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Abstract
This paper studies the theoretical framework of
the alignment process of generative models with
Reinforcement Learning from Human Feedback
(RLHF). We consider a standard mathematical
formulation, the reverse-KL regularized contex-
tual bandit for RLHF. Despite its widespread
practical application, a rigorous theoretical anal-
ysis of this formulation remains open. We in-
vestigate its behavior in three distinct settings—
offline, online, and hybrid—and propose efficient
algorithms with finite-sample theoretical guaran-
tees. Moving towards practical applications, our
framework, with a robust approximation of the
information-theoretical policy improvement ora-
cle, naturally gives rise to several novel RLHF
algorithms. This includes an iterative version of
the Direct Preference Optimization (DPO) algo-
rithm for online settings, and a multi-step rejec-
tion sampling strategy for offline scenarios. Our
empirical evaluations on real-world alignment ex-
periment of large language model demonstrate
that these proposed methods significantly surpass
existing strong baselines, such as DPO and Rejec-
tion Sampling Optimization (RSO), showcasing
the connections between solid theoretical founda-
tions and their potent practical implementations.

1. Introduction
Reinforcement Learning from Human Feedback (RLHF)
(Christiano et al., 2017; Ziegler et al., 2019) has emerged as
a powerful paradigm to align modern generative models like
Large Language Models (LLMs) and diffusion models with

*Equal contribution 1University of Illinois Urbana-Champaign
2Salesforce AI Research 3The Hong Kong University of Sci-
ence and Technology 4Work done during an internship at The
Hong Kong University of Science and Technology. Corre-
spondence to: Wei Xiong <wx13@illinois.edu>, Tong Zhang
<tongzhang@tongzhang-ml.org>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

human values and preferences. This approach has shown
significant effectiveness in applications such as ChatGPT
(OpenAI, 2023), Claude (Anthropic, 2023), Bard (Google,
2023), and LLaMA2 (Touvron et al., 2023), by making the
built AI system helpful, harmless, honest and controllable
(Ouyang et al., 2022; Bai et al., 2022).

Despite its effectiveness, RLHF’s implementation often in-
volves ad-hoc practices and extensive algorithmic tuning in
the entire pipeline, including preference data collection (it
is hard to select representative humans (Bai et al., 2022),
larger language models (Wang et al., 2024) or program com-
piler (Wang et al., 2023b)), preference/reward modeling
(reward misspecification and misgeneralization (Hong et al.,
2022; Gao et al., 2023)), and model optimization (instability
of training (Choshen et al., 2019) and distribution shift issue
(Michaud et al., 2020; Tien et al., 2022)). Meanwhile, the
resulting models of RLHF typically suffer from issues like
performance degeneration if we impose strong optimiza-
tion pressure toward an imperfect reward function (Michaud
et al., 2020; Tien et al., 2022; Gao et al., 2023), which con-
tains bias and approximation error from the data collection
and preference modeling (Gao et al., 2023; Wang et al.,
2023d). Casper et al. (2023) also discussed many other
challenges of RLHF. Thus, it is important to understand the
mathematical principle of the RLHF process, as well as the
connections among its different steps, which should be able
to motivate future algorithmic design in principle.

In current RLHF theory, the agent’s objective is to maximize
an observed reward function, with the optimal policy typi-
cally being deterministic and reward-greedy (Agarwal et al.,
2019). However, in practical RLHF applications, merely
maximizing the reward function is often insufficient and
probably results in overfitting, as the generative model must
simultaneously ensure both diversity and high fidelity in its
outputs. A deterministic maximizer of the reward tends to
compromise on these aspects significantly. For example,
the maximizer of the “safety reward” tends to avoid pro-
viding answers all the time, which contradicts the LLM’s
training objective. The situation worsens due to bias and
approximation errors in reward modeling, leading to the
critical problem of reward hacking, where the model often
repeats superfluous, pleasing yet irrelevant words to appease
the reward model (Michaud et al., 2020; Tien et al., 2022;
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Casper et al., 2023). Thus, it is important to model diversity
and high fidelity in the theoretical framework beyond the re-
ward. Notably, the most widely used mathematical objective
function for this goal can be regarded as a reverse-KL regu-
larized contextual bandit problem (Ziegler et al., 2019; Wu
et al., 2021a; Ouyang et al., 2022; Rafailov et al., 2023; Liu
et al., 2023a). The KL regularized contextual bandit addi-
tionally imposes a constraint that the optimal policy cannot
move too far away from the original policy (i.e. the starting
checkpoint of the LLM). A major difference between this
objective function from traditional contextual bandit (Lang-
ford & Zhang, 2007) is that the optimal policy is stochastic,
which is closer to the practical generative models. See an in-
tuitive illustration why such a target is appealing in Figure 1.
Despite numerous proposed procedures for this formulation,
a rigorous theoretical analysis remains open. This paper
provides a theoretical analysis of the regularized contextual
bandit problem in both offline and online settings, aiming
to inform and motivate practical algorithmic designs. Our
contributions are summarized as follows:

• To understand the mathematical principle of RLHF,
we first formally formulate the RLHF process as a
reverse-KL regularized contextual bandit problem in
Section 2, which more accurately reflects real-world
alignment practices (Ouyang et al., 2022; Bai et al.,
2022; Rafailov et al., 2023) compared to existing the-
oretical frameworks. Meanwhile, we deliver a com-
prehensive theoretical analysis in offline, online, and
hybrid settings for the formulated framework, where
the three settings are complementary to each other and
hold their own values in practical applications.

• Moving towards practical applications, in Section 5,
we demonstrate that the proposed frameworks can be
practically implemented when combined with existing
planning algorithms like PPO, DPO, InfoNCA. In other
words, our framework is built on the top of existing
methods, and can boost their performance;

• Empirically, we show that when combined with DPO,
the proposed framework outperforms existing strong
baselines like DPO (Rafailov et al., 2023) and RSO
(Liu et al., 2023a) in real-world LLM experiments.

Related Work. We defer to Appendix A.1.

2. Formulation and Existing Approaches
In this section, we present the mathematical framework for
the RLHF process, inspired by the standard LLM alignment
workflow (Ouyang et al., 2022; Touvron et al., 2023).

2.1. Formulation of RLHF

Specifically, the LLM can take a prompt, denoted by x ∈ X ,
and produce a response, denoted by a = [w1, w2, . . .],

where wi is the i-th token generated by the model. Ac-
cordingly, we can take X as the state space of the contextual
bandit and the A as the action space. Following Ouyang
et al. (2022); Zhu et al. (2023a); Rafailov et al. (2023); Liu
et al. (2023a), we assume that there exists a ground-truth re-
ward function r∗(x, a) : X ×A → [0, 1] and the preference
satisfies the Bradley-Terry model (Bradley & Terry, 1952):

P(a1 ≻ a2|x, a1, a2) =
exp(r∗(x, a1))

exp(r∗(x, a1)) + exp(r∗(x, a2))

= σ
(
r∗(x, a1)− r∗(x, a2)

)
,

(1)

where a1 ≻ a2 means that a1 is preferred to a2, and σ(z) =
1/(1 + exp(−z)) is the sigmoid function. We denote an
LLM by a policy π that maps x to a distribution over A.

In a typical LLM training pipeline, the tuning process begins
with a pretrained LLM, which is subsequently fine-tuned
using specialized and instructional data, yielding an initial
LLM policy denoted as π0. We will then align the LLM on
RLHF data (prompt set), which we assume is taken from
a distribution x ∼ d0. For preference learning, the way
to gather information from the environment is to compare
two different actions under the same state. Considering
this, we assume that the agent can perform a pair of actions,
aligning with precedents in existing literature (Novoseller
et al., 2020; Pacchiano et al., 2021). In applications, we
want the resulting LLM π to be close to π0, and our goal is
to find a policy π from some policy class Π to maximize

J(π) = Ex∼d0Ea∼π(·|x)

[
r∗(x, a) + η log

π0(a|x)
π(a|x)

]
= Ex∼d0

[
Ea∼π(·|x)[r

∗(x, a)]− ηDKL(π(·|x)∥π0(·|x))
]
,

(2)
where η > 0 is the KL penalty coefficient. This formulation
is widely studied in practice (Ziegler et al., 2019; Wu et al.,
2021a; Ouyang et al., 2022; Rafailov et al., 2023; Liu et al.,
2023a), and our paper aims to study its theoretical property.

Usually, we have a function class F for approximating the
ground truth r∗. Following Pacchiano et al. (2021); Kong
& Yang (2022); Zhu et al. (2023a), we make the following
assumption for a clear presentation because it suffices to
illustrate our ideas and the algorithmic design in this paper
can also apply to the general case. The analysis also readily
generalizes to general function class using standard com-
plexity measures in RL theory literature (Russo & Van Roy,
2013; Gentile et al., 2022), which essentially state that there
are some low-rank structures in reward model.

Assumption 2.1. Assume that the reward function is pa-
rameterized by rθ(x, a) = ⟨θ, ϕ(x, a)⟩ for feature extrac-
tor ϕ : X × A → Rd. We also assume that r∗(x, a) =
⟨θ∗, ϕ(x, a)⟩ for some θ∗ ∈ Rd. For regularization, we as-
sume that ∥ϕ(x, a)∥ ≤ 1 for all possible (x, a) ∈ X×A and
∥θ∥ ≤ B. We also denote γ = 1/(2+exp(−B)+exp(B)).
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(a) Pretrained π0 (b) Preferred πr (η−1 = 0.5) (c) Preferred πr (η−1 = 1.0) (d) Preferred πr (η−1 = 10)

Figure 1. A two-dimensional illustrating example of human preference in generative modeling. We consider a scenario where the initial
“pretrained” distribution π0 is represented by a multi-modal Gaussian mixture. The “human preference” is expressed as a bias towards
the right, as we set r = [1, 0]⊤a. The KL penalty is critical in maintaining the desired behavior of πr . By varying the values of η, we
demonstrate the impact of KL regularization in (b)-(d). As η approaches zero, πr increasingly focuses on maximizing rewards, often at
the expense of the pretrained data’s structure, leading to a Gibbs distribution that potentially diverges infinitely.

Notation. We use ∥z∥Σ to denote the induced norm
√
z⊤Σz

for some positive-definite matrix. We also define ϕ(x, π) :=
Ea∼π(·|x)ϕ(x, a) to simplify the presentation. We use Õ
when we omit the logarithmic factors. A notation table is
provided in Table 2 to improve the readability of this paper.

2.2. The Insufficiency of Classic Frameworks

The classic RLHF framework adopted by Ziegler et al.
(2019); Ouyang et al. (2022) can be divided into two stages:
1) reward modeling, and 2) policy optimization against the
learned reward. We summarize the details in this subsection.

Maximum Likelihood Estimation for reward model-
ing. Given a preference dataset D consists of numer-
ous tuples, such as (x, a1, a2, y), where y is the prefer-
ence signal. Specifically, y = 1 means a preference for
a1 ≻ a2, while y = 0 indicates a1 ≺ a2. Given a dataset
D = {(x, a1, a2, y)}, we can write the log-likelihood func-
tion of the BT models as follows:

ℓD(θ) =
∑

(x,a1,a2,y)∈D

[
y log

(
σ
(
rθ(x, a

1)− rθ(x, a
2)
))

+ (1− y) log
(
σ
(
rθ(x, a

2)− rθ(x, a
1)
))]

.

(3)

We can compute the maximum likelihood estimator (MLE)
rMLE based on D as θMLE = argmaxθ∈Θ(B) ℓD(θ) with
Θ(B) = {θ ∈ Rd : ∥θ∥ ≤ B}. In practice, the MLE is also
conducted with the LLMs (Ouyang et al., 2022; Bai et al.,
2022; Touvron et al., 2023) on the preference dataset.

Policy Optimization and Oracle. With the learned reward
in hand, to approximately optimize the target given in Equa-
tion (2), we simply call the seminal DRL method PPO with
the following regularized reward:

r̂(x, a) = rMLE(x, a)− η log
π(a|x)
π0(a|x)

.

To simplify the discussion, we first omit the computational
challenges by defining the following information-theoretical

policy improvement oracle, and defer a discussion on its
practical implementations in Section 5.

Definition 2.2 (Policy Improvement Oracle). For reward
function r : X ×A → R and a reference policy π0, for all
x ∈ X , we can compute the Gibbs policy (Lemma G.6):

πr(·|x) := argmax
π∈Π

Ea∼π(·|x)

[
r(x, a) + η log

π0(a|x)
π(a|x)

]
∝ π0(·|x) · exp

(1
η
r(x, ·)

)
.

Accordingly, we take the policy class as Π :=
{
π(·|x) ∝

π0(·|x) · exp
(
1
η ⟨θ, ϕ(x, ·)⟩

)
: θ ∈ Θ(B)

}
. However, even

in this ideal case without worrying about finding the best
RL configuration, this useful framework suffers from the
reward over-optimization issue (Gao et al., 2023).

Intuitively, the finite D cannot cover the whole
prompt-response space, and the fine-tuned reward
model often performs poorly in the face of out-of-
distribution data (Burns et al., 2023).

Accordingly, the learned rMLE only aligns well with the
ground truth r∗ in certain distributions.

In addition to the PPO algorithm, the direct preference learn-
ing methods have attracted significant attention recently due
to its stability and competitive performance (Zhao et al.,
2023; Rafailov et al., 2023; Azar et al., 2023; Ethayarajh
et al., 2024). We use the DPO as a representative example
and the intuition extends to other algorithms. We show that
the DPO can be viewed as imposing constraints on the re-
sulting policy by D. Informally, to converge to π∗, the DPO
requires an infinite D to cover the whole prompt-response
space. We defer the discussion to Appendix E.

2.3. Preliminary

In this section, we present some useful technical tools and
lemmas for subsequent analysis.
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Value decomposition. We have the following lemma to
decompose the value difference.

Lemma 2.3. Given a comparator policy π, we can decom-
pose the suboptimality of π̂ as follows:

J(π)− J(π̂) = Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)]

+ Eπ̂[r̂(x, a)− r∗(x, a)] + Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)]

+ ηDKL(π̂(·|x)∥π0(·|x))− ηDKL(π(·|x)∥π0(·|x))
]
,

where r̂ : X ×A → R is arbitrary.

Proof. The equality can be verified directly by the definition
of J(·) in Equation (2) and basic algebra.

Policy improvement error. In standard RL setting, π̂ is
typically taken as a greedy policy of r̂, leading to

Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)] ≤ 0.

In the KL-constrained case, since the policy cannot be
greedy or deterministic, we need to additionally handle the
policy improvement error. The following lemma provides
such an estimation when our policy is obtained by calling
the Oracle 2.2 with r̂.

Lemma 2.4 (Policy optimization error). Suppose that
π, π̂ ∈ Π so that π0, π, π̂ have the same support. If π̂
is induced by calling Oracle 2.2 with r̂, it holds that

Ex∼d0

[
Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)] + ηDKL(π̂∥π0)− ηDKL(π∥π0)

]
= −ηEx∼d0DKL(π∥π̂).

Here DKL(π∥π0) is short for DKL(π(·|x)∥π0(·|x)).

We will provide the proof of the lemma in Appendix F. The
analysis techniques are most similar to the policy gradi-
ent literature since they also consider the soft-max policies
(Chen & Teboulle, 1993; Agarwal et al., 2021; Cai et al.,
2020; Zanette et al., 2021b; Yuan et al., 2022; Xiao, 2022;
Zhong & Zhang, 2023; Uehara et al., 2024; Alfano et al.,
2024). The main difference is that in their iterative choices
of policy, for choosing πt, the reference policy they use is
the policy of the last round, i.e., πt−1, while we always use
the SFT-model π0 as our reference. We note that their algo-
rithms essentially still use the non-KL-regularized reward
as the target because though we prevent the policy from
moving too far away in each individual step, the cumulative
updates makes the reward estimations dominating in the
final policy.

