
Supplementary Information

1 Methods

1.1 Real-time Learning Benchmark
1.1.1 Network Pretraining

The networks tested in the real-time learning benchmark were pretrained on
ImageNet [7] and VGGFace2 [1]. We randomly sampled 1281167 images from
VGGFace2 and combined it with ImageNet, which also has 1281167 images. In
addition to this mixing, we also added a data-augmentation pipeline, which
is added right after the random-resized cropping operation that ends with a
224× 224 image, then randomly scales the image into a smaller image of shape
S × S (S is randomly sampled from 224 to 50), and padding the smaller image
using gray pixels (pixel value 127) to return to shape 224× 224 with the smaller
image in the center. This pipeline is randomly applied with a probability of
0.6. After pretraining, we selected the checkpoint with the highest initial d′
values, which was typically an earlier checkpoint than the last one. We find both
of these two additional settings (cotraining with VGGFace2 and the random-
resizing-gray-padding augmentation pipeline) are needed to get the reasonable
initial d′ on the face test images. We provide all the pretrained checkpoints in
the Supplementary Materials.

1.1.2 Video Stream Construction

For one model under one continual learning setting, we ran 15 experiments
through starting from the same checkpoint but varying the selection of face pairs
from six faces. For each experiment, all the three conditions (Non-Swap, Swap,
and Switch) were ran independently. For each condition, a control face pair was
first randomly selected and fixed across this condition, which is also how the
experiments on humans were run. This control face pair contains two faces that
are different from the selected experiment face pair. For the test phase, each test
trial was constructed through first showing the test image, then simulating four
saccades from the two middle-sized face images with 0.6s between two saccades,
and finally ending with 0.5s gray images (pixel value 127). In total, one test trial
took 3s. One test phase included 200 test trails randomly sampled from the tests
on the selected face pair and on the control face pair. The construction of the
exposure phase has been described in the main text (see Fig 5 A for examples).
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We also provide a pseudo-code description of this construction procedure in
Alg 1.

1.1.3 d′ and Learning Effects Computation

To compute d′, the hit rate (H = hit/(hit + miss)) and the false alarm rate
(F = false alarm/(false alarm + correct rejection)) are first computed. Then d′
is defined as norm.ppf(H)− norm.ppf(F ), where norm.ppf is the percent point
function of a normal distribution. The learning effect at test phase i is computed
by (d′i

exp−d′0
exp

)− (d′i
control−d′0

control
), where d′i

exp is the d′ of the experiment
object pair at this test phase and d′i

control is the d′ of the corresponding control
object pair. i = 0 is the first test phase.

1.1.4 Mismatch Computation

For one test phase of one condition, the learning effects of the model across
different object pairs are sampled in a bootstrap fashion to get 1000 samples and
then averaged to get one mean learning effect, which is called one bootstrapped
model mean effect, or eMboot. This is then compared to the bootstrapped human
mean effect of the corresponding phase (eHboot) to get the absolute difference
between these two mean effects. This comparison is performed for 1000 times
to get the mean absolute difference (mean(abs(eMboot − eHboot))). This measure is
normalized by mean(abs(mean(eHboot)− eHboot)) to get the final mismatch score,
whose minimal value is 1.

1.1.5 Learning-Rate Search and Number of Steps per Phase

For most of the training settings such as the batch size and the optimizer, we
followed the exactly same settings used during the ImageNet + VGGFace2
pretraining. For one model in one continual learning setting, we varied the
learning rate with the fixed number of steps per phase (150). For the three
experiment conditions and all 15 face pairs within each experiment condition,
the same learning rate was used. The learning rate was varied with respect to
each model and the continual learning setting, for typically at least three values.
All the effects are provided in the Supplementary Material (see “all_effects.tar”).
As for the fixed number of steps per phase, this number has proven enough in
the manually selected aggregation pair experiments, where all models show low
mismatch scores. We have also tested longer steps (300 and 600) for the BYOL-
More-MLPs model in the high-diversity settings and find that the mismatch
scores are very similar to those from the 150-step setting.

