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Abstract

We study a theory of reinforcement learning (RL) in which the learner receives
binary feedback only once at the end of an episode. While this is an extreme test
case for theory, it is also arguably more representative of real-world applications
than the traditional requirement in RL practice that the learner receive feedback at
every time step. Indeed, in many real-world applications of reinforcement learning,
such as self-driving cars and robotics, it is easier to evaluate whether a learner’s
complete trajectory was either “good” or “bad,” but harder to provide a reward
signal at each step. To show that learning is possible in this more challenging setting,
we study the case where trajectory labels are generated by an unknown parametric
model, and provide a statistically and computationally efficient algorithm that
achieves sublinear regret.

1 Introduction

The Reinforcement Learning (RL) paradigm involves a learning agent interacting with an unknown
dynamical environment over multiple time steps. The learner receives a reward signal after each
step which it uses to improve its performance over time. This formulation of RL has had significant
empirical success in the recent past [24, 23, 33, 32].

While this empirical success is encouraging, as RL starts to tackle a more wide-ranging class of
consequential real-world problems, such as self-driving cars, supply chains, and medical care, a new
set of challenges arise. Foremost among them is the lack of a well-specified reward signal associated
with every state-action pair in many real-world settings. For example, consider a robot manipulation
task where the robot must fold a pile of clothes. It is not clear how to design a useful reward signal
that aids the robot to learn to complete this task. However, it is fairly easy to check whether the task
was successfully completed (that is, whether the clothes were properly folded) and provide feedback
at the end of the episode.

This is a classical challenge but it is one that is often neglected in theoretical treatments of RL.
To address this challenge we introduce a framework for RL that eschews the need for a Markovian
reward signal at every step and provides the learner only with binary feedback based on its complete
trajectory in an episode. In our framework, the learner interacts with the environment for a fixed
number of time steps (H) in each episode to produce a trajectory (τ ) which is the collection of all
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states visited and actions taken in these rounds. At the end of the episode a binary reward yτ ∈ {0, 1}
is drawn from an unknown distribution Q(·|τ) and handed to the learner. This protocol continues for
N episodes and the learner’s goal is to maximize the number of expected binary “successes.”

One approach to deal with the lack of a reward function in the literature is Inverse Reinforcement
Learning [25], which uses demonstrations of good trajectories to learn a reward function. However,
this approach is difficult to use when good demonstrations are either prohibitively expensive or
difficult to obtain. Another closely related line of work studies reinforcement learning with preference
feedback [2, 15, 3, 5, 37, 26, 38]. Our framework provides the learner with an even weaker form of
feedback than that studied in this line of work. Instead of providing preferences between trajectories,
we only inform the learner whether the task was completed successfully or not at the end.

To study whether it is possible to learn under such drastically limited feedback we study the case
where the conditional rewards (yτ ) are drawn from an unknown logistic model (see Assumption 2.1).
Under this assumption we show that learning is possible—we provide an optimism-based algorithm
that achieves sublinear regret (see Theorem 3.2). Technically our theory leverages recent results
of Russac et al. [31] for the online estimation of the parameters of the underlying logistic model,
and combining them with the UCBVI algorithm [4] to obtain regret bounds. Under an explorability
assumption we also show that our algorithm is computationally efficient and we provide a dynamic
programming algorithm to solve for the optimistic policy at every episode.

We note that Efroni et al. [11] study a similar problem to ours, such that a reward is revealed only
at the end of the episode, but they assume that there exists an underlying linear model that determines
the reward associated with each state-action pair, and reward revealed to the learner is the sum of
rewards over the state-action pairs with added stochastic noise. This assumption ensures that the
reward function is Markovian, and allows them to use an online linear bandit algorithm [1] to directly
estimate the underlying reward function. This is not possible in our setting since we do not assume
the existence of an underlying Markovian reward function. Cohen et al. [6] provided an algorithm
that learns in this setting even when the noise is adversarially chosen. An open problem posed by
Efroni et al. [11] was to find an algorithm that learns in this setting of reinforcement learning, with
once per episode feedback, when the rewards are drawn from an unknown generalized linear model
(GLM). In this paper we consider a specific GLM—the logistic model.

The remainder of the paper is organized as follows. In Section 2 we introduce notation and describe
our setting. In Section 3 we present our algorithm and main results. Under an explorability assumption
we prove that our algorithm is computationally efficient (in Appendix E). Section 4 points to other
related work and we conclude with a discussion in Section 5. Other technical details, proofs and
experiments are deferred to the appendix.

2 Preliminaries

This section presents notational conventions and a description of the setting.

2.1 Notation

For any k ∈ N we denote the set {1, . . . , k} by [k]. Given any set T , let ∆T denote the simplex
over this set. Given a vector v, for any p ∈ N, let ‖v‖p denote the `p norm of the vector. Given a
vector v and positive semi-definite matrix M, define ‖v‖M :=

√
v>Mv. Given a matrix M let

‖M‖op denote its operator norm. For any positive semi-definite matrix M we use λmax(M) and
λmin(M) to denote its maximum and minimum eigenvalues respectively. We will use C1, C2, . . .
to denote absolute constants whose values are fixed throughout the paper, and c, c′, . . . to denote
“local” constants, which may take different values in different contexts. We use the standard “big Oh
notation” [see, e.g., 7].

2.2 The Setting

We study a Markov decision process (MDP)M = (S,A,P, H), where S is the set of states, A is the
set of actions, P(·|s, a) is the law that governs the transition dynamics given a state and action pair
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(s, a), and H ∈ N is the length of an episode. Both the state space S and action space A are finite
in our paper. The learner’s trajectory τ is the concatenation of all states and actions visited during
an episode; that is, τ := (s1, a1, · · · , sH , aH). Given any h ∈ [H] and trajectory τ , a sub-trajectory
τh := (s1, a1, . . . , sh, ah) is all the states and actions taken up to step h. Also set τ0 := ∅. Let
τh:H := (sh, ah, . . . , sH , aH) denote the states and action from step h until the end of the episode.
Let Γ be the set of all possible trajectories τ . Analogously, for any h ∈ [H] let Γh be the set of all
sub-trajectories up to step h. At the start of each episode the initial state s1 is drawn from a fixed
distribution ρ that is known to the learner.

At the end of an episode the trajectory τ gets mapped to a feature map φ(τ) ∈ Rd. We also assume
that the learner has access to this feature map φ. Here are two examples of feature maps:

1. Direct parametrization: Without loss of generality assume that S = {1, . . . , |S|} and
A = {1, . . . , |A|}. The feature map φ(τ) =

∑H
h=1 φh(sh, ah), where the per-step maps

φh(s, a) ∈ R|S||A|H are defined as follows:

(φh(s, a))j =

{
1 if j = (h− 1)|S||A|+ (s− 1)|A|+ a,

0 otherwise.

The complete feature map φ(τ) ∈ R|S||A|H is therefore an encoding of the trajectory τ .

2. Reduced parametrization: Any trajectory τ is associated with a feature φ(τ) ∈ Rd, where
d < |S||A|H .

After the completion of an episode the learner is given a random binary reward yτ ∈ {0, 1}. Let
w? ∈ Rd be a vector that is unknown to the learner. We study the case where the rewards are drawn
from a binary logistic model as described below.
Assumption 2.1 (Logistic model). Given any trajectory τ ∈ Γ, the rewards are said to be drawn
from a logistic model if the law of yτ |τ is

yτ |τ =

{
1 w.p. µ

(
w>? φ(τ)

)
0 w.p. 1− µ

(
w>? φ(τ)

)
,

(1)

where for any z ∈ R, µ(z) = 1
1+exp(−z) is the logistic function. We shall refer to w? as the “reward

parameters.”

We make the following boundedness assumptions on the features and reward parameters.
Assumption 2.2 (Bounded features and parameters). We assume that

• ‖w?‖2 ≤ B for some known value B > 0 and

• for all τ ∈ Γ, ‖φ(τ)‖2 ≤ 1.

We note that such boundedness assumptions are standard in the logistics bandits literature [13, 31,
14].

A policy π is a collection of per-step policies (π1, . . . , πH) such that

πh : Γh−1 × S → ∆A.

If the agent is using the policy π then at round h of the episode the learner plays according to the
policy πh. We let Πh denote the set of all valid policies at step h and let Π denote the set of valid
policies over the trajectory. Let Pπ(·|s1) denote the joint probability distribution over the learner’s
trajectory τ and the reward yτ when the learner plays according to the policy π and the initial state is
s1. Often when the initial state is clear from the context we will refer to Pπ(·|s1) by simply writing Pπ .
Also with some abuse of notation we will sometimes let Pπ denote the distribution of the trajectory
and the reward where the initial state is drawn from the distribution ρ.

Given an initial state s ∈ S the value function corresponding to a policy π is

V π(s) := Eyτ ,τ∼Pπ [yτ | s1 = s] = Eτ∼Pπ
[
µ
(
w>? φ(τ)

) ∣∣ s1 = s
]
,
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where the second equality follows as the mean of yτ conditioned on τ is µ(w>? φ(τ)). With some
abuse of notation we denote the average value function as V π := Es1∼ρ [V π(s1)] .

Define the optimal policy as π? ∈ arg maxπ∈Π V
π. It is worth noting that in our setting the

optimal policy may be non-Markovian. The learner plays for a total of N episodes. The policy played
in episode t ∈ [N ] is π(t) and its value function is V (t) := V π

(t)

. Also define the value function for
the optimal policy to be V? := V π? . Our goal shall be to control the regret of the learner, which is
defined as

R(N) :=

N∑
t=1

V? − V (t). (2)

The trajectories in these N episodes are denoted by {τ (t)}Nt=1 and rewards received are denoted by
{y(t)}Nt=1.

3 Optimistic Algorithms that Use Trajectory Labels

We now present an algorithm to learn from labeled trajectories. Throughout this section we assume
that both Assumptions 2.1 and 2.2 are in force.

The derivative of the logistic function is µ′(z) = exp(−z)
(1+exp(−z))2 , and therefore, µ is 1/4-Lipschitz.

The following quantity will play an important role in our bounds

κ := max
τ∈Γ

sup
w:‖w‖≤B

1

µ′(w>φ(τ))
.

A consequence of Assumption 2.2 is that κ ≤ exp(B). We briefly note that κ is a measure of
curvature of the logistic model. It also plays an important role in the analysis of logistic bandit
algorithms [13, 31].

Since the true reward parameter w? is unknown we will estimate it using samples. At any episode
t ∈ [N ], a natural way of computing an estimator of w?, given past trajectories {τ (q)}q∈[t−1] and
labels {y(q)}q∈[t−1], is by minimizing the `2-regularized cross-entropy loss:

Lt(w) := −
t−1∑
q=1

y(q) log
(
µ
(
w>φ(τ (q))

))
− (1− y(q)) log

(
1− µ

(
w>φ(τ (q))

))
+
‖w‖22

2
.

This function is strictly convex and its minimizer is defined to be

ŵt := arg min
w∈Rd

Lt(w). (3)

Define a design matrix at every episode

Σ1 := κI, and Σt := κI +
t−1∑
q=1

φ(τ (q))φ(τ (q))>, for all t ≥ 1.

Further, define the confidence radius βt(δ) as follows

βt(δ) :=
(

1 +B + ρt(δ)
(√

1 +B + ρt(δ)
))3/2

(4)

where, ρt(δ) := d log

(
4 +

4t

d

)
+ 2 log

(
N

δ

)
+

1

2
.

We adapt a result due to Russac et al. [31, Proposition 7] who studied the online logistic bandits
problem to establish that at every episode and every trajectory the difference between µ(w>? φ(τ))
and µ(ŵ>t φ(τ)) is small.
Lemma 3.1. For any δ ∈ (0, 1], define the event

Eδ :=
{

for all t ∈ [N ], τ ∈ Γ :
∣∣µ(w>? φ(τ))− µ(ŵ>t φ(τ))

∣∣ ≤ √κβt(δ)‖φ(τ)‖Σ−1
t

}
. (5)

Then P(Eδ) ≥ 1− δ.
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We provide a proof in Appendix B.2. The proof follows by simply translating [31, Proposition 7]
into our setting. We note that we specifically adapt these recent results by Russac et al. [31] since they
directly apply to ŵt, the minimizer of the `2-regularized cross-entropy loss. In contrast, previous work
on the logistic bandits problem [see, e.g., 14, 13] established confidence sets for an estimator that
was obtained by performing a non-convex (and potentially computationally intractable) projection of
ŵt onto the ball of Euclidean radius B.

Our algorithm shall construct an estimate of the transition dynamics P̂t. LetNt(s, a) be the number
of times that the state-action pair (s, a) is encountered before the start of episode t, and letNt(s′; s, a)
be the number of times the learner encountered the state s′ after taking action a at state s before the
start of episode t. Define the estimator of the transition dynamics as follows:

P̂t(s′|a, s) :=
Nt(s

′; s, a)

Nt(s, a)
. (6)

Also define the state-action bonus at episode t

ξ(t)
s,a := min

{
2, 4

√√√√ log
(

6(|S||A|H)H(8NH2)|S| log(Nt(s,a))
δ

)
Nt(s, a)

}
. (7)

In this definition whenever Nt(s, a) = 0, that is, when a state-action pair hasn’t been visited yet, we
define ξ(t)

s,a to be equal to 2. Finally, we define the optimistic reward functions

µ̄t(w, τ) := min
{
µ
(
w>φ(τ)

)
+
√
κβt(δ)‖φ(τ)‖Σ−1

t
, 1
}

and (8a)

µ̃t(w, τ) := µ̄t(w, τ) +

H−1∑
h=1

ξ(t)
sh,ah

. (8b)

The first reward function µ̄t is defined as above to account for the uncertainty in the predicted value
of w? in light of Lemma 3.1, and the second reward function µ̃t is designed to account for the error
in the estimation of the transition dynamics P. With these additional definitions in place we are ready
to present our algorithms and main results.

3.1 UCBVI with Trajectory Labels

Our first algorithm is an adaptation of the UCBVI algorithm [4] to our setting with labeled trajectories.

Algorithm 1: UCBVI with trajectory labels.
1 Input: State and action spaces S,A.
2 Initialize P̂1 = 0, visitation set K = ∅.
3 for t = 1, · · · do
4 1. Calculate the ŵt by solving equation (3).
5 2. If t > 1, compute π(t)

π(t) ∈ arg max
π∈Π

Es1∼ρ, τ∼P̂πt (·|s1) [µ̃t(ŵt, τ)] . (9)

Else for all h, s, τh−1 ∈ [H]× S × Γh−1, set π(1)
h (·|s, τh−1) to be the uniform distribution

over the action set.
6 3. Observe the trajectory τ (t) ∼ Pπ(t)

and update the design matrix

Σt+1 = κI +

t∑
q=1

φ(τ (q))φ(τ (q))>. (10)

7 4. Update the visitation set K = {(s, a) ∈ S ×A : Nt(s, a) > 0}.
8 5. For all (s, a) ∈ K, update P̂t+1(·|s, a) according to equation (6).
9 6. For all (s, a) /∈ K, set P̂t+1(·|s, a) to be the uniform distribution over states.
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Theorem 3.2. For any δ̄ ∈ (0, 1], set δ = δ̄/(6N) then under Assumptions 2.1 and 2.2 the regret of
Algorithm 1 is upper bounded as follows:

R(N) ≤ Õ
([
H
√

(H + |S|)|S||A|+H2 +
√
κd(d3 +B3/2)

]√
N + (H + |S|)H|S||A|

)
,

with probability at least 1− δ̄.

The regret of our algorithm scales with
√
N and polynomially with the horizon, number of states,

number of actions, κ, dimension of the feature maps and length of the reward parameters (B). The
minimax regret in the standard episodic reinforcement learning is O(

√
H|S||A|N) [27, 4]. Here we

pay for additional factors in H , |S| and κ since our rewards are non-Markovian and are revealed to
the learner only at the end of the episode. We provide a proof of this theorem in Appendix B. For a
more detailed bound on the regret with the logarithmic factors and constants specified we point the
interested reader to inequality (41) in the appendix.

Proof sketch. First we show that with high probability at each episode the value function of the
optimal policy V? is upper bounded by Ṽ (t) := E

s1∼ρ, τ∼P̂π
(t)
t (·|s1)

[µ̃t(ŵt, τ)] (the value function

of the policy π(t) when the rewards are dictated by µ̃t and the transition dynamics are given by P̂t).
Then we provide a high probability bound on the difference between the optimistic value function
Ṽ (t) and the true value function V (t) to obtain our upper bound on the regret. In both of these steps
we need to relate expectations with respect to the true transition dynamics P to expectations with
respect to the empirical estimate of the transition dynamics P̂t. We do this by using our concentration
results: Lemmas B.1 and B.2 proved in the appendix. While analogs of these concentration lemmas
do exist in previous theoretical studies of episodic reinforcement learning, here we had to prove these
lemmas in our setting with non-Markovian trajectory-level feedback (which explains why we pay
extra factors in H and |S|).

3.2 UCBVI with Added Exploration

Although the regret of Algorithm 1 is sublinear it is not guaranteed to be computationally efficient
since finding the optimistic policy π(t) (in equation (9)) at every episode might prove to be difficult.
In this section, we will show that when the features are sum-decomposable and the MDP satisfies an
explorability assumption then it will be possible to find a computationally efficient algorithm with
sublinear regret (albeit with a slightly worse scaling with the number of episodes N ).

Assumption 3.3 (Sum-decomposable features). We assume that the feature maps φ ∈ Rd are
sum-decomposable over the different steps of the trajectory, that is, φ(τ) =

∑H
h=1 φh(sh, ah).