Covariance matrix. Given a preference dataset D, a fixed
λ > 0, we denote ΣD as the covariance matrix estimation:

λI +
∑

(x,a1,a2)∈D

(
ϕ(x, a1)− ϕ(x, a2)

)(
ϕ(x, a1)− ϕ(x, a2)

)⊤
.

Both the algorithmic design and analysis will be centered
on the covariance matrix. For the readers that are not famil-
iar with the eluder-type techniques (or elliptical potential
lemma in this case), we provide a brief introduction to the
high-level intuition in Appendix A.3.

3. Offline Learning with Pessimism
3.1. Setup

In this section, we consider the offline setting, where we
aim to learn a good policy from a pre-collected dataset
without further interactions with the human. We suppose
that we are given an offline preference dataset: Doff =
{(xi, a1i , a2i , yi)}

noff
i=1 . We denote Σoff := ΣDoff

for offline
setting. To motivate the algorithmic design, with a compara-
tor policy π, we recall Lemma 2.3 and Lemma 2.4 to obtain
that

J(π
∗
) − J(π̂) = Ex∼d0

[
Eπ [r

∗
(x, a) − r̂(x, a)] + Eπ̂ [r̂(x, a) − r

∗
(x, a)]

− η · Ex∼d0

[
DKL(π

∗
(·|x)∥π̂(·|x))

]
,

(4)

where π̂ is induced by calling the Oracle 2.2 with r̂. In other
words, the sub-optimality depends on the quality of the
learned reward r̂, under the distributions induced by π and
π̂, separately. Since the finite Doff from the behavior policy
can hardly cover the whole prompt-space, the standard way
to handle this issue is to leverage the principle of pessimism
with a conservative reward (Jin et al., 2021b; Rashidinejad
et al., 2021; Xie et al., 2021a; Zanette et al., 2021b), which
means that we adopt an estimator that is a lower bound of
the true value with high probability. A technical motiva-
tion for doing so is that in Equation (4), the second term
Eπ̂[r̂(x, a)− r∗(x, a)] is hard to control because both the
estimation target (r̂ − r∗) and the distribution induced by π̂
depend on Doff . Therefore, they are statistically dependent
and characterizing this term is challenging.

In this section, we connect the newly formulated KL-
regularized bandit problem with the pessimism and show
that the modified variants are sample efficient.

3.2. Algorithms

We introduce two different ways to achieve pessimism.
The first one is to directly penalize the reward estima-
tion by an uncertainty estimator r̂(x, a) = rMLE(x, a) −
β · Γ(x, a, ν,Doff) so that r̂(x, a) − r∗(x, a) ≤ 0 for all
(x, a) ∈ X ×A. The construction of the uncertainty bonus
is a standard application of concentration inequality. Intu-
itively, the r̂ is an estimation of the ground truth r∗, and
r̂ will converge to r∗ with infinitely many samples that
cover the whole feature space well. With finite samples,
we can use the statistical tool (concentration inequalities)
to quantify the estimation error, in the sense that with high
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probability,

|r∗(x, a)− r̂(x, a)| ≤ Γ(x, a, ν,Doff),

where ν is a reference vector so that the uncertainty is rela-
tive to feature ν, which makes sense under the preference
learning nature. We omit the mathematical details here for
a clear presentation and we defer the details to Appendix C.

In addition to adopting a reward estimator with point-wise
pessimism, we may also use a modified target that is biased
toward pessimism by penalizing the uncertainty as in Equa-
tion (5). Here we do not maintain a confidence set but use
a modified target that is biased toward pessimism, similar
to Xie et al. (2021a); Zhang (2022), which may be easier to
approximate in practice (Liu et al., 2023b). Moreover, to
handle the additional trade-off between the reward and the
KL term, we also incorporate the KL divergence into the
policy computation.

Algorithm 1 Offline GSHF
1: Input: Doff , λ > 0, β > 0, reference vector ν, and

prompt distribution d0.
2: Compute θMLE based on Doff by maximizing the likeli-

hood given in Equation (3)
3: Option I: Output π̂ by constructing expected uncer-

tainty estimator Γe(π, ν,Doff) and solving

π̂ = argmax
π∈Π

[
Ex∼d0,a∼π(·|x)[rMLE(x, a)]− β · Γe(π, ν,Doff)

− η · Ex∼d0 [DKL(π(·|x)∥π0(·|x))]
]
.

(5)
4: Option II: Output π̂ by constructing uncertainty

estimator Γ(x, a, ν,Doff) and calling Oracle 2.2 with
r̂(x, a) = rMLE(x, a)− β · Γ(x, a, ν,Doff).

The full algorithmic framework is presented in Algorithm 1
and is referred to as the offline Gibbs Sampling from Hu-
man Feedback (GSHF) because the output policy is the
Gibbs distribution with some reward.

3.3. Main Results: Pessimism is Provably Efficient

We now present the main theoretical guarantee for Offline
GSHF.

Theorem 3.1. Under Assumption 2.1, if we set β :=

O
(√d+log(1/δ)

γ2 + λB2
)
, for any λ > 0 and comparator

policy π ∈ Π, with probability at least 1 − δ, the output
policy of Algorithm 1 with Option I and Γe(π, ν,Doff) =
∥Ex∼d0

[ϕ(x, π)− ν]∥Σ−1
off

satisfies

J(π)− J(π̂) ≤ 2β · ∥Ex∼d0
[ϕ(x, π)]− ν∥Σ−1

off
,

and the output policy of Algorithm 1 with Option II and

Γ(x, a, ν,Doff) = ∥ϕ(x, a)− ν∥Σ−1
off

satisfies

J(π)− J(π̂) ≤ 2β · Ex∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥Σ−1
off

− η · Ex∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
.

We can combine the guarantee with dataset property, usually
referred to as the coverage on the comparator policy π (Jin
et al., 2021b; Xie et al., 2021a), to obtain the concrete bound.
See Proposition D.1 for an concrete example. The proof of
the theorem is rather standard in offline learning based on
the principle of pessimism but with a different analysis to
handle the KL and the stochastic policy. We defer the proof
of the theorem to Appendix C. The reference vector ν in
Algorithm 1 is typically set as Ex∼d0

[ϕ(x, πref)] for some
available πref . As showcased by Zhu et al. (2023a), the
subtracted reference vector can serve as a pre-conditioner
for a better suboptimality bound. For instance, one typically
choice is πref = π0 so that π0 achieves a reward of zero
(Ouyang et al., 2022; Gao et al., 2023; Dong et al., 2023).

Comparison of two implementations of pessimism. In
comparison, the Option I achieves a sharper bound in the
uncertainty bonus because the expectation is inside the norm
and by Jensen’s inequality (Lemma G.1) we know that

∥Ex∼d0
[ϕ(x, π)]−ν∥Σ−1

off
≤ Ex∼d0,a∼π(·|x)∥ϕ(x, a)−ν∥Σ−1

off
.

Moreover, Option I has a desirable robust improvement
property. If we take ν = Ex∼d0 [ϕ(x, πref)], the resulting
policy will be better than πref , regardless of the coverage of
the Doff according to Theorem 3.1, which is similar to the
original offline RL literature for a robust policy improve-
ment (Bhardwaj et al., 2023). We will also see that the use
of a reference policy πref can also simplify the algorithmic
design in subsequent Section 4. However, the main advan-
tage of Option II is that the Oracle 2.2 can be empirically
well approximated. For instance, we can directly plug the
pessimistic reward into the PPO algorithm. Moreover, we
have the following algorithm in a direct preference learn-
ing manner that resembles that of Rafailov et al. (2023);
Zhao et al. (2023); Azar et al. (2023). We defer a detailed
discussion to Section 5.

4. Online Iterative Learning with Batch
Exploration

4.1. Setup: Batch Hybrid Learning

Beyond the offline learning, it is also common to query
human feedback during the training process. For instance,
Bai et al. (2022); Touvron et al. (2023) typically iterate the
RLHF process on a weekly cadence, where the fresh RLHF
models are deployed to interact with crowdworkers and to
collect new human preference data.
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We consider a slightly more general setting here, where we
refer it to as the hybrid learning. This is because while it
is possible to learn from scratch, in many cases, we tend to
start with the offline open-source datasets (Touvron et al.,
2023; Bai et al., 2023). For instance, in LLaMA2 (Tou-
vron et al., 2023), the authors start with 1500K open-source
comparison pairs Doff and keep Doff in the data mixture
for the entire RLHF process. Motivated by the practical
applications, we formulate the process as a batch hybrid
framework in this section. It is shown that such a batch on-
line framework can significantly improve the aligned LLMs
as evaluated by the humans (Bai et al., 2022; Touvron et al.,
2023). For completeness, we also develop the pure online
setting in Appendix B. Mathematically, consider the batch
hybrid setting of T batches with a fixed batch size m.

The agent initializes with the Doff (if applicable, otherwise
initialize as empty). For each iteration t ∈ [T ],

• we first update the policy pair (π1
t , π

2
t ) based on the

historical data collected so far: Doff and D1:t−1;
• we collectm tuples as Dt: we sample a random prompt

by xt,i ∼ d0, collect two responses by (a1t,i, a
2
t,i) ∼

(π1
t , π

2
t ), and query the preference signal yt,i from the

underlying BT model;
• the next iteration begins.

The main technical challenge here is to decide the behavior
policy pairs (π1

t , π
2
t ). It is well known that it is important to

strike a balance between exploration and exploitation to get
RL works (Auer et al., 2002), and we study such a trade-off
in the context of online iterative RLHF.

4.2. Algorithms

Non-symmetric algorithmic structure. Our first idea is
to adopt a non-symmetric structure in choosing π1

t and π2
t .

Specifically, we refer the π1
t as the main agent, which aims

to learn a good policy so that the suboptimality gap J(π∗)−
J(π1

t ) is small. In contrast, the second agent, referred to
as the enhancer, seeks to enhance the learning of the main
agent by choosing appropriate π2

t . The main advantage
of such a non-symmetric structure is that we have a lot of
freedoms to choose π2

t because we do not worry about the
sub-optimality incurred by it (Jin et al., 2021a; Xiong et al.,
2022b; Huang et al., 2021).

From a high level, the Online Iterative GSHF Algorithm
continuously enhances the historical dataset by strategically
interacting with the human labeller. Specifically, in Algo-
rithm 2, the main agent always exploits all the historical
information by taking the optimal policy induced from the
MLE rMLE. This process, however, requires the newly
collected data can provide more information, compared to
those collected previously. We divide the problem into two
different situations.

Algorithm 2 Online Iterative GSHF
1: Input: m,Doff (if applicable, otherwise Doff = ∅), β.
2: for t = 1, 2, · · · , T do
3: Observe xt,i ∼ d0 for i = 1, 2, · · · ,m 1.
4: Exploitation with the main agent: denote the MLE rMLE

with the likelihood in Equation (3) and compute the best
guess we have so far:

π1
t = argmax

π∈Π
Ex∼d0Ea∼π(·|x)

[
rMLE(x, a)

− ηDKL(π(·|x)∥π0(·|x))
]
.

(6)

5: Exploration with the enhancer:
6: Option I: if Doff can provide good coverage, no need

to explore so π2
t = πref ;

7: Option II: otherwise, choose π2
t by maximizing the

relative uncertainty relative to π1
t :

argmax
π̃∈Πt

Γ
m
t (λ, π

1
t , π̃) := β ·

m∑
i=1

∥ϕ(xt,i, π̃) − ϕ(xt,i, π
1
t )∥Σ

−1
t,m

,

(7)
where the confidence set is given in Equation (8).

8: Sample a1
t,i ∼ πt and a2

t,i ∼ π2
t , receive human feedback

for all i ∈ [m], and collect them as Dt.
9: end for

10: Output: the best model in π1
1:T by a validation set.

Option I. If the Doff is diverse enough and provides us with
a good coverage in terms of the (π∗, πref), we do not need
to actively explore and can take π2

t = πref directly2;

Option II. If we cannot expect to have a diverse Doff , the
enhancer aims to maximizes the uncertainty relative to the
main agent π1

t , while maintaining a moderate KL divergence.
In this case, the π2

t aims to explore toward the direction that
maximizes the uncertainty relative the main agent π1

t . We
additionally impose a constraint:

π̃ ∈ Πt = {π′ ∈ Π : η · Ex∼d0DKL(π
′(·|x), π1

t (·|x))︸ ︷︷ ︸
How far does the enhancer go.

≤ Γm
t (λ, π1

t , π
′)︸ ︷︷ ︸

How much information we can get.

},
(8)

where Σt,m = λI + 1
m

∑t−1
i=1

∑m
j=1(ϕ(xi,j , a

1
i,j) −

ϕ(xi,j , a
2
i,j))(ϕ(xi,j , a

1
i,j) − ϕ(xi,j , a

2
i,j))

⊤. This set is
never empty as π1

t always belongs to it so the choice is
well-defined. Intuitively, we require that the information we
can get is worth the cost we pay by moving away from π1

t .

Essentially, we are trying to boost our dataset by strategi-
cally choose the behavior policies at each iteration. If we
learn from scratch or the offline dataset is not good enough,
we need to explicitly incorporate the uncertainty into al-
gorithmic design, and explore the direction where we are
uncertain about so that we can gain more information. On

2We also mention in passing that for most of the cases, πref =
π0. We use πref for a slightly more general formulation.
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the other hand, if Doff is already good enough, our analysis
shows that it is also beneficial to collect more online data,
as we now discuss in the next subsection.

4.3. Highlight: RLHF Benefits from Online Exploration

We first consider the case of Option I: π2
t = πref . In this

case, it is essential to have a diverse Doff as we do not explic-
itly explore. This is most related to the study of hybrid RL in
the classic RL theory (Song et al., 2022; Zhou et al., 2023).
The major difference here is that for preference-based learn-
ing, the uncertainty is evaluated on the feature difference
instead of a single state-action pair, as we summaize in the
following assumption.

Assumption 4.1 (Partial Coverage of Offline Data). For the
linear model, there exists a reference policy πref , a ratio co-
efficient α = α(mT,Doff) ∈ (0, 1) and a coverage constant
Ccov > 0 such that

(mT )1−α∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥(Σoff )

−1 ≤ Ccov.

We remark that Assumption 4.1 implicitly assume that noff
is comparable to the total number of online samples mT so
that the influence of Doff will not be dominated by the online
data. To provide a more detailed understanding and connec-
tion to existing literature, we offer a more nuanced charac-
terization of α(mT,Doff) under standard partial coverage
conditions in Appendix D.1. In particular, whenmT ≈ noff ,
we show that α(mT,Doff) ≈ 1/2. It is worth emphasizing
that this scenario appears to be realistic for LLMs. For ex-
ample, in the LLaMA2 project (Touvron et al., 2023), we
observe noff = 1500K and mT = 1400K. We are ready
to present the results.

Theorem 4.2. For any ϵ > 0, under Assumption 2.1
with T = min{n ∈ N+ : n ≥ d log(n)} and β =

O
(√d log(T/δ)

γ2

)
, with probability at least 1−3δ, there exists

a t0 ∈ [T ] such that Algorithm 2 with Option I holds

J(π∗)− J(πt0) ≲ β · ∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

+

√
d

γ2m
− ηExt0

∼d0

[
DKL(π

1
t0(·|xt0)∥π

∗(·|xt0))
]
,

where Σoff+D1:t0 denotes the covariance matrix computed
on Doff ∪ D1:t0 . If we further assume that Assumption 4.1
holds, we have

J(π∗)− J(πt0) ≲

√
d2

γ2m
+ β(mT )α(mT,Doff )−1Ccov

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]
.

The proof is deferred to Appendix D.3. Note that the second
result is a conservative bound where we completely ignore

the coverage provided by the online data D1:t0−1. We now
analyze the impact of the online data as follows.

RLHF Benefits from Online Exploration. One natural
question arises under Assumption 4.1: if we can directly ap-
ply Algorithm 1 to get a good policy, why should we collect
online data? The difference is that now the second term
corresponds to the coverage condition of Doff ∪ D1:t0 . Un-
der Assumption 4.1, with suitable hyper-parameters (large
enough m and suitable β), we know that π1

t → π∗. Since
the online data is collected by (π1

t , πref) and the goal is to
cover (π∗, πref), we expect that the intermediate policies
can provide a much better coverage as compared to the Doff ,
i.e., a much smaller Ccov, for many average instances. We
will partially verify this intuition in the experiment part.

