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A NOTATIONS

This section summarizes the notations used throughout this paper.

Table 5: Notations used throughout this paper.

Notations Definitions or Descriptions
G,G* Random variable of universal graphs and graphs from domain ¢
Gg,G° Set of universal graphs and graphs from domain c
@ Train, Val, Test, ¢ Set of training/validation/testing graphs from domain c
P(G), P(G®) Distribution of universal graphs and graphs from domain ¢
G = (X% EY) Graph G with node/edge category matrices X“, E¢
ng Number of nodes in graph G
dx /dg Number of node/edge categories
Q%, QY Node/edge transition matrices
QL. Ql; Node/edge accumulative transition matrices
m¢$, mé Distribution of node/edge categories of graphs from domain c
t, T Diffusion step ¢ and the set of total steps T
G Distribution of graphs from unseen domains
g Set of graphs from unseen domains
S, d(S) Text with its embedding from the pre-trained textual encoder ¢
P(G,S) Joint distribution of graphs and their textual descriptions
® Parameters of Neural Networks
e Optimal Parameters of Neural Networks after pre-training
(O ki Optimal Parameters of Neural Networks after fine-tuning
oV Optimal Parameters of Neural Networks after Text2Graph Generation
FB, ASN Facebook Networks, Animal Social Networks
EMAIL, WEB Email Networks, Web Graphs
RoAD, POWER Road Networks, Power Networks
CHEM, BIO Chemical Networks, Biological Networks
EcoN, RT Economic Networks, Retweet Networks
COL, ECO Collaboration Networks, Ecological Networks
CITATION Citation Networks
LGGM-X Pre-trained LGGM on all other domains except X
Fine-tuned LGGM on X Fine-tuned LGGM-X on domain X
LGGM-T2G LGGM trained on graphs paired with texts
LGGM-T2GP LGGM trained on graphs with texts on domains
LGGM-T2G"? LGGM trained on graphs with user prompts on domains/names
LGGM LGGM trained on all graphs from all domains

B SPACE AND TIME COMPLEXITY ANALYSIS

Table 6: Our theoretical/empirical analysis of the DiGress and EDGE graph diffusion models, both
with and without our Large Graph Training Scheme (LGGM). Incorporating LGGM only increases
complexity linearly due to the added domains, aligning with the theoretical analysis. 7" - number of
diffusion steps, V/& - number of nodes/edges, K - number of active nodes, C - number of domains.

Backbone Training ‘ Theoretical Time ‘ Running Time per Epoch (s) with #Domains/#Graphs
Strategy Space Complexity 1/403 2/806 4/1219 8/2837 12/4492
DiGress Original O(T|V)?) 19.1240.03 - - - -
LGGM O(CT|V|?) 19.14£0.05  36.34+0.21  47.46+0.11 142.14+0.19  224.744+0.23
EDGE Original ‘ O(T max(|E], K?)) ‘ 1.0240.13 - - - -
LGGM O(CT max(|€], K?)) 1.0710.18 1.9240.26 5.4240.09 11.5940.20 19.484+0.22
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C PROOF OF THEOREMS

Theorem 1. If the transition matrices Q' , QY are independent of the textual description S, then
we have P(G'1G!, G,S) < P(G!|G!1)P(G'|G) and correspondingly, we have the analytical
formed solution, i.e., P(X'~'|X!, X, S) o« X!(Q%) T ©0XQY !, P(E'"'|ELE, S) x B (QL) T ©
Elefollowing Vignac et al.|(12023|).

Proof. Applying the Bayes rule, we have:

P(G'YG',G,S) x P(G'"!,G!,G,S) x P(G!G'~1,G,S)P(G'1,G,S) (6)
« P(G'G'™!,G,S)P(G" G, S)P(G,S). )

Given the independence of the transition matrix on the textual description S and also the noise
is Markovian Vignac et al. (2023), we have P(G!|G'~1,G,S) = P(G'|G!™!), P(G!71|G,S) =
P(G*~1|G), and also the irrelevance of P(G,S) to P(G'~!|G!, G, S), we then end up with:

P(G'YGY,G,S) x P(G' |G 1) P(G'1|G). ®)

Since the distribution of graphs can be decomposed into the distribution of node and edge categories,
following [Vignac et al. (2023), we similarly have:

P(X'HXE X, ) oc P(XXHP(XHX) = XH(Q) T @ XQ )
P(E'"'E"E,S) < P(E'|E")P(EE) = E/(Q) " o EQL " (10)
O

Theorem 2. Given the decomposition in Eq. (4) that P(G'"!|G,S) x
> ¢ P(GYGY, G,S)P(G|G,S), optimizing © according to Eq. (5) essentially optimizes
the variational lower bound of the log-likelihood Pg(G°,S).

Proof. We start directly from the log-likelihood of the joint distribution of Pg (G, S):

log Pe (G, 5) = log/P@(GO,S,Gl, -, GT)d(G', G, ...,GT) (1)
Po(G%S,GY,...GT) | 5 m oo

=1 d 12

Og/ ¢(G1,G?,...,GT) 9(G",G%,...,6")d(G, G, ..,G") (12)

Po(G°,S,G!,...,GT)
zlogEq(Gl)Gz7m)GT) q(Gl,GQ,...,GT)

Po(GY,S, G, ...,GT)
----- ) log T 2 T
q(G1, G2, ...,GT)
P(G”,S)[];_, Po(G'""[G",S)
a(GY) [1,—, a(GH|Gt1)
Po (GG, S)
q(G'|G'~1)

(13)

> By 62 by Jensen’s inequality  (14)

by Markovian  (15)

] + const. (16)
t=1

According to the decomposition in Eq. (Z), optimizing @ according to Eq. (5) leads to optimizing
Pe(G'~1G?,S), which corresponds to the second term in Eq. and subsequently optimizes the
variational lower bound of the log-likelihood Pg (G, S) according to the derivation from Eq. @)
to Eq. (I6). Therefore, training Text-to-Graph LGGM according to Eq. (5) enables the model to
generate graphs such that the pairs of texts and graphs end up with higher likelihoods.