Under this assumption, given any w ∈ Rd and any trajectory τ ∈ Γ, w>φ(τ) =∑H
h=1 w>φh(sh, ah). We stress that even under this sum-decomposablity assumption, the opti-

mal policy is potentially non-Markovian due to the presence of the logistic map that governs the
reward.

We also make the following explorability assumption.

Assumption 3.4 (Explorability). For any s, s′ ∈ S, a, a′ ∈ A, and h 6= h′ ∈ [H], suppose that

φh(s, a)>φh′(s
′, a′) = 0.

Further assume that there exists ω ∈ (0, 1) such that for any unit vector v ∈ Rd we have that

sup
π∈Π

Es1∼ρ,τ∼Pπ

 ∑
h∈[H]

v>φh(sh, ah)

 ≥ ω.
In a setting with Markovian rewards a similar assumption has been made previously by

Zanette et al. [40]. This assumption allows us to efficiently “explore” the feature space, and con-
struct a sum-decomposable bonus

√
κβt(δ)

∑H
h=1‖φh(sh, ah)‖Σ−1

t
that we will use instead of

6



√
κβt(δ)‖φ(τ)‖Σ−1

t
in the definition of µ̄t (see equation (8a)). Define the reward functions

µ̄sd
t (w, τ) := min

{
µ
(
w>φ(τ)

)
+
√
κβt(δ)

H∑
h=1

‖φh(sh, ah)‖Σ−1
t
, 1

}
and (11a)

µ̃sd
t (w, τ) := µ̄sd

t (w, τ) +

H−1∑
h=1

ξ(t)
sh,ah

. (11b)

To prove a regret bound for an algorithm that uses these rewards our first step shall be to prove that
the sum-decomposable bonus also leads to an optimistic reward function (that is, the value function
defined by these rewards sufficiently over-estimates the true value function). To this end, we will first
use Algorithm 2 to find an exploration mixture policy Ū and play according to it at episode t with
probability 1/t1/3. This policy Ū will be such that the minimum eigenvalue of

Es1∼ρ, τ∼PŪ (·|s1)

[
φ(τ)φ(τ)>

]
(12)

is lower bounded by a function of d, ω and N (see Lemma 3.5). This property shall allow us to upper
bound the condition number of the design matrix Σt and subsequently ensure that the rewards µ̄sd

t

and µ̃sd
t are optimistic. Given a unit vector v define a reward function at step h as follows:

rvh(s, a) := v>φh(s, a). (13)

Let rv := (rv1 , . . . , r
v
H) be a reward function over the entire episode. As a subroutine Algorithm 2

uses the EULER algorithm [39]. (We briefly note that other reinforcement learning algorithms with
PAC or regret guarantees [e.g., 4, 19] could also be used here in place of EULER.)

Algorithm 2: Find exploration mixture.
1 Input: Initial unit vector v1, Exploration lower bound ω, number of EULER episodes NEUL,

number of evaluation episodes NEVAL.
2 Initialize: A0 = ω2

16 I, n = 0 and λmin = infz∈Rd z>A0z.
3 while λmin <

ω2

8 do
4 Update the counter n← n+ 1.
5 Set Un ← EULER({rvn , NEUL) //run EULER for NEUL episodes.
6 for t=1,. . . ,NEVAL episodes do
7 Sample a trajectory τ (t)

n ∼ ρ× PUn .

8 Calculate the average feature ân =
∑NEVAL

t=1 φ(τ
(t)
n )/NEVAL.

9 Update the matrix An ← An−1 + ânâ>n .
10 Update the minimum eigenvalue: λmin ← infz∈Rd z>Anz.
11 Set vn to be the minimum eigenvector of An.

12 Set nloop = n.
13 Return: (i) Ū = Unif(U1, · · · , Unloop

) //the uniform mixture over the policies;
14 (ii) Nexp = nloop × (NEUL +NEVAL) //total number of episodes.

Lemma 3.5. There exist positive absolute constants C1 and C2 such that, under Assumptions 2.2, 3.3

and 3.4, if Algorithm 2 is run withNEUL =
C1|S|2|A|H2 log

(
|S||A|N2d

δω2

)
ω2 andNEVAL =

C2d
3 log3

(
Nd2

δω2

)
ω4 ,

and N >
d log(1+ 16N

dω2 )
log(3/2) (NEUL +NEVAL) =: N̄exp then, with probability at least 1 − 2δ, we have

Nexp ≤ N̄exp and furthermore:

Es1∼ρ, τ∼PŪ (·|s1)

[
φ(τ)φ(τ)>

]
� ω2 log(3/2)

32d log
(
d log

(
1 + 16N

dω2

))I.
This lemma is proved in Appendix C. With this lemma in place we now present our modified

algorithm under the explorability assumption. In the first few episodes this algorithm finds the
exploration mixture policy Ū . In a subsequent episode t this algorithm acts according to the policy
π(t) which maximizes the value function associated with the rewards µ̃sd

t (ŵt, τ) with probability
1− 1

t1/3 . Otherwise it uses the exploration mixture policy Ū .
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Algorithm 3: UCBVI with trajectory labels and added exploration.
1 Input: State and action spaces S,A, Initial unit vector v1, Exploration lower bound ω, number

of EULER episodes NEUL, number of evaluation episodes NEVAL.
2 Initialize P̂1 = 0, visitation set K = ∅.
3 Find exploration mixture policy Ū in Nexp episodes by running Algorithm 2.
4 for t = Nexp + 1, · · · , N do
5 1. Calculate ŵt by solving equation (3).
6 2. If t > Nexp + 1, compute π(t)

π(t) ∈ arg max
π

Es1∼ρ, τ∼P̂πt (·|s1)

[
µ̃sd
t (ŵt, τ)

]
. (14)

Else for all h, s, τh−1 ∈ [H]× S × Γh−1, set π(1)
h (·|s, τh−1) to be the uniform distribution

over the action set.

7 3. Sample bt =

{
0 w.p. 1− 1

t1/3 ,

1 w.p. 1
t1/3 .

8 4. If bt = 1 then set π(t) ← Ū .
9 5. Observe the trajectory τ (t) ∼ Pπ(t)

and update the design matrix

Σt+1 = κI +

t∑
q=Nexp+1

φ(τ (q))φ(τ (q))>. (15)

10 6. Update the visitation set K = {(s, a) ∈ S ×A : Nt(s, a) > 0}.
11 7. For all (s, a) ∈ K, update P̂t+1(·|s, a) according to equation (6).
12 8. For all (s, a) /∈ K, set P̂t+1(·|s, a) to be the uniform distribution over states.

The following is our regret bound for Algorithm 3.
Theorem 3.6. For any δ̄ ∈ (0, 1], set δ = δ̄/(12N). Under Assumptions 2.1, 2.2, 3.3 and 3.4, and
for all N > N̄exp (see its definition in Lemma 3.5) if Algorithm 3 is run with the parameters NEUL

and NEVAL set as specified in Lemma 3.5 then its regret is upper bounded as follows:

R(N) ≤ Õ

(√
κHd

ω
(d3 +B3/2)N2/3 +

[
H
√

(H + |S|)|S||A|+H2
]√

N

+(H + |S|)H|S||A|+ d2

ω2

(
d2

ω2
+ |S|2|A|H2

))
,

with probability at least 1− δ̄.

The proof of Theorem 3.6 is in Appendix D. For a more detailed bound on the regret with the
logarithmic factors and constants specified we point the interested reader to inequality (58) in the
appendix. The bound on the regret of this algorithm scales with N2/3 up to poly-logarithmic factors.
This is larger than the

√
N regret bound (again up to poly-logarithmic factors) that we proved above

for Algorithm 1 since here the learner plays according to the exploration policy Ū with probability
1/t1/3 throughout the run of the algorithm. However, the next proposition shows that by using the
sum-decomposable reward function µ̃sd

t the policy π(t) defined in equation (14) can be efficiently
approximated.

Proposition 3.7. For any t ∈ [N ] define Ṽ sd
t (π) := Es1∼ρ, τ∼P̂πt (·|s1)

[
µ̃sd
t (ŵt, τ)

]
. Given any ε > 0,

under Assumptions 2.2, 3.3 and 3.4 it is possible to find a policy π̂(t) that satisfies

Ṽ sd
t (π(t))− Ṽ sd

t (π̂(t)) ≤ ε,

using at most poly
(
|S|, |A|, H, d,B, ‖ŵt‖2, 1

ε , log
(
N
δ

))
time and memory.

We describe the approximate dynamic programming algorithm that can be used to find this
policy π̂(t) and present a proof of this proposition in Appendix E. We also note that if we use an
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ε-approximate policy π̂(t) instead of π(t) in Algorithm 3 then its regret increases by an additive factor
of at most εN . (It is possible to easily check this by inspecting the proof of Theorem 3.6.) Thus, for
example a choice of ε = 1/N1/3 ensures that the regret of Algorithm 3 is bounded by O(N2/3) with
high probability if the approximate policy π̂(t) (which can be found efficiently) is used instead.

4 Additional Related Work

There have been many theoretical results that analyze regret minimization in standard episodic
reinforcement [18, 29, 16, 28, 4, 19, 8, 39, 34, 10, 30]. Recently Efroni et al. [12] introduced a
framework of “sequential budgeted learning” which includes as a special case the setting of episodic
reinforcement learning with the constraint that the learner is allowed to query the reward function
only a limited number of times per episode. They show learning is possible in this setting by using a
modified UCBVI algorithm.

As stated above to estimate the reward parameter we rely on the recent results by Russac et al. [31]
who in term built on earlier work [13, 14] that analyzed the GLM-UCB algorithm. Dong et al. [9]
provided and analyzed a Thompson sampling approach for the logistic bandits problem.

5 Discussion

We have shown that efficient learning is possible when the rewards are non-Markovian and delivered
to the learner only once per episode. It would be interesting to see if one can establish guarantees
under more general reward models than the logistic model that we study here. Another interesting
question is if faster rates of learning are possible when the learner obtains ranked trajectories (that is,
moving beyond binary labels).
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Lemma A.1. Let {xt}∞t=1 be a martingale difference sequence with |xt| ≤ ζ and let δ ∈ (0, 1]. Then
with probability 1− δ for all T ∈ N

T∑
t=1

xt ≤ 2ζ

√
T log

(
6 log T

δ

)
.

Proof Observe that |xt|ζ ≤ 1. By invoking a time-uniform Hoeffding-style concentration inequality
[17, Equation (11)] we find that

P

[
∀ t ∈ N :

T∑
t=1

xt
ζ
≤ 1.7

√
T

(
log log(T ) + 0.72 log

(
5.2

δ

))]
≥ 1− δ.

Rounding up the constants for the sake of simplicity we get

P

[
∀ t ∈ N :

T∑
t=1

xt ≤ 2ζ

√
T

(
log

(
6 log(T )

δ

))]
≥ 1− δ,

which establishes our claim.

Next we state a matrix concentration theorem [35, Theorem 1.1].

Theorem A.2 (Matrix Freedman inequality). Consider a matrix martingale {Yk}∞k=1 whose values
are self adjoint matrices with dimension d and let {Xk}∞k=1 be its difference sequence. Assume the
difference sequence is uniformly bounded in the sense that:

λmax(Xk) ≤ R almost surely for all k = 1, 2 . . . .

Define the predictable quadratic variation process of the martingale

Wk :=

k∑
j=1

E
[
X2
j | X1, . . . ,Xj−1

]
for k = 1, 2, . . . .

Then for all x ≥ 0 and V ≥ 0,

P (∃ k : λmax(Yk) ≥ x and ‖Wk‖op ≤ V ) ≤ d · exp

(
−x2/2

V +Rx/3

)
.

The following result that bounds the norm of sequence of vectors in terms of the norm induced by
its inverse Gram matrix.

Lemma A.3 (Determinant Lemma). For any sequence of vectors x(1), . . . ,x(T ) ∈ Rd such that
‖x(q)‖2 ≤ L for all q ∈ [T ]. Given a λ ≥ 0 define Σ̄1 := λI and for t ∈ {2, . . . , T} define
Σ̄t := λI +

∑t−1
q=1 x

(q)x(q)>. Then for all T ∈ N

N∑
t=1

‖φ(τ (t))‖2
Σ−1
t
≤ 2dmax

{
1,

1

λ

}
log

(
1 +

TL2

λd

)
and

log

(
det(Σ̄t)

det(λI)

)
≤ d log

(
1 +

tL2

λd

)
.

Proof The first part follows by combining the results of Lemmas 15 and 16 from [13]. The second
part is a restatement of [22, Lemma 19.4].

B Regret Analysis of Algorithm 1

In this appendix we analyze the regret of Algorithm 1 and prove Theorem 3.2. We begin by establish-
ing some useful concentration lemmas.
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B.1 Concentration Lemmas Required to Bound the Regret

We will now prove a lemma that relates the expectation of rewards between the true model P and an
empirical model P̂t when using any fixed policy π. Given any η > 0 define

ξ̄(t)
s,a(η) = min

2η, 4η

√√√√H log (|S||A|) + log
(

6 log(Nt(s,a))
δ

)
Nt(s, a)

 . (16)

Lemma B.1. Given any fixed policy π ∈ Π, and any scalar function µ̌τ that depends on the trajectory
and satisfies |µ̌τ | ≤ η, with probability at least 1− δ for all t ∈ N

Es1∼ρ, τ∼Pπ(·|s1)[µ̌τ ]− Es1∼ρ, τ∼P̂πt (·|s1)[µ̌τ ] ≤ Es1∼ρ, τ∼P̂πt (·|s1)

[
H−1∑
h=1

ξ̄(t)
sh,ah

(η)

]
. (17)

Proof Define Pπ(h) to be a trajectory distribution where the initial state is s1 ∼ ρ, the state-action pairs

up to the end of step h are drawn from P̂πt , and the state-action pairs from step h+ 1 up until the last
step H are drawn from Pπ . Notice that Pπ(0)(s1, ·) = ρ(s1)Pπ(·|s1) and Pπ(H)(s1, ·) = ρ(s1)P̂πt (·|s1).
Thus,

Es1∼ρ, τ∼Pπ(·|s1)[µ̌τ ]− Es1∼ρ, τ∼P̂πt (·|s1)[µ̌τ ] =

H∑
h=1

Eτ∼Pπ
(h−1)

[µ̌τ ]− Eτ∼Pπ
(h)

[µ̌τ ]. (18)

Consider the term where h = 1. The trajectory distributions Pπ(0) and Pπ(1) differ only their distribu-
tions of state-action pairs in step 1, thus,

Eτ∼Pπ
(0)

[µ̌τ ]− Eτ∼Pπ
(1)

[µ̌τ ]

= Es1∼ρ
[
Ea1∼π(·|s1)Eτ∼Pπ(0)

[µ̌τ |(s1, a1)]
]
− Es1∼ρ

[
Ea1∼π(·|s1)Eτ∼Pπ(0)

[µ̌τ |(s1, a1)]
]

= 0.

(19)

Consider any other term in this sum. Again the trajectory distributions Pπ(h−1) and Pπ(h) differ only
their distributions of state-action pairs in step h and hence

Eτ∼Pπ
(h−1)

[µ̌τ ]− Eτ∼Pπ
(h)

[µ̌τ ]

= Es1∼ρ, τh−1∼P̂πt (·|s1)

(
Eτ∼Pπ

(h−1)
[µ̌τ |τh−1]− Eτ∼Pπ

(h)
[µ̌τ |τh−1]

)
= Es1∼ρ, τh−1∼P̂πt (·|s1)

(
Esh∼P(·|sh−1,ah−1)

[
Eah∼πh(·|sh,τh−1)Eτ∼Pπ(h−1)

[µ̌τ |(sh, ah, τh−1)]
]

−Esh∼P̂t(·|sh−1,ah−1)

[
Eah∼πh(·|sh,τh−1)Eτ∼Pπ(h−1)

[µ̌τ |(sh, ah, τh−1)]
])
. (20)

Define the random variable

zh(s, τ ′h−1) := Ea∼πh(·|s,τ ′h−1)Eτ∼Pπ(h−1)
[µ̌τ |τh = {s, a, τ ′h−1}].

Observe that |zh(s, τ ′h−1)| ≤ η, since |µ̌τ | ≤ η by assumption. Furthermore, the distribution of
zh(s, τ ′h−1) only depends on the true transition dynamics P and on the policy π but it does not depend
on the empirical estimate of the transition dynamics P̂t. With this definition in hand continuing from
equation (20) we have

Eτ∼Pπ
(h−1)

[µ̌τ ]− Eτ∼Pπ
(h)

[µ̌τ ]

= Es1∼ρ, τh−1∼P̂πt (·|s1)

[
Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]− Es′∼P̂t(·|sh−1,ah−1)[zh(s′, τh−1)]︸ ︷︷ ︸

]
.