We now move to the case of Option II where we cannot ex-
pect to have a diverse Doff and need explicit exploration. We
first show that with suitable β, the constructed confidence
set contains π∗ with high probability.

Lemma 4.3 (Confidence set). For the linear model in As-
sumption 2.1, given the policy of the main agent π1

t , we
consider the confidence set defined in Equation (8) with

β = O
(√d log(T/δ)

γ2m

)
. Then, with probability at least 1− δ,

we know that π∗ ∈ Πt for all t ∈ [T ].

We defer the proof to Appendix B.3 and present the main
result for the Option II.
Theorem 4.4. For any ϵ > 0, we set the batch size
m = d/(γ2ϵ2). Under Assumption 2.1, with β :=

O
(√d log(T/δ)

γ2m

)
and λ = Θ

(
d log(T/δ)/(mγ2B2)

)
, after

T = min{n ∈ N+ : n ≥ d log(n)} iterations, we have
with probability at least 1− 3δ, Algorithm 2 with Option II
satisfies: there exists a t0 ∈ [T ],

J(π∗)− J(π1
t0) ≲ ϵ− η · Ext0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
,

where the required samples is at most mT = Õ
(

d2

γ2ϵ2

)
.

Getting Rid of Data Coverage. One notable feature of
Theorem 4.4 is that with explicit exploration, we do not
need an offline dataset with good coverage, highlighting the
importance of strategic explorations. This is particularly
important in the context of LLMs because the distribution
shift between LLMs are very large so data coverage is more
sparse. For instance, along the way of finding the optimal
policy of some learned reward function by PPO, the KL
divergence to the initial checkpoint can be > 25 (Bai et al.,
2022).

Algorithmic Simplicity v.s. Data Coverage. We note that
Option I and Option II are complementary to each other
and hold their own values. Specifically, the Option I offers
simplicity in algorithmic design, at the cost of demand for
a high-quality Doff . In comparison, the online learning
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does not relies on the quality of Doff , but the choice of
the enhancer is challenging because for the neural network,
the uncertainty estimators do not admit a closed-form. In
practice, we typically resort to heuristic methods (Wu et al.,
2021b; Coste et al., 2023) to estimate the uncertainty, as we
discuss in the experiment part of this paper.

The advantage of reward modeling. Theorem 4.2 and
Theorem 4.4 reveal a key characteristic of reward modeling:
the sample complexity is dependent on the complexity of the
reward model rather than the generative models. For simple
reward functions, such as sentiment or politeness evaluation,
the required function class is substantially smaller compared
to the generative model. This is corroborated by evidence
showing that even compact models like BERT (Devlin et al.,
2018) can yield accurate reward assessments. This may il-
lustrate the advantage of the most popular RLHF framework
used by Ouyang et al. (2022); Bai et al. (2022); Touvron
et al. (2023), in contrast to the idea of bypassing reward
modeling (Rafailov et al., 2023; Zhao et al., 2023; Azar
et al., 2023) and training based only on the offline dataset.

5. Implementations of GSHF
In this section, we discuss how to practically implement
the information-theoretical Algorithms. From a high level,
the GSHF framework can be implemented by combining
many existing algorithms to approximate the computational
Oracle 2.2, including PPO, DPO, and InfoNCA (Chen et al.,
2024). Here, we focus on the PPO and DPO and discuss
several popular ways to implement it.

In practice, the policy is represented by a deep neural net-
work. In this case, one common choice (Ziegler et al., 2019;
Wu et al., 2021a; Ouyang et al., 2022; Bai et al., 2022) is to
use the standard deep RL algorithms like PPO to optimize
the regularized reward: r̃(x, a) = r(x, a) − η log πθ(a|x)

π0(a|x) .

However, PPO is significantly less stable and sensitive to
implementation as compared to SFT (Choshen et al., 2019;
Engstrom et al., 2020). Recently, another line of work con-
siders a family of algorithms that directly learn from the
preference data without reward modeling, including the
DPO (Rafailov et al., 2023), SLIC (Zhao et al., 2023), IPO
(Azar et al., 2023). These algorithms attracted significant
attention due to its stability and easy implementation. We
use the DPO as a representative example here. Specifically,
DPO chooses to train the LLM as a reward model, by opti-
mizing the following loss:

∑
(x,aw,al)∈Doff

−
[
log σ

(
η log

πθ(a
w|x)

π0(aw|x) − η log
πθ(a

l|x)
π0(al|x)

)]
,

(9)
where aw, al is the chosen/rejected response. It is shown
that the optimal policy for the DPO loss in Equation (9)
is identical to the one for the RLHF objective πr when r

is the MLE (Azar et al., 2023). To fit the DPO into the
GSHF framework, we generalize this result to incorporate
the pessimism.

5.1. Direct Preference Learning with Pessimism

For notation simplicity, we denote the uncertainty bonus as
Γ(x, a) and omit the dependency on ν and Doff . Then, we
have the following proposition.

Proposition 5.1 (Direct Preference Learning with Pes-
simism). Given the preference dataset Doff , we can imple-
ment Option II of Algorithm 1 by minimizing the following
loss function LDoff

(θ, π0):

∑
(x,aw,al)∈Doff

log σ

(
η log

πθ(a
w|x)

π0(aw|x) − η log
πθ(a

l|x)
π0(al|x)

+ (Γ(x, aw)− Γ(x, al))︸ ︷︷ ︸
m(x,aw,al)

)
,

(10)

where aw is preferred over al.

Intuitively, we add an adaptive margin for each preference
pair (x, aw, al) according to their uncertainty difference.
We defer the proof to Appendix C.2.

Uncertainty Estimation via Ensemble. The uncertainty es-
timation for the general neural network is still an open prob-
lem. In practical applications, we typically resort to heuristic
methods. For instance, Coste et al. (2023) uses the idea of
ensemble to get the pessimistic reward model. Specifically,
they independently train 5 reward models {ri}5i=1 and use
the empirical variance as the uncertainty estimation. It is
shown that such a pessimistic version of the reward model
can significantly reduce the reward over-optimization for
PPO and best-of-n sampling (Nakano et al., 2021).

5.2. Enhancer Explores with Main Agent Policy

For the online exploration, selecting an appropriate opti-
mistic policy for the enhancer to maximize the uncertainty
with respect to the main agent π1

t as in Equation (8) is
largely less explored in practical applications. While it is
challenging to obtain the analytical solution of uncertainty,
the insight is to maximize the policy difference with π1

t ,
while maintaining a moderate KL divergence. We discuss
some popular heuristic implementations here.

Model Variants. In the project of Claude (Bai et al., 2022),
the authors choose to use the models with different training
steps as (π1

t , π
2
t ). For instance, if we run PPO for 2 epoch

in total, we may take π1
t as the model saved at the end of

the first epoch and take π1
t as the one saved at the end of

second epoch. Moreover, in addition to the model variants,
the LLaMA-2 project (Touvron et al., 2023) further adjusts
the sampling temperature of π1

t to induce π2
t .

8
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MODELS SETTINGS GOLD REWARD GOLD WR GPT4 EVAL OOD GOLD REWARD DIFF ∆ ↓ OOD GOLD WR OOD GPT4 EVAL

SFT OFFLINE 0.27 - - -0.21 0.48 - -

DPO OFFLINE 2.15 0.5 0.5 1.71 0.44 0.5 0.5

RSO OFFLINE 2.25 0.54 0.53 1.89 0.36 0.55 0.52

MULTI-STEP RSO OFFLINE 2.59 0.63 0.57 2.41 0.18 0.64 0.60

HYBRID-GSHF-DPO HYBRID 2.67 0.67 0.65 2.46 0.21 0.66 0.59

Table 1. The evaluation results of the models from different RLHF algorithms. WR refers to Win Rate The gold rewards are computed on
the test split with 5K prompts and the GPT4 evaluations are with 100 randomly sampled test prompts, with the DPO as baseline. We use
5K prompts from the UltraFeedback to compute the OOD reward and ∆ is the difference between the in-domain test reward and the OOD
one. We count GPT4 evaluation score as win × 1 + tie × 0.5 and provide the details in Table 4.

Rejection Sampling. A popular ensemble-based approach
is the rejection sampling (Nakano et al., 2021; Dong et al.,
2023; Liu et al., 2023a). We present a brief introduction to
the concept of rejection sampling in Appendix A.2. In the
context of LLM, however, the rejection sampling is usually
restricted to the best-of-n sampling. Specifically, we sample
n independent responses by π1

t for each prompt, and then
use a reward function to rank them and take the one with
the highest reward as the final output. In other words, we
take π2

t as the best-of-n variant of π1
t . In this way, the π2

t

enlarges the margins between π1
t and DKL(π

1
t , π

2
t ) is upper

bounded by log n− n−1
n and is usually far better than this

conservative estimation (Beirami et al., 2024). We note that
similar idea has been adopted (Liu et al., 2023a; Hoang Tran,
2024; Yuan et al., 2024) for improving DPO.

6. Experiments
We present some proof-of-concept experiments to verify
the theoretical findings and refer interested readers to Dong
et al. (2024) for a comprehensive recipe of online iterative
RLHF. For a clear presentation, we refer the Algorithm 2
with Option I as Hybrid GSHF.

To illustrate the improvement from the online exploration,
we compare different iterations of Hybrid-GSHF-DPO in
Figure 2. For each iteration, we evaluate the models ev-
ery 400 training steps and plot the representative mod-
els. Clearly, the previous iteration is strictly dominated
by the subsequent one in terms of the frontier of reward-KL
trade-off. This demonstrates the significant improvements
achieved by further iterating DPO with online data. In par-
ticular, compared to offline DPO which uses more offline
data than the iteration 1, leveraging online data proves to be
far more efficient, as evidenced by the enhanced frontier of
the reward-KL trade-off.

Due to space constraint, we only present the main results in
Table 1. The baseline methods, multi-step RSO, and the de-
tailed experimental setup are introduced in Appendix H. The
code is publicly available at https://github.com/
RLHFlow/Online-RLHF.
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Figure 2. The Reward-KL trade-off curves of different iterations of
Hybrid-GSHF-DPO. The rightest point is the highest gold reward
that can be achieved in that round.

7. Conclusion
In this paper, we formulate the real-world RLHF process as
a reverse-KL regularized contextual bandit problem. Com-
pared to existing theoretical RLHF frameworks, the pro-
posed framework admits a stochastic optimal policy, that
more accurately reflects the dynamics of foundation gen-
erative models and aligns closely with current alignment
practices (Ouyang et al., 2022; Bai et al., 2022; Rafailov
et al., 2023). We design statistically efficient algorithms in
offline, online, and hybrid settings, featuring the standard
ideas of pessimism and optimism in the new framework,
while also handling the distinct challenges of preference
learning as well as the newly introduced KL constraint with
distinct algorithmic designs.

The theoretical findings also sheds light on innovative path-
ways for practical algorithmic development, as we move
toward implementations of the information-theoretical algo-
rithms in Section 5. The practical implementations of the
proposed algorithms outperform strong baselines like DPO
and RSO in real-world alignment of LLMs.
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thus making the LLMs more helpful, and controllable and
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A. Notation Table, Related Work, Backgrounds, and Organization of Appendix
To improve the readability of this paper, we provide a Table 2 for the notations used in this paper. We also provide an
introduction to the rejection sampling for completeness.

Notation Description
⟨z1, z2⟩ The inner product of two vectors z⊤1 z2.
∥z∥Σ The induced norm

√
z⊤Σz.

X ,A The state (prompt) space and the action (response) space.
ϕ(x, a), θ The feature map and parameter of the linear parameterization in Assumption 2.1.

d The dimension of the feature vector.
π,Π Policy and policy class.
ℓD The log-likelihood of the BT model on D defined in Equation (3).

y ∈ {0, 1} Preference signal.
J(π) The KL-regularized target defined in Equation (2).
η The coefficient of KL penalty, defined in Equation (2).
d0 Distribution of state (prompt).
B, γ Regularization constant: ∥θ∥ ≤ B, γ = 1/(2 + exp(−B) + exp(B)).
Θ(B) {θ ∈ Rd : ∥θ∥ ≤ B}.
Doff ,Dt The offline dataset and the dataset collected in online iteration t.
Σoff ,Σt The covariance matrix with Doff and Dt.
σ(·) σ(z) = 1/(1 + exp(−z)) is the sigmoid function.

Ccov(Doff , πref , α) The coverage of the offline dataset defined in Definition 4.1.
Rejection Sampling See Appendix A.2 for an introduction.

Best-of-n Policy See Appendix A.2 for an introduction.

Table 2. The table of notations used in this paper.

A.1. Related Work

There is a rich literature in RLHF and we refer the interested readers to the survey papers like Casper et al. (2023) for a
more comprehensive review. We focus on the papers that are most related to our work here.

RLHF has attracted considerable attention in the past few years, especially after its tremendous success in ChatGPT
(OpenAI, 2023). We refer interested readers to Wirth et al. (2017); Casper et al. (2023) for a detailed survey but focus
on the most related works here. The standard RLHF was popularized by Christiano et al. (2017), which served to direct
the attention of the RL community to the preference-based feedback. The most popular and standard RLHF framework is
outlined in the InstructGPT paper (Ouyang et al., 2022), Claude (Bai et al., 2022) and the LLaMA2 report (Touvron et al.,
2023) in detail, which typically consists of three steps starting from the pretrained model: supervised finetuning, reward
modeling, and reward optimization. The effectiveness of this framework has been showcased by many recent generative
models, like ChatGPT (OpenAI, 2023), Bard (Google, 2023), Claude (Anthropic, 2023), and LLaMA2 (Touvron et al.,
2023). However, it is also noteworthy to indicate that the RLHF process often leads to degeneration in the performance of
generation, commonly referred to as the “alignment tax” in the literature (Askell et al., 2021). This is usually because of
the imperfection of the reward model and the model can make use of these imperfections to chase for a high reward. This
phenomenon is referred to as the reward hacking (Michaud et al., 2020; Tien et al., 2022). It is also possible to apply RLHF
to general generative models, like the diffusion model (Hao et al., 2022; Wu et al., 2023; Lee et al., 2023; Dong et al., 2023).
In this work, we use the terminology and analysis of LLMs for better illustration, and defer the study of general generative
models to future work.

RLHF algorithms. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is the most well-known algorithm in LLM
alignment literature. However, its instability, inefficiency, and sensitivity to hyperparameters (Choshen et al., 2019) and
code-level optimizations (Engstrom et al., 2020) present significant challenges in tuning for optimal performance and its
tremendous success in Chat-GPT4 (OpenAI, 2023) has not been widely reproduced so far. Additionally, it often necessitates
incorporating an extra reward model, a value network (known as a critic), and a reference model, potentially as large as the
aligned LLM (Ouyang et al., 2022; Touvron et al., 2023). This imposes a significant demand on GPU memory resources.
Thus, researchers have attempted to design alternative approaches for LLM alignment to resolve the aforementioned issues.
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Dong et al. (2023); Yuan et al. (2023); Touvron et al. (2023); Gulcehre et al. (2023) propose reward ranked finetuning
(RAFT) (also known as the iterative finetuning, rejection sampling finetuning) by iteratively learning from the best-of-n
policy (Nakano et al., 2021) to maximize the reward, which is a stable baseline with minimal hyper-parameter configuration
and was applied to the alignment of LLaMA2 project. There is also a line of work focusing on deriving an algorithm from
the KL-regularized formulation (Rafailov et al., 2023; Zhu et al., 2023b; Wang et al., 2023a; Liu et al., 2023a; Li et al.,
2023b). Among them, Direct Preference Optimization (DPO) (Rafailov et al., 2023) has emerged as an attractive alternative
approach to PPO with notable stability and competitive performance. The innovative idea of DPO is to train the LLMs
directly as a reward model based on the offline preference dataset and bypassing the reward modeling. Similar to DPO, there
are also other works aiming to optimize the LLMs directly from the preference data, including (Zhao et al., 2023; Azar
et al., 2023), and has sparked considerable debate on whether reward modeling, as well as RL, is necessary for alignment.
However, while these algorithms are partly inspired by mathematical principles and intuitions, a comprehensive theoretical
analysis remains open.