O
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D DATA PREPARATION

D.1 PRE-PROCESSED GRAPHS FOR TRAINING LGGMS

We select graphs from the Network Repository across 13 distinct yet representative domains covering
a wide variety of real-world scenarios, including Facebook, Animal Social, Email, Web, Road, Power,
Chemical, Biological, Economic, Retweet, Collaboration, Ecological, and Citation. Due to the
scalability with diffusion-based graph generative models, we further sample subgraphs for certain
domains, and Table[7] presents the comprehensive statistics of the sampled subgraphs, which are used
for training LGGMs. We can see that graphs from different domains are statistically different.

Table 7: Summary of Graph Statistics. Facebook (FB), Animal Social (ASN), Email, Web, Road,
Power, Chemical (CHEM), Biological (BIO), Economic (ECON), Retweet (RT), Collaboration
(COL), Ecological (ECO), Citation.

Category Num Num Avg Avg Max Min Max Min Num
Nodes Edges Degree Clustering Nodes Nodes FEdges Edges Graphs

ASN 52.47 + 40.13 77.59 £ 80.95 2.62 + 1.52 0.395 £ 0.178 283 3 515 2 267
BIO 191.14 + 43.47 965.71 + 878.35 9.16 + 7.69 0.276 £+ 0.199 258 109 4392 96 504
CHEM 36.46 £ 20.49 64.61 £ 26.23 3.75 + 0.63 0.421 £ 0.223 125 2 149 1 646
Citation 235.91 + 27.25 1287.16 + 1087.00 10.17 +8.14  0.369 £ 0.224 270 175 4474 188 504
COL 174.26 £ 53.82 312.56 + 176.33 3.41 £ 1.24 0.497 £ 0.203 247 52 996 68 504
ECO 100.67 4+ 30.10  1490.00 £ 673.87 27.72+7.00 0.406 4+ 0.082 128 54 2106 353 6

ECON 144.18 £ 35.82 3258.76 £ 3540.28 39.76 + 37.80 0.419 £ 0.296 219 90 11142 188 504
Email 146.67 + 35.86 681.55 + 500.28 9.79 + 7.26 0.389 £+ 0.211 213 82 2909 216 504
Power 132.22 4+ 20.29 289.32 4+ 183.02 4.35 + 2.31 0.161 £+ 0.164 187 81 1332 133 512
Road 265.25 + 94.31 276.46 + 79.61 2.70 +2.08 0.078 £ 0.134 411 32 456 137 504
RT 104.11 4+ 35.23 110.99 + 46.44 2.11 +£0.37 0.028 £ 0.038 175 35 295 34 558
FB 219.45 + 47.05  1863.44 4+ 701.53 16.36 & 6.17  0.315 + 0.083 259 48 3898 46 504
Web 173.32 4+ 24.86 462.21 + 336.46 5.09 &+ 3.06 0.404 + 0.196 231 119 1607 149 504

D.2 PREPARING GRAPHS AND TEXT DESCRIPTION ABOUT THEIR DOMAINS/NAMES

Here we thoroughly discuss the process of obtaining graphs and their corresponding text prompts
describing their domains/names. As given by the Network Repository, we directly download graphs
along with their domains/names. We then prompt GPT3.5 to generate user prompts describing the
graph given its domain/name. The concrete prompt template we use here is shown in Listing T| with
exemplary generated user prompts shown in Listing 2] Moreover, we apply the sentence transformer
to obtain text embeddings of the generated prompts for each network and perform t-SNE visualization.
As shown in Figure[7a] we see prompts for graphs from different domains from different clusters.
More importantly, textual similarity can somewhat reflect their network similarity. For example,
prompts for road and power networks are very close, and they both belong to infrastructure. Moreover,
Facebook Networks, Email Networks, Collaboration Networks, Web Graphs are very close since all
these four belong to some sub-variants of social networks. This inherent relationship between the
textual similarity and structural similarity between two graphs demonstrates that the world knowledge
encoded in the text could somehow provide useful preference for the graphs to be generated.
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(a) Domain and Name (b) Average Clustering Coefficient (c) Average Degree

Figure 7: t-SNE visualization of textual description about network (a) domain/name (b) average
clustering coefficient (c) average degree.
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Listing 1: Prompt Template for Generating Textual Description about Network Domain/Name.

PROMPT: Given a graph called { GRAPH NAME} that is from the DOMAIN { DOMAIN NAME}. Please
generate a short sentence about the graph.

Note:
* Do not generate more than 20 words.

Listing 2: Examples of Textual Description about Network Domain/Name.

*DOMAIN: Animal Social Networks

*NAME: reptilia—tortoise—network—sl

*TEXT: The reptilia—tortoise—network—sl graph represents the social connections among tortoises in the
reptile community.

*DOMAIN: Power Networks
*NAME: power—eris1176
*TEXT: The power—eris1176 graph represents the interconnected nodes and edges of a power network system

*DOMAIN: Economic Networks

*NAME: econ—poli

*TEXT: The econ—poli graph represents the interconnectedness of economic and political factors in a
network.

*DOMAIN: Ecology Networks
*NAME: eco—evergla
*TEXT: The eco—evergla graph represents the interconnectedness of species in the Everglades ecosystem.

