
Supplementary Material
for “Brick-by-Brick: Combinatorial Construction

with Deep Reinforcement Learning”

Hyunsoo Chung∗1 Jungtaek Kim∗1 Boris Knyazev23 Jinhwi Lee14
Graham W. Taylor23 Jaesik Park1 Minsu Cho1

1POSTECH 2University of Guelph 3Vector Institute 4POSCO
{hschung2,jtkim}@postech.ac.kr

In this material, we first describe the importance of action validity prediction networks. Then, we
introduce the details of the benchmarks, provide the model architecture, and present the additional
experimental results, which are missing in the main article. Finally, we discuss limitations and
societal impacts of our work in the last section.

S.1 Action Validity Prediction Network

0 20 40 60 80 100

#Bricks

0

5

10

15

20

25

T
im

e
(s

ec
.)

Figure s.1: Results of wall-clock time for computing the ground-truth action validity. We repeat 10
times and plot ±1.96 standard deviation.

Table s.1: Comparisons of action validation approaches.

Method Separate module No access to action validity in test phase Reusability

Direct forwarding X
Sampling & checking X
Ours (Jointly) X X
Ours (Pretrained) X X X

Compared to the construction cases with ground-truth action validity, the cases with our action
validity prediction network are beneficial in terms of computational costs. We present the results of
wall-clock time for computing the ground-truth action validity in Figure s.1. It shows that computing
the action validity for a combination of 100 bricks needs more than 20 seconds. Moreover, we
summarize the comparisons between possible action validation approaches as shown in Table s.1.

∗Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Table s.2: Results on predicting invalid actions by an action validity prediction network. Thresholds
for deciding either valid or invalid actions are set to 0.5.

Pivot Offset

Training Test Training Test
Precision Recall Precision Recall Precision Recall Precision Recall

MLP 0.9618 1.0000 0.9557 1.0000 0.5614 0.1410 0.5130 0.1398
No Node 0.9874 0.9895 0.9804 0.9869 0.8261 0.7518 0.7931 0.7344
No Edge 0.9947 0.9986 0.9850 0.9948 0.9199 0.9736 0.8897 0.9672

Ours (Jointly) 0.9881 0.9988 0.9809 0.9982 0.9001 0.9505 0.8674 0.9467
Ours (Pretrained) 0.9976 0.9987 0.9909 0.9944 0.9408 0.9709 0.9125 0.9661

As described in the main article, our action validity prediction network can be pretrained using the
episodes obtained from the randomly-assembled object construction task and only requires a single
forward pass to compute the action validity in inference time. In addition to these, we show the
results on predicting invalid actions by an action validity prediction network in Table s.2. The results
shown in Figure 3 and this table demonstrate that our pretrained network is effective in predicting
action validity. For the jointly-trained validity prediction network, we assume that the oracle agent
decides the next actions by obtaining them from the training dataset, which implies that all the 10,000
episodes in the training dataset are used to train the action validity prediction network with a single
epoch.

S.2 Details of Benchmarks

At the beginning of each episode, the agent starts with a single brick placed at the origin with the
direction 0 regardless of the type of experiment it is being tested on. Specifically, the agent is given a
graph with a single node feature of [0, 0, 0, 0] and the edge feature matrix of zero values along with
target information. All the hyperparameters are described in Tables s.3 and s.4. Below, we present
the additional details distinctive for each benchmark.

S.2.1 MNIST Construction

Figure s.2: Visualization of available offsets for MNIST construction.

Available offsets are visualized in Figure s.2. Since new brick (colored in dark blue) can be placed
below the pivot brick (colored in red), the total number of offsets is 6.

Brick budget for each instance is set to 110% of the total number of the pixels that have value 1 in a
target MNIST image.

S.2.2 Randomly-Assembled Object Construction

Available offset types are illustrated in Figure s.3. Unlike the experiments of MNIST construction,
new brick (colored in red) can only be placed above the pivot brick (colored in dark blue). The total
number of bricks is chosen uniformly between 10 to 15. In order to obtain target images, we first
transform assembled bricks to voxels in closed grid of size 32× 32× 32 and then crop images of
size 14× 14 from different viewpoints with the target residing close to the center of each image.

