Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CONCEPTUAL BELIEF-INFORMED TWIN DELAYED DEEP DETERMINISTIC POLICY
GRADIENT (HI-TD3)

TD3 (Twin Delayed Deep Deterministic Policy Gradient)(Fujimoto et al., 2018), built upon
DDPG(Silver et al., 2014), mitigates Q-value overestimation and improves stability via twin Q-
networks, delayed updates, and target policy smoothing. Here, we focus only on the actor update.
Considering a sample batch D; = (s;, a;, 7;, s;) at time step t, the actor policy update is defined as:

EsinD, [Qunin (51, m0(54))] (19)

where)4, takes the smaller value of the two Q-networks, while 7y denotes the policy that gen-
erates actions, with a; = 7y(s;). Conceptual Belief-Informed TD3 (HI-TD3) applies the HI-RL
fusion rule to deterministic policy gradients, refining the concept-based belief prior b; (k) for each
conceptual category C}, at time step t as:

V(V,k) e VX [K]: b(k)~V,Qpun(s a) (20)

where b;(k), a directional belief, denotes as V,Qmin($, a), where the smaller Q-value in TD3 is
employed to approximate the gradient serving as its representation. The recorded belief direction is
updated using an exponential moving average with normalization:

ba(k) = L= W01 (k) 1V Quin (5, 0)
) = T)bt (B) - 1V Quin(5, @)

where 7 is an exponential moving average constant and b;_1 (k) denotes the previously stored direc-
tional belief.

a~me(s), seCk 2n

In the policy update of HI-TD3, we perform belief fusion updates only on the actor network. At each
time step ¢ with sampled tuple (s;, a;, 7, s;), the integrated directional belief information By (k) is

denotes as:) - bk
Bt(k_):c (_//8) a1Qm1n(327az)+ﬂ t() ,
(1 = B)Va,Quin(si, ai) + 8o (k)|
where ¢ is a constant used to prevent excessive oscillations if B;(k) becomes too large. Differing

from previous usage, (3 is determined by directional similarity, computed as a dot product, and serves
as the fusion coefficient:

S; € Ck (22)

B = clamp (D be(k) - Va, Qg (5, a:),0,1) (23)
k

The directional fusion is performed by combining B; (k) as a perturbation with a;:
aplend = clamp(a; + By(k), —1,1) (24)
The actor minimizes to update policy:

]ESiNDt [Q¢mjn (Sia ablend)] (25)

Thus, HI-TD3 preserves the HI-RL fusion principle through the actor by blending task-driven gra-
dients with conceptual priors, while the critic remains the standard TD3 update for stability. This
makes HI-TD3 a deterministic yet framework-consistent instantiation of HI-RL. The pseudocodes
are provided in Appendix A.2.4.

14

Under review as a conference paper at ICLR 2026

A.2 PSEUDO CODE

A.2.1 CONCEPTUAL BELIEF-INFORMED Q-LEARNING (HI-Q) ALGORITHM

Algorithm 2 Conceptual Belief-Informed Q-learning (HI-Q) Algorithm

1: Initialization: learning rate «, discount factor v, running steps 7', episodes F, replay buffer B
and a set of K conceptual categories, denoted as {Cj } 1,

2: for each episode do

3 Get initial state sg from the environment

4 for each timestep t do

5: Choose a random action a; with probability € otherwise take a; = arg max, Q(s¢, a; 0)

6.

7

8

Execute a; to get reward 7'(st, at), next state s;y1
Store (s, ag, r(st, at), S¢41) into B
Identify the conceptual category Cj, of s; through Nearest Neighbor

9: Update the count of a; in Cy, (cf. 5);
10: Sample N tuples from B to update () function:
11: Extract by (a | C(s;)) and integrate with rewards to estimate By (a | s;41) (cf.6)
12: Yoo, = BB [r(se,a0) + 722, Bila | si41)Q(se41,a;07)5y, ar] (cf.8)
13: Loss = Eg [(ygwt — Q(s¢,aq; 9))2]
14: Reset target network after a few updates: align target Q parameters: 6~ = 6;
15: end for
16: end for