*DOMAIN: Email Networks

*NAME: email-enron—only

*TEXT: The email-enron—only graph represents the network of email communication within the Enron
corporation.

*DOMAIN: Road Networks
*NAME: road—-roadNet—CA
*TEXT: The road—roadNet—CA graph represents the road network in California.

*DOMAIN: Retweet Networks

*NAME: rt_occupywallstnyc

*TEXT: The graph rt_occupywallstnyc represents retweet relationships in the Occupy Wall Street movement
in New York City.

*DOMAIN: Facebook Networks

*NAME: socfb—Haverford76

*TEXT: The socfb—Haverford76 graph represents the social connections among users in the Haverford
College community on Facebook.

*DOMAIN: Web Graphs

*NAME: web—wiki—chameleon

*TEXT: The web—wiki—chameleon graph represents the interconnections between web pages, Wikipedia
articles, and chameleon species.

*DOMAIN: Biological Networks
*NAME: bio—WormNet—v3—-benchmark
*TEXT: The bio—WormNet—v3—benchmark graph represents a biological network related to worms.

*DOMAIN: Citation Networks

#*NAME: cit-DBLP

«TEXT: cit-DBLP is a graph representing the citation relationships between research papers in the field of
computer science.

*DOMAIN: Collaboration Networks
*NAME: ca—netscienc
*TEXT: The ca—netscienc graph represents a collaboration network in the field of science.
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D.3 PREPARING GRAPHS AND THEIR TEXTUAL DESCRIPTION ABOUT GRAPH PROPERTY

Here we thoroughly discuss the process of obtaining graphs and their corresponding text prompts
describing their properties. Our goal is to demonstrate that Text2Graph LGGM can control the
statistics of the generated graphs in the full spectrum. However, the graphs obtained directly from
the Network Repository do not cover the whole topological space (e.g., Figure[I(a) shows that no
networks have a higher average degree while low clustering coefficient). Therefore, we plan to
synthesize graphs covering the whole space by Watts-Strogatz Small-world Graph Model. We vary
the number of nodes between [10, 110], the number of initial neighbors between [5, number of nodes],
and also the probability of rewiring each edge between [0, 1] to ensure the generated graphs span
across the full spectrum. After that, we group the generated graphs into low, medium, and high groups
in terms of their clustering coefficient and average degree. We implement this using NetworkX.

After we synthesize graphs and divide them into three groups, we generate user prompts paired with
these graphs next. Specifically, we prompt GPT4 following the templates in Listing[34. To ensure
the compatibility between the synthesis graphs and the generated user prompts. We further replace
the number output by GPT4 describing the network property with the real statistic calculated from
each network.

Listing 3: Prompt Template for Generating Textual Description about Network Property.

PROMPT: Please generate a short sentence about the graph, including its clustering coefficient information.

Note:

* Do not generate more than 20 words.

* Make sure the generated sentence includes the level of clustering coefficient, you can either specify it via
words like ['low’, "medium’, "high’]. or specify it via numbers like [(0, 0.25), (0.25, 0.5), (0.5, 0.75)]"

* You can also sometimes specify a concrete application scenario of the generated network.

« Please be accurate but also diverse

PROMPT: Please generate a short sentence about the graph, including its average degree information.

Note:

* Do not generate more than 20 words.

= Make sure the generated sentence includes the level of average degree, you can either specity it via words
like [’low’, "'medium’, *high’]. or specify it via numbers like [(0, 20), (20, 50), (50, 100)]"

# You can also sometimes specify a concrete application scenario of the generated network.

* Please be accurate but also diverse

Listing 4: Examples of Textual Description about Network Property.

« This graph has a high clustering coefficient, suggesting strong node clustering.

+ Please generate a network with a clustering coefficient around 0.61, indicating strong clustering.

* This retirement community’s social interaction graph displays a high clustering coefficient of 0.73,
indicative of close relationships.

+ With an average degree of 35, this network is ideal for studying urban transportation patterns.

« The graph’s moderate connectivity level helps in understanding the structure of small to medium—sized
music bands.

* An average degree of 41 makes this network suitable for simulating the collaboration in local artisan
markets.
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E EXPERIMENTAL SETTING

E.1 EVALUATION METRICS

Following Thompson et al. (2022); You et al.|(2018), we evaluate the graph generation performance
by the standard Maximum Mean Discrepancy (MMD) between generated and reference graphs

Gg,Gr:

1 - T T 1 g g 2 g T

—3 D R + = Y kG X)) = Y > k(x{x)),
ij=1 i—1 j—

where k(-, ) is a general kernel function and specifically we use RBF kernel following [You et al.
(2018):

k(x;,x;) = exp(fd(xi,xj)/2c72)7 (18)
where d(-, -) computes pairwise distance following [Vignac et al.|(2023) and MMD is evaluated over
the distributions of degree (DEG), clustering coefficients (CC), eigenvalues of normalized Laplacian
matrix (Spec) and orbits counts representing the distribution of all substructures of size 4 (Orb).

E.2 HYPERPARAMETER DETAILS

For all experiments, we select the best configuration according to the generation performance on
validation graphs and report the final performance on generating testing graphs. We adopt the
default hyperparameter settings from DiGress |Vignac et al. (2023) with the following exceptions:
we generate 100 graphs per domain for each evaluation and set the training epochs at 300 to ensure
convergence. Additionally, we implement gradient accumulation, using a mini-batch size of 12 across
4 accumulations, resulting in an effective batch size of 48. For Text-to-Graph Generation, the textual
encoder used to obtain textual description embeddings is "all-MiniLM-L6-v2". All experiments are
performed on a machine with A100-80G GPU RAM and 128GB RAM.

