K]:∣∣r̂t,0,at

− θ⊤xi
t,at

∣∣ ≤ wi
t,0,at

= α0∥xi
t,at
∥(Ai

t,0)
−1 .

22



We define good event E as E ≜
{∣∣∣xi⊤

t,aθ̂
i
t,s − xi⊤

t,aθ
∣∣∣ ≤ wi

t,s,a,∀i ∈ [M ], a ∈ [K], t ∈ [T ], s ∈ [0 : S]
}
.

In a manner similar to the proof of Lemma B.4, we have that P[E ] ≥ 1− δ.

Lemma E.3. Conditioned on the event E , the regret in layer 0 can be bounded by reglayer 0 ≤ Õ(d).

Proof of Lemma E.3. We set w0 = dR2 to provide a tighter bound for the size of ΨT,0. Mirroring
the proof methodology in Lemma C.4, we establish the following:

w0|ΨT,0| ≤ α0

∑
t∈ΨT,0

∥xt,i∥(Ait
t,s)

−1 ≤ 2dι+ 2α0γ
2dι+ 2α0

√
dι

√ ∑
t∈ΨT,0

(σ2
t + ρ2)

≤ 2dι+ 2α0γ
2dι+ 2α0

√
dι
√
|ΨT,0|(R2 + ρ2).

The first inequality results from the arm selection rule of layer 0, the second is derived from
Lemma E.1, and the third arises due to the constraint σ2

t ≤ R2. Consequently, we infer that
ΨT,0 ≤ O(d2R2/w2

0). We can then bound the regret in layer 0 as follows:

reglayer 0 ≤ 4α0

∑
t∈ΨT,0

∥xt,i∥(Ait
t,s)

−1 ≤ 8dι+ 8α0γ
2dι+ 8α0

√
dι
√
|ΨT,0|(R2 + ρ2) ≤ Õ(d).

Lemma E.4. Conditioned on the event E , the regret of each layer s ∈ [1 : S − 1] can be bounded by
reglayer s ≤ Õ

√
d
∑

t σ
2
t .

Proof of Lemma E.4. For s ∈ {1, 2, ..., S− 1}, the rewards in each layer s are mutually independent,
as proven in Lemma B.1. We deduce:

reglayer s ≤ 8ws|ΨT,s| ≤ 8αs

∑
t∈ΨT,s

∥xt,i∥(Ait
t,s)

−1

≤ αs

∑
t∈ΨT,s

∥xit
t,a∥(Aall

t,s)
−1 + αsdM log(1 + T/d)

≤ Õ(

√
d
∑

t∈ΨT,s

σ2
t ).

The first inequality arises from Lemma B.6, the second is a result of the arm selection rule in Line 13,
the third derives from Lemma C.3, and the final inequality is attributable to Lemma E.1.

For the final layer S, applying Lemma B.6 and setting wS = d/T , we have reglayer S ≤ 8ws|ΨS | ≤
Õ(d).

Proof of the communication bound in Theorem 7.1. Having established the bound for regret

in each layer, we have demonstrated that RT ≤ Õ

(√
d
∑T

t=1 σ
2
t

)
. Given that we set w0 =

dR2 and wS = d/T , it requires S = log(w0/wS) = Θ(logR + log T ) layers to achieve the
desired accuracy. The number of communications triggered by layer s can be upper bounded by
O(dM2 log(T ) (Lemma C.1). Consequently, we are able to constrain the overall communication
cost to Õ(dM2 log2 T ).

F Corruption Robust Async-FedSupLinUCB

The corruption robust SupLinUCB subroutine is presented in Alg. 7, while the complete corruption
robust Async-FedSupLinUCB is given in Alg. 8.

23



Algorithm 7 Corruption Robust SupLinUCB subroutine: CS-LUCB

1: Initialization: S = ⌈log d⌉, w0 = d1.5/
√
T , ws ← 2−sw0, γ =

√
d/Cp.

2: α0 = 1 +
√

d ln(2M2T/δ) + γCp, αs ← 1 +
√
2 ln(2KMT ln d/δ) + γCp,∀s ∈ [1 : S]

3: Input: Client i (with local information Ai, bi, ∆Ai,∆bi), contexts set {xi
t,1, . . . , x

i
t,K}

4: Ai
t,s ← Ai

s, b
i
t,s ← bis for lazy update

5: θ̂s ← (Ai
t,s)

−1bit,s, r̂it,s,a = θ̂⊤s x
i
t,a, wi

t,s,a ← αs∥xi
t,a∥(Ai

t,s)
−1 , ∀s ∈ [0 : S],∀a ∈ [K].