S.2.3 ModelNet Construction

In these experiments, we use the same subset of offset types that are available in randomly-assembled
object construction whereas new brick now can be placed either above or below the pivot brick.

2



Figure s.3: Visualization of available offsets for randomly-assembled object construction.

Table s.3: Hyperparameters for MNIST construction.

Hyperparameter Value

Gradient clipping 0.5
Entropy coefficient 0.01
The number of timesteps 512
Total timesteps 3× 105

The number of environments 8
Learning rate 1× 10−4

Gamma 0.5
Lambda 0.9
The number of epochs 6
The number of mini-batches 32
Value coefficient 1

Thus, the total number of available offset types is 32, which is exactly twice of randomly-assembled
object construction. The process to acquire images as the desired target information is same as in
randomly-assembled object construction.

S.3 Details of Baseline Methods and Our Method

In this section, we describe the details of baseline methods and our method B3.

S.3.1 Bayesian Optimization

We conduct Bayesian optimization [1] on the tasks we solve, following the approach proposed by Kim
et al. [2]. Gaussian process regression with Matérn 5/2 kernel and expected improvement strategy are
used as a surrogate function and an acquisition function. Unless otherwise specified, 5 initial points
and 10 timestep budget are given for a single construction step.

S.3.2 Supervised Learning Model

Supervised learning model is built upon the policy network of B3 that is trained with the supervised
learning approach instead of the reinforcement learning framework. In detail, sequence-level ground-
truth of the pivot and the offset selection is used as cross entropy loss to train the network. Since value
prediction of the current state is unnecessary, the value network is dropped. Due to the requirement of
the pivot and the offset selection for each timestep as a label, this baseline method is only applicable
in randomly-assembled object construction.

3



Table s.4: Hyperparameters for other benchmarks.

Hyperparameter Value

Gradient clipping 0.5
Entropy coefficient 0.01
The number of timesteps 512
Total timesteps 5× 105

The number of environments 8
Learning rate 1× 10−4

Gamma 0.75
Lambda 0.9
The number of epochs 6
The number of mini-batches 32
Value coefficient 1

Table s.5: Description of baselines and our method.

Method Figures Description

Baseline #1 - BO Figure 2, Figure s.4, Figure s.5 Bayesian optimization [2]
Baseline #2 - SL Figure 2(b) Supervised learning [3]
Baseline #3 - MLP Figure 2, Figure s.4, Figure s.5 Our MLP-based method
Ours - GNN Figure 2, Figure s.4, Figure s.5 Brick-by-Brick

S.3.3 MLP-based Model

MLP-based model uses same pipeline as of B3 but with MLPs instead of GNNs to compute features
for the pivot and the offset selection. Thus, each brick feature is obtained without message passing
between its neighbors. Value or estimated return of the current state, however, is computed similarly
by using global average pooling over final brick features.

S.3.4 Brick-by-Brick

Implementation details of our method B3 can be found in Table s.6. The number of hidden units
in both multi-layer perceptrons and convolutional neural networks is 64 if experiments are the
MNIST construction task, or 192 otherwise. In both randomly-assembled object construction and
ModelNet construction experiments, the dimension of target feature computed by CNNtar is then 192
by concatenating separately computed features of three images. The output dimension of MLPpiv is
fixed to Nmax which is 70 in ModelNet construction and 45 in the other experiments. Typically, the
number of maximum bricks or the budget for target objects is predefined to values below Nmax. This
can be replaced to a recurrent neural network such as Pointer networks [4] if no mask information is
given.

S.4 Additional Experimental Results

All experiments are carried out on a Ubuntu 16.04 workstation, consisting of Intel(R) Core(TM)
i7-6850K CPU and two NVIDIA Titan X Pascal GPUs.

Average episode return for other classes of MNIST are shown in Figure s.4. Similarly, the return
curve for monitor and table classes of ModelNet are provided in Figure s.5. Note that the baseline
performance is measured separately for each class of MNIST and ModelNet. We observe that B3

generally outperforms the baselines in not only training episodes but also test episodes where unseen
images are given. Additional qualitative results on each digit class are presented in Figure s.7.
Note that three images of a constructed object in both randomly-assembled object construction and
ModelNet construction are extracted from same viewpoints of the target.