E.3 PARADIGM SETUP
Figure 8| comprehensively visualizes the training/evaluation paradigms of the four experiments, the
details of which are discussed in Section[5.1]
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Figure 8: Comprehensive Overview of the Experimental Setup for our LGGMs.
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F FULL EXPERIMENTAL RESULTS
F.1 OUT-OF-DOMAIN PERFORMANCE COMPARISON BETWEEN DIGRESS AND LGGM
F.1.1 DOMAIN SPECIFIC TRANSITION STRATEGY

Table 8: Comparing Zero-shot Generation Performance on Unseen Graphs in domain X between
DiGress trained on QM9 and LGGM-X pre-trained on all domains except the held-out domain X.

Domain  Method DEG CC Spec Orb
DiGress 0.2695  0.3452  0.0649  0.1489

Domain Method DEG CC Spec Orb
DiGress 0.2419  0.2993  0.1101  0.2978

FB LGGM-X 04962 07625 03408 07982 ‘ BIO LGGM-X 02117 06365 01690 05156
ssn  DiGress 01793 04721 01751 05654 | oo DiGress 02811 02042 02028 02633
LGGM-X 00220 04044 01274  0.0505 LGGM-X 01916 0.0917 01219  0.0640
baap  DiGress 02312 05444 00674 02650 | oo DiGress 04466 04170 04483 04551
LGGM-X 02618 08650 03013  1.0459 LGGM-X 00721 0.0517 02331  0.4085
wen DiGress 02575 05955 01907 09282 | DiGress 02393 05341 02247 0.7619
LGGM-X 01491 09436 0.1154 04016 LGGM-X 01493 09200 0.1786  0.2057
Roap  DiGress 0411 06653 0308 06530 | . DiGress 04580 04546 02144 04417
LGGM-X  0.0379 01191 00759  0.0401 LGGM-X 02049 02760 0.0691 02107
powpg  DiGress 05292 0.6083 0355 12024 | o DiGress 03150 03664 01299  0.2278
LGGM-X  0.0343 06200 0.0649 0.0228 LGGM-X 01314 08908 0.1188  0.6391
L DiGress 03217 04589 02077 05184 ‘

LGGM-X  0.1635 05492  0.1597  0.3669

F.1.2 UNIFORM TRANSITION STRATEGY

Table 9: Comparing Zero-shot Generation Performance on Unseen Graphs in domain X between
DiGress trained on QM9 and LGGM-X pre-trained on all domains except the held-out domain X.

Domain  Method DEG CC Spec Orb
DiGress 0.3376  0.6298  0.0797  0.3593

Domain Method DEG CC Spec Orb
DiGress 02712 05202 0.1127 0.3188

\
FB BIO
LGGM-X 04723 0.6843  0.2924  0.7555 ‘ LGGM-X  0.1081 0.2696  0.0900  0.2053
ASN DiGress 0.1496  0.3258  0.1506  0.4420 ECON DiGress 0.2987 0.4841 02162 0.3834
LGGM-X  0.0281 0.2440  0.0830  0.0618 LGGM-X  0.1213  0.0920 0.1120  0.1086
EMAIL DiGress 0.2192  0.6012  0.0702 0.3416 RT DiGress 04164  0.1327 04147  0.5957
LGGM-X  0.0751 0.2364 0.0768  0.3089 LGGM-X  0.0525 0.1429 0.1330  0.2219
WEB DiGress 0.2556  0.6186  0.1877  0.6045 CoL DiGress 0.2473  0.5826  0.2314  0.7679
LGGM-X  0.0648 0.3961 0.0549  0.1127 LGGM-X  0.0736  0.5769  0.0895  0.0988
ROAD DiGress 0.3705  0.8226  0.2801  0.7198 Eco DiGress 0.5431  0.7915  0.2338  0.6045
LGGM-X  0.0713  0.2193  0.0987  0.2986 LGGM-X 04753 03904 03194 0.3934
POWER DiGress 0.3726 04582  0.3270  1.4732 CITATION DiGress 0.2527  0.7790  0.1315  0.4966
LGGM-X  0.0119 0.1293 0.0373  0.0754 LGGM-X  0.1348  0.7257 0.1160  0.4981
DiGress 0.3112  0.5622 0.2030 0.5923 ‘
ALL

LGGM-X  0.1408 0.3422 0.1253  0.2616
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F.2 PERFORMANCE COMPARISON BETWEEN FINE-TUNED DIGRESS AND FINE-TUNED LGGM

F.2.1 DOMAIN SPECIFIC TRANSITION STRATEGY

Table 10: Comparing Graph Generation Performance between Fine-tuned DiGress and Fine-tuned
LGGM on each domain. DiGress-FT: DiGress pre-trained on QM9 and fine-tuned on domain X;
LGGM-FT: LGGM pre-trained on all other domains except X and fine-tuned on X under Domain
Specific Transition Strategy.