(21)

We will upper bound the term in the under-brace above with high probability uniformly over all
sub-trajectories τh−1.
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Recall that Nt(s, a) is the number of times the state action pair (s, a) has been visited before
episode t, and Nt(s′; s, a) is the number of times the state s′ is visited starting from state-action pair
(s, a) before episode t. When Nt(s, a) > 0, by definition P̂t(s′|s, a) = Nt(s

′;s,a)
Nt(s,a) . Thus for any fixed

sub-trajectory τh−1 ∈ Γh−1 such that Nt(sh−1,ah−1
) > 0 we have

Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]− Es′∼P̂t(·|sh−1,ah−1)[zh(s′, τh−1)]

= Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]−
∑
s′∈S

Nt(s
′; sh−1, ah−1)

Nt(sh−1, ah−1)
zh(s′, τh−1)

=
1

Nt(sh−1, ah−1)

[
Nt(sh−1, ah−1)Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]

−
∑
s′∈S

Nt(s
′; sh−1, ah−1)zh(s′, τh−1)

]
(i)
=

1

Nt(sh−1, ah−1)

Nt(sh−1, ah−1)Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]−
Nt(sh−1,ah−1)∑

`=1

zh(s`, τh−1)


=

1

Nt(sh−1, ah−1)

Nt(sh−1,ah−1)∑
`=1

Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]− zh(s`, τh−1),

where in (i) s` is the state that was visited immediately after `th visit to the state-action pair
(sh−1, ah−1). Note that |Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)] − zh(s`, τh−1)| ≤ 2η, thus by invok-
ing Lemma A.1 we have: given any fixed sub-trajectory τh−1 ∈ Γh−1, for all t ∈ N such that
Nt(sh−1, ah−1) > 0

Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]− Es′∼P̂t(·|sh−1,ah−1)[zh(s′, τh−1)]

≤ 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

(22)

with probability at least 1− δ′. In the case where Nt(sh−1, ah−1) = 0 we have the uniform upper
bound

Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]− Es′∼P̂t(·|sh−1,ah−1)[zh(s′, τh−1)] ≤ 2η. (23)

Therefore combining inequalities (22) and (23), we can conclude that for any fixed sub-trajectory
τh−1 ∈ Γh−1

∀ t ∈ N : Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]− Es′∼P̂t(·|sh−1,ah−1)[zh(s′, τh−1)]

≤ min

{
2η, 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

}
with probability at least 1− δ′. By a union bound over all sub-trajectories we find that for all t ∈ N
and all τh−1 ∈ Γh−1

Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]− Es′∼P̂t(·|sh−1,ah−1)[zh(s′, τh−1)]

≤ min

{
2η, 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

}
with probability at least 1−δ′|S|H−1|A|H−1. Finally a union bound over all h ∈ [H] lets us conclude
that for all t ∈ N, all h ∈ [H], and all τh−1 ∈ Γh−1

Es′∼P(·|sh−1,ah−1)[zh(s′, τh−1)]− Es′∼P̂t(·|sh−1,ah−1)[zh(s′, τh−1)]

≤ min

{
2η, 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

}
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with probability at least 1−δ′|S|H−1|A|H−1H . Setting δ′ = δ
|S|H−1|A|H−1H

and using equation (21)
from above we get that for all t ∈ N, all h ∈ {2, . . . ,H},

Eτ∼Pπ
(h−1)

[µ̌τ ]− Eτ∼Pπ
(h)

[µ̌τ ]

≤ Es1∼ρ, τh−1∼P̂πt (·|s1)

min

{
2η, 4η

√√√√ (H − 1) log(|S||A|H) + log
(

6 log(Nt(sh−1,ah−1))
δ

)
Nt(sh−1, ah−1)

}
≤ Es1∼ρ, τh−1∼P̂πt (·|s1)

[
ξ̄(t)
sh−1,ah−1

]
with probability at least 1 − δ. Summing over all h ∈ [H] and using equations (18) and (19) we
conclude that

Es1∼ρ, τ∼Pπ(·|s1)[µ̌τ ]− Es1∼ρ, τ∼P̂πt (·|s1)[µ̌τ ] ≤ Es1∼ρ, τ∼P̂πt (·|s1)

[
H∑
h=2

ξ̄(t)
sh−1,ah−1

]

= Es1∼ρ, τ∼P̂πt (·|s1)

[
H−1∑
h=1

ξ̄(t)
sh,ah

]
with the same probability. This establishes our claim.

Next, we shall prove a stronger version of Lemma B.1 that holds uniformly over all policies. Given
any bounded scalar function µ̌ that maps trajectories to R and satisfies |µ̌τ | ≤ η, any transition
dynamics P̄ and any policy π define

zµ̌,P̄
π

h (s, τ ′h−1) := Ea∼πh(·|s,τ ′h−1)

[
Eτ∼P̄π [µ̌τ | τh = {s, a, τ ′h−1}]

]
. (24)

This function is different from the zh that was defined and used locally in the proof of the preceding
lemma. The absolute value of the functions zµ̌,P̄

π

h are also bounded by η.

Suppose that Ψ(ε) := {fj}Ncover(ε)
j=1 is a set of bounded functions from S 7→ [−η, η], such that for

any h ∈ [H] and for any sub-trajectory τh−1 ∈ Γh−1, there exists a f ∈ Ψ(ε) such that

max
s∈S

∣∣∣zµ̌,P̄πh (s, τh−1)− f(s)
∣∣∣ ≤ ε

2H
. (25)

We will construct such a net of functions of size Ncover(ε) ≤
(⌈

η−(−η)
ε/(2H)

⌉)|S|
=
(⌈

4ηH
ε

⌉)|S|
.

Such a set of functions can be built as follows. For each s ∈ S we pick an element of the set
{−η,−η + ε

2H , . . . , η}. There are at most
⌈

4ηH
ε

⌉
choices for each state, and therefore there are at

most
(⌈

4ηH
ε

⌉)|S|
unique functions that can be defined that map from the state space S to the set

{−η,−η+ ε
2H , . . . , η}. Let Ψ(ε) be these functions. It is easy to check that this set of functions Ψ(ε)

satisfies the condition specified in inequality (25). Also define the function

ξ̌(t)
s,a(ε; η) := min

{
2η, 4η

√√√√H log(|S||A|H) + |S| log
(⌈

4ηH
ε

⌉)
+ log

(
6 log(Nt(sh−1,ah−1))

δ

)
Nt(sh−1, ah−1)

}
.

Lemma B.2. Suppose that ε > 0. Then with probability at least 1 − δ, for all t ∈ N, all policies
π ∈ Π and all µ̌τ such that |µ̌τ | ≤ η,

Es1∼ρ, τ∼P̂πt (·|s1)[µ̌τ ]− Es1∼ρ, τ∼Pπ(·|s1)[µ̌τ ] ≤ Es1∼ρ, τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ̌(t)
sh,ah

(ε; η)

]
+ ε.

Proof Define Pπ(h) to be a trajectory distribution where the initial state is s1 ∼ ρ, the state-action pairs
up to the end of step h are drawn from Pπ , and the state-action pairs from step h+ 1 up until the last
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step H is drawn from P̂πt . Notice that Pπ(0)(s1, ·) = ρ(s1)P̂πt (·|s1) and Pπ(H)(s1) = ρ(s1)Pπ(·|s1).

Es1∼ρ, τ∼P̂πt (·|s1)[µ̌τ ]− Es1∼ρ, τ∼Pπ(·|s1)[µ̌τ ] =

H∑
h=1

Eτ∼Pπ
(h−1)

[µ̌τ ]− Eτ∼Pπ
(h)

[µ̌τ ]. (26)

Consider the term where h = 1. The trajectory distributions Pπ(0) and Pπ(1) differ only their distribu-
tions of state-action pairs in step 1, thus,

Eτ∼Pπ
(0)

[µ̌τ ]− Eτ∼Pπ
(1)

[µ̌τ ]

= Es1∼ρ
[
Ea1∼π(·|s1)Eτ∼Pπ(0)

[µ̌τ |(s1, a1)]
]
− Es1∼ρ

[
Ea1∼π(·|s1)Eτ∼Pπ(0)

[µ̌τ |(s1, a1)]
]

= 0.

(27)

Consider any other term in this sum. Again the trajectory distributions Pπ(h−1) and Pπ(h) differ only
their distributions of state-action pairs in step h and hence

Eτ∼Pπ
(h−1)

[µ̌τ ]− Eτ∼Pπ
(h)

[µ̌τ ]

= Es1∼ρ, τh−1∼Pπ(·|s1)

(
Eτ∼Pπ

(h−1)
[µ̌τ |τh−1]− Eτ∼Pπ

(h)
[µ̌τ |τh−1]

)
= Es1∼ρ, τh−1∼Pπ(·|s1)

[
Esh∼P̂t(·|sh−1,ah−1)

[
Eah∼πh(·|sh,τh−1)Eτ∼P̂πt [µ̌τ |(sh, ah, τh−1)]

]
− Esh∼P(·|sh−1,ah−1)

[
Eah∼πh(·|sh,τh−1)Eτ∼P̂πt [µ̌τ |(sh, ah, τh−1)]

] ]
= Es1∼ρ, τh−1∼Pπ(·|s1)

[
Es′∼P̂t(·|sh−1,ah−1)[z

µ̌,P̂πt
h (s′, τh−1)]− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂πt
h (s′, τh−1)]︸ ︷︷ ︸

]
(28)

where zµ̌,P̂
π
t

h is defined in equation (24) above. We shall now upper bound the term in the under-brace
above with high probability uniformly over all sub-trajectories τh−1.

Recall that Nt(s, a) is the number of times the state action pair (s, a) has been visited before
episode t, and Nt(s′; s, a) is the number of times the state s′ is visited starting from state-action pair
(s, a) before episode t. When Nt(s, a) > 0 by its definition P̂t(s′|s, a) = Nt(s

′;s,a)
Nt(s,a) . Thus for any

fixed sub-trajectory τh−1 ∈ Γh−1 and episode t ∈ N where Nt(sh−1, ah−1) > 0 we have

Es′∼P̂t(·|sh−1,ah−1)[z
µ̌,P̂t
h (s′, τh−1)]− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂t
h (s′, τh−1)]

=
∑
s′∈S

Nt(s
′; sh−1, ah−1)

Nt(sh−1, ah−1)
z
µ̌,P̂πt
h (s′, τh−1)− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂πt
h (s′, τh−1)]

=
1

Nt(sh−1, ah−1)

[∑
s′∈S

Nt(s
′; sh−1, ah−1)z

µ̌,P̂πt
h (s′, τh−1)

−Nt(sh−1, ah−1)Es′∼P(·|sh−1,ah−1)[z
µ̌,P̂πt
h (s′, τh−1)]

]
(i)
=

1

Nt(sh−1, ah−1)

Nt(sh−1,ah−1)∑
`=1

z
µ̌,P̂πt
h (s`, τh−1)−Nt(sh−1, ah−1)Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂πt
h (s′, τh−1)]


=

1

Nt(sh−1, ah−1)

Nt(sh−1,ah−1)∑
`=1

z
µ̌,P̂πt
h (s`, τh−1)− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂πt
h (s′, τh−1)], (29)

where in (i) s` is the state that was visited immediately after the `th visit to the state-action pair
(sh−1, ah−1). Let f̂ ∈ Ψ(ε) be a function such that

max
s∈S

∣∣∣zµ̌,P̂πth (s, τh−1)− f̂(s)
∣∣∣ ≤ ε

2H
.
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Such a function exists by the definition of the set Ψ(ε). Therefore,

max
s∈S

∣∣∣zµ̌,P̂πth (s, τh−1)− Es′∼P(·|sh−1,ah−1
)

[
z
µ̌,P̂πt
h (s′, τh−1)

]
− f̂(s) + Es′∼P(·|sh−1,ah−1

)

[
f̂(s′)

]∣∣∣ ≤ ε

H
.

Continuing from equation (29) we have

Es′∼P̂t(·|sh−1,ah−1)[z
µ̌,P̂πt
h (s′, τh−1)]− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂t
h (s′, τh−1)]

≤ 1

Nt(sh−1, ah−1)

Nt(sh−1,ah−1)∑
`=1

(
f̂(s`)− Es′∼P(·|sh−1,ah−1)

[
f̂(s`)

])
+

ε

H
.

(30)

Observe that for all `,
∣∣∣f̂(s`)− Es′∼P(·|sh−1,ah−1)[f̂(s′)]

∣∣∣ ≤ 2η. Thus by invoking Lemma A.1 and by
a union bound over the elements of Ψ(ε), we have that, given any fixed sub-trajectory τh−1 ∈ Γh−1,
for all f ∈ Ψ(ε) and all t ∈ N such that Nt(sh−1, ah−1) > 0:

1

Nt(sh−1, ah−1)

Nt(sh−1,ah−1)∑
`=1

f(s`)− Es′∼P(·|sh−1,ah−1) [f(s`)] ≤ 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

with probability at least 1 − |Ncover(ε)|δ′. Combined with inequality (30) we have that given any
fixed sub-trajectory τh−1 ∈ Γh−1, for all policies π ∈ Π, for all µ̌ bounded by η and all t ∈ N such
that Nt(sh−1, ah−1) > 0:

Es′∼P̂t(·|sh−1,ah−1)[z
µ̌,P̂πt
h (s′, τh−1)]− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂t
h (s′, τh−1)]

≤ 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

+
ε

H
(31)

with probability at least 1− |Ncover(ε)|δ′. We also have a simple upper bound,

Es′∼P̂t(·|sh−1,ah−1)[z
µ̌,P̂πt
h (s′, τh−1)]− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂t
h (s′, τh−1)] ≤ 2η. (32)

Combining inequalities (31) and (32) we get that for any fixed sub-trajectory τh−1 ∈ Γh−1, for all
t ∈ N, for all π ∈ Π, for all µ̌ bounded by η,

Es′∼P̂t(·|sh−1,ah−1)[z
µ̌,P̂πt
h (s′, τh−1)]− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂t
h (s′, τh−1)]

≤ min

{
2η, 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

+
ε

H

}
.

By a union bound over all sub-trajectories we find that for all t ∈ N, all policies π ∈ Π, all µ̌ bounded
by η and all τh−1 ∈ Γh−1

Es′∼P̂t(·|sh−1,ah−1)[z
µ̌,P̂πt
h (s′, τh−1)]− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂t
h (s′, τh−1)]

≤ min

{
2η, 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

+
ε

H

}
with probability at least 1− (|S||A|)H−1|Ncover(ε)|δ′. Finally a union bound over the steps of the
episode h ∈ [H] lets us conclude that for all t ∈ N, all policies π ∈ Π, all µ̌ bounded by η, all
h ∈ [H] and all τh−1 ∈ Γh−1

Es′∼P̂t(·|sh−1,ah−1)[z
µ̌,P̂πt
h (s′, τh−1)]− Es′∼P(·|sh−1,ah−1)[z

µ̌,P̂t
h (s′, τh−1)]

≤ min

{
2η, 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

+
ε

H

}

≤ min

{
2η, 4η

√√√√ log
(

6 log(Nt(sh−1,ah−1))
δ′

)
Nt(sh−1, ah−1)

}
+

ε

H
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with probability at least 1−H(|S||A|)H−1|Ncover(ε)|δ′. Setting

δ′ =
δ

|S|H−1|A|H−1H
(⌈

4ηH
ε

⌉)|S| ≤ δ

|S|H−1|A|H−1H|Ncover(ε)|

and using equation (28) from above we get that for all t ∈ N, all h ∈ {2, . . . ,H}, all π ∈ Π, and all
µ̌ bounded by η we have

Eτ∼Pπ
(h−1)

[µ̌τ ]− Eτ∼Pπ
(h)

[µ̌τ ]

≤ Es1∼ρ, τh−1∼Pπ(·|s1)

[
min

{
2η, 4η

√√√√√ log

(
6(|S||A|H)H−1d 4ηH

ε e|S| log(Nt(sh−1,ah−1))

δ

)
Nt(sh−1, ah−1)

}]
+

ε

H

≤ Es1∼ρ, τh−1∼Pπ(·|s1)

[
ξ̌(t)
sh−1,ah−1

(ε; η)
]

+
ε

H

with probability at least 1 − δ. Summing over all h ∈ [H] and using equations (26) and (27) we
conclude that for t ∈ N, all π ∈ Π and all µ̌ bounded by η,

Es1∼ρ, τ∼P̂πt (·|s1)[µ̌τ ]− Eτ∼Pπ(·|s1)[µ̌τ ] ≤ Es1∼ρ, τ∼Pπ(·|s1)

[
H∑
h=2

ξ̌(t)
sh−1,ah−1

(ε; η)

]
+H × ε

H

= Es1∼ρ, τ∼Pπ(·|s1)

[
H−1∑
h=1

ξ̌(t)
sh,ah

(ε; η)

]
+ ε

again with probability at least 1− δ. This completes the proof of this lemma.

B.2 Proof of Lemma 3.1

Recall the statement of the lemma from above.
Lemma 3.1. For any δ ∈ (0, 1], define the event

Eδ :=
{

for all t ∈ [N ], τ ∈ Γ :
∣∣µ(w>? φ(τ))− µ(ŵ>t φ(τ))

∣∣ ≤ √κβt(δ)‖φ(τ)‖Σ−1
t

}
. (5)

Then P(Eδ) ≥ 1− δ.

Proof We invoke [31, Proposition 7] by noting that in our paper: cµ = 1/κ, κµ = 1 (Lipschitz
constant of µ), m = 1 (scale of the rewards), λ = 1 (the `2 regularization parameter), τ = N (length
of the sliding window) and T (τ) = [N ] (in their paper T (τ) corresponds to the set of episodes where
the underlying parameter w? remains unchanged. In our setting w? is constant for all episodes).

B.3 Definition and Properties of a “Good Event” Egood

The proof of Theorem 3.2 proceeds by showing that a favorable event Egood that occurs with high
probability. We shall then upper bound the regret of Algorithm 1 when this event occurs. Before
defining this event we need some additional notation.
Definition B.3. For all t ∈ [N ], given any policy π define

V̄ πt := Es1∼ρ, τ∼Pπ(·|s1) [µ̄t(ŵt, τ)] ,

where recall from equation (8a) that µ̄t(ŵt, τ) = min
{
µ
(
ŵ>t φ(τ)

)
+
√
κβt(δ)‖φ(τ)‖Σ−1

t
, 1
}

.

Further, for all episodes t ∈ [N ] also define V̄ (t) := V̄ π
(t)

t and V̄ (t)
? := V̄ π?t .

Also define the value function when the average rewards are µ̃t(ŵt, τ) and the transition dynamics
are governed by P̂t.
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Definition B.4. For any episode t ∈ [N ], given any policy π ∈ Π define

Ṽ πt := Es1∼ρ, τ∼P̂πt (·|s1) [µ̃t(ŵt, τ)] (33)

where µ̃t is defined above in equation (8b). To simplify notation we additionally define Ṽ (t) := Ṽ π
(t)

t

and Ṽ (t)
? := Ṽ π?t .