Theoretical study of RLHF. The theoretical understanding of RLHF can be traced back to research on dueling bandits
(e.g., Yue et al., 2012; Saha, 2021; Bengs et al., 2021), a simplified setting within the RLHF framework. Recently, many
works have focused on the more challenging RLHF problem (also known as the preference-based RL). Xu et al. (2020);
Novoseller et al. (2020); Pacchiano et al. (2021) delve into the study of tabular online RLHF, where the state space is
finite and small. Moving beyond the tabular setting, Chen et al. (2022) provides the first results for online RLHF with
general function approximation, capturing real-world problems with large state spaces. Wang et al. (2023c) presents a
reduction-based framework, which transforms some sample-efficient algorithms for standard reward-based RL to efficient
algorithms for online RLHF. Further advancements in algorithm designs are introduced by Zhan et al. (2023b); Wu & Sun
(2023), encompassing the development of reward-free learning type algorithms and posterior sampling-based algorithms
tailored for online RLHF. Initiating exploration into offline RLHF, Zhu et al. (2023a) presents a pessimistic algorithm that is
provably efficient for offline RLHF. Additionally, Zhan et al. (2023a) and Li et al. (2023c) extend these investigations into
the broader scope of general function approximation settings within offline RLHF. In comparison to these existing studies,
our work introduces a new theoretical formulation and goal for RLHF, as well as novel problem settings, such as hybrid
RLHF. The new mathematical formulation allows our framework to align more closely with recent advancements in LLMs,
and we discuss the connections between our theoretical findings and practical algorithmic designs in Section 5. We mention
in passing that Tiapkin et al. (2023) also considers the KL constraint in offline RL but mainly focuses on the scenario where
an expert policy is available for imitation learning, thus differing from ours.

Finally, concurrent to this work, Hoang Tran (2024) and Yuan et al. (2024) consider variants of iterative DPO that may
share similar insights with us in terms of algorithmic design. We comment on the similarities and differences between
our work and theirs as follows. Hoang Tran (2024) focus on the batch online setting, which will be thoroughly developed
in Section 4. One notable difference is that they set the reference policy as the one from last iteration, while we always
use the π0 as the reference policy. From a theoretical perspective, their algorithmic design resembles the classic policy
gradient algorithm (Cai et al., 2020; Zhong & Zhang, 2023) that optimizes the non-regularized reward, while we optimize
the KL-regularized one as most of the Instruct-GPT (Ouyang et al., 2022) and Claude (Bai et al., 2022) did. Yuan et al.
(2024) also consider iterative DPO-type training. However, both our algorithm and Hoang Tran (2024) leverage the reward
signal from the external model or human, while Yuan et al. (2024) adopts a clever idea by using the LLM itself as the reward
model to provide preference signal, hence the name “self-rewarding”. We remark that the primary goal of this project is to
formally formulate the RLHF as a KL-regularized contextual bandit problem and establish its mathematical foundation. The
online iterative DPO is a natural corollary of the established framework but the framework can also be implemented by
combining it with other oracle algorithms. See Section 5 for details. Finally, we expect that the techniques presented in this
paper also extend to analyze the general preference learning like Azar et al. (2023) beyond the reward-based learning.

A.2. Rejection Sampling

We briefly introduce the rejection sampling in this subsection. We first remark that in the literature, many papers use this
terminology to refer best-of-n policy (Touvron et al., 2023), which can be different from the notion of rejection sampling
here. Specifically, the best-of-n policy takes a base policy π and a reward function r as the input, and output a new policy π̃:
for each x ∈ X , we sample n independent policies from π and output the one with the highest reward measured by r. In
what follows, we introduce the rejection sampling.

Rejection sampling, a widely utilized method in Monte Carlo tasks, is designed to sample from a target distribution using
samples from a proposal distribution and a uniform sampler (Neumann, 1951). This technique is applicable when the density
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ratio between the target distribution q and the proposal distribution p is bounded, satisfying q(x)/p(x) ≤M for all x ∈ X .
In practical implementation, n samples are drawn from the proposal distribution p. Each sample, denoted as x ∼ p, is
accepted with a probability r = q(x)

Mp(x) . This acceptance is determined by evaluating whether u < r, where u is a number
drawn from a uniform distribution U [0, 1]. The accepted samples x̃ are then representative of the target distribution q.

The primary challenge in rejection sampling is its low acceptance rate, particularly problematic for high-dimensional
data due to the curse of dimensionality, where the density ratio often scales with exp(d). This issue persists even in
low-dimensional scenarios, as a large density ratio M can drastically reduce acceptance rates. The method is most efficient
when p closely approximates q, leading to M ≈ 1.

A.3. Covariance Matrix and Eluder Technique

Given a training set D, the in-sample error on the observed data in D is given by

∥θ1 − θ2∥2ΣD
= λ∥θ1 − θ2∥2 +

∑
(x,a1,a2)∈D

((
rθ1(x, a

1)− rθ1(x, a
2)
)
−
(
rθ2(x, a

1)− rθ2(x, a
2)
))2

,

where we additionally add a regularization term λ∥θ1 − θ2∥2. Meanwhile, if we test the hypothesis (θ1 − θ2) on a newly
observed data, the out-of-sample error would be given by |

〈
θ1 − θ2, ϕ(x, a

1)− ϕ(x, a2)
〉
|. The ideal case would be that

we can infer the out-of-sample error via the in-sample error, so we look at the ratio between them:

|
〈
θ1 − θ2, ϕ(x, a

1)− ϕ(x, a2)
〉
|

∥θ1 − θ2∥ΣD

≤
∥ϕ(x, a1)− ϕ(x, a2)∥Σ−1

D
· ∥θ1 − θ2∥ΣD

∥θ1 − θ2∥ΣD

= ∥ϕ(x, a1)− ϕ(x, a2)∥Σ−1
D
,

where we take a square root on the in-sample error to keep them being of the same order and use Cauchy-Schwarz inequality
(Lemma G.2). Here, the ∥ϕ(x, a1)− ϕ(x, a2)∥Σ−1

D
is referred to as the elliptical potential in the literature of linear function

approximation (Abbasi-Yadkori et al., 2011). The elliptical potential can be viewed as the uncertainty of ϕ(x, a1)−ϕ(x, a2),
given the historical samples in D, and can be used to guide our exploration. The complexity of the reward model space is
characterized by the following fact:

Lemma A.1 (Elliptical potential is usually small (Hu et al., 2022)). For a fixed λ > 0 and {zt}Tt=1 ⊂ Rd with ∥zt∥ ≤ 1, we

define Zt = λI +
∑t−1

s=1 zsz
⊤
s . Then, for any constant c > 0, ∥zt∥Z−1

t
> c happens at most 3d

log(1+c2) log
(
1+ 1

λ log(1+c2)

)
.

The ratio between the out-of-sample error and the in-sample error in the linear case can be readily generalized to the general
function approximation using the variant of eluder dimension considered in Gentile et al. (2022); Zhang (2023); Ye et al.
(2023); Agarwal et al. (2023), which essentially states that there is some low-rank structure in the reward model space so
the generalization is limited (the elliptical potential cannot be large for too many times). Moreover, if we can effectively
estimate the in-sample error from the preference data, by Lemma A.1, we can infer the out-of-sample error safely most of
the time. Such an in-sample error estimation is provided in Lemma G.3. Essentially, the eluder-type complexity measures
and techniques reduce the learning problem to an online supervised learning (in-sample error estimation and minimization)
(Zhong et al., 2022).

A.4. Organization of the Appendix

In the appendix, we need to formally prove Theorem 3.1, 4.2, and 4.4. To distinguish them, we refer the first theorem as the
offline setting, the second setting as the hybrid learning to stress the requirement of a diverse offline Doff and finally, we
refer Theorem 4.4 as the online learning where we may start from scratch. While we mainly focus on the batch learning
setting to match the practical applications, we also develop the results of sequential setting with m = 1 in case that readers
are interested in the technique for completeness. The map of the appendix is as follows.

• We develop the pure online framework in Appendix B, where we do not make any assumption on Doff . We also provide
the proof of Theorem 4.4 in this section;

• We study the offline learning in Appendix C with the proof of Theorem 3.1;

• We study the hybrid learning in Appendix D and prove Theorem 4.2;
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• We study the coverage condition for DPO to converge in Appendix E;

• We provide the proof of some technical Lemmas in Appendix F, as well as some existing technical Lemma in
Appendix G;

• We provide the additional experimental details, hyper-parameters, and illustrating examples in Appendix H.

B. Proof of Online Learning
In this section, we develop the online framework of the KL-constraint contextual bandit, that is missing in the main paper.

B.1. Batch Online Learning

We first consider the case of m > 1, which leads to a more sparse update of the model. Our goal is also to design a
sample-efficient algorithm, which finds a policy π̂ so that the suboptimality J(π∗)− J(π̂) < ϵ with the number of samples
polynomial in the accuracy number 1/ϵ, feature dimension d, and other problem-dependent parameters. In practical
applications, it is observed that the diversity of the outputs is critical, and the response pairs (a1t , a

2
t ) are recommended to be

collected by different model variants with different temperature hyper-parameter (Touvron et al., 2023).

Proof of Theorem 4.4. Recall the definition of the covariance matrix:

Σt,m = λI +
1

m

t−1∑
i=1

m∑
j=1

(ϕ(xi,j , a
1
i,j)− ϕ(xi,j , a

2
i,j))(ϕ(xi,j , a

1
i,j)− ϕ(xi,j , a

2
i,j))

⊤.

Then, by invoking Lemma G.3 for θt with ΣD = mΣt,m and λ′ = mλ, we have with probability at least 1 − δ, for any
t ∈ [T ],

∥θt − θ∗∥Σt,m
=

1√
m
∥θt − θ∗∥ΣD

≤ C√
m

√
d+ log(T/δ)

γ2
+mλB2

=C

√
d+ log(T/δ)

γ2m
+ λB2. (11)

Let

Σ̃t = λI +

t−1∑
i=1

Ex∼d0,a1∼π1
i ,a

2∼π2
i

[
(ϕ(xt, a

1)− ϕ(xt, a
2))(ϕ(xt, a

1)− ϕ(xt, a
2))⊤

]
.

Now, by elliptical potential lemma (Lemma G.4), we have

T∑
t=1

log
(
1 + Ext∼d0

∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥2Σ̃−1

t

)
≤

T∑
t=1

log
(
1 + Ext∼d0,a1∼π1

t ,a
2∼π2

t
∥[ϕ(xt, a1)− ϕ(xt, a

2)]∥2
Σ̃−1

t

)
≤ log

det(Σ̃T )

det(λI)

≤d log(1 + TL2/λd) := γT (λ).

Since each term on the left-hand side is positive, we know that there exists at least a t0 ∈ [T ], the value is smaller or equal
than the average value:

log
(
1 + ψ2

t0

)
≤ 1

T
γT (λ),

where we use the short-hand notation ψt = Ext∼d0
∥ϕ(xt, π1

t )− ϕ(xt, π
2
t )∥Σ̃−1

t
. It is equivalent to

ψ2
t0 ≤ exp

(γT (λ)
T

)
− 1.
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We now consider the suboptimality at iteration t0:

J(π∗)− J(π1
t0) = Ext0

∼d0

[ 〈
θt0 − θ∗, ϕ(xt0 , π

1
t0)− ϕ(xt0 , π

∗)
〉 ]

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
≤ Ext0

∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ−1

t,m

]
· ∥θt0 − θ∗∥Σt,m

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
,

(12)

where the inequality uses the Cauchy-Schwarz inequality (Lemma G.2). Then, since the samples {xt,i}mi=1 are i.i.d and for
any x ∈ X

∥ϕ(x, π1
t0)− ϕ(xt0 , π

∗)∥Σ−1
t,m

≤ 2√
λ
,

we can use Chernoff bound (Theorem 2.16 of Zhang (2023)) to obtain that with probability at least 1− δ/2,

Ext0
∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ−1

t,m

]
≤ 1

m

m∑
i=1

∥ϕ(xt,i, π1
t0)− ϕ(xt,i, π

∗)∥Σ−1
t,m

+

√
log(2/δ)

2m
.

Similarly, we also get with probability at least 1− δ/2,

1

m

m∑
i=1

∥ϕ(xt,i, π1
t0)− ϕ(xt,i, π

∗)∥Σ̃−1
t0

≤ Ext0∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ̃−1

t0

]
+

√
log(2/δ)

2m

We take the two inequalities above back into Equation (12) to derive with that probability at least 1− 3δ,

J(π∗)− J(π1
t0)

≤
( 1

m

m∑
i=1

[
∥ϕ(xt0,i, π

1
t0)− ϕ(xt0,i, π

∗)∥
Σ−1

t0,m

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
≤

( 1

m

m∑
i=1

[
∥ϕ(xt0,i, π

1
t0)− ϕ(xt0,i, π

2
t0)∥Σ−1

t0,m

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
≤

(√3

m

m∑
i=1

[
∥ϕ(xt0,i, π

1
t0)− ϕ(xt0,i, π

2
t0)∥Σ̃−1

t0

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
≤

(√
3Ext0

∼d0

[
∥ϕ(xt0 , π

1
t0)− ϕ(xt0 , π

∗)∥
Σ̃−1

t0

]
+ 2

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
≤ C ·

(√
exp

(γT (λ)
T

)− 1 + 2

√
log(2/δ)

2m

)√d+ log(T/δ)

γ2m
+ λB2 − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
,

where the second inequality applies Lemma G.5 with λ = Ω(d log(T/δ)/m), and the last inequality uses Equation (11). By
choosing T satisfying that T ≥ d log(T ) and λ = Θ(d log(T/δ)/mγ2), we have

J(π∗)− J(π1
t0) = Õ

(√ d

γ2m
− ηExt0∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

])
,

which concludes the proof.

B.2. Sequential Online Setting

While we mainly care about finding a good model, with a slightly more involved analysis for the enhancer, we can also
derive an upper bound for the average regret as in Pacchiano et al. (2021); Chen et al. (2022):

Regave(T ) :=

T∑
t=1

[2J(π∗)− J(π1
t )− J(π2

t )

2

]
,

19



Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-constraint

where we now discuss in the sequential case with m = 1. We consider two kinds of regrets: (1) cumulative suboptimality
for the main policy π1

t compared to π∗:

Reg(T ) :=

T∑
t=1

[
J(π∗)− J(π1

t )
]
,

and (2) the average suboptimality:

Regave(T ) :=

T∑
t=1

[2J(π∗)− J(π1
t )− J(π2

t )

2

]
.

In this case, our goal is to output a sequence of policy pair {π1
t , π

2
t }Tt=1 so that the regrets Reg(T ) and Regave(T ) are

sublinear. To achieve this goal, the enhancer computes its policy by maximizing the uncertainty estimator

π2
t = argmax

π2
t∈Πt

m∑
i=1

Γ(xt,i, π
1
t , π

2
t ,D1:t−1), (13)

where D1:t−1 = ∪t−1
s=1Ds.

Theorem B.1 (Sequential Online learning). Under Assumption 2.1, with λ = Ω(d log(T/δ)/(γ2B2)) and β :=

O
(√d log(T/δ)

γ2

)
, with probability at least 1− 2δ, the regret of Algorithm 2 with Option II and m = 1 satisfies

Regave(T ) ≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

which further implies that

Reg(T ) ≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
.