1.1.6 Initial d′ and Mismatch

For each object pair, we find that its learning effect in the Non-Swap condition
is typically lower than 4− d′init and the absolute value of its learning effect in
the Swap condition is usually smaller than d′init (Fig 8 A). So the models with
the wrong initial d′ fail to match the human learning effects as it is easy for
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these models to show increasingly better performance in the Non-Swap condition
but hard to show increasingly worse performance in the Swap condition. This
observation also explains why proper pre-training to have the correct initial d′ is
important and why catastrophic forgetting leads to worse mismatch, as networks
have wrong initial d′ after catastrophic forgetting. However, this observation by
itself cannot fully explain the failure of the models using the naturally emerging
aggregation pairs, since BYOL has a good final d′ on non-exposed objects but
still shows a large mismatch (Fig 8 B).

1.2 Life-long Learning Benchmark
1.2.1 Training Settings

Unless otherwise specified, all networks were trained for 100 segments. LARS
optimizer [12] was used with learning rate 4.8, momentum 0.9, and weight
decay 1e-6. The learning rate started from 0 and linearly increased to 4.8 in
10 epochs (segments) with changes in each step. A cosine decay was applied to
the learning rate to finally reduce it to 0. Each batch contained 512 pairs of
images, but the gradients were averaged across 8 steps and then applied, making
the effective batch size 4096. Each segment contained 2502 batches. Typical
data augmentation pipeline included the following: random resized crop, random
horizontal flip, random color jitter, random gray scale, and random Gaussian
filter. The input images were then color-normalized using ImageNet color mean
and std. Different methods may have their modified data augmentation pipeline.
The input images to the DNNs were in resolution 112 to make the training faster.
The main results of the life-long learning benchmark were also validated in larger
resolution (224) and longer training steps (300 segments). All embeddings were
L2-normalized before being used for loss computation. MAE was trained with
larger batch size (1024) and also more batches per-segment (5004), making the
overall number of image-pair-presentations four times of the typical number.
This was following the original practice in He et al. [10], where the authors
compared the results from 400 epochs with the results of other models from 100
epochs. This was also due to the high mask ratio (0.75) used in the model.

1.2.2 Mini-ImageNet Evaluation

At the end of every 10 segments, the outputs of the ResNet18 encoder in the
shape 512 were extracted on the Mini-ImageNet images, which were resized to
make the shortest edge 128 and center cropped to get 112 ∗ 112 images. A linear
SVM was trained on the training subset to do the multi-class object recognition
and evaluated on the evaluation subset. We reported the best performance
among linear SVMs with α values chosen from {1e-7, 1e-6, 1e-5, 1e-4, 1e-3,
1e-2, 1e-1, 1, 1e1, 1e2}. The Mini-ImageNet was constructed through randomly
sampling 100 classes and 200 images per class. The evaluation subset was the
corresponding validation images for these classes.
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1.2.3 Algorithm Loss Definitions

SimCLR. [4] For one batch containing bs items, of which one item contains two
images xi0 and xi1, i ∈ {1, 2, ..., bs}, and the two sampled data augmentations (v0i
and v1i ), the optimized loss is defined as follows:

LSimCLR = − 1

bs

bs∑
i=0

∑
j=0,1

log
exp(eji

T
e1−ji /τ)∑bs

k=0

∑
l=0,1 exp(eji

T
elk/τ)

(1)

where τ is 0.1, eji = f(vji (x
i
j)).

MoCo v2. [9, 6] For the momentum encoder (f̂) and e1 = f̂(v1(x1)), the loss is
defined as follows:

LMoCo v2 = −log(
exp(e0

T
e1/τ)∑q

k=0 exp(e0T ek/τ)
) (2)

where q is the size of the queue (typically 65536) and τ is 0.2. The momentum
encoder is updated with fixed momentum 0.999 (meaning that after each step,
θ̂ = θ̂ ∗ 0.999 + θ ∗ 0.001, where θ̂ is the parameters for f̂ and θ represents the
parameters for f).

BYOL. [8] Similar as MoCo v2, BYOL also maintains the momentum encoder
as the target network. However, BYOL does not use other embeddings as
reference points. Instead, it only maximizes the correctness of predicting the
target embedding (e1 = f̂(v1(x1))) from the other embedding (e0 = f(v0(x0)))
using a Multi-Layer-Perceptron (MLP), called the “predictor”. The loss is defined
as follows:

LBYOL = 1− cos_sim(e1,MLP(e0)) (3)

where cos_sim represents cosine similarity.