Consider the following events:

E1 :=

{
N∑
t=1

V? ≤
N∑
t=1

Ṽ
(t)
?

}
; (34a)

E2 :=

{
N∑
t=1

V̄ (t) − V (t) ≤ βN (δ)

√
8Ndmax {κ, 1} log

(
1 +

N

κd

)

+4

√
N log

(
6 log(N)

δ

)}
;

(34b)

E3 :=

{
N∑
t=1

Ṽ (t) − V̄ (t) ≤ (2H + 1)

N∑
t=1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

+ 4H2

√
N log

(
6 log(N)

δ

)
+ 1

}
,

(34c)

where (s
(t)
h , a

(t)
h ) is the state-action pair visited at step h during episode t.

Lemma B.5. Define the event Egood := E1 ∩ E2 ∩ E3. Then P [Egood] ≥ 1− 6Nδ.

The good event occurs when the value function Ṽ (t)
? is optimistic, that is, it over estimates the true

value function of the optimal policy V? and when the sums of V̄ (t) − V (t) and Ṽ (t) − V̄ (t) over the
episodes can be bounded.

Proof We will show that each of the three events E1, E2 and E3 occurs with a high probability and
take union bound to prove our claim.

Event E1: By invoking Lemma B.1 N times, once per episode, with the choice η = 1 we get
N∑
t=1

V? =

N∑
t=1

Es1∼ρ, τ∼Pπ? (·|s1)

[
µ(w>? φ(τ))

]
≤

N∑
t=1

Es1∼ρ, τ∼P̂π?t (·|s1)

[
µ(w>? φ(τ)) +

H−1∑
h=1

ξ̄(t)
sh,ah

(1)

]

≤
N∑
t=1

Es1∼ρ, τ∼P̂π?t (·|s1)

[
µ(w>? φ(τ)) +

H−1∑
h=1

ξ(t)
sh,ah

]
(35)

(by the definition of ξ(t)
sh,ah in equation (7))

with probability at least 1−Nδ. Recall the definition of the event Eδ from equation (5) and observe
that it occurs with probability at least 1− δ by Lemma 3.1. Under event Eδ for any t ∈ [N ] and any
τ ∈ Γ

µ(w>? φ(τ)) = min
{
µ(w>? φ(τ)), 1

}
≤ min

{
µ(ŵ>t φ(τ)) +

√
κβt(δ)‖φ(τ)‖Σ−1

t
, 1
}

= µ̄t(ŵt, τ).

Therefore by a union bound over Eδ and the event where inequality (35) holds we infer that
N∑
t=1

V? ≤
N∑
t=1

Es1∼ρ, τ∼P̂π?t (·|s1)

[
µ̄t(ŵt, τ) +

H−1∑
h=1

ξ(t)
sh,ah

]
=

N∑
t=1

Ṽ
(t)
? ,

with probability at least 1− (N + 1)δ.
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Event E2: Assume that the event Eδ occurs. Lemma 3.1 guarantees that this happens with probability
at least 1− δ. Consider the following martingale difference sequence

Dt := V̄ (t) − V (t) −
[
µ̄t

(
ŵt, τ

(t)
)
− µ

(
w>? φ(τ (t))

)]
.

Note that |Dt| ≤ 2 since both µ̄t and µ take values between 0 and 1. Therefore, by applying
Lemma A.1 we have that

N∑
t=1

V̄ (t) − V (t) ≤
N∑
t=1

µ̄t

(
ŵt, τ

(t)
)
− µ

(
w>? φ(τ (t))

)
+ 4

√
N log

(
6 log(N)

δ

)
(36)

with probability at least 1− δ. Let us now upper bound the sum in the RHS above
N∑
t=1

µ̄t

(
ŵt, τ

(t)
)
− µ

(
w>? φ(τ (t))

)
(i)
=

N∑
t=1

min
{
µ
(
ŵ>t φ(τ (t)

)
+
√
κβt(δ)‖φ(τ (t))‖Σ−1

t
, 1
}
−min

{
µ
(
w>? φ(τ (t))

)
, 1
}

(ii)

≤
N∑
t=1

∣∣∣µ(ŵ>t φ(τ (t)
)

+
√
κβt(δ)‖φ(τ (t))‖Σ−1

t
− µ

(
w>? φ(τ (t))

)∣∣∣
(iii)

≤ 2
√
κ

N∑
t=1

βt(δ)‖φ(τ (t))‖Σ−1
t

(iv)

≤ 2
√
κβN (δ)

N∑
t=1

‖φ(τ (t))‖Σ−1
t
,

where (i) follows by the definition of µ̄t and since µ is bounded between 0 and 1, (ii) follows since
for the function z 7→ min{z, 1} is 1-Lipschitz, (iii) follows since we have assumed that the event Eδ
occurs which provides the bound |µ

(
ŵ>t φ(τ (t)

)
− µ

(
w>? φ(τ (t))

)
| ≤
√
κβt(δ)‖φ(τ (t))‖Σ−1

t
, and

(iv) follows since βt(δ) is an increasing function of t.

Continuing, since for any vector z ∈ RN ‖z‖1 ≤
√
N‖z‖2, thus

N∑
t=1

µ̄t

(
ŵt, τ

(t)
)
− µ

(
w>? φ(τ (t))

)
≤ 2
√
κβN (δ)

√
N

√√√√ N∑
t=1

‖φ(τ (t))‖2
Σ−1
t

≤ βN (δ)

√
8Ndmax {κ, 1} log

(
1 +

N

κd

)
where the final inequality follows by invoking the determinant lemma (Lemma A.3) from above. A
union bound over the event Eδ and the event where inequality (36) holds proves that this bound holds
with probability at least 1− 2δ.

Event E3: We wish to establish a bound on
∑N
t=1 Ṽ

(t) − V̄ (t). By definition
N∑
t=1

Ṽ (t) =

N∑
t=1

E
s1∼ρ, τ∼P̂π

(t)
t (·|s1)

[
µ̄t(ŵt, τ) +

H−1∑
h=1

ξ(t)
sh,ah

]
.

For each t ∈ [N ] define the trajectory score function µ̌(t)
τ = µ̄t(ŵt, τ) +

∑H−1
h=1 ξ

(t)
sh,ah . Notice that

since |ξ(t)
s,a| ≤ 2 we have that |µ̌(t)

τ | < 2H . Thus, by invoking Lemma B.2 N times, once per episode,
with the choices η = 2H and ε = 1

N we infer that
N∑
t=1

Ṽ (t) ≤
N∑
t=1

(
E
s1∼ρ, τ∼Pπ(t)

(·|s1)

[
µ̄t(ŵt, τ) +

H−1∑
h=1

ξ(t)
sh,ah

+ 2H

H−1∑
h=1

ξ̌(t)
sh,ah

(
1

N
, 2H

)]
+

1

N

)

=

N∑
t=1

E
s1∼ρ, τ∼Pπ(t)

(·|s1)

[
µ̄t(ŵt, τ) + (2H + 1)

H−1∑
h=1

ξ(t)
sh,ah

]
+ 1 (37)
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with probability 1−Nδ. Assume that the event where inequality (37) holds occurs going forward.
Under this event the difference

N∑
t=1

Ṽ (t) − V̄ (t) =

N∑
t=1

Ṽ (t) −
N∑
t=1

E
s1∼ρ, τ∼Pπ(t)

(·|s1)
[µ̄t(ŵt, τ)]

≤ (2H + 1)

N∑
t=1

E
s1∼ρ, τ∼Pπ(t)

(·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

]
+ 1. (38)

Finally, define the martingale-difference sequence

Dt := (2H + 1)

N∑
t=1

E
s1∼ρ, τ∼Pπ(t)

(·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

]
− (2H + 1)

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

.

Notice that |Dt| ≤ (2H + 1)(H − 1) ≤ 2H2. Applying Lemma A.1 with ζ = 2H2 we find that

(2H + 1)

N∑
t=1

E
s1∼ρ, τ∼Pπ(t)

(·|s1)

[
H−1∑
h=1

ξ(t)
sh,ah

]

≤ (2H + 1)

N∑
t=1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

+ 4H2

√
N log

(
6 log(N)

δ

)
with probability at least 1− δ. Combining this with inequality (38) we conclude that

N∑
t=1

Ṽ (t) − V̄ (t) ≤ (2H + 1)

N∑
t=1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

+ 4H2

√
N log

(
6 log(N)

δ

)
+ 1

with probability at least 1− (N + 1)δ. This proves that P [E3] ≥ 1− (N + 1)δ.

Union bound over the three events: A union bound over the three events shows that
P [Egood] ≥ 1− P[Ec1 ]− P[Ec2 ]− P[Ec3 ] ≥ 1− (2N + 4)δ ≥ 1− 6Nδ, which completes the proof.

B.4 Proof of Theorem 3.2

Recall the statement of the theorem.

Theorem 3.2. For any δ̄ ∈ (0, 1], set δ = δ̄/(6N) then under Assumptions 2.1 and 2.2 the regret of
Algorithm 1 is upper bounded as follows:

R(N) ≤ Õ
([
H
√

(H + |S|)|S||A|+H2 +
√
κd(d3 +B3/2)

]√
N + (H + |S|)H|S||A|

)
,

with probability at least 1− δ̄.

Proof Let us assume that the event Egood defined in Lemma B.5 occurs. By Lemma B.5 we know
that P [Egood] ≥ 1− 6Nδ. By the definition of the event E1 we know that the regret (which is defined
in equation (2) above) is upper bounded as follows:

R(N) =

N∑
t=1

V? − V (t) ≤
N∑
t=1

Ṽ
(t)
? − V (t).

By the definition of the policy π(t) (see equation (9)) we have that

Ṽ
(t)
? = Es1∼ρ, τ∼P̂π?t (·|s1) [µ̃t(ŵt, τ)] ≤ E

s1∼ρ, τ∼P̂π
(t)
t (·|s1)

[µ̃t(ŵt, τ)] = Ṽ (t).

Thus,

R(N) ≤
N∑
t=1

Ṽ (t) − V (t).
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Under event E2 we know that
N∑
t=1

V̄ (t) − V (t) ≤ βN (δ)

√
8Ndmax {κ, 1} log

(
1 +

N

κd

)
+ 4

√
N log

(
6 log(N)

δ

)
.

By combining the previous two inequalities we find that

R(N) ≤
N∑
t=1

Ṽ (t) − V̄ (t)

+ βN (δ)

√
8Ndmax {κ, 1} log

(
1 +

N

κd

)
+ 4

√
N log

(
6 log(N)

δ

)
.

Finally under event E3 we have a bound on the first term on the right hand side above, this leads to
the bound:

R(N) ≤ (2H + 1)

N∑
t=1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

+ 4H2

√
N log

(
6 log(N)

δ

)

+ βN (δ)

√
8Ndmax {κ, 1} log

(
1 +

N

κd

)
+ 4

√
N log

(
6 log(N)

δ

)
+ 1. (39)

It remains to bound the term
∑N
t=1

∑H−1
h=1 ξ

(t)

s
(t)
h ,a

(t)
h

. First, note that

N∑
t=1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

=

N∑
t=1

H−1∑
h=1

min

{
2, 4

√√√√√√ log

(
6(|S||A|H)H(8NH2)|S| log(Nt(s

(t)
h−1,a

(t)
h−1))

δ

)
Nt(s

(t)
h−1, a

(t)
h−1)

}

≤
N∑
t=1

H−1∑
h=1

min

{
2, 4

√√√√√ log
(

6(|S||A|H)H(8NH2)|S| log(N)
δ

)
Nt(s

(t)
h−1, a

(t)
h−1)

}
.

For every state-action pair (s, a), the minimum in the terms above will be 2 until it is visited at least

Nt(s, a) ≥ 4 log

(
6(|S||A|H)H(8H2N)|S| log(N)

δ

)
=: ♠

number of times. Therefore,
N∑
t=1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

≤ 2|S||A|♠+ 4

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

) N∑
t=1

H−1∑
h=1

1√
Nt(s

(t)
h−1, a

(t)
h−1)

= 2|S||A|♠+ 4

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

) ∑
s,a∈S×A

NN (s,a)∑
`=1

1√
`

(i)
< 2|S||A|♠+ 8

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

) ∑
s,a∈S×A

√
NN (s, a)

(ii)

≤ 2|S||A|♠+ 8

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

)
|S||A|N

= 8|S||A| log

(
6(|S||A|H)H(8H2N)|S| log(N)

δ

)
+ 8

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

)
|S||A|N (40)

24



where (i) follows since for all n ∈ N,
∑n
`=1

1√
`

< 2
√
n, and (ii) follows since∑

s,a∈S×ANN (s, a) = N and by Jensen’s inequality. Plugging this upper bound into inequality (39)
we get that

R(N) ≤ 8(2H + 1)|S||A| · log

(
6(|S||A|H)H(8H2N)|S| log(N)

δ

)
+ 8(2H + 1)

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

)
|S||A|N

+ 4H2

√
N log

(
6 log(N)

δ

)
+ βN (δ)

√
8Ndmax {κ, 1} log

(
1 +

N

κd

)

+ 4

√
N log

(
6 log(N)

δ

)
+ 1 (41)

= Õ
([
H
√

(H + |S|)|S||A|+H2 +
√
κd(d3 +B3/2)

]√
N + (H + |S|)H|S||A|

)
.

where the last equality follows since by its definition βN (δ) = Õ(d3 +B3/2) and by simplifying the
expression in equation (41). This bound holds with probability 1 − 6Nδ. Recalling that δ̄ = 6Nδ
completes our proof.

C Proof of Lemma 3.5

We begin by presenting some additional technical lemmas.

C.1 Additional Technical Results

The first lemma pertains to a pair of positive semi-definite matrices.

Lemma C.1. If B � C � 0 be d× d dimensional matrices then,

sup
x6=0

x>Bx

x>Cx
≤ det(B)

det(C)
.

Proof Given any y ∈ Rd let x = C−1/2y. Then

sup
x6=0

x>Bx

x>Cx
= sup

y 6=0

y>C−1/2BC−1/2y

‖y‖22
=
∥∥∥C−1/2BC−1/2

∥∥∥
op

by the definition of the operator norm. Recall that by assumption B − C � 0 therefore
C−1/2BC−1/2 − I � 0, and hence all the eigenvalues of C−1/2BC−1/2 are at least 1. Thus,

sup
x 6=0

x>Bx

x>Cx
≤
∥∥∥C−1/2BC−1/2

∥∥∥
op
≤ det(C−1/2BC−1/2) =

det(B)

det(C)
,

where the last equality follows since det(B)
det(C) = det(C−1/2) det(B) det(C−1/2) =

det(C−1/2BC−1/2). This completes the proof.

Next we present a lemma that establishes guarantees for the EULER algorithm. With some abuse
of notation let rv(τ) =

∑
h∈[H] r

v
h denote the total reward over a trajectory (see definition of rvh in

equation (13)). Let Vv := maxπ∈Π Es1∼ρ,τ∼Pπ(·|s1) [rv(τ)] denote the optimal value achieved by
any policy when the reward function is rv. The following is a restatement of Lemma 3.4 from [20].

Lemma C.2. There exists an absolute constant c > 0 such that for any NEUL > 0 and any δ ∈ (0, 1),
with probability at least 1− δ the EULER algorithm run for NEUL episodes outputs a set of policies
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set {π(`)}NEUL

`=1 such that U = Unif(π(1), · · · , π(NEUL)) satisfies:

Vv−Es1∼ρ,τ∼PU (·|s1) [rv(τ)] ≤ c


√√√√ |S||A|H log

(
|S||A|NEUL

δ

)
Vv

NEUL
+
|S|2|A|H2 log

(
|S||A|NEUL

δ

)
NEUL

 .
An immediate corollary is the following result.

Corollary C.3. There exists an absolute constant C1 such that under Assumptions 2.2, 3.3

and 3.4 if NEUL ≥
C1|S|2|A|H2 log

(
|S||A|N2d

δω2

)
ω2 then with probability at least 1 − δ, for all

i ∈
{

1, . . . ,
2d log(1+ 16N

dω2 )
log(3/2)

}
Es1∼ρ,τ∼PUi (·|s1) [rvi(τ)] ≥ ω

2
.

Proof Fix an i ∈
{

1, . . . ,
2d log(1+ 16N

dω2 )
log(3/2)

}
. By the explorability assumption (Assumption 3.4) we

have that Vvi ≥ ω. By Assumption 2.2 since the feature vectors are bounded by 1 we find that

Vvi = max
π∈Π

Es1∼ρ,τ∼Pπ(·|s1) [rvi(τ)]

= max
π∈Π

Es1∼ρ,τ∼Pπ(·|s1)

[
H∑
h=1

rvih (sh, ah)

]

= max
π∈Π

Es1∼ρ,τ∼Pπ(·|s1)

[
H∑
h=1

v>i φh(sh, ah)

]
= max

π∈Π
Es1∼ρ,τ∼Pπ(·|s1)

[
v>i φ(τ)

]
≤ ‖φ(τ)‖2‖vi‖2 ≤ 1

where the last inequality follows since v is a unit vector. Thus for any i ∈
{

1, . . . ,
2d log(1+ 16N

dω2 )
log(3/2)

}
,

because

NEUL ≥
C1|S|2|A|H2 log

(
|S||A|N2d

δω2

)
ω2

≥
4c|S||A|H log

(
2|S||A|Nd log(1+ 16N

dω2 )
δ log(3/2)

)
ω

max

{
|S|H, 4c

ω

}
,

where C1 is a sufficiently large constant, we have the guarantee that

Es1∼ρ,τ∼PUi (·|s1) [rvi(τ)] ≥ ω/2

with probability at least 1− δ log(3/2)

2d log(1+ 16N
dω2 )

. A union bound completes the proof.