15

Under review as a conference paper at ICLR 2026

A.2.2 CONCEPTUAL BELIEF-INFORMED SOFT ACTOR-CRITIC (HI-SAC) ALGORITHM

Algorithm 3 Conceptual Belief-Informed Soft Actor-Critic

1: Initialize two critic parameters ¢y, ¢» and actor parameters 6, Conceptual categories {C }_,,
category belief parameters b;—o(k) = {5, o2},
2: for each time step t do
3 Sample a; ~ 7o (- | s¢)
4 Transition to s;41 ~ p(S¢+1 | St,ar)
5: Store transition in replay buffer: B <— B U {(st, as, 7(st, at), S¢41)}
6: for training step do
7: Sampled {s;,a;,r;,8;} < B
8: Identify category C}, for s; through Euclidean distance
9: Compute By (si) and By(si'), s;, s} € Ck (cf. 17)
10: Update category belief parameters b; (k) (cf. 15)
11: end for
12: for each gradient step (cf.18) do
13: Compute target:

Yi =1 + ’Y]Ea;rvBt(ﬂs;) [Qmin(5;7 a;) - OélOg Bt(a”s;)] .
14: Update critics (i = 1, 2):
critic 2
LEEA(9) = B aop, | (@ (50,00) = 9)°]

$i = i — 15V 5, LEBac(93)-
15: Update actor:
L%C]g(irSAC(g) = ESzNDhaiNBt |:Oé log By (G‘L|Sl) - Qmin(5i7 al)])

0 0 — 16V Lggisac(0)-
16: Update temperature:
L(a) =]Esi’ai'\‘Bt [-« (IOg Bt(az|sz) + Htarget)] 5
a4+ a—n,Val(a).

17: Soft update target network:
=T+ (1—17)p.
18: Update b, (k) (cf.15)
19: end for
20: end for

16

Under review as a conference paper at ICLR 2026

A.2.3 CONCEPTUAL BELIEF-INFORMED PROXIMAL POLICY OPTIMIZATION (HIPPO)
ALGORITHM

Algorithm 4 Conceptual Belief-Informed Proximal Policy Optimization

1: Initialize policy parameters § and value function parameters ¢, conceptual categories {Cy }&_,
2: for each iteration do
3: for each environment step t do

4: Collect set of trajectories Dy, = {7;} by running 7y, = 7(6)
5: Sample a; and Transition to get 5441
6: Compute rewards-to-go 7 (s, a;).
7: Compute advantage estimation A; based on current value function V,
8: Store transition in replay buffer: B <— BU {(s¢, ar, 7(s¢, at), St+1, At)}
9: end for
10: for each gradient step do
11: Sampled {s;, a;,7;,s}} < B
12: Identify category CY, for s; through Euclidean distance
13: Compute B;(k) = (1 — Bt)mo(a; | si) + Pebe(k), s; € Ck (cf.10)
14: Update the policy by maximizing the PPO-Clip objective (cf.11):
15:
Ory1 = argmax B, o)~ min MA“ clip(m, 1—e¢, 1—|—6)A,;
o old T0o1a (ai | ‘SZ) Tho1a (a’i | ‘51)
16: Fit value function by regression on mean-squared error:
17:

. 2
¢k+1 = argm(;n E(Sﬂaz)“’ﬂ'%ld [(V¢(51) - r(shai)) :|

18: Update b;(k) (cf.5)
19: end for
20: end for

17

Under review as a conference paper at ICLR 2026

A.2.4 CONCEPTUAL BELIEF-INFORMED TWIN DELAYED DEEP DETERMINISTIC (HI-TD3)
ALGORITHM

Algorithm 5 Conceptual Belief-Informed Twin Delayed Deep Deterministic

1: Initialize actor my(s), critics Q, (s,a), Q¢, (s, a), target networks §' <— 0, ¢ < ¢1, ¢5 + ¢,
Conceptual categories {Cy }1_,, discount factor
2: for each iteration do