SimSiam. [5] SimSiam can be characterized as BYOL without momentum encoder.
Therefore, given e0 = f(v0(x0)) and e1 = f(v1(x1)), the loss is defined as follows:

LSimSiam = 2− cos_sim(SG(e0),MLP(e1))− cos_sim(SG(e1),MLP(e0)) (4)

where SG represents stop gradient operation.

DINO. [3] DINO is like BYOL on transformers, though it has additional mech-
anisms like centering the teacher embedding and softmaxing both the student
and the teacher embeddings. More specifically, the loss is defined as follows:

LDINO = −SG(softmax(e1 − ecenter)) ∗ log(softmax(e0)) (5)

where ecenter is the exponential average of the batch-averaged e1 across its history.
DINO also has very large output dimensionality for both e0 and e1 (like 65536),
which is bottlenecked by a typical embedding dimensionality like 256.
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SwAV. [2] SwAV maintains a trainable set of K prototypes C and uses these
prototypes to compute a cluster assignment (q0, q1) for embeddings (e0, e1). The
loss is then to “swap-predict” the assignment from the other embedding, defined
as follows:

LSwAV = −
∑
j=0,1

∑
k

qjk ∗ log
exp(e(1−j)

T
ck)∑

k′(e
(1−j)T ck′)

(6)

where ck means the k-th prototype and qjk means the k-th value of the cluster
assignment.

Barlow-Twins. [13] This method first compute the cross-correlation matrix C of
the embeddings as follows:

Cij =

∑
b e

0
b,ie

1
b,j√∑

b(e
0
b,i)

2
√∑

b(e
1
b,j)

2
(7)

where e0b,i is the value at the i-th dimension for e0b . The loss is then defined as
follows:

LBT =
∑
i

(1− Cii)2 + λ
∑
i

∑
j 6=i

C2ij (8)

where λ is 0.0051.

BYOLNeg. Intuitively, BYOLNeg is something like “SimCLR with a momentum
encoder,” or “MoCo v2 with negative samples from the current batch.” Follow-
ing the same notations used in the main text, the loss is then LBYOLNeg =

− 1
bs

∑bs
i=0 log

exp(e0i
T
e1i /τ)∑bs

k=0 exp(e0i
T e1k/τ)

. where τ is 0.1, e1 = f̂(v1(x1)), and e0 =

f(v0(x0)). It has no “predictor”, as we find that adding it makes the performance
much worse.

DINONeg. The loss of DINONeg is in fact the same as BYOLNeg, however, we
followed other practices of DINO like linearly increasing the weight decay to 0.4.

1.2.4 Models with More MLPs

For SimCLR and BYOL, we find that increasing the number of layers in the
MLPs used between the ResNet-18 backbone and the embedding output helps
the performance in life-long benchmark in general. The original number of layer
is 2 and the models with “More-MLPs” have 4 layers. For BYOL, this change
was applied to both the “predictor” and the “projector”.

1.2.5 BYOL with Other Hyperparameters

As shown in Fig 7, we varied the starting momentum, weight decay value, number
of layers in the MLPs, and even the backbone architecture for BYOL, but its
poor performance in lower-diversity conditions seems to still be true.
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1.2.6 EWC on Pure-Continual Curriculum

To explore whether methods like Elastic Weight Consolidation (EWC) [11] can
be used to avoid catastrophic forgetting when training the DNNs without any
replay from the memory, we trained SimCLR with EWC on pure-continual
curriculum (R = 1 : 0). As shown in Fig 6, the performance of models with
EWC is barely different from the pure-continual one, even after varying two
important hyperparameters in the EWC algorithm (λ and γ). Here λ controls
the weighting between the losses from the current batch and the “old tasks”
(see Eq. 3 in Kirkpatrick et al. [11]). γ controls the updating speed of the
Fisher information: Fnew = γFold + (1− γ)Fnow. The default value of γ is 0.9.
Although these experiments were run with 300-segment settings and resolution
224, the results should be the same for the typical setting (100-segment setting
and resolution 112).

1.3 Computational Resources
We use TITAN Xp gpus on our internal cluster to train our models. For
life-long learning benchmark, as one model roughly needs 2 gpus for 2 days
and there were 13 algorithms trained with 6 continual learning settings, all
results took 13 ∗ 6 ∗ 2 ∗ 2 = 312 gpu∗days. For real-time learning benchmark,
as testing one model in one continual learning setting for all three conditions
with one learning rate took 4 gpus for 6 hours. There were 13 models, 6
learning settings, around 3 learning rates in each combination. So all results
took 13 ∗ 6 ∗ 3 ∗ 4 ∗ 0.25 = 234 gpu∗days.