The following lemma controls the operator norm of

âiâ
>
i − Es1∼ρ,τ∼PUi (·|s1)[φ(τ)]Es1∼ρ,τ∼PUi (·|s1)[φ(τ)]>

when the number of evaluation episodes NEVAL is sufficiently large.
Lemma C.4. There exists a positive absolute constant C2 such that for any ω ∈ (0, 1) un-

der Assumption 2.2 if NEVAL ≥
C2d

3 log3
(
Nd2

δω2

)
ω4 then with probability at least 1 − δ, for all

i ∈
{

1, . . . ,
2d log(1+ 16N

dω2 )
log(3/2)

}
∥∥∥âiâ>i − Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]

>
∥∥∥
op
≤ ω2

32d log
(
d log

(
1 + 16N

dω2

)) .
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Proof Fix an index i ∈
{

1, . . . ,
2d log(1+ 16N

dω2 )
log(3/2)

}
. Recall that the trajectories τ (t)

i are drawn i.i.d. from

the distribution ρ× PUi . By Assumption 2.2 the absolute value of each entry of φ(τ
(t)
i ) is bounded

by 1. Thus by applying Hoeffding’s inequality to each coordinate and then taking a union bound over
all the coordinates we get that

∥∥âi − Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]
∥∥2

2
=

∥∥∥∥∥ 1

NEVAL

NEVAL∑
t=1

φ(τ
(t)
i )− Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]

∥∥∥∥∥
2

2

≤
c′d log

(
2d2 log(1+ 16N

dω2 )
δ log(3/2)

)
NEVAL

with probability at least 1− δ log(3/2)/
(
2d log

(
1 + 16N

dω2

))
, where c′ is a positive absolute constant.

Assume that this event above holds, then by the triangle inequality∥∥∥âiâ>i − Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]
>
∥∥∥
op

≤
∥∥âi − Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]

∥∥2

2

+ 2
∥∥Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]

∥∥
2

∥∥âi − Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]
∥∥

2

(i)

≤ 2

√√√√√c′d log

(
2d2 log(1+ 16N

dω2 )
δ log(3/2)

)
NEVAL

+

c′d log

(
2d2 log(1+ 16N

dω2 )
δ log(3/2)

)
NEVAL

(ii)

≤ ω2

32d log
(
d log

(
1 + 16N

dω2

))
where (i) follows since ‖φ(τ)‖ ≤ 1, and (ii) holds because since ω < 1 and since

NEVAL ≥
C2d

3 log3
(
Nd2

δω2

)
ω4

≥
c′(32)2d3 log

(
2d2 log(1+ 16N

dω2 )
δ log(3/2)

)
log2

(
d log(1 + 16N

dω2 )
)

ω4

where C2 is a large enough positive constant. This shows that the operator norm bound holds for
a fixed index i with probability at least 1− δ log(3/2)/

(
2d log

(
1 + 16N

dω2

))
. Taking a union bound

over all i ∈
{

1, . . . ,
2d log(1+ 16N

dω2 )
log(3/2)

}
completes the proof.

With these lemmas in place we are now ready to prove Lemma 3.5.

C.2 The Proof

First we restate the lemma.
Lemma 3.5. There exist positive absolute constants C1 and C2 such that, under Assumptions 2.2, 3.3

and 3.4, if Algorithm 2 is run withNEUL =
C1|S|2|A|H2 log

(
|S||A|N2d

δω2

)
ω2 andNEVAL =

C2d
3 log3

(
Nd2

δω2

)
ω4 ,

and N >
d log(1+ 16N

dω2 )
log(3/2) (NEUL +NEVAL) =: N̄exp then, with probability at least 1 − 2δ, we have

Nexp ≤ N̄exp and furthermore:

Es1∼ρ, τ∼PŪ (·|s1)

[
φ(τ)φ(τ)>

]
� ω2 log(3/2)

32d log
(
d log

(
1 + 16N

dω2

))I.
Proof Assume the events described in both Corollary C.3 and Lemma C.4 occur. Since NEUL and
NEVAL are both appropriately large this happens with probability at least 1− 2δ.

We shall begin by showing that the number of while loop iterations nloop is bounded by
d log(1+ 16N

dω2 )
log(3/2) . At any iteration n ≤ 2d log(1+ 16N

dω2 )
log(3/2) by the event in Corollary C.3 we know that
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the mixture Un satisfies (
Es1∼ρ,τ∼PUn (·|s1)

[
v>n φ(τ)

])2 ≥ ω2

4
.

Thus,

v>nAnvn = v>n
(
An−1 + ânâ>n

)
vn

≥ v>n ânâ>nvn

=
(
Es1∼ρ,τ∼PUn (·|s1)

[
v>n φ(τ)

])2
+
(
v>n ân

)2 − (Es1∼ρ,τ∼PUn (·|s1)

[
φ(τ)>vn

])2
≥ ω2

4
+
(
v>n ân

)2 − (Es1∼ρ,τ∼PUn (·|s1)

[
v>n φ(τ)

])2
≥ ω2

4
−
∥∥∥ânâ>n − Es1∼ρ,τ∼PUn (·|s1) [φ(τ)]Es1∼ρ,τ∼PUn (·|s1) [φ(τ)]

>
∥∥∥
op

(i)

≥ ω2

4
− ω2

32d log
(
d log

(
1 + 16N

dω2

)) > 3ω2

16
,

where inequality (i) follows by the event in Lemma C.4. Further if n ≤ nloop and the algorithm didn’t
terminate after iteration n− 1, we must have

v>nAn−1vn <
ω2

8
.

Therefore by Lemma C.1 for any n ≤ min

{
nloop,

2d log(1+ 16N
dω2 )

log(3/2)

}
we have

3

2
=

3ω2

16
ω2

8

<
v>nAnvn

v>nAn−1vn
≤ det(An)

det(An−1)
.

Thus for any n ≤ min

{
nloop,

2d log(1+ 16N
dω2 )

log(3/2)

}
,

det(An) >
3

2
det(An−1) ≥

(
3

2

)n
det(A0) =

(
3

2

)n(
ω2

16

)d
. (42)

The matrix An is obtained as a result of a sequence of rank 1 updates, where each update has its
norm bounded (‖ân‖2 ≤ 1 for all n), so by Lemma A.3:

log (det(An)) ≤ d log

(
ω2

16
+
n

d

)
. (43)

Combining inequalities (42) and (43) we conclude that, for any n ≤ min

{
nloop,

2d log(1+ 16N
dω2 )

log(3/2)

}
n log(3/2) + d log

(
ω2

16

)
≤ log (det(An)) ≤ d log

(
ω2

16
+
n

d

)
.

Therefore, if nloop < N , then then while loop must terminate after at most

nloop ≤
d log

(
1 +

16nloop

dω2

)
log(3/2)

≤
d log

(
1 + 16N

dω2

)
log(3/2)

(44)

loops. To verify that nloop < N , notice that by assumption N is such that

N

NEUL +NEVAL
>
d log

(
1 + 16N

dω2

)
log(3/2)

. (45)
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Therefore inequality (44) is a valid upper bound on nloop.

Thus, we know that the total number of episodes taken by the algorithm to terminate

Nexp = nloop × (NEUL +NEVAL) ≤
d log

(
1 + 16N

dω2

)
log(3/2)

(NEUL +NEVAL) = N̄exp.

This proves the first part of the lemma. For the second part notice that for an arbitrary unit vector
v ∈ Rd

v>Es1∼ρ,τ∼PŪ (·|s1)

[
φ(τ)φ(τ)>

]
v

= Es1∼ρ,τ∼PŪ (·|s1)

[(
v>φ(τ)

)2]
(i)
=

1

nloop

nloop∑
i=1

Es1∼ρ,τ∼PUi (·|s1)

[(
v>φ(τ)

)2]
(ii)

≥ 1

nloop

nloop∑
i=1

(
v>Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]

)2
=

1

nloop

[
v>Anloop

v − v>Anloop
v +

nloop∑
i=1

(
v>Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]

)2]
(iii)

≥ ω2

8nloop
− ω2

16nloop
+

1

nloop

[nloop∑
i=1

((
v>Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]

)2 − (v>âi
)2)]

≥ ω2

16nloop
− max
i∈nloop

∥∥∥âiâ>i − Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]Es1∼ρ,τ∼PUi (·|s1) [φ(τ)]
>
∥∥∥
op

(iv)

≥ ω2 log(3/2)

32d log
(
d log

(
1 + 16N

dω2

))
where (i) is by the definition of Ū as the uniform mixture over U1, . . . , Unloop

, (ii) fol-
lows by Jensen’s inequality, (iii) is because the minimum eigenvalue of Anloop

is at least
ω2/8 and since Anloop

= ω2

16 I +
∑nloop

i=1 âiâ
>
i , and finally (iv) is by the upper bound on

nloop ≤ d log
(
d log

(
1 + 16N

dω2

))
established above and by the bound on the operator norm of the

difference of the matrices established in Lemma C.4. This wraps up our proof.

D Regret Analysis of Algorithm 3 under the explorability assumption

In this algorithm we use the sum-decomposable bonus functions. Throughout this section we assume
that Assumptions 2.1, 2.2, 3.3 and 3.4 are in force, and that NEXP and NEVAL are chosen as specified
by the statement of Theorem 3.6. We also assume that the number of episodes N > N̄exp (see its
definition in Lemma 3.5). Define the following two quantities that shall be useful in this section

t0 := C3

[
d2 log2(d log(1 + 16N

dω2 ))

ω4

√
log(N/δ) +N2/3

exp

]3/2

(46a)

Ψt :=
128d log

(
d log

(
1 + 16N

dω2

))
3 log(3/2)ω2

· t−Nexp

t2/3 − (Nexp + 1)2/3
, (46b)

where C3 is a large enough positive absolute constant.

D.1 A Sandwich Inequality

As a first step to showing that these bonuses also lead to optimistic value functions we have a sandwich
inequality that relates ‖φ(τ)‖Σ−1

t
to the sum decomposable bonus

∑H
h=1‖φh(sh, ah)‖Σ−1

t
.
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Lemma D.1. For any τ ∈ Γ

‖φ(τ)‖Σ−1
t

(a)

≤
H∑
h=1

‖φh(sh, ah)‖Σ−1
t

(b)

≤

√
H
λmax(Σt)

λmin(Σt)
‖φ(τ)‖Σ−1

t
.

Proof Since φ(τ) =
∑H
h=1 φh(sh, ah) the inequality (a) holds by invoking the triangle inequality.

Now to prove inequality (b) note that

H∑
h=1

‖φh(sh, ah)‖Σ−1
t
≤
√
λmax(Σ−1

t )

H−1∑
h=1

‖φh(sh, ah)‖2

(i)

≤
√
Hλmax(Σ−1

t )

√√√√H−1∑
h=1

‖φh(sh, ah)‖22

(ii)
=

√
Hλmax(Σ−1

t )‖φ(τ)‖2

≤

√
H
λmax(Σ−1

t )

λmin(Σ−1
t )
‖φ(τ)‖Σ−1

t

=

√
H
λmax(Σt)

λmin(Σt)
‖φ(τ)‖Σ−1

t

where (i) holds because for any vector z ∈ RH , ‖z‖1 ≤
√
H‖z‖2 and (ii) is a consequence of

Assumption 3.4 since φh and φh′ are orthogonal for h 6= h′ and because φ is sum-decomposable by
Assumption 3.3.

In light of the previous lemma we now establish bounds on the condition number of the matrices
Σ−1
t in the next subsection.

D.2 Bound on the Condition Number of Σt

To bound the condition number we separately upper bound the maximum eigenvalue and lower bound
the minimum eigenvalue. Since we have assumed that ‖φ(τ)‖2 ≤ 1, a simple upper bound on the
maximum eigenvalue of Σt = κI +

∑t
q=Nexp+1 φ(τ (q))φ(τ (q))> is

λmax(Σt) ≤ κ+ (t−Nexp). (47)

Let us now derive a lower bound for the smallest eigenvalue. To do this we shall relate the smallest
eigenvalue of Σt to the smallest eigenvalue of the covariance matrix associated with the exploration
policy

Σ̄ := Es1∼ρ,τ∼PŪ (·|s1)

[
φ(τ)φ(τ)>

]
.

In Lemma 3.5 we derived a high probability lower bound on the minimum eigenvalue of this matrix.

Lemma D.2. With probability at least 1− 3δ for all t ∈ {Nexp + 1, . . . , N}:

λmin(Σt) ≥

κ+
3(t2/3−(Nexp+1)2/3)ω2 log(3/2)

128d log(d log(1+ 16N
dω2 ))

when t ≥ t0
κ o.w.,

where t0 is defined in equation (46a).

Proof First let us dispense of the case where N < t0. Since Σt � κI we are done.
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Therefore going forward let us assume that N ≥ t0. Recall that bq are the Bernoulli random
variables used in Algorithm 3 and that P(bq = 1) = 1/q1/3. Notice that the following holds

Σt = κI +

t∑
q=Nexp+1

φ(τ (q))φ(τ (q))>

� κI +

t∑
q=Nexp+1

bqφ(τ (q))φ(τ (q))>

= κI +

t∑
q=Nexp+1

1

q1/3
Σ̄ +

t∑
q=Nexp+1

(
bqφ(τ (q))φ(τ (q))> − 1

q1/3
Σ̄

)
︸ ︷︷ ︸

=:Et

.

Thus we have

λmin(Σt) ≥ κ+ λmin(Σ̄)

t∑
q=Nexp+1

1

q1/3
− λmax(Et)

≥ κ+ λmin(Σ̄)

∫ t

q=Nexp+1

1

q1/3
dq − λmax(Et)

= κ+
3
(
t2/3 − (Nexp + 1)2/3

)
2

λmin(Σ̄)− λmax(Et). (48)

First by Lemma 3.5 we know that

λmin(Σ̄) ≥ ω2 log(3/2)

32d log
(
d log

(
1 + 16N

dω2

)) (49)

with probability at least 1− 2δ.

Next to upper bound the maximum eigenvalue of Et define the matrix martingale difference
sequence

Dq := bqφ(τ (q))φ(τ (q))> − 1

q1/3
Σ̄.

Observe that Et =
∑t
q=Nexp+1 Dq. We will use the matrix Freedman inequality (Theorem A.2) to

upper bound the maximum eigenvalue of Et. To this end first note that

λmax(Dq) ≤ ‖φ(τ (q))φ(τ (q))>‖op ≤ 1.

Further note that∥∥∥∥∥∥
t∑

q=Nexp+1

E
[
D2
q

∣∣∣∣ DNexp+1, . . . ,Dq−1

]∥∥∥∥∥∥
op

≤
t∑

q=Nexp+1

∥∥∥∥E [D2
q

∣∣∣∣ DNexp+1, . . . ,Dq−1

]∥∥∥∥
op

=

t∑
q=Nexp+1

∥∥∥∥E [b2q‖φ(τ (q))‖22φ(τ (q))φ(τ (q))> +
Σ̄2

q2/3

−bq
(
φ(τ (q))φ(τ (q))>Σ̄ + Σ̄φ(τ (q))φ(τ (q))>

) ∣∣∣∣ DNexp+1, . . . ,Dq−1

]∥∥∥∥
op

(i)

≤
t∑

q=Nexp+1

(
1

q1/3
+

1

q2/3
+

2

q1/3

)

≤ 4

t∑
q=Nexp+1

1

q1/3
≤ 4

∫ t

q=Nexp

1

q1/3
dq = 6

(
t2/3 −N2/3

exp

)
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where (i) follows since E[bq] = E[b2q] = 1/q1/3 and because ‖φ(τ)‖2 ≤ 1.

Now we apply Theorem A.2 with the choices

x =
3
(
t2/3 − (Nexp + 1)2/3

)
ω2 log(3/2)

128d log
(
d log

(
1 + 16N

dω2

)) ;

V = 6
(
t2/3 −N2/3

exp

)
;

R = 1,

to get

P [λmax(Et) ≥ x] ≤ d exp

(
− x2/2

V + x/3

)
≤ d exp

(
− x

2

4V

)
where the second inequality follows since V > x/3. Now by the choice of x and V we know that

P

[
λmax(Et) ≥

3
(
t2/3 − (Nexp + 1)2/3

)
ω2 log(3/2)

128d log
(
d log

(
1 + 16N

dω2

)) ]
≤ δ/N

whenever

t ≥ C3

[
d2 log2(d log(1 + 16N

dω2 ))

ω4
−N2/3

exp

]3/2

= t0

because the constant C3 is chosen to be large enough. Thus, by a union bound we know that

P

[
∃t ∈ {t0, . . . , N} : λmax(Et) ≥

3
(
t2/3 − (Nexp + 1)2/3

)
ω2 log(3/2)

128d log
(
d log

(
1 + 16N

dω2

)) ]
≤ δ. (50)

Combining the inequalities (48), (49) and (50) completes our proof.

Next we have a lemma that bounds the condition number

Lemma D.3. With probability at least 1− 3δ for all t ∈ {Nexp + 1, . . . , N}

λmax(Σt)

λmin(Σt)
≤

{
Ψt when t ≥ t0
1 +

(t−Nexp)
κ o.w.,

where t0 and ΨN are defined in equations (46a) and (46b) respectively.

Proof The following bound holds with probability at least 1− 3δ by combing the upper bound on
the maximum eigenvalue in inequality (47) with the results of Lemma D.2

λmax(Σt)

λmin(Σt)
≤


κ+(t−Nexp)

κ+
3(t2/3−(Nexp+1)2/3)ω2 log(3/2)

128d log(d log(1+ 16N
dω2 ))

when t ≥ t0

1 +
(t−Nexp)

κ o.w.