Proof of Theorem B.1. First, we invoke the decomposition Lemma 2.3 and Lemma 2.4 to obtain for each batch t ∈ [T ]

J(π∗)− J(π1
t )

= Ext∼d0

[
Eπ∗ [r∗(xt, a)− r̂(xt, a)] + Eπ1

t
[r̂(xt, a)− r∗(xt, a)]− η · Ext∼d0

[
DKL(π

∗(·|xt)∥π1
t (·|xt))

]
= Ext∼d0

[ 〈
θ̂ − θ∗, ϕ(xt, π

1
t )− ϕ(xt, π

∗)
〉 ]

− η · Ext∼d0

[
DKL(π

∗(·|xt)∥π1
t (·|xt))

]
. (14)

Then, we deduce that with probability at least 1− δ,

T∑
t=1

[
J(π∗)− J(π1

t )
]

=

T∑
t=1

Ext∼d0

[ 〈
θt − θ∗, ϕ(xt, π

1
t )− ϕ(xt, π

∗)
〉 ]

− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
≤ β

T∑
t=1

Ext∼d0
min

{
1, ∥ϕ(xt, π1

t )− ϕ(xt, π
∗)∥Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
≤ β

T∑
t=1

Ext∼d0 min
{
1, ∥ϕ(xt, π1

t )− ϕ(xt, π
2
t )∥Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]

≤ β

√√√√T

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a2t )∥2Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

(15)
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where the first inequality uses the Cauchy-Schwarz inequality, Lemma G.3 and reward r ≤ 1 for any r ∈ F , the second
inequality uses π∗ ∈ Πt according to Lemma 4.3, and the last inequality uses the Cauchy-Schwarz inequality and Jensen’s
inequality.

Then, we define

Σ̄t =

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
[(ϕ(xt, a

1
t )− ϕ(xt, a

2
t ))(ϕ(xt, a

1
t )− ϕ(xt, a

2
t ))

⊤] + λI.

According to the concentration of the covariance matrix in Lemma G.5, since λ = Ω(d log(T/δ)), we have with probability
at least 1− δ, for any t ∈ [T ],

Σ−1
t ⪯ 3Σ̄−1

t ,

which implies that
T∑

t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥2Σ−1

t

}
≤ 3

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥2Σ̄−1

t

}
≤ 6d log(1 + T/dλ).

By taking the result above back into Equation (15), we get with probability at least 1− 2δ,
T∑

t=1

[
J(π∗)− J(π1

t )
]
≤ β

√
T6d log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
, (16)

where the inequality uses Lemma G.4.

Moreover, to analyze the average regret Regave(T ), we make the following decomposition
T∑

t=1

J(π1
t )− J(π2

t ) =

T∑
t=1

Ext∼d0

[
Eπ1

t
[r∗(xt, a)− rt(xt, a)] + Eπ2

t
[rt(xt, a)− r∗(xt, a)]

]
︸ ︷︷ ︸

(∆1
t )

+

T∑
t=1

Ext∼d0

[
Eπ1

t
[rt(xt, a)]− Eπ2

t
[rt(xt, a)] + ηDKL(π

2
t (·|xt)∥π0(·|xt))− ηDKL(π

1
t (·|xt)∥π0(·|xt))︸ ︷︷ ︸

(∆2
t )

]
.

For Term (∆1
t ), we have

(∆1
t ) = Ext∼d0 [

〈
ϕ(xt, π

1
t )− ϕ(xt, π

2
t ), θ

∗ − θt
〉
]

≤ β · Ext∼d0
∥ϕ(xt, π1

t )− ϕ(xt, π
2
t )∥Σ−1

t

We can deal with the Term (∆2
t ) by invoking Lemma 4.3 with π = π2

t and using the definition of the confidence set:

(∆2
t ) = ηDKL(π

2
t (·|xt)∥π1

t (·|xt)) ≤ β · ∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥Σ−1

t
.

Combining the above two inequalities and Equation (17), we have
T∑

t=1

J(π1
t )− J(π2

t ) ≤ 2β

T∑
t=1

Ext∼d0
∥ϕ(xt, π1

t )− ϕ(xt, π
2
t )∥Σ−1

t

≤ 2β

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥Σ−1

t

≤ 2β

√√√√3T

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
∥ϕ(xt, a1t )− ϕ(xt, a2t )∥2Σ̄−1

t

≲
√
Tβ2d, (17)
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where the last inequality uses Lemma G.4. Combining the results of Reg(T ) and the upper bound of
∑T

t=1 J(π
1
t )− J(π2

t )
in Equation (17), we can obtain the bound for the average regret in the following theorem.

Therefore, by combining the results above and Equation (16), we have

T∑
t=1

(
2J(π∗)− J(π1

t )− J(π2
t )
)
=

T∑
t=1

2
(
J(π∗)− J(π1

t )
)
+
(
J(π1

t )− J(π2
t )
)

≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

which concludes the proof.

B.3. Construction of the Confidence Set

In this subsection, we show that the confidence set contains π∗ for all iterations with high probability by proving Lemma 4.3.

Proof of Lemma 4.3. By the definition of the π∗ that π∗ is optimal at every context, for any π1
t ∈ Π and any xt,i ∈ X , we

have

0 ≤
〈
θ∗, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
=

〈
θ∗ − θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉︸ ︷︷ ︸

Term(i)

+
〈
θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)|π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))︸ ︷︷ ︸
Term(ii)

, (18)

For Term (i), by Cauchy-Schwarz inequality and Lemma G.3 with ΣD = mΣt,m and λ′ = mλ, we have

Term(i) ≤ β · ∥ϕ(xt,i, π∗)− ϕ(xt,i, π
1
t )∥Σ−1

t,m
,

where β = O
(√d log(T/δ)

γ2m

)
and the additional log T factor is because of the union bound over the T iterations. Meanwhile,

by invoking Lemma 2.4 with π = π∗, π̂ = πt, we obtain that

Term(ii) =
〈
θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
= Eπ∗ [rt(xt,i, a)]− Eπ1

t
[rt(xt,i, a)] + ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
= −ηDKL(π

∗(·|xt,i)|π1
t (·|xt,i)).

Taking respective upper bounds for Terms (i) and (ii) back into Equation (18) and summing over i ∈ [m], we have

β ·
m∑
i=1

∥ϕ(xt,i, π∗)− ϕ(xt,i, π
1
t )∥Σ−1

t,m
− η

m∑
i=1

DKL(π
∗(·|xt,i)|π1

t (·|xt,i)) ≥ 0,

which implies that π∗ ∈ Πt. Therefore, we finish the proof of Lemma 4.3.

C. Proof of the Offline Learning
C.1. Proof of Theorem 3.1

Proof of Theorem 3.1. We start with Option I. If we set r̂(x, a) = ⟨θMLE, ϕ(x, a)⟩, and take the policy by

π̂ = argmax
π∈Π

[
⟨θMLE,Ex∼d0

ϕ(x, π)⟩ − β · ∥Ex∼d0
[ϕ(x, π)− ν]∥Σ−1

off
− η · Ex∼d0

[DKL(π(·|x)∥π0(·|x))]
]
.

Then, we have〈
θMLE,Ex∼d0

[
ϕ(x, π)− ϕ(x, π̂)

]〉
+ β · ∥Ex∼d0

[ϕ(x, π̂)]− ν∥Σ−1
off

− β · ∥Ex∼d0
[ϕ(x, π)]− ν∥Σ−1

off

+ η · Ex∼d0

[
DKL(π̂(·|x)∥π0(·|x))−DKL(π(·|x)∥π0(·|x))

]
≤ 0.

(19)
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For simplicity, we denote the LHS of Equation (19) as (⋆). We plugging this into the estimation of J(π)− J(π̂):

J(π)− J(π̂)

= Ex∼d0

[
Ea∼π(·|x)

[
r∗(x, a) + η log

π0(a|x)
π(a|x)

]
− Ea∼π̂(·|x)

[
r∗(x, a) + η log

π0(a|x)
π̂(a|x)

]]
= (⋆) + ⟨θ∗ − θMLE,Ex∼d0

[ϕ(x, π)]⟩+ ⟨θMLE − θ∗,Ex∼d0
[ϕ(x, π̂)]⟩

− β · ∥Ex∼d0
[ϕ(x, π̂)]− ν∥Σ−1

off
+ β · ∥Ex∼d0

[ϕ(x, π)]− ν∥Σ−1
off

≤ ⟨θ∗ − θMLE,Ex∼d0
[ϕ(x, π)]− ν⟩+ ⟨θMLE − θ∗,Ex∼d0

[ϕ(x, π̂)]− ν⟩
− β · ∥Ex∼d0

[ϕ(x, π̂)]− ν∥Σ−1
off

+ β · ∥Ex∼d0
[ϕ(x, π)]− ν∥Σ−1

off

≤ 2β · ∥Ex∼d0 [ϕ(x, π)]− ν∥Σ−1
off
,

where the first inequality is from the Equation (19) and the second inequality uses Cauchy-Schwarz inequality and
Lemma G.3.

For Option II, we use the point-wise pessimism:

r̂(x, a) = rMLE(x, a)− β∥ϕ(x, a)− ν∥Σ−1
off
.

Then, we call Oracle 2.2 with r̂ to get π̂. By Lemma 2.3, we have

J(π)− J(π̂) =Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)]

+ Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)] + ηDKL(π̂(·|x)∥π0(·|x))− ηDKL(π(·|x)∥π0(·|x))
]
,

Since r̂ is obtained from the Oracle 2.2 with r̂, it follows from Lemma 2.4:

J(π)− J(π̂)

= Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)]− ηDKL(π(·|x)∥π̂(·|x))
]

= Ex∼d0,a∼π(·|x)
[
⟨θ∗ − θMLE, ϕ(x, a)− ν⟩+ β∥ϕ(x, a)− ν∥Σ−1

off

]
+ Ex∼d0,a∼π̂(·|x)

[
⟨θMLE − θ∗, ϕ(x, a)− ν⟩ − β∥ϕ(x, a)− ν∥Σ−1

off

]
− ηEx∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
≤ 2βEx∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥Σ−1

off
− ηEx∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
,

where we use Cauchy-Schwarz inequality in the last inequality.

C.2. Proof of the Direct Preference Learning with Pessimism

In this subsection, we prove the Proposition 5.1 that combines the direct preference learning with the pessimism. The
technique is similar to the (Rafailov et al., 2023) with additional consideration of the uncertainty bonus.

Proof of Proposition 5.1. For notation simplicity, we denote the uncertainty bonus as Γ(x, a). We first recall that in
Algorithm 1, we optimize the following KL-regularized target:

π̂ = argmax
π

Ex∼d0,a∼π(·|x)

[
rMLE(x, a)− Γ(x, a)− η log

π(a |x)
π0(a |x)

]
, (20)

where rMLE is the MLE of the BT model on the offline preference dataset D obtained via

rMLE = argmax
r

∑
(x,aw,al)∈Doff

log σ
(
r(x, aw)− r(x, al)

)
. (21)

According to Lemma G.6, for any fixed r, we have the following closed-form policy for Equation (20):

π̃r(a|x) =
1

Z(x)
π0(a|x) exp(

1

η
(r(x, a)− Γ(x, a))). (22)
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We can solve the reward as

r(x, a) = Γ(x, a) + η log
π̃r(a|x)
π0(a|x)

+ η logZ(x). (23)

We can plug Equation (23) into Equation (21) to get

π̂ = argmax
π̃r

∑
(x,aw,al)∈Doff

log σ

(
η log

πr(a
w|x)

π0(aw|x)
− η log

πr(a
l|x)

π0(al|x)
+ (Γ(x, aw)− Γ(x, al))︸ ︷︷ ︸

m(x,aw,al)

)
, (24)

where the uncertainty serves as an adaptive margin.

Clearly, if r is the solution of Equation (21), the πr is the solution of Equation (24). In contrast, if π is optimal for the DPO
target in Equation (24), then, the induced implicit reward β log π(y|x)

π0(y|x) − Γ(x, a) is optimal for Equation (21).

D. Proof of the Hybrid Learning
D.1. More Discussions on α(mT,Doff)

To better elaborate the quantify α(mT,Doff) in Assumption 4.1, we provide the following proposition.
Proposition D.1. Under Assumption 2.1, assuming that there exists absolute constants c† and α‡ such that

(mT )α
‡
/noff = 1, Σoff ⪰ B2I + c† · noff · (Ex∼d0z)(Ex∼d0z)

⊤,

where z = ϕ(x, π∗)− ϕ(x, πref). Then, we have α(mT,Doff) = 1− α‡

2 + 1
2 log(mT ) log

(
d

c†C2
cov

)
.

The condition of Proposition D.1 is referred to as the single-policy coverage in the literature of offline learning (Jin et al.,
2021b; Xie et al., 2021b;a), which is substantially weaker than the uniform coverage condition considered in Xie & Jiang
(2021); Yin et al. (2022); Xiong et al. (2022a), which requires Doff to well cover the entire feature space. In this case,
Proposition D.1 states that α(mT,Doff) mainly depends on the ratio between the online data size mT and the offline data
size noff . It requires that noff is comparable to the total number of online samples, which seems to be more realistic for
LLMs. For instance, in LLaMA2 project, the noff ≈ 1.5× 106, while the total number of online data is 1.4× 106. Since
noff and T are of the same order, α(mT,Doff) approximates 1/2.

Proof of Proposition D.1. First, we have

∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
=

√
(Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)])
⊤
Σ−1

off Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref))

=

√
tr
(
Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)] (Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)])

⊤
Σ−1

off

)
,

where the last equality uses the property of trace. To facilitate our analysis, we use the notation that Σ‡ =

Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)] (Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)])
⊤. Together with the assumption that

Σoff ⪰ B2I + c† · noff · Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)] (Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)])
⊤
,

we further have

∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
≤

√
tr
(
Σ‡ (B2I + c† · noff · Σ‡)

−1
)

=

√√√√ d∑
j=1

λj
B2 + c† · noff · λj

,

where λj denotes the j-th eigenvalue of Σ‡. It is not difficult to show that λj ∈ [0, B2], which further implies that

∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
≤

√√√√ d∑
j=1

1

1 + c† · noff
≤

√
d

c† · noff
.
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If (mT )α
‡
/noff = 1, we have

(mT )1−α(T,Doff ) · ∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥(Σoff )−1 ≤ Ccov.

with

α(mT,Doff) = 1− α‡

2
+

1

2 log(mT )
log

( d

c†C2
cov

)
,

which concludes the proof of Proposition D.1.

D.2. Sequential Hybrid Setting

Theorem D.2. Under Assumption 2.1, let λ = d log(T/δ)/(γ2B2) and β := O
(√d log(T/δ)

γ2

)
. Under Assumption 4.1, with

probability at least 1− 2δ, the output policy of Algorithm 2 with Option II and m = 1 satisfies

T∑
t=1

[
J(π∗)− J(π1

t )
]
≤ βTα(T,Doff ) · Ccov + β

√
6Td log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

1
t (·|xt)∥π∗(·|xt))

]
.

Proof of Theorem D.2. Define the following covariance matrices:

Σoff = λI +
∑

(x,a1,a2)∈Doff

(ϕ(x, a1)− ϕ(x, a2))(ϕ(x, a1)− ϕ(x, a2))⊤,

Σt = Σoff +

t−1∑
i=1

(ϕ(xi, a
1
i )− ϕ(xi, a

2
i ))(ϕ(xi, a

1
i )− ϕ(xi, a

2
i ))

⊤,

Σ̄t = Σoff +

t−1∑
i=1

Ex∼d0,a1∼πt,a2∼πref
(ϕ(x, a1)− ϕ(x, a2))(ϕ(x, a1)− ϕ(x, a2))⊤.