1.4 Codes and Model Weights
Source codes are provided with the Supplementary Materials. The link to down-
load the model checkpoints we have used for the real-time learning benchmark
is also released with the source codes. See the “source_codes.tar” file.

2 Figures

3 Tables
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Table 1: Life-long Learning results. The column names are correspondingly the
window length (W ) and the current-memory mix ratio (R).

Alg. 20m,
1:3

0.5m,
1:3

20m,
1:1

0.5m,
1:1

20m,
3:1

0.5m,
3:1

SimCLR-
More-MLPs

0.34 0.33 0.32 0.29 0.28 0.20

SimCLR 0.31 0.31 0.30 0.28 0.27 0.23
MoCo-v2 0.25 0.26 0.26 0.23 0.25 0.15
Barlow-
Twins

0.29 0.28 0.28 0.27 0.24 0.26

BYOLNeg 0.32 0.32 0.31 0.30 0.30 0.24
SwAV 0.33 0.30 0.33 0.12 0.30 0.05

BYOL-More-
MLPs

0.29 0.28 0.26 0.19 0.15 0.03

BYOL 0.25 0.27 0.26 0.13 0.24 0.07
SimSiam 0.21 0.23 0.17 0.04 0.05 0.03
SimCLR-
Res50

0.37 0.37 0.36 0.33 0.34 0.18

DINO-ViT-S 0.39 0.37 0.37 0.35 0.34 0.26
DINONeg-
ViT-S

0.38 0.37 0.37 0.31 0.33 0.23

MAE-ViT-S 0.28 0.28 0.27 0.28 0.27 0.26
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Table 2: Real-time Learning results. The column names are correspondingly the
window length (W ) and the current-memory mix ratio (R). Numbers after ±
are standard deviations across bootstrapped examples.