Now for any a, b, c > 0: a+c
b+c ≤

a
b if a > b. Therefore we can simplify the expression above in case

where t ≥ t0 to get

λmax(Σt)

λmin(Σt)
≤


128d log(d log(1+ 16N

dω2 ))
3 log(3/2)ω2 · t−Nexp

t2/3−(Nexp+1)2/3 when t ≥ t0
1 +

(t−Nexp)
κ o.w.

By recalling the definition of Ψt from above the claim follows.
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D.3 Definition and Properties of Another “Good Event” E sdgood

Similar to the proof of Theorem 3.2 the proof of Theorem 3.6 also proceeds by showing that a
different favorable event E sdgood occurs with high probability. We shall upper bound the regret of
Algorithm 3 when this favorable event occurs. Before defining this event we need some additional
notation.

Definition D.4. For all t ∈ [N ], given any policy π define

V̄ π,sdt := Es1∼ρ, τ∼Pπ(·|s1)

[
µ̄sd
t (ŵt, τ)

]
,

where recall from equation (11a) that µ̄sd
t (ŵt, τ) = min

{
µ
(
ŵ>t φ(τ)

)
+
√
κβt(δ)

∑H
h=1‖φh(sh, ah)‖Σ−1

t
, 1
}

.

Further, for all episodes t ∈ [N ] also define V̄ (t),sd := V̄ π
(t),sd

t and V̄ (t),sd
? := V̄ π?,sdt .

Also define the value function when the average rewards are µ̃sd
t (ŵt, τ) and the transition dynamics

are governed by P̂t.

Definition D.5. For any episode t ∈ [N ], given any policy π ∈ Π define

Ṽ π,sdt := Es1∼ρ, τ∼P̂πt (·|s1)

[
µ̃sd
t (ŵt, τ)

]
(51)

where µ̃sd
t is defined above in equation (11b). To simplify notation we additionally define Ṽ (t),sd :=

Ṽ π
(t),sd

t and Ṽ (t),sd
? := Ṽ π?,sdt .

Recall the definition of t0 from equation (46a) above and consider the following events:

E sd1 :=

{
N∑

t=t0+1

(1− bt)V? ≤
N∑

t=t0+1

(1− bt)Ṽ (t),sd
?

}
; (52a)

E sd2 :=

{
N∑

t=t0+1

(1− bt)
(
V̄ (t),sd − V (t)

)
≤ βN (δ)(1 +

√
HΨN )

√
8Ndmax {κ, 1} log

(
1 +

N

κd

)

+4

√
N log

(
6 log(N)

δ

)}
; (52b)

E sd3 :=

{
N∑

t=t0+1

(1− bt)
(
Ṽ (t),sd − V̄ (t),sd

)
≤ (2H + 1)

N∑
t=t0+1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

+4H2

√
N log

(
6 log(N)

δ

)
+ 1

}
; (52c)

E sd4 :=

{
N∑

t=t0+1

bt ≤
(

20

3
log

(
1

δ

))3/2

+ 4N2/3

}
; (52d)

E sd5 :=

{
NEXP ≤

d log
(
1 + 16N

dω2

)
log(3/2)

(NEUL +NEVAL)

}
, (52e)

where (s
(t)
h , a

(t)
h ) is the state-action pair visited at step h during episode t. In the definitions of the

events above if N < t0 + 1 and the sums are “empty” then we take their value to be zero.

Lemma D.6. Define the event E sdgood := E sd1 ∩ E sd2 ∩ E sd3 ∩ E sd4 ∩ E sd5 . If N > N̄exp then P
[
E sdgood

]
≥

1− 12Nδ.

Proof We will show that each of the five events E sd1 , E sd2 , E sd3 , E sd4 and E sd5 occurs with a high
probability and take union bound to prove our claim.
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Event E sd1 : By invoking Lemma B.1 N − t0 times, once per episode, with the choice η = 1 we get

N∑
t=t0

(1− bt)V? =

N∑
t=t0

(1− bt)Es1∼ρ, τ∼Pπ? (·|s1)

[
µ(w>? φ(τ))

]
≤

N∑
t=t0

(1− bt)Es1∼ρ, τ∼P̂π?t (·|s1)

[
µ(w>? φ(τ)) +

H−1∑
h=1

ξ̄(t)
sh,ah

(1)

]

≤
N∑
t=t0

(1− bt)Es1∼ρ, τ∼P̂π?t (·|s1)

[
µ(w>? φ(τ)) +

H−1∑
h=1

ξ(t)
sh,ah

]
(53)

(by the definition of ξ(t)
sh,ah in equation (7))

with probability at least 1−Nδ. Recall the definition of the event Eδ from equation (5) and observe
that it occurs with probability at least 1− δ by Lemma 3.1. Under event Eδ for any t ∈ {t0, . . . , N}
and any τ ∈ Γ

µ(w>? φ(τ)) = min
{
µ(w>? φ(τ)), 1

}
≤ min

{
µ(ŵ>t φ(τ)) +

√
κβt(δ)‖φ(τ)‖Σ−1

t
, 1
}

≤ min

{
µ(ŵ>t φ(τ)) +

√
κβt(δ)

H∑
h=1

‖φh(sh, ah)‖Σ−1
t
, 1

}
(by Lemma D.1)

= µ̄sd
t (ŵt, τ).

Therefore by a union bound over Eδ and the event where inequality (53) holds we infer that

N∑
t=t0

(1− bt)V? ≤
N∑
t=t0

(1− bt)Es1∼ρ, τ∼P̂π?t (·|s1)

[
µ̄sd
t (ŵt, τ) +

H−1∑
h=1

ξ(t)
sh,ah

]
=

N∑
t=1

(1− bt)Ṽ (t),sd
? ,

with probability at least 1− (N + 1)δ.

Event E sd2 : Assume that the event Eδ occurs and also that for all t ∈ {t0, . . . , N}

λmax(Σt)

λmin(Σt
≤ Ψt. (54)

The results of Lemma 3.1 and Lemma D.3 along with a union bound guarantee that this happens with
probability at least 1− 4δ.

Consider the following martingale difference sequence

Dt := (1− bt)
(
V̄ (t),sd − V (t) −

[
µ̄sd
t

(
ŵt, τ

(t)
)
− µ

(
w>? φ(τ (t))

)])
.

Note that |Dt| ≤ 2 since both µ̄sd
t and µ take values between 0 and 1. Therefore, by applying

Lemma A.1 we have that

N∑
t=t0

(1− bt)
(
V̄ (t),sd − V (t)

)

≤
N∑
t=t0

(1− bt)
(
µ̄sd
t

(
ŵt, τ

(t)
)
− µ

(
w>? φ(τ (t))

))
+ 4

√
N log

(
6 log(N)

δ

)
(55)

34



with probability at least 1− δ. Let us now upper bound the sum in the RHS above

N∑
t=t0

(1− bt)µ̄sd
t

(
ŵt, τ

(t)
)
− µ

(
w>? φ(τ (t))

)
(i)
=

N∑
t=t0

(1− bt)

(
min

{
µ
(
ŵ>t φ(τ (t)

)
+
√
κβt(δ)

H∑
h=1

‖φh(sh, ah)‖Σ−1
t
, 1

}
−min

{
µ
(
w>? φ(τ (t))

)
, 1
})

(ii)

≤
N∑
t=t0

∣∣∣∣∣µ(ŵ>t φ(τ (t)
)

+
√
κβt(δ)

H∑
h=1

‖φh(sh, ah)‖Σ−1
t
− µ

(
w>? φ(τ (t))

)∣∣∣∣∣
(iii)

≤ 2
√
κ

N∑
t=t0

βt(δ)

(
‖φ(τ (t))‖Σ−1

t
+

H∑
h=1

‖φh(sh, ah)‖Σ−1
t

)
(iv)

≤ 2
√
κβN (δ)

N∑
t=t0

(
‖φ(τ (t))‖Σ−1

t
+

H∑
h=1

‖φh(sh, ah)‖Σ−1
t

)
(v)

≤ 2
√
κβN (δ)

N∑
t=t0

(
1 +

√
H
λmax(Σt)

λmin(Σt)

)
‖φ(τ (t))‖Σ−1

t

(vi)

≤ 2
√
κβN (δ)

(
1 +

√
HΨN

) N∑
t=t0

‖φ(τ (t))‖Σ−1
t

where (i) follows by the definition of µ̄sd
t and since µ is bounded between 0 and 1, (ii) follows since

for the function z 7→ min{z, 1} is 1-Lipschitz and since 1− bt ∈ {0, 1}, (iii) follows since we have
assumed that the event Eδ occurs which provides the bound |µ

(
ŵ>t φ(τ (t)

)
− µ

(
w>? φ(τ (t))

)
| ≤√

κβt(δ)‖φ(τ (t))‖Σ−1
t

, (iv) follows since βt(δ) is an increasing function of t, (v) follows by invoking
Lemma D.1 and finally (vi) follows since we have assumed a bound on the condition number of Σt

in inequality (54) and because ΨN > Ψt.

Continuing, since for any vector z ∈ RN ‖z‖1 ≤
√
N‖z‖2, thus

N∑
t=t0

(1− bt)
(
µ̄sd
t

(
ŵt, τ

(t)
)
− µ

(
w>? φ(τ (t))

))

≤ 2
√
κβN (δ)

(
1 +

√
HΨN

)√
N

√√√√ N∑
t=1

‖φ(τ (t))‖2
Σ−1
t

≤ βN (δ)
(

1 +
√
HΨN

)√
8Ndmax {κ, 1} log

(
1 +

N

κd

)
where the final inequality follows by invoking the determinant lemma (Lemma A.3) from above.

A union bound over the event Eδ , the event where the condition number of Σt is bounded and the
event where inequality (55) holds proves that this bound holds with probability at least 1− 5δ.

Event E sd3 : By mirroring the proof on the bound on the probability of the event E3 in Lemma B.5
we can show that P

[
E sd3

]
≥ 1− (N + 1)δ.

Event E sd4 : On applying Theorem A.2 with the martingale difference sequence bt − 1/t1/3 we
know that with probability at least 1− δ:

N∑
t=1

bt ≤ 4N2/3
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if N ≥
(

20
3 log

(
1
δ

))3/2
. Thus, with probability at least 1− δ

N∑
t=1

bt ≤
(

20

3
log

(
1

δ

))3/2

+ 4N2/3.

In other words P[E sd4 ] ≥ 1− δ.

Event E sd5 : By invoking Lemma 3.5 it immediately follows that P[E sd5 ] ≥ 1− 2δ.

Union bound over the five events: A union bound over the five events shows that

P
[
E sdgood

]
≥ 1− P[(E

sd

1 )c]− P[(E
sd

2 )c]− P[(E
sd

3 )c]− P[(E
sd

4 )c]− P[(E
sd

5 )c]

≥ 1− (2N + 10)δ ≥ 1− 12Nδ,

which completes the proof.

D.4 Proof of Theorem 3.6

Recall the statement of the theorem.

Theorem 3.6. For any δ̄ ∈ (0, 1], set δ = δ̄/(12N). Under Assumptions 2.1, 2.2, 3.3 and 3.4, and
for all N > N̄exp (see its definition in Lemma 3.5) if Algorithm 3 is run with the parameters NEUL

and NEVAL set as specified in Lemma 3.5 then its regret is upper bounded as follows:

R(N) ≤ Õ

(√
κHd

ω
(d3 +B3/2)N2/3 +

[
H
√

(H + |S|)|S||A|+H2
]√

N

+(H + |S|)H|S||A|+ d2

ω2

(
d2

ω2
+ |S|2|A|H2

))
,

with probability at least 1− δ̄.

Proof Let us assume that the event E sdgood defined in Lemma D.6 occurs. By Lemma D.6 we know
that P [Egood] ≥ 1− 12Nδ. First we decompose the regret as follows:

R(N) =

N∑
t=1

V? − V (t)

=

t0∑
t=1

V? − V (t) +

N∑
t=t0+1

V? − V (t)

=

t0∑
t=1

V? − V (t) +

N∑
t=t0+1

bt(V? − V (t)) +

N∑
t=t0+1

(1− bt)(V? − V (t)).
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Now since V? − V (t) is bounded between 0 and 1 we know that

R(N) ≤ t0 +

N∑
t=t0+1

bt +

N∑
t=t0+1

(1− bt)(V? − V (t))

(i)

≤ t0 +

(
20

3
log

(
1

δ

))3/2

+ 4N2/3 +

N∑
t=t0+1

(1− bt)(V? − V (t))

(ii)

≤ C3

[
d2 log2(d log(1 + 16N

dω2 ))

ω4

√
log(N/δ) +N2/3

exp

]3/2

+

(
20

3
log

(
1

δ

))3/2

+ 4N2/3 +

N∑
t=t0+1

(1− bt)(V? − V (t))

(iii)

≤ C3

d2 log2(d log(1 + 16N
dω2 ))

ω4

√
log(N/δ) +

(
d log

(
1 + 16N

dω2

)
log(3/2)

(NEUL +NEVAL)

)2/3
3/2

+

(
20

3
log

(
1

δ

))3/2

+ 4N2/3

+

N∑
t=t0+1

(1− bt)(V? − V (t))

(56)

where (i) follows by the definition of the event E sd4 , (ii) is by the definition of t0 in equation (46a)
and (iii) follows by the definition of E sd5 that bounds NEXP. It remains to bound the last term in the
RHS above. Going forward let us assume that N ≥ t0 + 1, else we are done. To bound this term note
that by the definition of the event E sd1 we know that

N∑
t=t0+1

(1− bt)(V? − V (t)) ≤
N∑

t=t0+1

(1− bt)
(
Ṽ

(t),sd
? − V (t)

)
.

By the definition of the policy π(t) (see equation (14)) we have that

Ṽ
(t),sd
? = Es1∼ρ, τ∼P̂π?t (·|s1)

[
µ̃sd
t (ŵt, τ)

]
≤ E

s1∼ρ, τ∼P̂π
(t)
t (·|s1)

[
µ̃sd
t (ŵt, τ)

]
= Ṽ (t),sd.

Thus,
N∑

t=t0+1

(1− bt)(V? − V (t)) ≤
N∑

t=t0+1

(1− bt)
(
Ṽ (t),sd − V (t)

)
.

Under event E sd2 we know that
N∑

t=t0+1

(1− bt)
(
V̄ (t),sd − V (t)

)

≤ βN (δ)
(

1 +
√
HΨN

)√
8Ndmax {κ, 1} log

(
1 +

N

κd

)
+ 4

√
N log

(
6 log(N)

δ

)
.

By combining the previous two inequalities we find that
N∑

t=t0+1

(1− bt)(V? − V (t))

≤
N∑

t=t0+1

(1− bt)
(
Ṽ (t),sd − V̄ (t),sd

)

+ βN (δ)
(

1 +
√
HΨN

)√
8Ndmax {κ, 1} log

(
1 +

N

κd

)
+ 4

√
N log

(
6 log(N)

δ

)
.
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Finally under event E sd3 we have a bound on the first term on the right hand side above, this leads to
the bound

N∑
t=t0+1

(1− bt)(V? − V (t))

≤ (2H + 1)

N∑
t=t0+1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

+ 4H2

√
N log

(
6 log(N)

δ

)

+ βN (δ)
(

1 +
√
HΨN

)√
8Ndmax {κ, 1} log

(
1 +

N

κd

)
+ 4

√
N log

(
6 log(N)

δ

)
+ 1. (57)

It remains to bound the term
∑N
t=t0+1

∑H−1
h=1 ξ

(t)

s
(t)
h ,a

(t)
h

. By mirroring the logic used to arrive at

inequality (40) we can show that

N∑
t=t0+1

H−1∑
h=1

ξ
(t)

s
(t)
h ,a

(t)
h

≤ 8|S||A| log

(
6(|S||A|H)H(8H2N)|S| log(N)

δ

)

+ 8

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

)
|S||A|N.

Plugging this upper bound into inequality (57) we get

N∑
t=t0+1

(1− bt)(V? − V (t))

≤ 8(2H + 1)|S||A| · log

(
6(|S||A|H)H(8H2N)|S| log(N)

δ

)
+ 8(2H + 1)

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

)
|S||A|N

+ 4H2

√
N log

(
6 log(N)

δ

)
+ βN (δ)

(
1 +

√
HΨN

)√
8Ndmax {κ, 1} log

(
1 +

N

κd

)

+ 4

√
N log

(
6 log(N)

δ

)
+ 1.
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Now finally, by using this upper bound in inequality (56) we find that

R(N)

≤ C3

d2 log2(d log(1 + 16N
dω2 ))

ω4

√
log(N/δ) +

(
d log

(
1 + 16N

dω2

)
log(3/2)

(NEUL +NEVAL)

)2/3
3/2

+

(
20

3
log

(
1

δ

))3/2

+ 4N2/3

+ 8(2H + 1)|S||A| · log

(
6(|S||A|H)H(8H2N)|S| log(N)

δ

)
+ 8(2H + 1)

√
log

(
6(|S||A|H)H(8NH2)|S| log(N))

δ

)
|S||A|N

+ 4H2

√
N log

(
6 log(N)

δ

)
+ βN (δ)

(
1 +

√
HΨN

)√
8Ndmax {κ, 1} log

(
1 +

N

κd

)

+ 4

√
N log

(
6 log(N)

δ

)
+ 1 (58)

= Õ

(√
κHd

ω
(d3 +B3/2)N2/3 +

[
H
√

(H + |S|)|S||A|+H2
]√

N

+(H + |S|)H|S||A|+ d2

ω2

(
d2

ω2
+ |S|2|A|H2

))

where the last equality follows since by their definitions

NEUL = Θ̃

(
|S|2|A|H2

ω2

)
; NEVAL = Θ̃

(
d3

ω4

)
;

βN (δ) = Õ
(
d3 +B3/2

)
; ΨN = Õ

(
dN1/3

ω2

)
,

and by simplifying the expression in equation (58). This bound holds with probability 1 − 12Nδ.
Recalling that δ̄ = 12Nδ completes our proof.