Similar to the proofs of the offline and online setting, we get the following decomposition: with probability at least 1− 2δ,

T∑
t=1

[
J(π∗)− J(πt)

]
=

T∑
t=1

Ext∼d0

[
Eπ∗ [r∗(x, a)− rt(x, a)] + Eπt [r

t(x, a)− r∗(x, a)]
]
− η

T∑
t=1

Ext∼d0

[
DKL(πt(·|xt)∥π∗(·|xt))

]
=

T∑
t=1

Ext∼d0

[ 〈
θ∗ − θt, ϕ(xt, π

∗)− ϕ(xt, πref)
〉 ]

+

T∑
t=1

Ext∼d0

[ 〈
θt − θ∗, ϕ(xt, πt)− ϕ(xt, πref)

〉 ]
− η

T∑
t=1

Ext∼d0

[
DKL(πt(·|xt)∥π∗(·|xt))

]
≤

T∑
t=1

∥θ∗ − θt∥Σt · Ext∼d0

[
∥ϕ(xt, π∗)− ϕ(xt, πref)∥Σ−1

t

]
+

T∑
t=1

∥θ∗ − θt∥Σt
· Ext∼d0

[
min

{
1, ∥ϕ(xt, πt)− ϕ(xt, πref)∥Σ−1

t

}]
− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
,

≤ Tβ · ∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off︸ ︷︷ ︸
P1

+β

T∑
t=1

Ext∼d0 min
{
1, ∥ϕ(xt, πt)− ϕ(xt, πref)∥Σ−1

t

}
︸ ︷︷ ︸

P2

− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
,
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where the first equality holds due to Lemma 2.3 and Lemma 2.4, the first inequality uses the Cauchy-Schwarz inequality,
and the last inequality holds due to Lemma G.3 and Σt ⪰ Σoff . For the term P1, according to Assumption 4.1, we get

P1 =Tα(T,Doff )β · T 1−α(T,Doff )∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off

≤Tα(T,Doff )β · Ccov.

For the term P2, we can apply Lemmas G.4 and G.5 to obtain

P2 ≤β

√√√√3T

T∑
t=1

Ext∼d0,a1∼πt,a2∼πref
min

(
∥ϕ(xt, a1)− ϕ(x, a2)∥2

Σ̄−1
t

, 1
)

≤β
√
3T · 2d log(1 + T/dλ).

By taking the upper bound of P1 and P2 back, we have

T∑
t=1

[
J(π∗)− J(πt)

]
≤ Tα(T,Doff )β · Ccov + β

√
6Td log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
.

which concludes the proof.

D.3. Proof of Theorem 4.2

Proof of Theorem 4.2. We recall the value decomposition

J(π∗)− J(πt0)

= Ext0∼d0

[
Eπ∗ [r∗(xt0 , a)− r̂(xt0 , a)] + Eπt0

[r̂(xt0 , a)− r∗(xt0 , a)]− η · Ext0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]

≤ Ext0∼d0

[ 〈
θ∗ − θt0 , ϕ(xt0 , π

∗)− ϕ(xt0 , πref)
〉 ]

︸ ︷︷ ︸
P ′

1

+Ext0∼d0

[ 〈
θt0 − θ∗, ϕ(xt0 , πt0)− ϕ(xt0 , πref)

〉 ]
︸ ︷︷ ︸

P ′
2

− η · Ext0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]
.

Following the proof of batch online learning (Theorem 4.4), we can control the exploration error P ′
2 as in Equation (13) by

fixing π2
t as πref . We notice that since πref is directly available to the agent and is used to collect data, we do not need to

optimism to relate its uncertainty to the data. Therefore, we only need to additionally handle the suboptimality source P1,
which satisfies

P ′
1 ≤ β · ∥Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

,

by Cauchy-Schwarz inequality and Lemma G.3. It follows that

J(π∗)− J(πt0)

≤
(√

exp
(γT (λ)

T
)− 1 + 2

√
log(2/δ)

2m

)
· C

√
d+ log(T/δ)

γ2m
+ λB2

+ β · ∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]

≤ C

√
d log(T/δ)

γ2m
+ β · ∥Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

− ηExt0
∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]
,

(25)

where we use T ≥ d log(T ) and C > 0 is an absolute constant. Now we proceed to suppose that Assumption 4.1 holds.
Then, we have

β · ∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off+D1:t0

≤ β · ∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
≤ (mT )α(mT,Doff )−1β · Ccov.

Plugging this estimation back and combining with the choices of parameters, we conclude the proof of Theorem 4.2.
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In particular, in Proposition D.1, when noff ≈ mT as in the LLaMA2 project (Touvron et al., 2023), we have α(mT,Doff) ≈
1
2 . In this case, the final sample complexity to find an ϵ-optimal policy is

Õ
(d2 + dC2

cov

γ2ϵ2

)
,

where the convergence rate is jointly determined by the data coverage of the offline dataset and the complexity of the reward
function (exploration). We also remark that this may be a conservative guarantee in general because the online data typically
also improves the coverage coefficient Ccov along the way of training.

E. Discussion on the Practical Algorithmic Design
E.1. Discussion on the Coverage Condition for Vanilla RLHF

In this section, we investigate the condition for DPO to converge to π∗. DPO is a practical algorithm derived from the
reverse-KL regularized contextual bandit framework presented in this paper, which skips the reward modeling step with
a clever reparameterization technique and directly optimizes the LLMs based on the offline preference data Doff by the
following loss function

L(θ, π0,Doff) = −
∑

(x,aw,al)∈Doff

[
log σ

(
η log

πθ(a
w|x)

π0(aw|x)
− η log

πθ(a
l|x)

π0(al|x)

)]
, (26)

where aw is the chosen response and al is the rejected response. Given x, aw, al, fitting the model with the loss in
Equation (26) yields a MLE for the preference probability (Lemma E.1) by training the LLM as a reward model. This
process, however, necessitates considering the generation distributions of a1 and a2, which is missing in the original DPO
paper.

For simplicity, we assume that the data is collected by some behavior policy πoff . We can drop the dependency on the state
x by fixing on a x with d0(x) > 0 because they are considered separately. Meanwhile, we assume that the size of the offline
dataset |Doff | approaches infinity so we can handle the population loss directly. In this case, given a prompt x, the loss
function in Equation (9) converges to:

L∞(θ, π0, x) = −Ea1,a2∼πoff (·|x)
[
p∗(a1 ≻ a2|x, a1, a2) log pθ(a1 ≻ a2|x, a1, a2)

+p∗(a2 ≻ a1|x, a1, a2) log pθ(a2 ≻ a1|x, a1, a2)
]
,

where pθ is the preference model associated with πθ. Given x, a1, a2, the following lemma demonstrates that pθ = p∗

uniquely minimizes the loss.

Lemma E.1 (Solution of Preference data). Given x, a1, a2, we consider the preference learning for

p∗(a1 ≻ a2|x) = 1

1 + exp
(
η log π∗(a2|x)

π0(a2|x) − η log π∗(a1|x)
π0(a1|x)

) = σ
(
η log

π∗(a1|x)
π0(a1|x)

− η log
π∗(a2|x)
π0(a2|x)

)
,

by

pθ(a1 ≻ a2|x) = 1

1 + exp
(
η log πθ(a2|x)

π0(a2|x) − η log πθ(a1|x)
π0(a1|x)

) = σ
(
η log

πθ(a1|x)
π0(a1|x)

− η log
πθ(a

2|x)
π0(a2|x)

)
.

Consider the population loss (when we have sufficiently many samples),

p∗(a1 ≻ a2|x) log pθ(a1 ≻ a2|x) + p∗(a2 ≻ a1|x) log pθ(a2 ≻ a1|x).

The solution satisfies πθ(a1|x)/πθ(a2|x) = π∗(a1|x)/π∗(a2|x).

Therefore, if pθ is the minimizer of the loss, we have pθ = p∗ for any a1, a2 on support(πoff). For any a1, a2 ∈
support(π∗) ∩ support(πoff), we can further obtain that πθ(a

1|x)
π∗(a1|x) =

πθ(a
2|x)

π∗(a2|x) := C (Lemma E.1).
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We restrict our attention on πθ with the same support with π∗ (as well as π0) and fix a2 and go over a1 to get πθ(·|x) =
C · π∗(·|x) on support(πoff). Conversely, for (x, a) pairs where πoff(a|x) = 0, the choice of pθ (or πθ) does not impact the
loss function and can be arbitrary. Assume that πθ = C ′π for all a ∈ support(π∗) \ support(πoff), where π(·|x) ∈ ∆(A)
and define

Ωx = {a ∈ support(π∗) : πoff(a|x) = 0},

as the set of outputs that can be generated by π∗ but not by πoff . Then the policy πθ(a|x) ∝ (1 − 1Ωx(a))π
∗(a|x) +

1Ωx
(a)π(a|x) minimizes L∞(θ, π0, x), where 1Ωx

(·) is the indicator function for Ωx and the normalizing constant C,C ′

satisfy the normalization condition Eπθ(a|x)1 = 1.

Essentially, the dataset used for optimizing loss in Equation (9) imposes constraints via Lemma E.1. For outputs not covered
by πoff , πθ can be an arbitrary solution and only sufficient constraints can lead to convergence to the π∗. Therefore, to
ensure that πθ converges to π∗ for every state-action pair (x, a) where π∗(a|x) > 0, it is essential to have |Ωx| = ∅ or

sup
a∈A

π∗(a|x)
πoff(a|x)

<∞, for any x ∈ support(d0),

where we use the convention of 0/0 = 0.

Typically, it is hard to expect a pre-determined offline dataset can provide enough coverage for the preference learning when
scaling to the SOTA models. Moreover, in practice, the dataset is always finite, making the data source even more important
due to the distribution shift issue.

E.2. Offline Learning with Pseudo-Labeling

We now consider a family of approaches that may slightly deviate from the main story of the paper but are beneficial to
clarify some confusing concepts in RLHF. In the formulation of RLHF, we define the offline learning as learning without
further querying the human feedback (the underlying ground-truth BT model), while we define the online learning as the
scenario where we can query the humans along the way of training. In this sense, there are several existing algorithms in the
literature are classified as offline one:

• PPO with a fixed reward (Christiano et al., 2017; Ziegler et al., 2019);

• RAFT (rejection sampling fine-tuning, or iterative SFT) (Dong et al., 2023): we generate n responses for each prompt,
and use a fixed reward to rank them, and fine-tune the model on those with high rewards;

• RSO (DPO with rejection sampling) (Liu et al., 2023a): we generate n responses and use statistical rejection sampling
to approximately sample from π0(·|x) exp( 1η r(x, ·)) and use these samples to run DPO.

All these algorithms do not query new human feedbacks during the training. Instead, they first train a proxy reward r̂, and
use r̂ to label the model-generated samples for the subsequent training. In particular, it is known that

• PPO and RAFT outperform the SFT-baseline, which fine-tunes the models on the preferred samples (Dong et al., 2023;
Yuan et al., 2023);

• RSO outperforms DPO (Liu et al., 2023a).

In other words, while we are prohibited from collecting the ground-truth preference label, the offline RLHF benefits from
the pseudo labels from the learned reward, which resembles the insights of the semi-supervised learning. One reasonable
hypothesis is that the reward model may generalize better than the policy in terms of sample complexity, i.e., reward model
has better preference classification accuracy given a fixed number of samples. Some empirical results (Li et al., 2023a) can
also support the hypothesis.

multi-step RSO. Motivated by RSO (rejection sampling improves DPO) and RAFT (iterative learning is more efficient),
we propose a multi-step rejection-sampling-based offline DPO algorithm, referred to as the multi-step RSO. To motivate
our method, we first review the main challenge of RSO. Liu et al. (2023a) found that the usage of offline datasets typically
impedes the effectiveness of DPO-based algorithms. This negative impact is particularly pronounced when there is a
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disparity between the distribution of offline data and the target distribution. Consequently, they trained a reward model,
denoted as r, and approximated samples from πr using rejection sampling. In this case, they generate samples from the
optimal policy of the underlying BT model associated with r and get Dgen = {(x, a1, a2, y)}. The authors suggested that
this is more suitable for DPO training and leads to better performance. The key basis of the success of RSO is that the
rejection sampling can well approximate πr.

However, in practice, the rejection rate can be so large that the sampling is not effective. Given a prompt-response pair
(x, a), the rejection rate is 1− exp(−η−1(R(x)− r(x, a))), where R(x) is the largest possible reward over all a ∈ A. For
example, given η > 0, if the samples drawn from π0(a|x) satisfies Ea∼π0(a|x) exp(η

−1r(x, a)) = exp(−η−1(rx −R(x))),
the expected acceptance rate becomes exp(− rx

η ), where rx is the reward gap between average sample and the best sample
given prompt x. Setting rx = 1 and η = 0.1 yields a notably low acceptance rate of approximately 0.00004. Essentially, the
majority of samples are rejected, necessitating a substantial number of sampled candidates to produce a single accepted
comparison pair. In the practical implementation of RSO (Liu et al., 2023a), we typically fix the total budget of candidate
responses and the number of samples to be accepted. In this case, due to the low sampling efficiency, the collected samples
may not well approximate the target distribution, and train on these samples can lead to inferior performance compared to
the original DPO.

To mitigate this issue and to make the algorithm more effective, we propose a multi-step approach to progressively achieve
our ultimate target. Instead of using π0 to approximate π0 exp( 1η r) directly, we divide the path into several steps by
considering a sequence of distributions

π0 → π0 exp(
1

η1
r) → · · · → π0 exp(

1

ηN
r),

where η0 = ∞ (i.e., π0), ηN = η. The high-level intuition is that while approximating πr from π0 is hard, approximating
π0 exp(

1
ηi
r) with π0 exp( 1

ηi−1
r) is much easier. Therefore, we can do the rejection sampling step by step. Considering the

case Ea∼π0(a|x) exp(η
−1r(x, a)) = exp(−η−1(rx − R(x))), by choosing N = [rx/η] + 1 steps, the acceptance rate at

each step becomes an O(1) probability exp(− rx
η([rx/η]+1) ) > exp(−1) > 0.367. The acceptance rate can be exponentially

increased with the number of steps, i.e., N steps correspond to an exp(N) increase in the acceptance rate. We also provide
a numerical example in the Appendix (Figure 3).

F. Technical Lemma Proofs
Proof of Lemma 2.4. Since π̂ is induced by calling Oracle 2.2 with r̂, we know that for any x ∈ X ,

π̂(a|x) = 1

Z(x)
π0(a|x) · exp

(1
η
· r̂(a|x)

)
,

where Z(x) =
∑

a∈A π0(a|x) exp(
1
η r̂(x, a)) is the normalization constant. We can rewrite the reward function as

r̂(x, a) = η log
π̂(a|x)
π0(a|x)

+ η logZ(x).

Plugging this reward reparameterization into the policy optimization error under r̂, we have

Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)]

= Eπ

[
η log

π̂(a|x)
π0(a|x)

]
− Eπ̂

[
η log

π̂(a|x)
π0(a|x)

]
= Eπ

[
η log

π(a|x)
π0(a|x)

]
− Eπ

[
η log

π(a|x)
π̂(a|x)

]
− η ·DKL(π̂(·|x)∥π0(·|x))

= η ·DKL(π(·|x)∥π0(·|x))− η ·DKL(π(·|x)∥π̂(·|x))− η ·DKL(π̂(·|x)∥π0(·|x)).
Plugging the above equality into the LHS of the Lemma 2.4 completes the proof.

Proof of Lemma E.1. The loss function can be reformulated as the KL divergence plus a constant term:

DKL(p
∗∥pθ)−

[
p∗(a1 ≻ a2|x) log p∗(a1 ≻ a2|x) + p∗(a2 ≻ a1|x) log p∗(a2 ≻ a1|x)

]
.

This implies that p∗ = pθ is the unique optimal solution for pθ. Moreover, if the condition πθ(a
1|x)/πθ(a2|x) =

π∗(a1|x)/π∗(a2|x) is satisfied, the optimality of the solution is assured.
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G. Technical Lemmas
Lemma G.1 (Jensen’s Inequality). Suppose that ϕ(w) is a convex function on Ω. Consider w1, · · · , wm ∈ Ω, and
non-negative numbers α1, · · · , αm ∈ R so that

∑m
i=1 αi = 1. Then,

ϕ(

m∑
i=1

αiwi) ≤
m∑
i=1

αiϕ(wi).

More generally, let p be a probability measure on Ω, then ϕ(Ew∼pw) ≤ Ew∼pϕ(w). In particular, since ∥ · ∥ is convex (by
triangle inequality of the norm), we know that

∥Ez∥ ≤ E∥z∥.

Proof. See Proposition A.9 of Zhang (2023) for a proof.