3 for each environment step t do

4 Sample a; = mp(s) + €, €~ N(0,0%1)

5: Transition to s;41 ~ p(Si11 | St,az)

6 Store transition in replay buffer: B <— B U {(st, at, 7(St, at), St+1)}

7 end for

8: for each gradient step do

9: Sample minibatch D; = {(s;, a;, 7, ;) } from replay buffer

10: Critic update (TD3)
11: Compute target action with smoothing: a; = mp/(s}) +¢€, €~ N(0,0%1)
12: Compute temporal difference target: y; = r; + 7 - min (Qg (s}, af), Qg (55, a5))
13: Update critics by minimizing loss: L = % >, (i — Qq, (ss, ai))z, ji=1,2
14: Actor update with fusion

15: Compute gradient direction: g; = V;Qmin (8i, a;)

16: Compute fusion coefficient 3 (cf.23)

17: Integrate belief: B; = c - % (ct.25)

18: Blend action: apjena = clamp(mg(s;) + By, —1, 1)(cf.24)

19: Update actor by minimizing: J(6) = —% > ; Qmin (i, ablend) (cf.21)
20: Target network updates

¢ 1o+ (1—1)p, O <70+ (1—7)¢

21: Update b, (k) (cf.22)
22: end for
23: end for

A.3 SMOOTHED BELLMAN OPERATOR

To reflect cognitive properties of uncertainty-aware decision-making in reinforcement learning, we
revise the classical Bellman operator, which updates values deterministically:

TQ(St, (lt) =Tt -+ Y Igle‘dj(Qt(8t+1, a). (26)

Here, 7 is the classical Bellman operator, s; € S denotes the current state, a; € A the chosen
action, 1, € R the immediate reward, v € (0, 1) the discount factor, A the action space, and Q+(s, a)
the action—value function at iteration ¢. The max,c 4 term represents greedy action selection, i.e.,
propagating value based on the action with the highest estimated return.

Tsmoothed @(51, at) =1¢ + Z qi(a] st41)Qe(s141, a), 27)
a€A

where Tsmoothed denotes the Smoothed Bellman Operator, which replaces the hard maximization
with a belief-weighted expectation. Here, ¢;(a | s¢11) is the action-preference distribution at state
St+1, €.2., a softmax distribution over Q¢(s:+1,a) or the belief-preference distribution in HI-RL.
Unlike the deterministic max, this formulation propagates value in a probabilistic, uncertainty-aware
manner, balancing task-driven estimates with belief-informed priors.

This smoothing relaxes the deterministic backup, enabling value propagation to account for uncer-
tainty and preference variability. The Smoothed Bellman Operator thus provides a unified, differ-
entiable mechanism for propagating reward uncertainty. In Section 5, we illustrate how Smoothed

18

Under review as a conference paper at ICLR 2026

Bellman Operator integrates with different policy learning paradigms (Q-learning, SAC, PPO). For-
mal instantiations such as softmax smoothing, clipped interpolation, and Bayesian fusion are pro-
vided in next, along with a convergence proof and a Jensen-type inequality.

Lemma A.1 (Jensen’s Inequality for Q-values). Consider an MDP with state s;11 and actions a,
along with Q-value estimates Q;(si+1,a). Let gi(a | s¢11) denote the probability of selecting action
a in state syy1. By Jensen’s inequality:

VY Plsegr | sn,a0) > ar(a] s141)Qi(s041,0) <

St41 a’

¥y Plsesr | st,a) max Qi(si41,a),
a

St41

(28)

Lemma A.1 establishes that the Smoothed Bellman Operator provides a conservative backup: re-
placing the hard maximization with a belief-weighted expectation yields an update that forms a lower
bound on the classical Bellman backup, thereby stabilizing value propagation under uncertainty.

Lemma A.2 (Convergence of Smoothed Bellman Operator). Let {Q:} be the sequence generated
by iteratively applying Tsmoomea. Under the condition:

lim maxq(a | s41) = 1, (29)
t—oo a

for the optimal action, QQ; converges to the optimal Q* as t — co. See Appendix D for a detailed
proof.