E A Dynamic Programming Approach to Approximate π(t)

In this section we present a computationally efficient dynamic programming algorithm that can be
used to approximate the policy π(t) that is defined in equation (14) in Algorithm 3. We will also
provide a proof for Proposition 3.7.

To avoid clashes of notation with the other sections of the paper we denote policies using θ
here. We assume that we are given a transition dynamics model P̄, a vector w ∈ Rd, feature maps
{φh}h∈[H], a positive semi-definite matrix Σ and a bonus function bh : S×A → R for every h ∈ [H].
Also assume that there exists ζ > 0 such that w>φ(τ) ∈ [−ζ, ζ],

∑
h‖φh(sh, ah)‖Σ−1 ∈ [0, ζ]

and
∑
h bh(sh, ah) ∈ [0, ζ] for all τ ∈ Γ. Finally let wh(s, a) := w>φh(s, a) and vh(s, a) :=

‖φh(s, a)‖Σ−1 .
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Given a policy θ and an initial state s1 define an optimistic value-function with this vector w,
feature maps, positive semi-definite matrix Σ and bonuses {bh}h∈[H] as

V̄ θopt

:= Es1∼ρ,τ∼P̄θ(·|s1)

[
min

{
µ
(
w>φ(τ)

)
+

H∑
h=1

‖φh(sh, ah)‖Σ−1 , 1

}
+

H∑
h=1

bh(sh, ah)

]

= Es1∼ρ, τ∼P̄θ(·|s1)

[
min

{
µ

(
H∑
h=1

wh(sh, ah)

)
+

H∑
h=1

vh(sh, ah), 1

}
+

H∑
h=1

bh(sh, ah)

]
.

Define the optimal policy with respect to this optimistic value function:

θ? ∈ arg max
θ∈Π

V̄ θopt.

Our goal is to find an ε-optimal policy θ̂ = (θ̂1, . . . , θ̂H) that satisfies

V̄ θ?opt − V̄ θ̂opt ≤ ε.

Also define the conditional optimistic value-function at any step h ∈ [H]:

V̄ θh (s, τ ′h−1) := Eτ∼P̄θ

[
min

{
µ

(
H∑
`=1

w`(s`, a`)

)
+

H∑
`=1

v`(s`, a`), 1

}

+

H∑
`=1

b`(s`, a`)

∣∣∣∣ sh = s, τh−1 = τ ′h−1

]
. (59)

Define m :=
⌈
ζ−(−ζ)
ε/(6H2)

⌉
=
⌈

12H2ζ
ε

⌉
intervals

ψj :=

[
−ζ +

(j − 1)ε

6H2
,−ζ +

jε

6H2

)
, if j ∈ {1, . . . ,m− 1}

and, ψm :=

[
−ζ +

(m− 1)ε

6H2
, ζ

]
.

The centers of these intervals are νj := −ζ +
(j− 1

2 )ε

6H2 for every j ∈ [m]. Define a map σ : [−ζ, ζ]→
{1, . . . ,m} that maps each x to the index of interval that x lies in,

σ(x) = j, if x ∈ ψj .

Our dynamic programming approach will require us to define tensors âh and V̂h for every h ∈ [H].
Given any quartet (s, i, j, k) ∈ S × [m]× [m]× [m] define the following at the final step H

âH(s, i, j, k) ∈ arg max
a∈A

{min {µ (νi + wH(s, a)) + νj + vH(s, a), 1}+ νk + bH(s, a)} ;

V̂H(s, i, j, k) := max
a∈A
{min {µ (νi + wH(s, a)) + νj + vH(s, a), 1}+ νk + bH(s, a)} .

The action âH(s, i, j, k) is the optimal action when the state is s and the “histories”∑H−1
h=1 wh(sh, ah),

∑H−1
h=1 vh(sh, ah) and

∑H−1
h=1 bh(sh, ah) are equal to νi, νj and νk respectively.

Further, the tensor V̂H(s, i, j, k) stores the value of the conditional value function when this optimal
action is taken given this quartet. Also recursively define the following in the preceding steps:

âh(s, i, j, k) ∈ arg max
a∈A

Es′∼P̄(·|s,a)

[
V̂h+1(s′, σ(wh(s, a) + νi), σ(vh(s, a) + νj), σ(bh(s, a) + νk))

]
;

V̂h(s, i, j, k) := max
a∈A

Es′∼P̄(·|s,a)

[
V̂h+1(s′, σ(wh(s, a) + νi), σ(vh(s, a) + νj), σ(bh(s, a) + νk))

]
.

At the initial step h = 1 the expectation over the states s′ ∼ P̄(·|s, a) in the definition above is
replaced by the expectation over the initial state s1 ∼ ρ.
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To construct θ̂, our strategy will be to use these near-optimal actions (âh) at every step over this
“ ε

6H2 -net” of representative histories that is defined. Then given any state and sub-trajectory we
will map this state and sub-trajectory to its nearest neighbor in the net of histories and play the
near-optimal action corresponding to this neighbor. To this end define the maps

ih(τh−1) := σ

(
h−1∑
`=1

w`(s`, a`)

)
, (60a)

jh(τh−1) := σ

(
h−1∑
`=1

v`(s`, a`)

)
, and (60b)

kh(τh−1) := σ

(
h−1∑
`=1

b`(s`, a`)

)
. (60c)

At times we will use ih, jh and kh as shorthand for ih(τh−1), jh(τh−1) and kh(τh−1) respectively.
Given a state s and sub-trajectory τh−1 the policy at step h ∈ [H], θ̂h(·|s, τh−1) puts all of its mass
on the action

âh (sh, ih(τh−1), jh(τh−1), kh(τh−1))

(where we break ties among actions arbitrarily). Given a policy θ, let θh:H = (θh, . . . , θH) denote
the set of policies from step h onward. Let P̄ θh:H (·|s) denote the distribution of the trajectory in
the steps h, . . . ,H given that the state at step h− 1 was s. Finally define the extended conditional
value-functions for the policy θ̂ to be

qV
θ̂h+1:H

h (s, α, β, γ) :=

E
τ∼P̄θ̂h+1:H (·|s)

[
min

{
µ

(
α+ wh(s, âh(s, σ(α), σ(β), σ(γ))) +

H∑
`=h+1

w`(s`, a`)

)

+β + vh(s, âh(s, σ(α), σ(β), σ(γ))) +

H∑
`=h+1

v`(s`, a`), 1

}

+γ + bh(s, âh(s, σ(α), σ(β), σ(γ))) +

H∑
`=h+1

b`(s`, a`)

]
for any h ∈ [H], s ∈ S , α ∈ [−ζ, ζ], β ∈ [0, ζ] and γ ∈ [0, ζ]. In the definition above the expectation
is over the steps h+ 1, . . . ,H . The extended value function is the definition of the conditional value
function by using the summary of the history: α, β and γ.

E.1 The Policy θ̂ is ε-Optimal

The following lemma shows that the policy θ̂ is ε-optimal and can be found efficiently. We shall use
this lemma to prove Proposition 3.7 below.

Lemma E.1. The policy θ̂ satisfies
V̄ θ?opt − V̄ θ̂opt ≤ ε.

Furthermore the policy θ̂ can be found in poly
(
|S|, |A|, H, ζ, 1

ε

)
time and memory.

Proof The proof shall proceed in two steps. First, we shall show via an inductive argument that
certain properties are satisfied at all steps. In the second part we will use these properties to prove the
lemma.

Part I: The inductive hypothesis. The induction will be over the steps H, . . . , 1. We shall induc-
tively show that:

(a) For any s ∈ S, α ∈ [−ζ, ζ], β ∈ [0, ζ] and γ ∈ [0, ζ]:∣∣∣qV θ̂h:H

h (s, α, β, γ)− V̂h(s, σ(α), σ(β), σ(γ))
∣∣∣ ≤ (H + 1− h)ε

2H2
;
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(b) for any s ∈ S and τh−1 ∈ Γh−1

max
a∈A

Es′∼P̄(·|s,a)

[
V̄
θ̂h+1:H

h+1 (s′, {s, a, τh−1})
]
− V̄ θ̂h:H

h (s, τh−1) ≤ (H + 1− h)ε

H2
;

(c) given the tensor V̂h+1 it is possible to find âh(s, i, j, k) and V̂h(s, i, j, k) for all quartets
using poly

(
|S|, |A|, H, ζ, 1

ε

)
time and memory.

Note that maxa∈A Es′∼P̄(·|s,a)

[
V̄
θ̂h+1:H

h+1 (s′, {s, a, τh−1})
]

corresponds to the conditional-value (see

the Definition of V̄ in equation (59)) of taking the best action at step h when the policy for the future
steps is θ̂h+1:H .

Base case: The base case of the induction is at step H .

Part (a):Fix an α, β and γ and define the shorthand âH := âH(s, σ(α), σ(β), σ(γ)). By the
definition of qVH , V̂H and the policy θ̂ we have

∣∣∣qV θ̂HH (s, α, β, γ)− V̂H(s, σ(α), σ(β), σ(γ))
∣∣∣

=

∣∣∣∣min

{
µ (α+ wH(s, âh)) + β + vH(s, âH), 1

}
+ γ + bH(s, âH)

−min
{
µ
(
νσ(α) + wH(s, âH)

)
+ νσ(β) + vH(s, âH), 1

}
+ νσ(γ) + bH(s, âH)

∣∣∣∣
(i)

≤
∣∣µ (α+ wH(s, âh))− µ

(
νσ(α) + wH(s, âH)

)∣∣+ |β − νσ(β)|+ |γ − νσ(γ)|
(ii)

≤
∣∣α− νσ(α)

∣∣+ |β − νσ(β)|+ |γ − νσ(γ)|
(iii)

≤ 3× ε

6H2
=

ε

2H2

where (i) follows since the function z 7→ min(z, 1) is 1-Lipschitz and by the triangle inequality, and
(ii) follows since µ is 1-Lipschitz, and (iii) follows by the definition of the function σ, that projects
a number onto a grid with granularity ε/(6H2).

Part (b): An episode terminates at the end of step H , therefore we define V̄H+1(s′, τH) :=

min
{
µ
(∑H

h=1 wh(sh, ah)
)

+
∑H
h=1 vh(sh, ah), 1

}
+
∑H
h=1 bh(sh, ah). Thus, by the definition

of the extended conditional value function qVH

max
a∈A

Es′∼P̄(·|s,a)

[
V̄H+1(s′, {s, a, τH−1})

]
− V̄ θ̂HH (s, τH−1)

= max
a∈A

Es′∼P̄(·|s,a)

[
V̄H+1(s′, {s, a, τH−1})

]
− qV θ̂HH

(
s,

H−1∑
`=1

w`(s`, a`),

H−1∑
`=1

v`(s`, a`),

H−1∑
`=1

b`(s`, a`)

)
(i)
= max

a∈A
Es′∼P̄(·|s,a)

[
V̄H+1(s′, {s, a, τH−1})

]
− V̂ θ̂HH (s, iH , jH , kH)

+ V̂ θ̂HH (s, iH , jH , kH)− qV θ̂HH

(
s,

H−1∑
`=1

w`(s`, a`),

H−1∑
`=1

v`(s`, a`),

H−1∑
`=1

b`(s`, a`)

)
(ii)

≤ max
a∈A

Es′∼P̄(·|s,a)

[
V̄H+1(s′, {s, a, τH−1})

]
− V̂ θ̂HH (s, iH , jH , kH) +

ε

2H2
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where in (i) recall the definitions of iH , jH and kH from above in equations (60a)-(60c), and (ii)
follows by Part (a) of the induction hypothesis. Continuing

max
a∈A

Es′∼P̄(·|s,a)

[
V̄H+1(s′, {s, a, τH−1})

]
− V̄ θ̂HH (s, τH−1)

(i)

≤ max
a∈A

{
min

{
µ

(
H−1∑
h=1

wh(sh, ah) + wH(s, a)

)
+

H−1∑
h=1

vh(sh, ah) + vH(s, a), 1

}

+

H−1∑
h=1

bh(sh, ah) + bH(s, a)

}
−max
a′∈A

{min {µ (νiH + wH(s, a′) + νjH + vH(s, a′)) , 1}+ νkH + bH(s, a′)}+
ε

2H2

≤ max
a∈A

{
min

{
µ

(
wH(s, a) +

H−1∑
h=1

wh(sh, ah)

)
+

H−1∑
h=1

vh(sh, ah) + vH(s, a), 1

}

+

H−1∑
h=1

bh(sh, ah) + bH(s, a)

−min {µ (wH(s, a) + νiH ) + vH(s, a) + νjH , 1} − νkH − bH(s, a)

}
+

ε

2H2

(ii)

≤

∣∣∣∣∣
H−1∑
h=1

wh(sh, ah)− νiH

∣∣∣∣∣+

∣∣∣∣∣
H−1∑
h=1

vh(sh, ah)− νjH

∣∣∣∣∣+

∣∣∣∣∣
H−1∑
h=1

bh(sh, ah)− νkH

∣∣∣∣∣+
ε

2H2

(iii)

≤ ε

H2
.

where (i) follows by the definition of V̂H(s, iH , jH , kH), (ii) follows because the functions z 7→
min{z, 1} and z 7→ 1

1+exp(−z) are both 1-Lipschitz, and (iii) follows by the definition of the maps
iH , jH and kH , and the intervals ψj . This proves the second part of the inductive hypothesis in the
base case.

Part (c): Let’s show âH(s, i, j, k) and V̂H(s, i, j, k) can be computed efficiently. Fix a quartet
(s, i, j, k) ∈ S × [m]× [m]× [m]. Then the values

âH(s, i, j, k) ∈ arg max
a∈A

{min {µ (νi + wH(s, a)) + νj + vH(s, a), 1}+ νk + bH(s, a)}

V̂H(s, i, j, k) = max
a∈A
{min {µ (νi + wH(s, a)) + νj + vH(s, a), 1}+ νk + bH(s, a)}

can be found using poly(|A|) time and memory. Therefore, the entire tensor can be found using
|S|m3 × poly(|A|) = poly(|S|, |A|, H, ζ, 1

ε ) time and memory.

Induction step: Assume that the induction hypothesis holds at the steps H, . . . , h + 1. We will
now prove that each part of the induction hypothesis also holds at the step h ≥ 1.
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Part (a): Fix an α, β and γ and let’s define the shorthand âh = âh(s, σ(α), σ(β), σ(γ)). Hence2,∣∣∣qV θ̂h:H

h (s, α, β, γ)− V̂h(s, σ(α), σ(β), σ(γ))
∣∣∣

=

∣∣∣∣Es′∼P̄(·|s,âh(s,τh−1))

[
qV
θ̂h+1:H

h+1 (s′, α+ wh(s, âh), β + vh(s, âh), γ + bh(s, âh))

−V̂h+1

(
s′, σ

(
wh(s, âh) + νσ(α)

)
, σ
(
vh(s, âh) + νσ(β)

)
, σ
(
bh(s, âh) + νσ(γ)

))] ∣∣∣∣
=

∣∣∣∣Es′∼P̄(·|s,âh(s,τh−1))

[
qV
θ̂h+1:H

h+1 (s′, α+ wh(s, âh), β + vh(s, âh), γ + bh(s, âh))

−qV
θ̂h+1:H

h+1

(
s′, wh(s, âh) + νσ(α), vh(s, âh) + νσ(β), bh(s, âh) + νσ(γ)

)
+qV

θ̂h+1:H

h+1

(
s′, wh(s, âh) + νσ(α), vh(s, âh) + νσ(β), bh(s, âh) + νσ(γ)

)
−V̂h+1

(
s′, σ

(
wh(s, âh) + νσ(α)

)
, σ
(
vh(s, âh) + νσ(β)

)
, σ
(
bh(s, âh) + νσ(γ)

))] ∣∣∣∣
≤
∣∣∣∣Es′∼P̄(·|s,âh(s,τh−1))

[
qV
θ̂h+1:H

h+1 (s′, α+ wh(s, âh), β + vh(s, âh), γ + bh(s, âh))

−qV
θ̂h+1:H

h+1

(
s′, wh(s, âh) + νσ(α), vh(s, âh) + νσ(β), bh(s, âh) + νσ(γ)

)] ∣∣∣∣+
(H − h)ε

2H2

(61)

where the last inequality follows by Part (a) of the inductive hypothesis at step h + 1. Let us now
bound∣∣∣∣qV θ̂h+1:H

h+1 (s′, α+ wh(s, âh), β + bh(s, âh))− qV
θ̂h+1:H

h+1 (s′, wh
(
s, âh) + νσ(α), bh(s, âh) + νσ(β)

) ∣∣∣∣
=

∣∣∣∣∣Eτ∼P̄θ̂h+1:H

[
min

{
µ

(
α+ wh(s, âh) +

H∑
`=h+1

w`(s`, a`)

)
+ β + vh(s, âh) +

H∑
`=h+1

v`(s`, a`), 1

}

+γ + bh(s, âh) +

H∑
`=h+1

b`(s`, a`)

∣∣∣∣ sh+1 = s′, τh = {s, âh, τh−1}

]

− E
τ∼P̄θ̂h+1:H

[
min

{
µ

(
νσ(α) + wh(s, âh) +

H∑
`=h+1

w`(s`, a`)

)
+ νσ(β) + vh(s, âh) +

H∑
`=h+1

v`(s`, a`), 1

}

+νσ(γ) + bh(s, âh) +

H∑
`=h+1

b`(s`, a`)

∣∣∣∣ sh+1 = s′, τh = {s, âh, τh−1}

] ∣∣∣∣∣.
Since the functions z 7→ min{z, 1} and z 7→ 1

1+exp(−z) are 1-Lipschitz, therefore∣∣∣qV θ̂h+1:H

h+1 (s′, α+ wh(s, âh), β + bh(s, âh))− qV
θ̂h+1:H

h+1 (s′, wh
(
s, âh) + νσ(α), bh(s, âh) + νσ(β)

)∣∣∣
≤ |α− νσ(α)|+ |β − νσ(β)|+ |γ − νσ(γ)| ≤

ε

2H2
. (62)

This combined with inequality (61) shows that∣∣∣qV θ̂h:H

h (s, α, β)− V̂h(s, σ(α), σ(β))
∣∣∣ ≤ (H + 1− h)ε

2H2

and completes the proof of the first part of the induction step.