Domain  Method DEG CC Spec Orb Domain Method DEG CC Spec Orb
B DiGress FT 00159 00564 00082 00298 o DiGress-FT 00391 00354 00347  0.0291
LGGM-FT  0.0065 0.0544  0.0069  0.0282 LGGM-FT  0.0036 0.0303 0.0102  0.0342
ASN DiGressFT 00189 00775 00729 0088 o DiGress-FT 00301 0.0431 00372  0.0392
LGGM-FT  0.0014  0.0509 0.0161  0.0084 LGGM-FT 00215 0.0330  0.0062  0.0249
Evap  DiGressFT 00208 00448 00230 00447 DiGress-FT 00054 00464 00051  0.0437
LGGM-FT 00166 0.0364 0.0104  0.0463 LGGM-FT  0.0012  0.0075 0.0033  0.0162
WEB DiGress FT 00192 00808 00664 01361 DiGress-FT 00255 02279 00788  0.0731
LGGM-FT 00116 00721 0.0152  0.0656 LGGM-FT 00202 0.1621 0.0571  0.0631
RoAD  DiGressFT 00907 01404 01099 01097 o DiGress-FT  0.1370 02747 00476  0.2109
LGGM-FT ~ 0.0088 0.1349 0.0347  0.0125 LGGM-FT 00196 02343  0.0291  0.2100
DiGress-FT 00104 02197  0.1023  0.0445 DiGress-FT 00363 0.1140  0.0469  0.0423
POWER [ GGM-FT  0.0008 0.1539 00215 00081 CUATION  [GGMFT  0.0078  0.0827  0.0137  0.0316

DiGress-FT ~ 0.0374  0.1134  0.0528  0.0743

All LGGM-FT ~ 0.0010 0.0877 0.0187  0.0458

F.2.2 UNIFORM TRANSITION STRATEGY

Table 11: Comparing Graph Generation Performance between Fine-tuned DiGress and Fine-tuned
LGGM on each domain. DiGress-FT: DiGress pre-trained on QM9 and fine-tuned on domain X;
LGGM-FT: LGGM pre-trained on all other domains except X and fine-tuned on X under Uniform
Transition Strategy.

Domain  Method DEG CC Spec Orb Domain Method DEG CC Spec Orb
B DiGress FT 00039 00650 00090 00304 DiGress-FT  0.0274 00845 00493  0.0312
LGGM-FT 00050  0.0579  0.0059  0.0280 LGGM-FT  0.0049  0.0496  0.0056  0.0257
ASN DiGress FT 00249 05604 00779 00348 L o DiGress-FT  0.0133  0.0355 00223  0.0360
LGGM-FT  0.0058 0.1098  0.0311  0.0101 LGGM-FT 00597 00594 00216 0.0535
evaL  DiGressFT 00134 00709 00223 00694 o DiGressFT 00418  0.0243 00495  0.0583
LGGM-FT 00120 00559 00158  0.0444 LGGM-FT  0.0032 00163 00051  0.0227
WEB DiGress FT 00327 02025 00858 0203 DiGress-FT  0.0562  0.7070  0.1086  0.1471
LGGM-FT 00218 0.1398 0.0310  0.1262 LGGM-FT  0.1074 04265 0.1398  0.0897
Roap  DiGressFT 00843 01010 01873 05155 DiGressFT  0.1118 03016 00548  0.2102
LGGM-FT ~ 0.0081 0.0547 0.0573  0.0228 LGGM-FT 00204 02347 0.0404  0.2100
DiGress-FT 00231  0.1029  0.0683  0.0441 DiGress-FT 00277  0.1622 00501  0.0813
POWER [ GGMFT 00077 00570 0.0134 00040 CIATION [ GGMFT 00052 00821 00221 0.0443
Al DiGress-FT 00384 02015 00654  0.1218

LGGM-FT 0.0218  0.1120  0.0324  0.0568
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F.3 PERFORMANCE COMPARISON BETWEEN DIGRESS DIRECTLY TRAINED ON X AND
FINE-TUNED LGGM

F.3.1 DOMAIN SPECIFIC TRANSITION

Table 12: Comparing Graph Generation Performance between DiGress and Fine-tuned LGGM on
each domain. DiGress: DiGress trained directly on domain X; LGGM-FT: LGGM pre-trained on all
other domains except X and fine-tuned on X under Domain Specific Transition Strategy.

Domain  Method DEG CC Spec Orb Domain Method DEG CC Spec Orb
B DiGress 00423 00718 00243 00298 . DiGress ~ 0.0481 0.1286 00487  0.0460
LGGM-FT  0.0065 0.0544  0.0069  0.0282 LGGM-FT  0.0036  0.0303  0.0102  0.0342
ASN DiGress 00319 00835 00679 01463 o DiGress  0.0224 00361 00084  0.0325
LGGM-FT  0.0014  0.0509 0.0161  0.0084 LGGM-FT  0.0215 0.0330  0.0062  0.0249
eva  DiGress 00145 00671 00143 00558 o DiGress  0.0035 00111 00094 0.0207
LGGM-FT 00166 0.0364 0.0104  0.0463 LGGM-FT  0.0012  0.0075  0.0033  0.0162
wep  DiGress 00204 00778 00695 01101 o DiGress  0.0278 02192 00669 0.0284
LGGM-FT 00116 00721 0.0152  0.0656 LGGM-FT 00202 0.1621 0.0571  0.0631
Roap  DiGress 00333 01342 00932 00861 DiGress  0.0268 02356 00339 02100
LGGM-FT  0.0088 01349 0.0347 0.0125 LGGM-FT  0.0196 02343  0.0291  0.2100
DiGress 00143 02050 00776  0.0392 DiGress  0.0406 0.1790 00677 0.0944
POWER | GGM-FT  0.0008 01539 00215 00081 CUATION  [GGMCFT 00078 00827 00137  0.0316

DiGress 0.0272  0.1208  0.0485  0.0749

All LGGM-FT  0.0100 0.0877 0.0187 0.0458

F.3.2 UNIFORM TRANSITION

Table 13: Comparing Graph Generation Performance between DiGress and Fine-tuned LGGM on
each domain. DiGress: DiGress trained directly on domain X; LGGM-FT: LGGM pre-trained on all
other domains except X and fine-tuned on X under Uniform Transition Strategy.