Lemma A.2 complements this by showing that if the action-preference distribution g;(- | s¢+1)
asymptotically collapses onto the optimal action, then iterative application of the Smoothed Bellman
Operator converges to the optimal value function QQ*. Together, these results establish that the
Smoothed Bellman Operator not only smooths value backups for improved robustness, but also
preserves the fundamental convergence guarantees of classical reinforcement learning. The full
proof of Lemma A.2 is provided in next subsection.

To instantiate the Smoothed Bellman Operator in practice, different smoothing strategies can be
employed to construct the action-preference distribution b;. These strategies determine how strongly
the update deviates from hard maximization and how uncertainty is incorporated. Representative
examples are summarized in Table 3.

Strategy Formula
SlEND)
Softmax qr = —Ze;, pRaIEND)

Clipped Max qt:{lT—T, ifa=a

+7, ifa#a

AQsa) .
Clipped Softmax g = { Toer P ifael
0, ifadl

Table 3: Smoothing strategies with respective formulas

A.3.1 CONVERGENCE PROOF

We outline a proof that builds upon the following result (Singh et al., 2000; Barber, 2023) and
follows the framework provided in (Melo, 2001):

Theorem A.3. The random process {A;} taking value in R and defined as
Appi(z) = (1= () A () + ar(z) Fy(x) (30)

converges to 0 with probability 1 under the following assumptions:

c0< <1 Y, au(z) =00 >, a?(z) < ooy

19

Under review as a conference paper at ICLR 2026

* E[||Fi(z)|lw] < k|Alw + ¢, & € [0,1) and ¢; — O with probability 1;
s var(Fy(z)) < C(1+ [|[A¢jw)% C >0

where | A¢||w denotes a weighted max norm.

We are interested in the convergence of (), towards the optimal value . and therefore define
Ay = Qi(st,a1) — Qu(st,ar) (31)
It is convenient to write the smoothed update as
Qi+1(s¢.ar) = Qe(s¢, ar) + a(se,ar) (1 + 7 (Q(Se41,a)), — Qe(5¢, ar)) (32)

where (f(z)), means the expectation of the function f(z) with respect to the distribution of x.
Using the smoothed update, we can write

At+1(5ta at) = Qt+1(3t: at) - Q*(Su at) (33)
= (1 —ar)Ar + o (11 + Y{(Q(St41,a)) 0 — Qs (5, a¢)) (34)

In terms of Theorem 1, we therefore define
Fy=ri+7) ai(alsts1)Qu(s41,0) — Qulst, ar) 35)

a

Proof. For convergence, we need to verify the conditions of Theorem 1.
Step 1: Verify Step-Size Conditions
We assume that the learning rates o (s¢, a;) satisfy:

e 0 < at(st,at) S].,

* Et at(s¢, as) = 00,

°* >, a?(s¢,a;) < oo.

: . _ 1
An example 1S (lt(bt, at) = m

Step 2: Establish Boundedness of (),

, where N (s, ay) is the visitation count of (s;, at).

Since the rewards 7, are bounded (|r;| < Rmay) and the discount factor 0 < v < 1, we can show
that Q; remains bounded independently of the convergence of A,.

Define the Bound Qgy:

We define R
Qmax = 1 = (36)
-7
This is the maximum possible value of the Q-function given the bounded rewards and discount
factor.

Derivation of Qnax:

The Q-function (s, a) represents the expected cumulative discounted reward when starting from
state s and taking action a:

Q(s,a) =E lz YTk

k=0

St = S, a4t = a]) (37)

where ;1 is the reward received at time ¢ + k, and -y is the discount factor.

