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APPENDIX TO “CAN LABEL-NOISE TRANSITION MATRIX
HELP TO IMPROVE SAMPLE SELECTION AND LABEL COR-
RECTION?”

APPENDIX A

In this section, we show all the proofs.

jle1) = 1, argmax;c g, 1 PY = i|zs) = arg MaxX;e (o,1) P(Y = jlxs) = 0, and P(Y = 0|zs
P(Y = 1zy). If PY = 1Y = 0)—P(Y = 0]Y = 1) > 0, then min;e o1y £(f* (x2),
min;eo,13 £(f* (1), 9).

Theorem 1. Let 1, €2 be two examples such that arg max;e g, 1} - P(Y =i|x;) = arg mMax;co,1} P(f’
) =
i) >

Proof.

P(Y =0|zy) — P(Y = 1]x;)
=P(Y =0]Y = 0)P(Y = 0|z2) + P(Y =0]Y = 1)P(Y = 1|x,)
~[P(Y =1]Y =0)P(Y =0lz;) + P(Y = 1|Y = )P(Y = 1|z;)]
=(1=P(Y =1]Y =0))P(Y = 0lzz) + P(Y = 0]Y = )P(Y = 1|m,)
—[P(Y =1|Y = 0)P(Y =0|z;) + (1 — P(Y =0|Y = 1))P(Y = 1|z)]
=(1—=P(Y =1]Y =0))P(Y = 0lzz) + P(Y = 0]Y = 1)P(Y = 1|m,)
P(Y =1]Y =0)P(Y = 0lz1) + (1= P(Y = 0]Y = 1))P(Y = 1|z1)]
=P(Y =0|zz) — P(Y = 1Y = 0)P(Y = 0|x3) + P(Y =0]Y = 1)P(Y = 1|x)
~[P(Y =1|Y = 0)P(Y = 0|z1) + P(Y = 1|zy) — P(Y =0]Y = 1)P(Y = 1|z1)]
=P(Y =1jx;) — P(Y = 1Y = 0)P(Y = 1|z;) + P(Y =0|Y = 1)(1 — P(Y = 1|z;))
—[P(Y =1]Y =0)(1 = P(Y = 1|@1)) + P(Y = l&y) = P(Y =0]Y = 1)P(Y = 1|ay)]
=P(Y =1|z1) — P(Y =1[Y =0)P(Y = 1|&;) + P(Y =0|Y = 1) — P(Y =0]Y = 1)P(Y = 1|x,)
—[P(Y =1]Y =0) — P(Y = 1|]Y = 0)P(Y = 1|z1) + P(Y = 1|x;) — P(Y =0|Y = 1)P(Y = 1|z)]
=P(Y=0Y=1)-P(Y =1]Y =0) < 0. (1)

Note that f* is an optimal hypothesis which perfectly learns the noisy class posterior distribution. By
employing the cross-entropy loss on f*, we have

Uf(X),Y) = =Y log(f*(X)) — (1 = Y)log(1 — f*(X)) = —log(P(Y]X)), )

which is a non-increasing function. Therefore, the largest noisy class posterior has the minimum loss.
Because argmax;cqg 13 P(Y = jlo2) = 0, argmax;co 3 P(Y = i[z1) = 1, and P(Y = 0lzz) >
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P(Y = 1|z) by Eq. (1), then
max(P(Y = 0|xy), P(Y = 1|@y), P(Y = 0|z1), P(Y = 1|z1)) = P(Y = 1]x;),
which implies that the minimum loss among those four noisy class posteriors is £(f*(X = x1), Y = 1).

Therefore min, ¢ ¢ 11 £(f*(®2), %) > min;ego,13 £(f*(21), 7) holds, which completes the proof. O

Theorem 2. When P(Y = 1]Y =0) — P(Y = O\Y = 1) > 0, if an example x1 such that 0.5 < P(Y =

Olzy) < %P(Y = 1|@1), then P(Y = 1|1) > 0.5.

Proof.

P(Y =0|z;) — P(Y = 1]x;)
=P(Y =0]Y =0)P(Y =0|z1) + P(Y =0]Y = 1)P(Y = 1|z;)
~[P(Y =1]Y =0)P(Y =0lz;) + P(Y = 1|]Y = )P(Y = 1|z1)]
=(1—P(Y =1Y = 0))P(Y =0Jx;) + P(Y =0]Y = 1)P(Y = 1|z1)
P(Y =1]Y =0)P(Y =0|z;) + (1 — P(Y = 0]Y = 1))P(Y = 1|z;)]

=P(Y =0|z;) — P(Y = 1Y = 0)P(Y =0|z;) + P(Y =0]Y = 1)P(Y = 1|z;)
—[P(Y =1]Y = 0)P(Y = 0|z1) + P(Y = 1|@;) — P(Y =0]Y = 1)P(Y = 1|z;)]
=(1=2P(Y =1]Y = 0))P(Y = Olz1) + 2P(Y = 0]Y = 1) = )P(Y = 1|z,). 3)

Let P(Y = 0]z1) < %P(Y = 1|&1), by combining with Eq. (3), we have

P(Y =0|z,) — P(Y = 1|z,)

<l 2PF =1y =0 ))(1—2 (Y =0y =1))
(1-2P(Y =1y = 0))

<(1=2P(Y =0[Y =1))P(Y =1]x1) + 2P(Y =0]Y =1) — 1)P(Y = 1]z;1) < 0, (4)

P(Y = 1|lz1) + (2P(Y = 0]Y = 1) - )P(Y = 1|z1)

which implies that P(f’ = 1|&1) > 0.5. Let the Bayes label on the clean class-posterior distribution of x;

be 0, then 0.5 < P(Y = 0|z) < %P(Y = 1|x1), which completes the proof. O
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I'The Bayes label is the label with the largest class posterior. For example, the Bayes label on the clean class-posterior
distribution Y* of a instance z is defined as Y = arg max; ¢ (o 1, P(Y = i|z)Mohri et al. (2018)