Alg. 20m,
1:3

0.5m,
1:3

20m,
1:1

0.5m,
1:1

20m,
3:1

0.5m,
3:1

SimCLR-
More-MLPs

1.74
± 0.48

1.66
± 0.41

1.39
± 0.38

1.71
± 0.45

1.49
± 0.36

1.78
± 0.37

SimCLR 1.98
± 0.49

2.53
± 0.56

1.43
± 0.43

1.56
± 0.44

1.49
± 0.37

1.91
± 0.47

MoCo-v2 1.70
± 0.46

1.78
± 0.48

1.68
± 0.42

1.92
± 0.45

1.67
± 0.43

1.72
± 0.43

Barlow-
Twins

2.50
± 0.69

1.78
± 0.49

1.96
± 0.53

2.02
± 0.43

1.95
± 0.51

1.81
± 0.49

BYOLNeg 2.29
± 0.45

1.94
± 0.49

2.30
± 0.42

2.00
± 0.38

2.13
± 0.45

2.14
± 0.45

SwAV 2.47
± 0.53

2.82
± 0.57

2.64
± 0.58

2.20
± 0.47

2.41
± 0.43

2.21
± 0.44

BYOL-More-
MLPs

2.26
± 0.60

2.79
± 0.55

2.93
± 0.52

2.67
± 0.52

2.16
± 0.50

2.61
± 0.47

BYOL 2.62
± 0.54

3.09
± 0.51

2.55
± 0.56

3.11
± 0.65

2.70
± 0.56

2.38
± 0.49

SimSiam 2.79
± 0.54

2.68
± 0.48

3.18
± 0.58

3.47
± 0.55

2.51
± 0.57

3.15
± 0.50

SimCLR-
Res50

2.43
± 0.54

2.57
± 0.48

2.19
± 0.49

1.80
± 0.47

1.91
± 0.47

1.47
± 0.40

DINO-ViT-S 2.30
± 0.47

2.13
± 0.46

2.27
± 0.42

2.24
± 0.44

1.73
± 0.44

1.72
± 0.45

DINONeg-
ViT-S

1.98
± 0.45

2.41
± 0.51

2.04
± 0.42

2.47
± 0.51

2.67
± 0.50

1.91
± 0.47

MAE-ViT-S 3.40
± 0.53

2.90
± 0.53

3.07
± 0.55

2.93
± 0.52

3.18
± 0.52

3.49
± 0.56
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Figure 1: Life-Long Learning results. Life-long benchmark performance
measured by the trajectory-averaged Mini-ImageNet performance. Long replay
window means W = 20m and short window means W = 0.5m. More current-
context learning means R = 3 : 1, balanced means R = 1 : 1, and less means
R = 1 : 3. In all conditions, T = 0.2s.
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Figure 3: Generalizability of the life-long benchmark results. Each dot
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both conditions. Both axes represent the trajectory-averaged Mini-ImageNet
performance. For both panels, x-axis represents the performance of models
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Algorithm 1: Build the Visual Stimuli Stream for Real-time Learning
Benchmark.
begin

Input : o0, o1: experiment object pair; o2, o3: control object pair; c:
condition

Output :V S: a list of images, each of which represents the image of
focus for 100ms

Initialize the visual stimuli stream V S = [ ] ;
Set GI as the gray background image, whose pixel values are all 127 ;
for phase index i ∈ {0 to 8} do

if i is even then
for test event index j ∈ {0 to 199} do

Add 5 GIs to V S ;
Randomly choose the test event type t from { Big-Exp,
Big-Control, Small-Exp, Small-Control } ;

According to t, add a test image to V S, which is a big or
small object in front of a randomly selected background ;
for saccade index s ∈ {0 to 3} do

Add 6 copies of one randomly selected prototype image
from two presented prototype images to V S, which is
a middle-sized object image in front of a gray
background ;

end
end

end
else

for exposure event index j ∈ {0 to 399} do
According to c, add two exposure object images to V S ;
Add 13 GIs to V S ;

end
end

end
return V S ;

end
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Algorithm 2: Real-time Learning Evaluation for Neural Networks.
begin

Set W as the current-context replay window in the unit of minutes;
Set T as the aggregation time in the unit of seconds;
Set R = X : Y as the current-memory mix ratio;
Set the batch size of the current context as bsc = bs× X

X+Y ;
for object pair o0, o1 do

for condition c ∈ {Non− Swap,Swap,Switch} do
Randomly determine the control object pair o2, o3 that are
different from o0, o1;
Build V S according to o0, o1, o2, o3, and c using Alg. 1;
Load the pretrained network weights;
for step index i ∈ {0 to 1349} do

Set the phase index as p = floor(i/150);
if i is a multiple of 75 and p is even then

/* We evaluate twice in every test phase */
Test the object-recognition accuracy of the network;

end
Set the batch buffer B = [ ];
Get the corresponding time point t = i/1350 ∗ 90 ∗ 60 in
the unit of seconds;
for within-batch item index j ∈ {1 to bsc} do

Randomly select a time point tj from (t− 60W, t);
Get the aggregation interval (tj − T, tj);
Randomly sample two images from
V S[(tj − T )× 10 : tj × 10];

Apply data augmentation pipeline independently to
these two images;

Add the pair of the augmented images to B as one
item;

end
Sample bs− bsc items from the pretraining dataset and
add them to B;

Train the network for one step using B;
end

end
end

end
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Algorithm 3: Life-long Learning Evaluation for Neural Networks.
begin

Randomly initialize the network weights;
Set W,T,R = X : Y, bsc as in Alg. 2;
for segment index s ∈ {0 to 99} do

Get the videos belonging to this segment;
Get the frames FS belonging to these videos and order them
according to the corresponding time index;
Set L as the number of frames in FS;
/* As the frames are extracted in 25 FPS and one

segment typically contains videos of 2hrs, L is
typically 25 * 3600 * 2 */

for step index i ∈ {0 to 2501} do
Set the batch buffer B = [ ];
Get the corresponding frame index f = i/2502 ∗ L;
for within-batch item index j ∈ {1 to bsc} do

Randomly select a frame point fj from
(f − 60× 25×W, f);
Randomly sample two images from FS[fj − 25× T, fj ];
Apply data augmentation pipeline independently to these
two images;

Add the pair of the augmented images to B as one item;
end
Sample bs− bsc items from the memory and add them to B;
Train the network for one step using B;

end
if s+ 1 is a multiple of 10 then

Test the Mini-ImageNet performance of the network;
end

end
end
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