6: s← 0; A0 ← {a ∈ [K] | r̂it,0,a + wi
t,0,a ≥ maxa∈[K](r̂

i
t,0,a − wi

t,0,a)}. ▷ Initial screening
7: repeat ▷ Layered successive screening
8: if s = S then
9: Choose action ait arbitrarily from AS

10: else if wi
t,s,a ≤ ws for all a ∈ As then

11: As+1 ← {a ∈ As | r̂it,s,a ≥ maxa′∈As(r̂
i
t,s,a′)− 2ws}; s← s+ 1

12: else
13: ait ← argmax{a∈As,wi

t,s,a>ws} w
i
t,s,a

14: end if
15: until action ait is found
16: Take action ait and and receive reward ri

t,ai
t

17: ηt = min{1, γ/∥xi
t,at
∥(Ai

t,s)
−1}

18: ∆Ai
s ← ∆Ai

s + ηtx
i
t,ai

t
xi⊤
t,ai

t
, ∆bis ← ∆bis + ηtr

i
t,ai

t
xi
t,ai

t
▷ Update local information

19: Return layer index s

Algorithm 8 Corruption Robust Async-FedSupLinUCB
1: Initialization: T , C, S = ⌈log d⌉
2: {Aser

s ← Id, b
ser
s ← 0 | s ∈ [0 : S]} ▷ Server initialization

3: {Ai
s ← Id,∆Ai

s, b
i
s,∆bis ← 0 | s ∈ [0 : S], i ∈ [M ]} ▷ Clients initialization

4: for t = 1, 2, · · · , T do
5: Client it = i is active, and observes K contexts {xi

t,1, x
i
t,2, · · · , xi

t,K}
6: s← CS-LUCB

(
client i, {xi

t,1, x
i
t,2, · · · , xi

t,K}
)

with lazy update

7: if det(Ai
s+∆Ai

s)
det(Ai

s)
> (1 + C) then

8: Sync(s, server, clients i) for each s ∈ [0 : S]
9: end if

10: end for

F.1 Algorithm

F.2 Supporting Lemmas and Proof

When confronted with adversarial corruption, we utilize a weighted ridge regression in which
the weight assigned to each selected action depends on its confidence. Further, we expand the
confidence width to accommodate this corruption, with α0 = 1 +

√
d ln(2M2T/δ) + γCp and

αs = 1 +
√
2 ln(2KMT ln d/δ) + γCp as proposed in He et al. (2022b). In our analysis of layer 0,

we adapt Lemma B.1 from He et al. (2022b) to fit a federated scenario, yielding the following lemma:
Lemma F.1. (Adapted from Lemma B.1 in He et al. (2022b)) Under the setting of Theorem 5.1, in
the layer 0, with probability at least 1− δ, the following event E0 happens:

E0 ≜ {
∣∣∣xi⊤

t,aθ̂
i
t,s − xi⊤

t,aθ
∣∣∣ ≤ wi

t,s,a,∀i ∈ [M ], a ∈ [K], t ∈ [T ], s = 0}.

For each layer s ∈ [S], the rewards are mutually independent, analogous to the proof of Lemma B.1.
We can restate the lemma as follows:
Lemma F.2. Suppose the time index set Ψt,s is constructed so that for fixed xτ,aτ

with τ ∈ Ψt,s, the
rewards {rτ,aτ

} are independent random variables with means E[rτ,aτ
] = θ⊤xτ,aτ

+ cτ . For any
round t ∈ [T ], if client it = i is active and chooses arm at in layer s ∈ [S], with probability at least

24



1− δ
MT ln d , we have for any at ∈ [K]:∣∣r̂t,s,at

− θ⊤xi
t,at

∣∣ ≤ wi
t,s,at

= αs∥xi
t,at
∥(Ai

t,s)
−1 .

After combining the aforementioned events, we redefine the good event in the presence of corruption
as follows:

E ≜
{∣∣∣xi⊤

t,aθ̂
i
t,s − xi⊤

t,aθ
∣∣∣ ≤ wi

t,s,a,∀i ∈ [M ], a ∈ [K], t ∈ [T ], s ∈ [0 : S]
}
.