Assuming that at each time step, the agent receives the maximum possible reward Rm,x, the maxi-
mum possible Q-value is:

Qmax = Z"YkRmax = Rmax Z"Yk- (38)
k=0

k=0

20

Under review as a conference paper at ICLR 2026

Since 0 < v < 1, the infinite sum y_,° 7" is a geometric series that sums to:
27 - 1—7
k=0

Therefore, we have:
1 Rmax

1—’y=1—7'

Qmax = Rmax X

Thus, Qmax = . ™% is the maximum possible value of the Q-function in any state-action pair.
-

Base Case: Let Qo (s, a) be initialized such that |Qo (s, a)| < Qmax for all s, a.

(39)

(40)

Inductive Step: Assume |Q(s,a)| < Qmax for all s, a. We need to show that [Q¢+1 (¢, at)| < Qmax.

From the update equation:
Qit1(st. ar) = Qi(st, ar) + (e, ar) (re + v (Qi(se41,a)), — Qe(st,ar)) -
Simplifying:
Qer1(st,ar) = (1 — ai(st,a)) Qe (51, ar) + (e, ar) (11 + 7 (Qe(St41,a))) -
Taking absolute values:

|Qtr1(8t,as)| < (1 —)@ (8¢, ae)| 4+ (|re] + v {Qe(5¢41,a)),]) -

Using the inductive hypothesis and boundedness:

|Qt(8t7at)| < Qmax; |<Qt(5t+17a)>a| < Qmax;

and |r¢| < Ryax. Therefore:

|Qi41(s¢, a1)] < (1 — ar) Qmax + 4 (Rmax + 7CQmax) -
Simplify:

|Qt+1(5t7 at)l < Qmax - atQmax + oy (Rmax + 'YQmax)
= Qmax + oy (Rmax - (1 - V)Qmax) .

Rinax
Since Qmayx = ——
-~

, we have (1 — 7)Qmax = Rmax. Substituting back:

|Qt+1(5t7 at)| < Qmax + oy (Rmax - Rmax) = Qmax-

Thus,
|Qt+1(st, at)| < Qumax-
Therefore, by induction,); remains bounded for all ¢, independently of A;.
Step 3: Verify Mean Condition
We can write

1
;E[Ft] =E,,[G4].

where

G = th(a|8t+1)Qt(St+17a) - ngXQ*(StH,a).

‘We can form the bound
= [E[Gt]ll o < [IGtlloo,

o0

o

21

(41)

(42)

(43)

(44)

(45)

(46)
(47)

(43)

(49)

(50)

(S

(52)

Under review as a conference paper at ICLR 2026

which means that if we can bound |G || appropriately, the mean criterion will be satisfied.

Assuming that b; places (1 — d;) mass on the maximal action a* = arg max, Q¢(st+1,a), we can
write

G = Z qr(alsi+1)Qi(st41,a) — Inf’XQ*(St-i-la a) (53)

= (1=06:)Q¢(s5¢11,a") + 5¢ Z Ge(clst41) Qi (5141, ¢) — max Q«(5¢11,0), (54)
c#a*
where by (c|s;41) = %&:“) for ¢ # a*.

We can then write

Gt = Qi(s¢41,0") — max @ (st41,a) + 6t Z bi(clsi41)[Qe(s415¢) — Qelse41,a")]

c#a*
(55)
Since Q¢(S¢41,a*) > Q¢(8¢41, ¢) for all ¢, the terms inside the brackets are non-positive. Therefore,
Gy < Qu(sp41,0") — max Qs (St41,a). (56)

Now, we have

Qi(st41,0") — max Qs (st+1,0) = [Qe(St41,a") — Qu(541,a™)] + [Qu(St41,0") — max Q+(s141,0)]

(57)
< A¢(st41,a"). (58)
Thus,
Gt < A¢(sp41,a"). (59)
Therefore,
[Gtlloc < [[Atlloo- (60)

Additionally, the term involving §; contributes an additional ¢;, which is bounded due to the bound-
edness of Q; and 0; — 0. Thus, the mean condition becomes

IE[F o < Y1Aloo + e, (61)
with ¢; — 0 as §; — 0.
Since v < 1, the mean condition is satisfied with k = v and ¢; — 0.
Step 4: Verify Variance Condition

Since the rewards 7, are bounded and we have established that (); is bounded independently, F} is
also bounded.