Lemma G.2 (Cauchy Schwarz Inequality). For u, ν ∈ Rd, we have

⟨u, ν⟩ ≤ ∥u∥∥ν∥ ≤ 1

2
∥u∥2 + 1

2
∥ν∥2.

In particular, for a positive-definite matrix Σ, we can take ⟨u, ν⟩ =
〈
Σ1/2u,Σ−1/2ν

〉
to get ⟨u, ν⟩ ≤ ∥u∥Σ∥ν∥Σ−1 .

Lemma G.3 (In-sample error of MLE (Faury et al., 2020; Pacchiano et al., 2021; Zhu et al., 2023a)). For a fixed λ > 0, we
denote ΣD as

ΣD := λI +
∑

(x,a1,a2)∈D

(
ϕ(x, a1)− ϕ(x, a2)

)(
ϕ(x, a1)− ϕ(x, a2)

)⊤
.

Assume that ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈ X ×A and ∥θ∥ ≤ B. Then, it follows that with probability at least 1− δ, we
have

∥θMLE − θ∗∥ΣD ≤ C ·

√
d+ log(1/δ)

γ2
+ λB2,

where γ = 1/(2 + exp(−B) + exp(B)).

Lemma G.4 (Elliptical Potential Lemma (Dani et al., 2008; Rusmevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al.,
2011)). Let {xi}i∈[T ] be a sequence of vectors in Rd with ∥xi∥2 ≤ L < ∞ for all t ∈ [T ]. Let Λ0 be a positive-definite
matrix and Λt = Λ0 +

∑t
i=1 xix

⊤
i . It holds that

log
(det(Λt)

Λ0

)
≤

T∑
i=1

∥xi∥2Λ−1
i−1

.

Further, if ∥xi∥2 ≤ L for all i ∈ [T ], then we have

T∑
i=1

min{1, ∥xi∥2Λ−1
i−1

} ≤ 2 log
(det(Λt)

Λ0

)
≤ 2d log

( trace(Λ0) + nL2

ddet(Λ0)1/d

)
.

Finally, if λmin(Λ0) ≥ max(1, L2),
T∑

i=1

∥xi∥2Λ−1
i−1

≤ 2 log
(det(ΛT )

Λ0

)
.

Lemma G.5 (Concentration of Inverse Covariance (Zanette et al., 2021a)). Let µi be the conditional distribution of ϕ
given the sampled {ϕ1, . . . , ϕi−1}. Assume ∥ϕ∥2 ≤ 1, for any realization of the vector. Define Λ =

∑n
i=1 Eϕ∼µi [ϕϕ

⊤]. If
λ = Ω(d log(n/δ)), then, with probability at least 1− δ, for any n ≥ 1

3(Λ + λI)−1 ⪰
( n∑

i=1

ϕiϕ
⊤
i + λI

)−1

⪰ 3

5
(Λ + λI)−1.
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Lemma G.6 (Solution of KL-regularized Optimization (Proposition 7.16 and Theorem 15.3 of Zhang (2023))). Given a
loss functional with respect to π(·|x), written as

Ea∼π(·|x)

[
− r(x, a)− η log

π0(a|x)
π(a|x)

]
= ηDKL

(
π(a|x)

∥∥∥π0(a|x) exp(1
η
r(x, a)

))
− lnCr,

where the minimizer of the loss functional is π∗(a|x) ∝ π0(a|x) exp
(

1
η r(x, a)

)
, also known as Gibbs distribution and Cr

is the normalizing constant for π∗.

H. Experiment Results
All the experiments are conducted using 8×A40 (48G) with 600G RAM, and half-precision training (bf16). The implemen-
tations are based on open-source packages TRL (von Werra et al., 2020) and LMFlow (Diao et al., 2023), and the code will
be publicly available on GitHub in the camera-ready version. The hyper-parameters used in the experiments are compactly
provided in Table 8 and Table 9, with details described in the subsequent subsections.
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Figure 3. Illustration of the rejection rate by setting {ηi}Ni=1, where ηi = Nη/i. The model follows the setting of Figure 1, where we
choose Gaussian mixture as π0 and the preference is mathematically captured by setting r as linearly dependent on a, with r = [1, 0]⊤a
and η = 1 for πr .

H.1. Implementation Details

H.2. Experiments Setup

Model, and Task. We use the Open-LLaMA-3B-V2 (Geng & Liu, 2023) as the pretrained model and use the helpful
subset of the Anthropic HH-RLHF dataset (Bai et al., 2022) (see Table 3 for a sample example). We delete the noisy
samples (e.g., with the same chosen and rejected responses), and prompts longer than 400 tokens, and eventually get 103K
training set and 5K test set. We also sample a subset of the UltraFeedback (Cui et al., 2023), consisting of 5K prompts,
as another out-of-distribution test set. Meanwhile, the UltraRM-13B (Cui et al., 2023) will be used as the ground truth
reward model, also referred to as the gold reward, which is trained on a mixture of UltraFeedback, Anthropic HH-RLHF,
and other open-source datasets based on LLaMA2-13B. For all the experiments, we fix the KL penalty in the learning target
Equation (2) as η = 0.1.

Offline Data Doff Generation and Initial Checkpoint. Following Gao et al. (2023); Coste et al. (2023), we use the training
prompts to generate responses by an Open-LLaMA-3B-V2 model that is fine-tuned on the preferred responses of the original
HH-RLHF dataset3. For each prompt, we generate two responses and use the UltraRM-13B to label them. After filtering the
low-quality responses, we eventually obtain 77K comparison pairs in training set, 5.6K pairs as the validation set. We also
set 20K samples as the “SFT” split to get the RLHF starting checkpoint π0.

Setup of offline learning and hybrid learning. For offline learning, we learn from the offline dataset Doff , and cannot
further query human feedback in the training though it is possible to leverage the model itself to generate more responses.

3While it is possible to include other high-quality dialog datasets from Chat-GPT (like ShareGPT), we decide not to do this in this
round of experiment. The use of GPT4-generated datasets will make our verification noisy because it is more like distillation and may not
scale to larger models. However, we do observe in some preliminary experiments that in the distillation scenario, the proposed algorithms
offer even more gains.

31



Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-constraint

HH-RLHF Examples

Prompt:
Human: How can I get my girlfriend to cook more?
Assistant: Have you tried reminding her of how nice the food tastes?
Human: I could do it more.
Assistant:

Responses:
Chosen aw: That might work. But you could also explain to her how much you enjoy her cooking and how much you appreciate her effort. Try pointing out the
activities that you think go into making great meals: sourcing the ingredients, cleaning and preparing the kitchen, etc.
Rejected al: Have you considered making an effort to create more harmonious interactions?

Table 3. An example of HH-RLHF dataset: A prompt-response pair with both chosen and rejected samples.

For hybrid learning, we start with a subset of Doff , consisting of 25K comparison pairs, and then fix the budget of online
human feedback as 52K, leading to a total number of queries consistent with the offline learning for a fair comparison. For
all the hybrid algorithms, we will iterate for three steps.

Method, Competitor and Evaluation. In our experiments, we compare the performance of the following algorithms.

• SFT on the preferred samples;

• Offline DPO (Rafailov et al., 2023);

• RSO (Liu et al., 2023a);

• Hybrid-GSHF-DPO where we adopt the DPO as the computational oracle (this work);

• Multi-step RSO (this work).

The representative models of different RLHF methods will be measured by the gold reward of UltraRM-13B and the KL
divergence Ex∼d0DKL(π(·|x)∥π0(·|x)), which are both evaluated on the split test set.

Rejection Sampling. We implement the rejection sampling for responses as described by Liu et al. (2023a). For each
prompt, we initially generate a set of K samples. Our objective is to extract preference pairs from these samples. In cases
where multiple pairs are identified, we utilize the initial ranking round to select the appropriate pairs. Specifically, to obtain
n pairs, we conduct rejection sampling 2n times from the pool of K samples. Following this, we randomize the order of the
samples to finalize the n pairs. The designation of samples as positive or negative is based on a comparative analysis of
their respective rewards. It is important to note that in the context of rejection sampling, the coefficient corresponds to the η
parameter of the target distribution. Our implementation is grounded in the Python code outlined in Algorithm 1 (Liu et al.,
2023a).

Multi-step approximation. We divide the path into three steps with η ∈ {0.1, 0.3, 0.5} and use 25K prompts at each time.
For RSO implementation, the rejection sampling coefficient is larger than DPO KL coefficient, where we choose from
{0.5, 1, 2, 3} for better performance. Liu et al. (2023a) also suggest similar phenomenon in RSO.

Hybrid learning. In our experiments, we implemented Hybrid GSHF under a setting where the preference signal derives
from a gold reward function trained on a blend of UltraFeedback, Anthropic HH-RLHF, and other open-source datasets,
using LLaMA2-13B as the backbone. The Anthropic HH-RLHF’s 75K training prompts were divided into three splits,
corresponding to three iterations of training the online algorithm. For the initial iteration, we utilized an offline dataset,
training it with DPO. In iterations two and three, we generated samples from both our model and the initial model, employing
the gold reward to obtain the ”online” label. Subsequently, our model training incorporated both past and present samples: for
the second iteration, it involved data from iterations one and two; for the third, it included all accumulated data. Additionally,
for each iteration, the generative model training commenced from the initial model, rather than from the model of the
preceding iteration.

GPT4 Evaluation. We report the detailed GPT4 evaluation results in Table 4, where the model aligned with DPO is
taken as the baseline. The test hyper-parameter is provided in Table 8. For GPT4 evaluation, we use the GPT-4-turbo
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MODEL1 MODEL2 ID OOD
WIN LOSE TIE WIN LOSE TIE

RSO DPO 36 30 34 25 21 54
MULTI-STEP RSO DPO 37 24 39 35 14 51

HYBRID-GSHF-DPO DPO 42 13 45 25 21 54

Table 4. GPT-4 evaluation results on both in-domain (HH-RLHF) and out-of-domain (UltraFeedback (Cui et al., 2023)). The results
were evaluated using a random sample of 100 hand-selected prompts, with a temperature setting of 1.0. To assess the performance, we
employed the GPT-4-1106-preview model to compare the effectiveness of two models. In each paired comparison, we conducted two tests
to mitigate the influence of input order. GPT-4 responded with Win (W), Lose (L), or Tie (T) for each test.

model (gpt-4-1106-preview). We take 100 prompts for evaluation and for the final eval, we count the number of winner as
win+tie×0.5.

The prompt is given as

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the
user question displayed below. You should choose the assistant that follows the user’s instructions and answers
the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses
and provide a short explanation. Avoid any position biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output
your final verdict by strictly following this format: [[A]] if assistant A is better, [[B]] if assistant B is better, and
[[C]] for a tie.

Reward baseline. We mention in passing that we use the test reward of the initial model as the baseline when presenting the
absolute values in Table 1 by convention (Gao et al., 2023; Dong et al., 2023).

Stronger DPO Model with Gold RM for Model Selection. One natural model selection strategy for DPO is to use
validation set to compute the validation loss because DPO bypasses the reward modeling. Since we have access to the gold
reward model in the setup, we observe that the minimum of the validation loss typically does not lead to the best model
in terms of the gold reward. Instead, the best model can appear when we train the DPO for up to 2 ∼ 3 epochs. This is
similar to the observation in Tunstall et al. (2023), where the authors found that overfitting the preference dataset within
certain limit does not hurt the model performance (gold reward) and the strongest model was obtained with 3 epochs of
DPO training. In view of this, we select the representative model of DPO by the gold model on the validation set to get a
stronger baseline DPO.

H.3. Main Results: RLHF Benefits from Online and/or Pseudo Labelling Data

We use the reward-KL trade-off as the main metric to evaluate model, as all the considered RLHF algorithms (except SFT)
share the same KL-constraint reward optimization target in Equation (2). We will also use the GPT4 as a judge to conduct
head-to-head comparisons between the RLHF algorithms.

H.3.1. ONLINE EXPLORATION IMPROVES MODEL PERFORMANCE

We report the gold rewards and the GPT4 evaluations compared to the DPO baseline in Table 1 and the reward-KL trade-off
curves in Figure 4. As we can see, DPO, RSO, Hybrid-GSHF-DPO, and Multi-step RSO significantly outperform the SFT
baseline, and the Hybrid-GSHF-DPO algorithm further outperform the stronger baselines including both DPO and RSO in
terms of gold reward, and GPT4 evaluations. In particular, the GSHF algorithm tend to be more robust in the face of OOD
data, as they achieve a much smaller ∆ compared to other RLHF algorithms.
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Figure 4. The figure of Reward-KL trade-off and the rightest point is the highest gold reward that can be achieved by the RLHF algorithm.
Here the left figure is tested on a hand-out set of HH-RLHF (in-distribution prompts), while the right figure is tested on a subset of
UltraFeedback (Cui et al., 2023) with 5K out-of-distribution prompts.

H.3.2. RLHF BENEFITS FROM PSEUDO LABELLING AND ITERATIVE LEARNING

Consistent with the observations of the previous literature (Ouyang et al., 2022; Dong et al., 2023; Liu et al., 2023a), if we
first construct a proxy reward and use it as the preference oracle to provide pseudo label, the resulting algorithm usually
outperforms those learn directly from the offline data. In particular, according to Table 1 and Figure 4, RSO outperforms the
DPO even though the DPO is selected via the ground truth UltraRM-13B. Moreover, we observe that the Multi-step RSO
admits a strictly dominating reward-KL curve compared to the original RSO, demonstrating the effectiveness of iterative
learning. In particular, the best model in the third iteration achieves the highest ground-truth reward.

We suspect that this is because the reward space is of a lower complexity than the policy space, thus enjoying a better
generalization, particularly when we impose strong regularization in practice (small learning rate and early stopping). In
particular, while the reward model can make mistakes, the real human preference data is also quite noisy because humans
typically possess a set of intricate or even contradictory targets thus the agreement rate between humans is typically only
around 70% (Bansal et al., 2023). Therefore, the imperfect proxy reward can also provide us with useful learning signals.
However, as shown in Gao et al. (2023), the major difference between the proxy reward model and the ground-truth reward
model (human, or a very large model trained a diverse set of preference data) is that the latter one is stable across a wide
range of KL divergence and is more reliable under large distribution shift. Therefore, we consider this approach a second
choice compared to leverage online human feedback.

H.3.3. ROBUSTNESS TO SAMPLING TEMPERATURE AND LENGTH BIAS

Performance Comparison Under Different Sampling Temperatures. We investigate the performance of the resulting
models from different alignment algorithms across a range of sampling temperatures. We report the test gold reward with
respect to the sampling temperature in Figure 5. The improvements of GSHF algorithms are rather stable across different
sampling temperatures used to deploy the models. For all the models, a temperature of 0.7 yields the the highest gold reward,
while the gold rewards are considerably lower with temperature in {0.2, 0.5, 1.0}. An exception is observed with the RSO,
which maintains robustness when the temperature is reduced from 1.0 to 0.7. We note that the advantage of the RSO is
less obvious with a lower temperature. Conversely, both Multi-step RSO and Hybrid-GSHF-DPO models consistently
surpass the baseline DPO and RSO models across various sampling temperatures. Notably, Hybrid-GSHF-DPO shows more
advantages over the Multi-step RSO with a lower temperature, potentially indicating the benefits of online exploration.

Length Bias. We investigate the mean output length of the models from different RLHF algorithms. We observe that as
the Hybrid-GSHF-DPO iterates, the average output lengths increases: from 161 in the first iteration, to 243 in the second,
and 263 in the third. This increase in length might be partly responsible for the observed reward gain, as many preference
models tend to favor more detailed and wordy responses. In comparison, the average output lengths for DPO, RSO, and
Multi-step RSO are 241, 275, and 240, respectively. Though there is a trend towards longer responses in later iterations of
the Hybrid-GSHF-DPO model, we notice that the final output length of the Hybrid-GSHF-DPO model does not significantly
exceed that of DPO and RSO. In practice, however, the reward (signal) hacking is the fundamental issue of RLHF (Casper
et al., 2023). Therefore, it may be beneficial to integrate additional strategies such as early stopping, replay, and a thorough
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Figure 5. The gold reward with respect to the sampling temperature. The gold reward is tested on the hand-out test set.

validation process to ensure the selection of the most effective model during the training process.