Domain  Method DEG CC Spec Orb Domain Method DEG CC Spec Orb
B DiGress 00177 00698 00138 00296 o DiGress  0.0179 00499 00441  0.0526
LGGM-FT  0.0050  0.0579  0.0059  0.0280 LGGM-FT  0.0049  0.0496 0.0056  0.0257
SN DiGress 00337 01744 00482 00243 o DiGress 00229  0.0430  0.0088  0.0427
LGGM-FT  0.0058 0.1098 0.0311  0.0101 LGGM-FT  0.0597 00594 00216 0.0535
Ena  DiGress 00259 00901 00366 00743 oo DiGress  0.0336 00920 0.0432 0.0572
LGGM-FT  0.0120 0.0559 0.0158  0.0444 LGGM-FT  0.0032 00163  0.0051  0.0227
wep  DiGress 00239 00898 01033 02371 DiGress 00252 05156 01171  0.2060
LGGM-FT  0.0218 01398 0.0310  0.1262 LGGM-FT  0.1074 04265 0.1398  0.0897
Roap  DiGress 01553 02788 02169 00542 DiGress  0.0263 02359 00439 02100
LGGM-FT  0.0081 0.0547 0.0573  0.0228 LGGM-FT 00204 02347  0.0404  0.2100
DiGress 00348 03174 0.1083  0.1393 DiGress 00217 0.1566 00645 0.1235
POWER | GGMFT 00077 00570 00134 00040 CUATION  [GGMFT 00052 00821 00221 0.0443

DiGress 0.0366  0.1761  0.0707  0.1042

All LGGM-FT 00218 01120 0.0324  0.0568
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F.4 DOMAIN TRANSFERABILITY ANALYSIS

Table 14: Transferability analysis between Chemistry (CHEM) and Society (SOC) domains. The
pre-trained LGGM on chemistry demonstrates negative transferability on IMDB-BINARY/MULTI
graphs in the SOC domain. LGGM pre-trained on society demonstrates negative transferability on
graphs PROTEINS/ENZYMES/MUTAG in CHEM domain.

Domain Chemistry Social
Dataset | PROTEINS ENZYMES MUTAG IMDB-BINARY IMDB-MULTI

Metric | Orb CC | Orb CC | Orb CC | Orb CC | Orb CcC

CHEM | 0.0604 0.0297 | 0.0593 0.0534 | 0.0445 0.0340 | 0.9001 0.4085 |0.5511 0.6324
SOC 0.6997 0.0890 | 0.8028 0.0422 | 0.5022 0.9439 | 0.1526 0.2247 | 0.0605 0.0945

F.5 EQUIPPING LARGE-SCALE TRAINING PARADIGM WITH ANOTHER GRAPH GENERATIVE
BACKBONE EDGE

Table 15: Comparing Graph Generation Performance between EDGE and EDGE equipped with
LGGM on each domain. We can still see the performance boost after equipping EDGE with our
large-scale training paradigm.

Domain Method DEG CcC Spec Orb Domain Method  DEG CcC Spec Orb

B EDGE 00031 00609 00079 00362 o EDGE 00126 0.0555 0.0484 00612
LGGM  0.0022 00657 0.0073 0.0354 LGGM 00120 00669 00502  0.0590
oSN EDGE 00212 01416 01145 01652 L. o EDGE  0.0416 0.0398 0.0078 0.0364
LGGM 00146 0.0783 00724 0.1285 LGGM 00519 00817 00665 00551
ova  EDGE 00118 00661 00249 00771 oo EDGE 00340 0.1760 0.1242 0.0331
LGGM  0.0081 00519 00237 00691 LGGM 00288 03088 0.0366 00938
wep | EDGE 00132 01062 01094 01950 - EDGE 00042 02161 0.1325 0.3049
LGGM 01225 01283 0.0976  0.1840 LGGM  0.0026 03058 0.1285 03104
roap  EDGE 00254 01314 01313 01065 o o EDGE 00367 02424 00665 02156
LGGM 00222 00624 01242  0.0867 LGGM 00197 02406 00349 02156
EDGE 01417 02811 02568 04298 EDGE 00124 00962 00460 0.0438
POWER  yoGM  0.1276 02276 02548 03549 CUTATION  yGGM 00073 0.0947  0.0448  0.0458
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F.6 TEXT-TO-GRAPH GENERATION

F.6.1

DOMAIN SPECIFIC TRANSITION

Table 16: Comparing the performance of graph generation between LGGM trained on graphs from
all domains with and without domain/name as textual conditions.