2In the arguments that follow when h = 1, the outer expectation Es′∼P̄ (·|s,âh(s,τh−1)) is replaced by Es1∼ρ
however the same arguments remain unchanged.

44



Part (b): Here let âh be shorthand for âh(s, σ(
∑h−1
`=1 w`(s`, a`)), σ(

∑h−1
`=1 v`(s`, a`)), σ(

∑h−1
`=1 b`(s`, a`))).

Since the policy θ̂h picks the action âh

V̄ θ̂h:H

h (s, τh−1)

= Es′∼P̄(·|s,âh)

[
V̄
θ̂h+1:H

h+1 (s′, {s, âh, τh−1})
]

= Es′∼P̄(·|s,âh)

[
V̄
θ̂h+1:H

h+1 (s′, {s, âh, τh−1})

− qV
θ̂h+1:H

h+1 (s′, wh(s, âh) + νih , vh(s, âh) + νjh , bh(s, âh) + νkh)

]
+ Es′∼P̄(·|s,âh)

[
qV
θ̂h+1:H

h+1 (s′, wh(s, âh) + νih , vh(s, âh) + νjh , bh(s, âh) + νkh)
]
. (63)

We know that the difference of the first two terms in the expectation above

V̄
θ̂h+1:H

h+1 (s′, {s, âh, τh−1})− qV
θ̂h+1:H

h+1 (s′, wh(s, âh) + νih , vh(s, âh) + νjh , bh(s, âh) + νkh)

= E
τ∼P̄θ̂h+1:H

[
min

{
µ

( h−1∑
`=1

w`(s`, a`) + wh(s, âh) +

H∑
`=h+1

w`(s`, a`)

)

+

h−1∑
`=1

v`(s`, a`) + vh(s, âh) +

H∑
`=h+1

v`(s`, a`), 1

}

+

h−1∑
`=1

b`(s`, a`) + bh(s, âh) +

H∑
`=h+1

b`(s`, a`)

−min

{
µ

(
νih + wh(s, âh) +

H∑
`=h+1

w`(s`, a`)

)

+ νjh + vh(s, âh) +

H∑
`=h+1

v`(s`, a`), 1

}

− νkh − bh(s, âh)−
H∑

`=h+1

b`(s`, a`)

∣∣∣∣ s, âh, τh−1

]
(i)

≥ −

∣∣∣∣∣
h−1∑
`=1

w`(s`, a`)− νih

∣∣∣∣∣−
∣∣∣∣∣
h−1∑
`=1

v`(s`, a`)− νjh

∣∣∣∣∣−
∣∣∣∣∣
h−1∑
`=1

b`(s`, a`)− νkh

∣∣∣∣∣ (ii)

≥ − ε

2H2
.

where (i) follows since the functions z 7→ min{z, 1} and z 7→ 1
1+exp(−z) are 1-Lipschitz and (ii)

follows since νih , νjh and νkh are the nearest neighbors of
∑h−1
`=1 w`(s`, a`),

∑h−1
`=1 v`(s`, a`) and∑h−1

`=1 b`(s`, a`) respectively in the ε
6H2 grid. This previous inequality combined with equation (63)

yields

V̄ θ̂h:H

h (s, τh−1)

≥ Es′∼P̄(·|s,âh)

[
qV
θ̂h+1:H

h+1 (s′, wh(s, âh) + νih , vh(s, âh) + νjh , bh(s, âh) + νkh)
]
− ε

2H2
.

This relates the true conditional-value function to the extended value function qV . We will now
continue further to relate the true conditional-value function to the surrogate V̂ that we can compute
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on the grid of histories. Continuing from the previous display above we get

V̄ θ̂h:H

h (s, τh−1)

≥ Es′∼P̄(·|s,âh)

[
qV
θ̂h+1:H

h+1 (s′, wh(s, âh) + νih , vh(s, âh) + νjh , bh(s, âh) + νkh)

− V̂h+1 (s′, σ (νih + wh(s, âh)) , σ (νjh + vh(s, âh)) , σ (νkh + bh(s, âh)))

]
+ Es′∼P̄(·|s,âh)

[
V̂h+1 (s′, σ (νih + wh(s, âh)) , σ (νjh + vh(s, âh)) , σ (νkh + bh(s, âh)))

]
− ε

2H2

(i)

≥ Es′∼P̄(·|s,âh)

[
V̂h+1 (s′, σ (νih + wh(s, âh)) , σ (νjh + vh(s, âh)) , σ (νkh + bh(s, âh)))

]
− (H − h)ε

2H2
− ε

2H2

(ii)
= max

a∈A
Es′∼P̄(·|s,a)

[
V̂h+1 (s′, σ (νih + wh(s, a)) , σ (νjh + vh(s, a)) , σ (νkh + bh(s, a)))

]
− (H + 1− h)ε

2H2
(64)

where (i) follows by using the first part of the induction hypothesis at step h+ 1 and (ii) follows by
the definition of âh. With this lower bound in place let us now establish a bound on the quantity of
interest

max
a∈A

Es′∼P̄(·|s,a)

[
V̄
θ̂h+1:H

h+1 (s′, {s, a, τh−1})
]
− V̄ θ̂h:H

h (s, τh−1)

(i)

≤ max
a∈A

{
Es′∼P̄(·|s,a)

[
V̄
θ̂h+1:H

h+1 (s′, {s, a, τh−1})
]}

−max
a∈A

{
Es′∼P̄(·|s,a)

[
V̂h+1 (s′, σ (νih + wh(s, a)) , σ (νjh + vh(s, a)) , σ (νkh + bh(s, a)))

]}
+

(H + 1− h)ε

2H2

≤ max
a∈A

{
Es′∼P̄(·|s,a)

[
V̄
θ̂h+1:H

h+1 (s′, {s, a, τh−1})

− V̂h+1 (s′, σ (νih + wh(s, a)) , σ (νjh + vh(s, a)) , σ (νkh + bh(s, a)))

]}
+

(H + 1− h)ε

2H2
(65)

where (i) follows by invoking inequality (64). Note that by its definition

qV
θ̂h+1:H

h+1

(
s′,

h−1∑
`=1

w`(s`, a`) + wh(s, a),

h−1∑
`=1

v`(s`, a`) + vh(s, a),

h−1∑
`=1

b`(s`, a`) + bh(s, a)

)
= V̄

θ̂h+1:H

h+1 (s′, {s, a, τh−1}),
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therefore continuing from inequality (65)

max
a∈A

Es′∼P̄(·|s,a)

[
V̄
θ̂h+1:H

h+1 (s′, {s, a, τh−1})
]
− V̄ θ̂h:H

h (s, τh−1)

≤ max
a∈A

{
Es′∼P̄(·|s,a)

[
qV
θ̂h+1:H

h+1

(
s′,

h−1∑
`=1

w`(s`, a`) + wh(s, a),

h−1∑
`=1

v`(s`, a`) + vh(s, a),

h−1∑
`=1

b`(s`, a`) + bh(s, a)

)

− V̂h+1 (s′, σ (νih + wh(s, a)) , σ (νjh + vh(s, a)) , σ (νkh + bh(s, a)))

]}
+

(H + 1− h)ε

2H2

≤ max
a∈A

{
Es′∼P̄(·|s,a)

[
qV
θ̂h+1:H

h+1

(
s′,

h−1∑
`=1

w`(s`, a`) + wh(s, a),

h−1∑
`=1

v`(s`, a`) + vh(s, a),

h−1∑
`=1

b`(s`, a`) + bh(s, a)

)
− qV

θ̂h+1:H

h+1 (s′, νih + wh(s, a), νjh + vh(s, a), νkh + bh(s, a))

+ qV
θ̂h+1:H

h+1 (s′, νih + wh(s, a), νjh + vh(s, a), νkh + bh(s, a))

− V̂h+1 (s′, σ (νih + wh(s, a)) , σ (νjh + vh(s, a)) , σ (νkh + bh(s, a)))

]}
+

(H + 1− h)ε

2H2

(i)

≤ max
a∈A

{
Es′∼P̄(·|s,a)

[
qV
θ̂h+1:H

h+1 (s′, νih + wh(s, a), νjh + vh(s, a), νkh + bh(s, a))

− V̂h+1 (s′, σ (νih + wh(s, a)) , σ (νjh + vh(s, a)) , σ (νkh + bh(s, a)))

]}
+

(H + 1− h)ε

2H2
+

ε

2H2

(ii)

≤ (H − h)ε

2H2
+

(H + 2− h)ε

2H2
=

(H + 1− h)ε

H2
.

where (i) follows by bounding

qV
θ̂h+1:H

h+1

(
s′,

h−1∑
`=1

w`(s`, a`) + wh(s, a),

h−1∑
`=1

v`(s`, a`) + vh(s, a),
h−1∑
`=1

b`(s`, a`) + bh(s, a)

)
− qV

θ̂h+1:H

h+1 (s′, νih + wh(s, a), νjh + vh(s, a), νkh + bh(s, a)) ≤ ε

2H2

using the same logic as we used above to arrive at inequality (62), and (ii) follows by using the Part (a)
of the inductive hypothesis at step h+ 1. This proves the second part of the inductive hypothesis.

Part (c):Recall the definition of

âh(s, i, j, k) ∈ arg max
a∈A

Es′∼P̄(·|s,a)

[
V̂h+1(s′, σ(wh(s, a) + νi), σ(vh(s, a) + νj), σ(bh(s, a) + νk))

]
,

V̂h(s, i, j, k) := max
a∈A

Es′∼P̄(·|s,a)

[
V̂h+1(s′, σ(wh(s, a) + νi), σ(vh(s, a) + νj), σ(bh(s, a) + νk))

]
.

For a fixed quartet (s, i, j, k) to calculate âh(s, i, j, k) it is possible to first calculate

V̂h+1(s′, σ(wh(s, a) + νi), σ(wh(s, a) + νj), σ(bh(s, a) + νk))
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for all s′ ∈ S and all a ∈ A. Since we already have access to the tensor the entire V̂h+1 this takes
poly(|S||A|) time and memory. Once we have calculated this it is possible to use this to calculate

Es′∼P̄(·|s,a)

[
V̂h+1(s′, σ(wh(s, a) + νi), σ(bh(s, a) + νj))

]
for all choices of a (we can do this since we have access to the distribution P̄) using poly(|S|, |A|)
time and memory. After we have enumerated this value for all a ∈ A we can identify âh(s, i, j, k) and

V̂h(s, i, j, k) for this quartet. There are |S|m3 = |S|
(⌈

12H2ζ
ε

⌉)3

quartets. Therefore it is possible to

calculate both these tensors using poly
(
|S|, |A|, H, ζ, 1

ε

)
time and memory, which proves our claim.

This completes the proof of all parts of the induction hypothesis.

Part II: Using the induction hypothesis to prove the lemma. We begin by proving that the policy
θ̂ can be found efficiently. To see this, notice that at every step the policy θ̂ only requires to know
the tensor of actions âh. Starting from h = H , we have shown that each âh can be computed
using poly

(
|S|, |A|, H, ζ, 1

ε

)
time and memory. Thus, all H of these tensors can be found using

poly
(
|S|, |A|, H, ζ, 1

ε

)
time and memory.

Now let’s prove that

V̄ θ? − V̄ θ̂ ≤ ε.

Define a policy θ?h :=
(
θ?1, . . . , θ?h, θ̂h+1, θ̂H

)
for h ∈ {0, . . . ,H}. Therefore,

V̄ θ? − V̄ θ̂ =

1∑
h=H

V̄ θ?h − V̄ θ?h−1 . (66)

Consider any term in this decomposition above,

V̄ θ?h − V̄ θ?h−1

= Es1∼ρ, τh−1∼P̄θ?1:h−1

[
Esh∼P̄(·|sh−1,ah−1)

[
max
a∈A

Es′∼P̄(·|sh,a)

[
V̄
θ̂h+1:H

h+1 (s′, {sh, a, τh−1})
]

− V̄ θ̂h:H

h (sh, τh−1)

]]
where the outer expectation Eτh−1∼P̄θ?1:h−1 is over the randomness in the first h− 1 round where the
policy is (θ?1, . . . , θ?h−1) and the initial state is s1. Now by invoking the second part of the induction
hypothesis to bound the RHS in the display above we get

V̄ θ?h − V̄ θ?h−1 ≤ (H + 1− h)ε

H2
.

Plugging this into equation (66) we conclude that

V̄ θ? − V̄ θ̂ ≤ ε

2H2

H∑
h=1

(H + 1− h) <
ε

2H2

H∑
h=1

(H + 1) ≤ ε

completing our proof.

E.2 Proof of Proposition 3.7

Recall the statement of the proposition from above.

Proposition 3.7. For any t ∈ [N ] define Ṽ sd
t (π) := Es1∼ρ, τ∼P̂πt (·|s1)

[
µ̃sd
t (ŵt, τ)

]
. Given any ε > 0,

under Assumptions 2.2, 3.3 and 3.4 it is possible to find a policy π̂(t) that satisfies

Ṽ sd
t (π(t))− Ṽ sd

t (π̂(t)) ≤ ε,

using at most poly
(
|S|, |A|, H, d,B, ‖ŵt‖2, 1

ε , log
(
N
δ

))
time and memory.
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Proof The proof shall follow by simply invoking Lemma E.1. Recall from equation (D.5) that

µ̃sd
t (ŵt, τ) := min

{
µ
(
w>φ(τ)

)
+
√
κβt(δ)

H∑
h=1

‖φh(sh, ah)‖Σ−1
t
, 1

}
+

H−1∑
h=1

ξ(t)
sh,ah

.

First notice that since ‖φ(τ)‖2 ≤ 1 we have that

|ŵt, φ(τ)| ≤ ‖ŵt‖2‖φ(τ)‖2 ≤ ‖ŵt‖2. (67)

Next observe that

√
κβt(δ)

H∑
h=1

‖φh(sh, ah)‖Σ−1
t
≤
√
κβt(δ)

√
λmax(Σ−1

t )

H∑
h=1

‖φh(sh, ah)‖2 (68)

(i)

≤
√
κβt(δ)√
λmin(Σt)

√
H

√√√√ H∑
h=1

‖φh(sh, ah)‖22 (69)

(ii)

≤
√
κβt(δ)√
λmin(Σt)

√
H‖φ(τ)‖2 (70)

(iii)

≤
√
κβt(δ)√
κ

√
H ‖φ(τ)‖2 (71)

≤
√
Hβt(δ)

(iv)

≤
√
H × poly

(
d,B, log

(
N

δ

))
, (72)

where (i) follows since for any z ∈ RH , ‖z‖1 ≤
√
H‖z‖2, (ii) follows since by Assumption 3.4 for

any h 6= h′ ∈ [H], the features φh and φh′ are orthogonal and by Assumption 3.3 the feature map
φ is sum-decomposable, (iii) follows since Σt � κI, and (iv) follows by the definition of βt(δ) in
equation (4). Finally the definition of ξ(t) in equation (7) we know that∣∣∣∣∣

H−1∑
h=1

ξ(t)
sh,ah

∣∣∣∣∣ ≤ 2H. (73)

In light of inequalities (67), (72) and (73) we can conclude that if we invoke Lemma E.1 with a ζ that
is a large enough polynomial in ‖ŵt‖2, d, B, log(N/δ), H then the claim follows.

F Experiments

Figure 1. Left: Reward learning curve averaged over 40 independent runs. The shaded region represents
a confidence interval which is ±standard deviation. Middle: The purple and yellow paths represent
two sample paths taken by an initial random policy. Right: The purple and yellow paths represent two
sample paths taken by a trained policy.

In this section we experimentally show that it is possible to learn a good policy in a simple
non-Markovian domain with binary rewards—received once per episode—using a policy gradient
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algorithm. We parameterize each policy πθ by θ ∈ Rk. The gradients of the value function can be
computed using the REINFORCE [36] algorithm as follows

∇θV πθ = Eyτ ,τ∼Pπ
[
yτ

(
H∑
h=1

∇θ log (πθ(ah|sh))

)]
.

We approximate this expectation empirically by using 30 sample trajectories, and use the Adam
optimizer [21] with a default step size of one to update the policy. We studied the behavior of this
algorithm on a custom 10 × 15 grid environment. The agent is initialized at a random location
on the grid denoted by the large blue dot. Then the agent is allowed to take one of the actions
{UP,DOWN,LEFT,RIGHT}, and move to an adjacent node (if permitted). During the last three
steps of an episode, with H = 30, if the agent stays at either the black dot (‘goal’) or at any adjacent
nodes marked by the red dots, then the agent receives a reward of 1, while if the agent is not at one
of these nodes during the last three steps then it receives a reward of 0. The location of the ‘goal’
node is also randomly chosen at each episode. We parametrize the policy using a fully connected
neural network with 10 hidden layers and with width 4. The state representation that is fed to this
policy is of the form (xcurrent, ycurrent, xgoal, ygoal), where (xcurrent, ycurrent) represents the current
coordinates of the agent and (xgoal, ygoal) denotes the coordinates of the ‘goal’ node.
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