We can write:
AF; = F, — E[F}] (62)
= (re — E[re|st,ad]) + (Z ar(alse+1)Qi(se41,a) — B,y [Z gr(alse11)Qe(st41, a)]) .
(63)
We can bound the variance using
Var(Fy) = E[(AF)? | Fe] < |AF%. (64)
Using the triangle inequality,

[AF[loc < [[AT¢]loc +

Z ar(alser1)Qe(se41,a) — Es,
a

Z qt(alst11)Qe(se1, a)}

(65)
< Ao + ¥ HQt(StH,@) — K, [Q¢(5t41, CL)]HOC . (66)

22

Under review as a conference paper at ICLR 2026

Since @, is bounded, there exists a constant B such that

[Qe(st41,a) — ESt«{»l[Qt(StJFl’a’)]”OC < 2Qmax = B.

Therefore,
[AF ||l < [[ATtflc +B.

Since ry is bounded, ||Ar¢||co < 2Rmax-

Thus,
||AFI‘||OO S 2Rmax + fYB-

Therefore, the variance is bounded, and there exists a constant C' > 0 such that

Var(F;) < C(1+ | A 0)*.

Step 5: Conclusion

All the conditions of Theorem 1 are satisfied:

* Step-Size Conditions: Verified in Step 1.
* Mean Condition: Verified in Step 3, with xk =y < 1 and ¢, — 0.

* Variance Condition: Verified in Step 4.

Therefore, A; — 0 with probability 1, implying that Q; — Q. with probability 1.

23

(67)

(63)

(69)

(70)

Under review as a conference paper at ICLR 2026

A.4 EXPERIMENT SETTING

A4l

CLASSIC CONTROL AND BOX 2D ENVIRONMENT

..

Figure 3: Cartpole, Acrobot, CarRacing, Lunar Lander and Bipedal Walker .

By,

. Cartpole: a pole is attached by an unactuated joint to a cart, which moves along a friction-

less track. The pendulum is placed upright on the cart and the goal is to balance the pole
by applying forces in the left and right direction on the cart.

. Acrobot: a two-link pendulum system with only the second joint actuated. The task is to

swing the lower link to a sufficient height in order to raise the tip of the pendulum above
a target height. The environment challenges the agent’s ability to apply precise control for
coordinating multiple linked joints.

. CarRacing: The easiest control task to learn from pixels - a top-down racing environment.

The generated track is random in every episode.

. Lunar Lander: It is a classic rocket trajectory optimization problem. According to Pontrya-

gin’s maximum principle, it is optimal to fire the engine at full throttle or turn off. This is
why this environment has discrete actions: engine on or off.

. Bipedal Walker: a two-legged robot attempting to walk across varied terrain. The goal is

for the agent to learn how to navigate efficiently and avoid falling.

24

Under review as a conference paper at ICLR 2026

A.4.2 METADRIVE BLOCK TYPE DESCRIPTION

Table 4: Block Types Used in Experiments
Block Type
Straight
Circular
InRamp
OutRamp
Roundabout
Intersection
Merge

Split
T-Intersection

Al << [X o= = || v S

E

Roundabout Curve T-intersection Intersection

Straight

Figure 4: Various block types used in the MetaDrive environment. These blocks represent common
road structures such as straight roads, ramps, forks, roundabouts, curves, T-intersections, and inter-
sections, used for evaluating the vehicle’s path planning and decision-making capabilities.

A.4.3 MAP DESIGN AND TESTING OBJECTIVES

Map 1: SrOYCTRyS This map consists of straight roads, roundabouts, intersections, T-
intersections, splits, and ramps. The environment presents a highly complex combination of multiple
intersections, dynamic traffic flow, and varying road structures.

Testing Objective: The focus of this environment is to evaluate the algorithm’s smooth decision-
making and multi-intersection handling, mimicking human driving behavior. The challenges include
adjusting vehicle paths in real-time and ensuring smooth lane transitions in the presence of complex
road structures such as roundabouts and ramps.