Domain  Method DEG CC Spec Orb \Domain Method DEG CC Spec Orb
LGGM 0.2566 0.3552 0.0587 0.1614 LGGM 0.2860 0.3275 0.1117 0.2333
FB LGGM-T2GP  0.1533 0.1894 0.0817 0.0492 | BIO LGGM-T2G®  0.1313 05111 0.1340 0.3736
LGGM-T2G""  0.0053 0.0576 0.0076 0.0245 LGGM-T2G""  0.0219 0.0251 0.0126 0.0190
LGGM 0.1477 03003 0.1551 0.3719 LGGM 0.3540 0.3404 0.2078 0.2740
ASN LGGM-T2G®  0.0429 04742 0.0949 0.0401 | ECON LGGM-T2G®  0.2346 0.1572 0.1550 0.0579
LGGM-T2GY"  0.0161 0.1312 0.0344 0.0174 LGGM-T2G"*  0.0869 0.0601 0.0412 0.0592
LGGM 0.1957 0.2629 0.0646 0.2118 LGGM 0.4355  0.3924 04329 0.4966
EMAIL  LGGM-T2G®  0.0874 03238 0.1472 0.2869 | RT LGGM-T2G®  0.0050 0.0940 0.0415 0.2870
LGGM-T2GY*  0.0077 0.0316 0.0176 0.0365 LGGM-T2G"*  0.0034 0.0253 0.0225 0.0869
LGGM 0.2461 03570 0.1853  0.4832 LGGM 0.2616 0.3398 0.2305 0.7090
WEB LGGM-T2G®  0.1253 0.9088 0.1156 0.3884 | CoL LGGM-T2G®  0.1301 0.9384 0.1963 0.2032
LGGM-T2GY*  0.0771 0.2720 0.0732 0.1251 LGGM-T2G"*  0.0845 0.5070 0.1378 0.1531
LGGM 0.4315 0.8107 03192 0.6976 LGGM 04611 03108 0.1932  0.3468
ROAD  LGGM-T2G® 00112 0.1611 0.0298 0.0120 | Eco LGGM-T2G®  0.0575 0.2976 0.0585 0.2580
LGGM-T2GY*  0.0097 0.1316 0.0324 0.0119 LGGM-T2GY*  0.1070 0.2913 0.0410 0.2556
LGGM 04411 0.4694 03384 13222 LGGM 03392 0.5009 0.1295 0.2248
POWER LGGM-T2G®  0.0194 0.6031 0.0286 0.0193 | CITATION LGGM-T2G®  0.1636 0.8868 0.2036 0.6142
LGGM-T2GY*  0.0227 04817 0.0330 0.0223 LGGM-T2G"*  0.0496 0.0914 0.0669 0.0318
LGGM 03213 03973  0.2022  0.4610
ALL LGGM-T2G®  0.0968 04621 0.1072 0.2158
LGGM-T2G"*  0.0410 0.1755 0.0434 0.0703

F.6.2 UNIFORM TRANSITION

Table 17: Comparing the performance of graph generation between LGGM trained on graphs from
all domains with and without domain/name as textual conditions.

Domain  Method DEG CC Spec Orb \Domain Method DEG CC Spec Orb
LGGM 0.0321 0.4994 0.0763 03117 LGGM 0.2661 03120 0.1135 0.3835
FB LGGM-T2G?  0.1561 0.1639 0.0924 0.0417 | BIO LGGM-T2G?  0.0099 0.1286 0.0303 0.1366
LGGM-T2G""  0.0050 0.0545 0.0070 0.0251 LGGM-T2G""  0.0028 0.0287 0.0236 0.0174
LGGM 0.1511 04325 0.1875 0.3896 LGGM 0.3828 0.1533  0.2039  0.2583
ASN LGGM-T2G®  0.0318 0.2821 0.0606 0.0631 | ECON LGGM-T2G®  0.0666 0.0594 0.0650 0.0586
LGGM-T2GY"  0.0211 0.1191 0.0462 0.0195 LGGM-T2GY*  0.0132  0.0257 0.0053 0.0191
LGGM 0.2156  0.2450 0.0666 0.2757 LGGM 0.4395 02225 04337 0.6641
EMAIL  LGGM-T2GP  0.0469 0.0982 0.0484 0.0505 | RT LGGM-T2G®  0.0468 0.0955 0.0729 0.0393
LGGM-T2GY*  0.0073 0.0379 0.0127 0.0437 LGGM-T2G"*  0.0286 0.0933 0.0400 0.0312
LGGM 0.2725 02672 0.1900 0.4368 LGGM 03565 0.3554 0.2451 0.7874
WEB LGGM-T2G®  0.0255 0.0737 0.0354 0.1856 | CoL LGGM-T2G®  0.0395 03110 0.1146 0.1823
LGGM-T2GY*  0.0105 0.0941 0.0206 0.0451 LGGM-T2G"*  0.0265 0.2813 0.0895 0.0899
LGGM 0.4825 0.5373  0.3398 0.7542 LGGM 0.5466 0.6003 0.2257  0.7089
ROAD  LGGM-T2G®  0.0088 0.1225 0.0399 0.0155 | Eco LGGM-T2G® 02160 0.2917 0.1203  0.2569
LGGM-T2GY*  0.0177 0.0437 0.0336 0.0086 LGGM-T2G"*  0.0293 0.2885 0.0416 0.2556
LGGM 0.4394 0.4646 03473 13186 LGGM 0.2624 0.5374 0.1295 0.3419
POWER LGGM-T2G®  0.0162 0.1131 0.0479 0.1786 | CITATION LGGM-T2G®  0.0101 0.1025 0.0315 0.0651
LGGM-T2GY*  0.0062 0.0570 0.0111  0.0084 LGGM-T2GY*  0.0072 0.0849 0.0115 0.0287
LGGM 03206 0.3856 0.2132  0.5526
ALL LGGM-T2G®  0.0562 0.1535 0.0633 0.1061
LGGM-T2G"*  0.0146 0.1007 0.0286 0.0494
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F.7 SENSITIVE ANALYSIS ON NUMBER OF TRAINING DATA UNDER DOMAIN SPECIFIC
TRANSITION
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Figure 9: Effect of Number of Training Graphs on Road Networks.
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Figure 10: Effect of Number of Training Graphs on Retweet Networks.
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Figure 11: Effect of Number of Training Graphs on Email Networks.
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Figure 12: Effect of Number of Training Graphs on Web Graphs.
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Figure 13: Effect of Number of Training Graphs on Facebook Networks.
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F.8 SENSITIVE ANALYSIS ON NUMBER OF TRAINING DATA UNDER UNIFORM TRANSITION
STRATEGY

i

Performance (-Log of Orbit)

—— Fine-tuned LGGM on X
—— DiGress Trained on X

j——" g

—— Fine-tuned LGGM on X
—— DiGress Trained on X

¢ (-Log of Spectre)

