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APPENDIX TO “CAN LABEL-NOISE TRANSITION MATRIX
HELP TO IMPROVE SAMPLE SELECTION AND LABEL COR-
RECTION?”

APPENDIX A

In this section, we show all the proofs.

Theorem 1. Let x1, x2 be two examples such that argmaxi∈{0,1} P (Y = i|x1) = argmaxj∈{0,1} P (Ỹ =

j|x1) = 1, argmaxi∈{0,1} P (Y = i|x2) = argmaxj∈{0,1} P (Ỹ = j|x2) = 0, and P (Y = 0|x2) =

P (Y = 1|x1). If P (Ỹ = 1|Y = 0) − P (Ỹ = 0|Y = 1) > 0, then mini∈{0,1} `(f
∗(x2), i) >

mini∈{0,1} `(f
∗(x1), i).

Proof.

P (Ỹ = 0|x2)− P (Ỹ = 1|x1)

=P (Ỹ = 0|Y = 0)P (Y = 0|x2) + P (Ỹ = 0|Y = 1)P (Y = 1|x2)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Ỹ = 1|Y = 1)P (Y = 1|x1)]

=(1− P (Ỹ = 1|Y = 0))P (Y = 0|x2) + P (Ỹ = 0|Y = 1)P (Y = 1|x2)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + (1− P (Ỹ = 0|Y = 1))P (Y = 1|x1)]

=(1− P (Ỹ = 1|Y = 0))P (Y = 0|x2) + P (Ỹ = 0|Y = 1)P (Y = 1|x2)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + (1− P (Ỹ = 0|Y = 1))P (Y = 1|x1)]

=P (Y = 0|x2)− P (Ỹ = 1|Y = 0)P (Y = 0|x2) + P (Ỹ = 0|Y = 1)P (Y = 1|x2)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Y = 1|x1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)]

=P (Y = 1|x1)− P (Ỹ = 1|Y = 0)P (Y = 1|x1) + P (Ỹ = 0|Y = 1)(1− P (Y = 1|x1))

−[P (Ỹ = 1|Y = 0)(1− P (Y = 1|x1)) + P (Y = 1|x1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)]

=P (Y = 1|x1)− P (Ỹ = 1|Y = 0)P (Y = 1|x1) + P (Ỹ = 0|Y = 1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)

−[P (Ỹ = 1|Y = 0)− P (Ỹ = 1|Y = 0)P (Y = 1|x1) + P (Y = 1|x1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)]

=P (Ỹ = 0|Y = 1)− P (Ỹ = 1|Y = 0) < 0. (1)

Note that f∗ is an optimal hypothesis which perfectly learns the noisy class posterior distribution. By
employing the cross-entropy loss on f∗, we have

`(f∗(X), Ỹ ) = −Ỹ log(f∗(X))− (1− Ỹ ) log(1− f∗(X)) = − log(P (Ỹ |X)), (2)

which is a non-increasing function. Therefore, the largest noisy class posterior has the minimum loss.
Because argmaxj∈{0,1} P (Ỹ = j|x2) = 0, argmaxi∈{0,1} P (Ỹ = i|x1) = 1, and P (Ỹ = 0|x2) >
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P (Ỹ = 1|x1) by Eq. (1), then

max(P (Ỹ = 0|x2), P (Ỹ = 1|x2), P (Ỹ = 0|x1), P (Ỹ = 1|x1)) = P (Ỹ = 1|x1),

which implies that the minimum loss among those four noisy class posteriors is `(f∗(X = x1), Ỹ = 1).
Therefore mini∈{0,1} `(f

∗(x2), i) > mini∈{0,1} `(f
∗(x1), i) holds, which completes the proof.

Theorem 2. When P (Ỹ = 1|Y = 0) − P (Ỹ = 0|Y = 1) > 0, if an example x1 such that 0.5 < P (Y =

0|x1) <
(1−2P (Ỹ=0|Y=1))

(1−2P (Ỹ=1|Y=0))
P (Y = 1|x1), then P (Ỹ = 1|x1) > 0.5.

Proof.

P (Ỹ = 0|x1)− P (Ỹ = 1|x1)

=P (Ỹ = 0|Y = 0)P (Y = 0|x1) + P (Ỹ = 0|Y = 1)P (Y = 1|x1)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Ỹ = 1|Y = 1)P (Y = 1|x1)]

=(1− P (Ỹ = 1|Y = 0))P (Y = 0|x1) + P (Ỹ = 0|Y = 1)P (Y = 1|x1)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + (1− P (Ỹ = 0|Y = 1))P (Y = 1|x1)]

=P (Y = 0|x1)− P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Ỹ = 0|Y = 1)P (Y = 1|x1)

−[P (Ỹ = 1|Y = 0)P (Y = 0|x1) + P (Y = 1|x1)− P (Ỹ = 0|Y = 1)P (Y = 1|x1)]

=(1− 2P (Ỹ = 1|Y = 0))P (Y = 0|x1) + (2P (Ỹ = 0|Y = 1)− 1)P (Y = 1|x1). (3)

Let P (Y = 0|x1) <
(1−2P (Ỹ=0|Y=1))

(1−2P (Ỹ=1|Y=0))
P (Y = 1|x1), by combining with Eq. (3), we have

P (Ỹ = 0|x1)− P (Ỹ = 1|x1)

<(1− 2P (Ỹ = 1|Y = 0))
(1− 2P (Ỹ = 0|Y = 1))

(1− 2P (Ỹ = 1|Y = 0))
P (Y = 1|x1) + (2P (Ỹ = 0|Y = 1)− 1)P (Y = 1|x1)

<(1− 2P (Ỹ = 0|Y = 1))P (Y = 1|x1) + (2P (Ỹ = 0|Y = 1)− 1)P (Y = 1|x1) < 0, (4)

which implies that P (Ỹ = 1|x1) > 0.5. Let the Bayes label on the clean class-posterior distribution of x1

be 01, then 0.5 < P (Y = 0|x1) <
(1−2P (Ỹ=0|Y=1))

(1−2P (Ỹ=1|Y=0))
P (Y = 1|x1), which completes the proof.
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1The Bayes label is the label with the largest class posterior. For example, the Bayes label on the clean class-posterior
distribution Y ∗ of a instance x is defined as Y ∗ = argmaxi∈{0,1} P (Y = i|x)Mohri et al. (2018)
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