Map 2: COrXSrT This map combines circular roads, roundabouts, straight roads, intersections,
ramps, and T-intersections. The environment is designed to assess the vehicle’s decision-making
capabilities when dealing with continuous changes in road grades and multiple intersection types.

Testing Objective: This environment tests the algorithm’s ability to dynamically adjust to grade
changes and multi-intersection interactions, replicating human-like behavior. The goal is to ob-
serve how well the algorithm adjusts vehicle speed and direction, ensuring stability in scenarios
involving ramps and complex road networks.

Map 3: rXTSC This map consists of ramps, intersections, T-intersections, straight roads, and
circular roads. The environment simulates multiple road interactions, testing the vehicle’s path
selection and stability, particularly at intersections and ramps.

Testing Objective: This environment evaluates the algorithm’s performance in handling intersec-
tions and T-junctions with real-time path selection. The challenge is to ensure human-like adaptabil-
ity when encountering multiple directional options, maintaining decision stability in dynamic traffic
situations.

Map 4: YOrSX This map includes splits, roundabouts, straight roads, circular roads, and intersec-
tions. The environment is tailored to test the vehicle’s ability to make path decisions in high-speed
settings, particularly when merging traffic and navigating through complex junctions.

25

Under review as a conference paper at ICLR 2026

Testing Objective: The map focuses on testing the vehicle’s ability to handle high-speed lane
merging and dynamic path planning. The algorithm must mimic human drivers by making real-
time adjustments in a high-speed environment, choosing optimal paths while maintaining speed
control and safety through complex intersections and roundabouts.

Map 5: XTOC This map features circular roads, T-intersections, and straight roads, creating
a unique combination of continuous curves and abrupt directional changes. The environment
presents the challenge of maintaining speed while negotiating tight turns and quick transitions at
T-intersections.

Testing Objective: The focus is on testing the vehicle’s ability to handle sharp directional changes
and maintain control during high-speed maneuvers. The algorithm needs to balance speed with
precision, ensuring safe navigation through tight turns and abrupt intersections.

Map 6: XTSC This map features a T-shaped intersection with traffic signals controlling vehicle
flow from three directions. It tests advanced driving skills including traffic light compliance, turn
management, and interaction with vehicles from cross directions.

Testing Objective: The main challenge is to evaluate the vehicle’s ability to maintain lane stability
and make appropriate speed adjustments while navigating long straight roads and transitioning into
a circular roundabout. The algorithm must ensure smooth control and decision-making, simulating
human-like behavior in handling both high-speed straight roads and slower, more controlled turns
in the roundabout.

Map 7: TOrXS This map consists of T-intersections, roundabouts, straight roads, and splits,
forming a compact yet intricate structure. The layout challenges the algorithm to manage dynamic
path selection and adapt to sudden directional changes within a moderately complex road network.

Testing Objective: The primary objective is to evaluate the algorithm’s ability to manage split paths
and handle sudden directional changes. The map focuses on the vehicle’s adaptability in navigating
roundabouts and maintaining stability while making real-time path decisions at T-intersections.

Map 8: CYrXT This map integrates circular roads, Y-intersections, ramps, T-intersections, and
straight roads, creating a dynamic and highly interconnected network. The layout introduces varying
road geometries and frequent directional changes, requiring seamless decision-making and adapt-
ability.

Testing Objective: The map is designed to test the algorithm’s ability to adapt to sudden directional
shifts at Y-intersections and T-junctions, maintain stability on ramps, and execute precise maneuvers
on circular roads. The emphasis is on smooth transitions between road types, effective navigation
through interconnected pathways, and robust handling of diverse traffic scenarios.

26

Under review as a conference paper at ICLR 2026

A4.4

10.

MUuJoCo ENVIRONMENTS

Figure 5: Ant, Humanoid, Reacher and Half Cheetah.