H.4. Examples

We provide sample outputs of the models from different RLHF algorithms in Table 5 and 6 with the in-distribution prompts,
and in Table 7 with the OOD prompts.
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HH-RLHF Examples

Prompt:
Human: How do I housebreak a puppy?
Assistant: You’re looking for a pet who will move his bowels in the grass outdoors, rather than messing your house.
Human: yes.
Assistant: When a dog feels the need to defecate, he will signal you with a high pitched noise. You can watch for this by looking closely at him when he’s
relaxing, or by sitting near him and listening. When you observe him signaling you, you should immediately bring him outside to a patch of grass. As long as the
ground is soft, your dog can do his business anywhere, not just in your house. Just be sure to put him in a separate area where he can
Human: What if he has an accident in my house?
Assistant: Well, in that case you should immediately remove all traces of the accident, and clean the area. (Also, I just noticed that you asked this two years ago.)
Human: Okay, but do I scold him? Assistant:

Responses:

SFT: You can use positive reinforcement to teach him the behavior you want, or you can use punishment to remind him of the behavior he needs to stop.

DPO: It’s always a good idea to be honest. It’s important to be firm when you scold your dog, but also calm. The No. 1 goal is to not make your dog fear you.
You should use certain words to talk to your dog, but be specific about your needs. For example, as soon as you observe him demonstrating his need for a bowel
movement, you should say, “Do you need to go outside?” or “Can I help you?” You can also say, “You’re making a mess in the house, I don’t like that.” If your
dog will come to you, then you can also say, “Come to me.” This is a crucial part of house training your dog. You should be consistently firm, but also calm,
and your dog will learn to trust you and follow your orders. There are different methods to use, such as a clicker, but the important thing is to stay consistent
in your commands, don’t use any harsh words, and test your dog’s limits first before you start to punish him. You can use verbal(5) and physical signals, but
you shouldn’t go overboard with any of them. If you’re not certain how to proceed, speak to a professional trainer about housebreaking your dog. Remember,
housebreaking your dog takes practice and consistency, it’s a lifelong commitment. If you ever have any questions, don’t hesitate to ask me for more help. I’m
always here to help you provide the best environment for your dog. Have a great day, and happy training!

RSO: Yes, definitely scold him for urinating indoors, and also it’s a good idea to make sure he understands that it’s not acceptable to soil the house. The most
important thing is to be consistent with your corrections and to stay calm. Also, remember to reward him for good behavior outside. So try to do it right away,
and be patient with the training, as it might take a while for your puppy to learn the whole house-breaking process. Finally, always be consistent and also be
patient! In the end, housebreaking will be an important part of your dog’s training, so just keep at it and stay calm and confident.

Multi-step RSO: Yes, you should scold any pet who messes in the house. Don’t scream or yell at him, but be firm and make it very clear that his behavior is
wrong, and that it won’t be tolerated. Be sure to provide positive reinforcement for good behavior in the future. He will learn much more easily from positive
reinforcement than from punishment.

Hybrid GSHF: Yes, you should definitely scold a dog for having an accident in the house. You can do this by calling him over to you, and making a loud noise,
or byliance him with a stern look and a brief scolding. The idea is to signal to him that this behavior is unacceptable, and to teach him that he should only be
allowed to defecate outdoors. You should be very firm and clear, so that he gets the message. After the scolding, be sure to give him lots of praise and treats
when he does follow instructions. If he continues having accidents in the house, you will need to be more consistent and rigorous with your training, as well as
making sure his living environment is always suitable for pooping outside. It’s important to get him used to the idea that he should only be allowed to defecate
outside, and to not reward him for pooping anywhere except outside.

Table 5. Randomly sampled examples of in-domain prompt from HH-RLHF dataset.
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HH-RLHF Examples

Prompt: Human: How do I teach a 4 year old to read books? Assistant:

SFT: Can I ask what your goal for this is?

DPO: The most important thing to remember is that reading skills develop from almost simple to more complex over many years, and won’t necessarily come
naturally at first even for experienced readers. That said, there are lots of easily achievable steps you can take to encourage reading success in a young learner.
First, it’s important to pick books your child is interested in. Books with engaging stories, rhymes, and pictures are the best place to start. As the reading skill
develops, though, don’t be afraid to try a variety of materials and stories. Maybe some books that are sweet, maybe some with more excitement, maybe some
smaller print, maybe some high-level illustrations. Read a few chapters together. You might point out a few words in the book first, and as the child starts to get
the picture you’ll gradually encourage more fluency in what they’re reading. Then you want to practice reading to them. Read with them, and in a distinct, slow
voice, read sentences aloud as they boyas. Remember that when a child feels intimidated by reading, they’re not anticipating the possible enjoyment that will
come from the practice and the learning that takes place from it.

RSO: A great start would be to read some books to them, as an introduction to reading. First make sure you have some books they’re interested in, so grab a
bunch of your kid’s favorite stories. If they’re old enough, show them one or two examples, and point out the words on the page. Make sure you’re all paying
close attention, and talking about the words you see. Then talk about the pictures in the books. Once they’re familiar with the concepts of reading, you can start
showing them some books that have fewer words, and more pictures. You can work on the mechanics of turning pages and keeping track of where you are in a
book. Gradually introduce concepts of whole words, syllables, and phonemes (a small unit of sound), and gradually increase the difficulty of the books you read.
After you’ve got them reading simple books, you can start introducing other materials to teach them to read. These might include rhyming stories, vocabulary
building activities, and lessons in sounding out and spelling words.

Multi-step RSO: Here are some tips for teaching a 4-year-old to read: Start by having them read simple sight words such as “the”, “and”, “is”, “are”, and “to”.
Then encourage them to read short sentences and one- or two-word sentences first, and work their way up from there.Help them understand the meaning of the
words they read by first reading the words slowly, out loud, and making sure they understand what they’re reading.Never correct or downplay their mistakes.
Rather, clarify what they’ve read, and help them understand what they got wrong. Make reading a fun and enjoyable activity for them, rather than a stressful or
frustrating one. If they get stuck on a word or a sentence, try to pick it apart and work your way through it together. Or just re-read it several times. Make
reading a regular part of their daily routine, such as reading together every night before bed. Think about short sessions of 5-10 minutes, perhaps five times a day,
and build yourself up to longer sessions as they get more comfortable. Remember that different kids take different amounts of time to learn to read, so have
patience with them and recognize that they may take a little longer. But always stay positive, and keep trying to help them. Hope this helps! Good luck with your
teaching! Finally, be sure to make a fun and enjoyable learning environment for them: Make reading a fun activity every day, read lots of books with them, and
always make reading a positive experience.Ultimately, having a positive experience of reading and being a reader will help them succeed, and find enjoyment in
this activity for many years to come.

Hybrid GSHF: There are several ways a 4 year old can be taught to read books. Here are a few suggestions I’d give: 1. Use books you already read with them,
and ask them to follow along, even if they don’t always get every word right. Just keep highlighting words they sound right for, and show them how to point to
the words they don’t know. 2. Use a book with large print and lots of pictures, and give them some sentences to learn while you read, followed by a big gesture to
show them what the word is. Then you can work on the sentences again and again until they can read them on their own. 3. Use simple, short books, just 1 or 2
words per page, to build up their skills and confidence step by step. 4. Work with them in 5 minute chunks. Start with very short books, because it’s easier to
learn when they don’t have to sit and do it for long. Then gradually increase the number of words per page and the length of time they have to work on each page.
5. Work with them in little groups where one person reads and one person is listening, and then practice again in a small group where they have to work and listen
to each other, too. It can help solidify their new skills as they practice them with each other. 6. When they first start using their own voice to read aloud, build up
the sounds they know by showing them how to sound out words and then practice the sounds and their own words over and over until they get the rhythm and feel
right for the words. 7. When they first read by themselves, start with more simple words, so they aren’t trying to read text that’s packed with words and phrases.

Table 6. Randomly sampled examples of in-domain prompt from HH-RLHF dataset.
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Ultra-Chat Examples

Prompt:
Human: Write a creative short story set in a post-apocalyptic world where all forms of communication technology have ceased to exist, and the protagonist is
struggling to survive. Be sure to incorporate elements of character development and describe how the world has changed without communication. Use vivid
sensory details to bring the story to life and make it engaging for the reader.
Assistant:

Responses:

SFT:I’m not all that familiar with this particular setting, but I have some ideas for things to include, and some things I can guide you on: one idea is that your
protagonist has lived in a place that survived the purge.

DPO: In a world where all forms of communication technology have ceased to exist, my friend and I were struggling to survive in a world that had drastically
changed from the one we were used to. There were no newspapers, no mobile phones, no television, and no computers. Everything that had become a part of our
daily routine before the end of civilization was simply gone. It was not the absence of these things themselves that was so strange, but that we had no way to
communicate even with the people with whom we had become so closely intertwined in our lives. The problems of survival were heightened by this loss of
communication, and life had become more challenging without these things. I would occasionally take to singing songs, hoping to summon extra help, but with
no response from those in need, I had no way of communicating as effectively as before. This led me to become more creative in my survival strategies, trying all
new approaches and inventing new methods of coping by relying on my instincts and intuition. I was being tested in this new way, and I had to find new ways to
stay alive.

RSO: Determined to survive, even in a world with so much uncertainty and danger, a lone protagonist conceives of ways to overcome the obstacles that stand
in their way. With little to rely on except their own strength and wits, they are forced to fend for themselves in a world where all forms of communication
technology have ceased to exist. Here is their story in literary form:“It is a dark and quiet world. Everything is silent, frozen in time. I am trapped here in solitude,
completely isolated from the rest of the world. I scavenge for food and resources, while keeping myself prepared for any potential threats. I desperately search
for any scrap of information that may provide me with a glimpse into the outside world, or that might shed some light on what I might be facing. I am completely
miserable and frightened, and I have yet to find any kind of solace or relief from my torment. I am just hoping that one day, I will discover some type of sign that
life still exists out there somewhere, or maybe some source of communication will be discovered that may allow me to piece together some understanding of the
situation I’ve found myself in.”The protagonist wonders if he even survives at all, and has little hope for himself, but at the same time they remain hopeful
that life will somehow continue, or maybe even find a means to communicate with each other in some way, and that ultimately they will find relief from their
struggles and be able to live a better existence. It is a difficult and everlasting struggle for survival, but they are determined to remain hopeful.Ultimately, there is
still a tiny sliver of hope that one day we might discover a means to communicate, which may at least allow us to understand what is happening right now, and
eventually reconnect with one another and restore prosperity and co-existence between human

Multi-step RSO: Here’s a short story set in a post-apocalyptic world where all forms of communication technology have ceased to exist, and the protagonist is
struggling to survive:Plague has decimated much of the world’s population, and the remaining survivors are struggling to survive in an uninhabitable, barren
landscape. The protagonist of this story is trying to find a way to slake their urges and maintain some level of connection to the outside world, but frustration and
isolation are compounding the stress of their situation.The protagonist wakes up one night to the sound of voices they recognize from cities they have visited in
the past, but they are unable to fully make out the words or understand the meaning of what they are saying. As the night wears on they can discern the voices are
communicating in code, and eventually the only words they can understand are “run”. They are cut off from the outside world, and unable to immediately return
to the large cities where they have been living, or find safety in an unfamiliar yet friendly environment.Instead the protagonist seeks out a tiny settlement in the
mountains they had visited in the past, determined to find some way to communicate with the outside world and make contact. During their journey through the
barren land they come across other groups who have been similarly abandoned and now struggle to survive, and empathize with their situation. The protagonist
begins to hear other voices and grow increasingly concerned about trying to escape and find safety, but as they are increasingly unable to communicate they are
pushed deeper into their isolation and frustration. They eventually come across a small refuge in the mountains, and hope to find a way to return to civilization
and overcome their isolation.

Hybrid GSHF: “Silence Today, Death Tomorrow” It was a cold night, and the world had ended.All communication had ceased to exist – the phones, the
television, the computer, even the radio. There were no lights, no sounds, no contact. Existence had come to a standstill, and not a moment sooner.Only the most
remote and primitive tribes survived in this post-apocalyptic world, and it was even harder to survive with no communication.The protagonist woke from her
sleep in the cold darkness of the forest, severely alone and cut-off from the world. It was a harsh place, and life would not have been easy in even the best of
times, but with no communication, it was impossible.Her feet crunched through frozen ground as she made her way deeper into the silent darkness. Her fingers
struggled against the cold as she tried to light a small fire.She could hear nothing to tell her if there was anyone else out in the wilderness, perhaps friend or foe,
prey or predator, and she did not know where to look for the first sign of life.She dug into her backpack and used an ancient axe to begin to carve a rough winter
shelter in the soft ground. She had no way to know how long it would take or even if she would survive the night, but at least she would do her best to stay
alive.As she began to huddle in the shelter, a hypothermic shiver coursed through her body. She curled into a protective ball, tucking her legs up against her chest
and feeling the pain of the frozen ground bringing fresh water on her skin.“Please, I hope it is not too late,” she prayed silently as she lay in the darkness. But she
knew it was a hopeless prayer.

Table 7. Randomly sampled example of OOD prompt from Ultra-Chat.
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Table 8. Hyper-parameters for fine-tuning Open-LLaMA-3B-V2. SFT-RLHF means that we finetune the models on the preferred samples.
Multiple values mean that we search over the space and the bold one is finally used.

MODELS HYPER-PARAMETER VALUE

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
SFT-RLHF EPOCH 2

BATCH SIZE 12
BLOCK SIZE 2048

LEARNING RATE 1× 10−6

DPO BATCH SIZE 32
KL COEFFICIENT 0.1

MAX LENGHT OF PROMPT 400

LEARNING RATE {1× 10−6, 5× 10−6}
BATCH SIZE 32

RSO KL COEFFICIENT 0.1
REJECTION SAMPLING COEFFICIENT 0.5

REJECTION SAMPLING CANDIDATES AND ACCEPTED SAMPLES {8− 2, 24− 2, 24− 6}
OFFLINE LOOP EPOCHS 3

KL PATH {0.5 → 0.3 → 0.1}
MULTI-STEP RSO LEARNING RATE 1× 10−6

BATCH SIZE 32
KL COEFFICIENT (3 ITERS) 0.5, 0.3, 0.1

REJECTION SAMPLING COEFFICIENT 3
REJECTION SAMPLING CANDIDATES AND ACCEPTED SAMPLES 8− 2

ONLINE LOOP EPOCHS 3
LEARNING RATE 1× 10−6

HYBRID GSHF BATCH SIZE 32
PREFERENCE QUERIES OF EACH EPOCH 2.5× 104

KL COEFFICIENT 0.1

ONLINE LOOP EPOCHS 3
LEARNING RATE 5× 10−7

ONLINE GSHF DPO BATCH SIZE 64
PREFERENCE QUERIES OF EACH EPOCH 2× 104

KL COEFFICIENT 0.1
BEST-OF-N 8
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Table 9. Hyper-parameters for auxiliary training.
MODELS HYPER-PARAMETER VALUE

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
SFT BEFORE RLHF EPOCH 1

BATCH SIZE 12
BLOCK SIZE 2048

LEARNING RATE 3× 10−5

RM SFT 1.3B SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
EPOCH 2

BATCH SIZE 80
BLOCK SIZE 2048

LEARNING RATE 1× 10−5

RM TRAINING 1.3B SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
EPOCH 1

BATCH SIZE 80

LEARNING RATE 5× 10−6

RM TRAINING 3B SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
EPOCH 1

BATCH SIZE 16

TEMPERATURE 1.0
DATA GENERATION MAX NEW TOKEN 400

DO SAMPLE TRUE

TEMPERATURE 1.0
TEST SETTINGS MAX NEW TOKEN 400

DO SAMPLE TRUE
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