Similar to proof of Lemma B.4, we have that P[E ] ≥ 1− δ.
Lemma F.3. Conditioned on the good event E , the regret of layer s ∈ [0 : S − 1] can be bounded as
follows: reglayers ≤ Õ(

√
dT + dCp).

Proof of Lemma F.3. Under the condition of the good event E , we adopt a similar approach to the
regret decomposition analysis presented in He et al. (2022b) to bound the regret in each layer
s ∈ [0 : S − 1].

E
∑

t∈ΨT,s

(ri
t,ai,∗

t
− rit,at

) ≤
∑

t∈ΨT,s

8wt,s,at
=

∑
t∈ΨT,s

8αs∥xi
t,a∥(Ai

t,s)
−1 (7)

= 8αs

∑
t∈ΨT,s,ηt=1

∥xi
t,a∥(Ai

t,s)
−1

︸ ︷︷ ︸
I1

+8αs

∑
t∈ΨT,s,ηt<1

∥xi
t,a∥(Ai

t,s)
−1

︸ ︷︷ ︸
I2

. (8)

The first inequality is derived from Lemma B.6, while Equation (8) follows from the definition of
ηt. For the term I1, we consider the rounds with ηt = 1, assuming these rounds can be listed as
{k1, k2, ..., kn}. To analyze this, we construct the auxiliary matrix Bt,s = I +

∑n
j=1 xkj

x⊤
kj
I{kj ≤

t}. Using the definition of Ai
t,s, we can establish the inequality Ai

t,s ⪰ 1
1+MCAall

t,s ⪰ 1
1+MCBt,s.

Then we have

I1 =
∑

t∈ΨT,s,ηt=1

8αs∥xi
t,a∥(Ai

t,s)
−1

≤ 8αs

√
2(1 +MC)

√
2d|ΨT,s| log |ΨT,s|+ 8αsdM log(1 + T/d) ≤ Õ(

√
dT ),

where the first inequality follows from Lemma C.3, and the second inequality is obtained by noting
that the size of ΨT,0 is bounded by Õ(T/d), as stated in Lemma C.4 particularly for layer 0.

For the term I2, using the property ηt < 1, we can express ηt as ηt = γ/∥xi
t,a∥(Ai

t,s)
−1 , which

implies:

I2 =
∑

t∈ΨT,s,ηt<1

8αs∥xi
t,a∥(Ai

t,s)
−1

≤
∑

t∈ΨT,s,ηt<1

8
αs

γ
ηtx

i⊤
t,a(A

i
t,s)

−1xi
t,a ≤

αs

γ
d log(T ) ≤ Õ(dCp),

where the first inequality is derived from the definition of ηt, the second inequality is obtained from
the elliptical potential lemma, as referenced in Lemma A.1, and the third inequality stems from the
definition of αs.

By combining I1 and I2, we can ultimately bound the regret in each layer s ∈ [0 : S − 1] as
reglayers ≤ Õ(

√
dT + dCp).

For the regret that occurs in the last layer S, we can derive the following bound:

∑
t∈ΨT,S

E
[
ri
t,ai,∗

t
− rit,at

]
≤

∑
t∈ΨT,S

8wS ≤ 8wS |ΨT,S | ≤ 8wST ≤ 8
√
dT .

The first inequality is from Lemma B.6, and the last inequality follows from wS =
√

d/T .

25



Proof of the communication bound in Theorem 7.2. By combining the regret in each layer,
we can conclude that RT ≤ Õ(

√
dT + dCp). Note that, based on the definition of ηt ≤ 1 and

Lemma A.1, it follows that log
(
det
(
Aall

t,s

))
≤ d log(1 + |ΨT,s|/d). Additionally, by following a

similar proof as in Lemma C.1, we can bound the number of communication rounds in layer s by
O(dM2 log T ). Considering that the FedSupLinUCB algorithm has S = ⌈log d⌉ layers, the total
communication cost is therefore upper bounded by O(dM2 log d log T ).

26


	Supporting Lemmas
	Lemmas for the SupLinUCB Subroutine
	Supporting Lemmas and Proofs for Async-FedSupLinUCB
	Supporting Lemmas and Proofs for Sync-FedSupLinUCB
	Variance-adaptive Async-FedSupLinUCB
	Algorithm
	Supporting Lemmas and Proofs

	Corruption Robust Async-FedSupLinUCB
	Algorithm
	Supporting Lemmas and Proof