. Ant: a 3D robot with a single central torso and four articulated legs is designed to navigate

in the forward direction. The robot’s movement depends on coordinating the torque applied
to the hinges that connect the legs to the torso and the segments within each leg.

. Humanoid: a 3D bipedal robot simulates human gait, with a torso, a pair of legs, and arms.

Each leg and arm consists of two segments, representing the knees and elbows respectively;
the legs are used for walking, while the arms assist with balance. The robot’s goal is to walk
forward as quickly as possible without falling.

. Humanoid Standup: The environment starts with the humanoid laying on the ground, and

then the goal of the environment is to make the humanoid stand up and then keep it standing
by applying torques to the various hinges.

. Reacher: a two-jointed robot arm. The goal is to move the robot’s end effector close to a

target that is spawned at a random position.

. Half Cheetah: a 2-dimensional robot consisting of 9 body parts and 8 joints connecting

them (including two paws). The goal is to apply torque to the joints to make the cheetah
run forward (right) as fast as possible, with a positive reward based on the distance moved
forward and a negative reward for moving backward.

. Hopper: a two-dimensional one-legged figure consisting of four main body parts - the torso

at the top, the thigh in the middle, the leg at the bottom, and a single foot on which the entire
body rests. The goal is to make hops that move in the forward (right) direction by applying
torque to the three hinges that connect the four body parts.

. Walker-2d: a two-dimensional bipedal robot consisting of seven main body parts - a single

torso at the top (with the two legs splitting after the torso), two thighs in the middle below
the torso, two legs below the thighs, and two feet attached to the legs on which the entire
body rests. The goal is to walk in the forward (right) direction by applying torque to the six
hinges connecting the seven body parts.

. Pusher: a multi-jointed robot arm that is very similar to a human arm. The goal is to move

a target cylinder (called object) to a goal position using the robot’s end effector (called
fingertip).

. Inverted Pendulum: The environment consists of a cart that can be moved linearly, with a

pole attached to one end and having another end free. The cart can be pushed left or right,
and the goal is to balance the pole on top of the cart by applying forces to the cart.

Inverted Double Pendulum: The environment involves a cart that can be moved linearly,
with one pole attached to it and a second pole attached to the other end of the first pole
(leaving the second pole as the only one with a free end). The cart can be pushed left or
right, and the goal is to balance the second pole on top of the first pole, which is in turn on
top of the cart, by applying continuous forces to the cart.

27

Under review as a conference paper at ICLR 2026

A.4.5 ATARI ENVIRONMENTS

ooo 3 |1

Figure 6: Air Raid, Alien, Amidar, Asteroids, Breakout, Centipede, Fishing Derby, Zaxxon.

1. Air Raid: You control a ship that can move sideways and protect two buildings (one on
the right and one on the left side of the screen) from flying saucers that are trying to drop
bombs on them.

2. Alien: You are stuck in a maze-like space ship with three aliens. You goal is to destroy
their eggs that are scattered all over the ship while simultaneously avoiding the aliens (they
are trying to kill you).

3. Admidar: You are trying to visit all places on a 2-dimensional grid while simultaneously
avoiding your enemies. You can turn the tables at one point in the game: Your enemies turn
into chickens and you can catch them.

4. Asteroids: You control a spaceship in an asteroid field and must break up asteroids by
shooting them. Once all asteroids are destroyed, you enter a new level and new asteroids
will appear. You will occasionally be attacked by a flying saucer.

5. Breakout: You move a paddle and hit the ball in a brick wall at the top of the screen. Your
goal is to destroy the brick wall. You can try to break through the wall and let the ball
wreak havoc on the other side, all on its own! You have five lives.

6. Centipede: You are an elf and must use your magic wands to fend off spiders, fleas and
centipedes. Your goal is to protect mushrooms in an enchanted forest.

7. Fishing Derby: Your objective is to catch more sunfish than your opponent.

8. Zaxxon: Your goal is to stop the evil robot Zaxxon and its armies from enslaving the galaxy
by piloting your fighter and shooting enemies.

28