—e— Fine-tuned LGGM on X
—— DiGress Trained on X

Fine-tuned LGGM on X
—— DiGress Trained on X

Performance (-Log of Degree)

Performance (-Log of Clusteri

# of Training Graphs

(a) Citation-DEG (b) Citation-CC (c) Citation-Orb (d) Citation-Spec

# of Training Graphs # of Training Graphs # of Training Graphs

Figure 14: Effect of Number of Training Graphs on Citation Networks.
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Figure 15: Effect of Number of Training Graphs on Retweet Networks.
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Figure 16: Effect of Number of Training Graphs on Email Networks.
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Figure 17: Effect of Number of Training Graphs on Web Graphs.
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Figure 18: Effect of Number of Training Graphs on Facebook Networks.
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F.9 COMPARING THE DOMAIN AS THE TEXTUAL CONDITION BEFORE/AFTER SHUFFLING

F.9.1

DOMAIN SPECIFIC TRANSITION

Table 18: Comparing the performance of graph generation between LGGM trained on graphs from
all domains with and without domain/name as textual conditions under domain-specific transition.

Domain Method DEG CC Spec Orb \ Domain Method DEG CcC Spec Orb
FB LGGM-T2G®  0.1533 0.1894 0.0817  0.0492 BIO LGGM-T2G®  0.1313 05111 0.1340 0.3736
LGGM-T2GP* 0.2323 0.2618 0.1590 0.0923 LGGM-T2GP*  0.1762 0.5887 0.1460  0.4929
ASN LGGM-T2G?  0.0429 0.4742 0.0949 0.0401 ECON LGGM-T2G? 02346 0.1572 0.1550 0.0579
LGGM-T2GP* 0.0891 0.5725 0.1446 0.0610 LGGM-T2G *  0.2029 0.3393 0.2298 0.0579
EMALL LGGM-T2G®  0.0874 0.3238 0.1472 0.2869 RT LGGM-T2G®  0.0050 0.0940 0.0415 0.2870
LGGM-T2GP* 02169 0.7497 0.2825 0.8397 LGGM-T2GP*  0.0240 0.1023 0.1374 04123
WEB LGGM-T2G®  0.1253 0.9088 0.1156 0.3884 CoL LGGM-T2G®  0.1301 0.9384 0.1963 0.2032
LGGM-T2GP*  0.1464 0.9776 0.1460 0.4211 LGGM-T2GP*  0.1529 0.9684 0.2313  0.2089
ROAD LGGM-T2G?  0.0112 0.1611 0.0298 0.0120 Eco LGGM-T2G?  0.0575 0.2976 0.0585 0.2580
LGGM-T2GP*  0.0365 0.2430 0.0605 0.0500 LGGM-T2GP* 0.1964 0.3330 0.1438 0.2574
POWER LGGM-T2G®  0.0194 0.6031 0.0286 0.0193 CITATION LGGM-T2G®  0.1636 0.8868 0.2036 0.6142
LGGM-T2GP* 0.0434 0.6721 0.0626 0.0231 LGGM-T2GP* 0.1615 0.9553 0.1903  0.6078
ALL LGGM-T2G®  0.0968 0.4621 0.1072 0.2158
LGGM-T2GP* 0.1399 0.5636 0.1611 0.2937

F.9.2 UNIFORM TRANSITION

Table 19: Comparing the performance of graph generation between LGGM trained on graphs from
all domains with and without domain/name as textual conditions under uniform transition strategy.

Domain  Method DEG CC Spec Orb | Domain Method DEG CC Spec Orb
FB LGGM-T2G®  0.1561 0.1639 0.0924 0.0417 BIO LGGM-T2G®  0.0099 0.1286 0.0303 0.1366
LGGM-T2GP* 03018 0.4207 02069 0.2622 LGGM-T2GP* 0.0754 0.2889 0.0881 0.2783
ASN LGGM-T2G®  0.0318 0.2821 0.0606 0.0631 ECON LGGM-T2G®  0.0665 0.0594 0.0650 0.0586
LGGM-T2GP* 0.0637 0.1561 0.1416 0.2351 LGGM-T2GP* 0.1035 0.0736 0.0971  0.0922
EMAILL LGGM-T2G®  0.0469 0.0982 0.0484 0.0505 RT LGGM-T2G®  0.0468 0.0955 0.0729 0.0393
LGGM-T2GP* 0.1107 02322 0.1315 0.1692 LGGM-T2GP*  0.1399 03913 0.2441 0.2497
WEB LGGM-T2G®  0.0255 0.0737 0.0354 0.1856 CoL LGGM-T2G®  0.0395 0.3110 0.1146 0.1823
’ LGGM-T2GP* 0.0485 0.0830 0.1340 0.2669 LGGM-T2GP* 0.0323 0.4972 0.1159 0.5375
ROAD LGGM-T2G®  0.0088 0.1225 0.0399 0.0155 Eco LGGM-T2G®  0.2160 0.2917 0.1203  0.2569
LGGM-T2GP* 0.0453 0.1005 0.1257 0.3803 LGGM-T2GP* 03722 03210 02226 02771
POWER LGGM-T2G®  0.0162 0.1131 0.0479 0.1786 CITATION LGGM-T2G®  0.0101 0.1025 0.0315 0.0651
LGGM-T2GP*  0.0225 0.1533 0.1264 0.2957 LGGM-T2GP* 0.0375 0.2454 0.0699 0.1363
ALL LGGM-T2G”  0.0562 0.1535 0.0633 0.1061
LGGM-T2GP* 0.1128 0.2469 0.1420 0.2650
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