4



0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(a) Class 1

0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(b) Class 2

0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(c) Class 3

0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(d) Class 4

0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(e) Class 5

0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(f) Class 6

0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(g) Class 7

0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(h) Class 8

0 50000 100000 150000 200000 250000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(i) Class 9

Figure s.4: Episode return curve for classes 1 to 9 in MNIST construction. Results are averaged over
3 random seeds.

S.5 Comparison on Graph Neural Networks

We test B3 on randomly-assembled object construction and compare to graph neural networks
without node or edge features. Specifically, no edge model only utilizes the node features that contain
positional and directional information of each brick whereas no node model only uses displacement
information of edge features. The result is presented in Figure s.6. Similar to the validity prediction
network experiments, B3 that exploits both node and edge features reports the best performance
compared to the others.

S.6 Limitations and Societal Impacts

Our work can generate a sequence of bricks to construct a target object of which the partial information
is only available. However, the partial information does not always guarantee that our model constructs
a 3D object accurately because the incomplete information cannot express the object we would like to
assemble. For example, the cases that belong to table category are difficult to assemble, in particular
with only three views of 3D object the legs of table are not distinguishable whether a true object
has two legs or four legs. This ambiguity leads us not to successfully construct a target object. To
solve this problem, we can provide more information than three images from different viewpoints,
but it causes an additional cost for obtaining the information. We need to balance a trade-off between
elaborate information and additional cost.

5



0 100000 200000 300000 400000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(a) Monitor

0 100000 200000 300000 400000

Timestep

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
et

u
rn

GNN Train

GNN Test

MLP Train

MLP Test

BO

(b) Table

Figure s.5: Episode return curve for monitor and table categories in ModelNet construction. Results
are averaged over 3 random seeds.

0 100000 200000 300000 400000

Timestep

0.0

0.1

0.2

0.3

0.4

0.5

R
et

u
rn

Full Train

Full Test

No Edge Train

No Edge Test

No Node Train

No Node Test

Figure s.6: Episode return curve of different GNNs for randomly-assembled object construction.
Results are averaged over 3 random seeds.

If our work successfully assembles any 3D object in a combinatorial manner where partial information
is given, it is capable of constructing dangerous and illegal products with basic unit primitives. For
example, when 3D printing has been widely adopted, some people start to produce a dangerous and
illegal object such as gun, rifle, and knife without difficulty. Similar to this, our approach can be also
employed in such tasks. Additionally, due to the characteristics of combinatorial, addable, removable
components, a copyright of creation is able to be easily infringed. Since our method can generate
a unique sequence or assembly instruction of object diversely, the vast number of slightly different
objects can be created.

6



Table s.6: Architecture of B3. An asterisk ∗ implies that its dimension can be changed according to a
target benchmark.

Network Hidden Layer Activation Output
Dimension

MLPv FC ReLU 64∗

FC ReLU 64∗

FC Linear 64∗

MLPe FC ReLU 64∗

FC ReLU 64∗

FC Linear 64∗

CNNtar Conv2D, 32 channels, 3× 3 filter, stride 1, same padding Linear 14× 14× 128
Maxpool 2D, pool size 3, strides 2, same padding ReLU 7× 7× 128

Conv2D, 32 channels, 3× 3 filter, stride 1, same padding ReLU 7× 7× 128
Conv2D, 32 channels, 3× 3 filter, stride 1, same padding ReLU 7× 7× 128
Conv2D, 32 channels, 3× 3 filter, stride 1, same padding ReLU 7× 7× 128
Conv2D, 32 channels, 3× 3 filter, stride 1, same padding Linear 7× 7× 128
Conv2D, 64 channels, 3× 3 filter, stride 1, same padding Linear 7× 7× 64

Maxpool 2D, pool size 3, strides 2, same padding ReLU 4× 4× 64
Conv2D, 64 channels, 3× 3 filter, stride 1, same padding ReLU 4× 4× 64
Conv2D, 64 channels, 3× 3 filter, stride 1, same padding ReLU 4× 4× 64
Conv2D, 64 channels, 3× 3 filter, stride 1, same padding ReLU 4× 4× 64
Conv2D, 64 channels, 3× 3 filter, stride 1, same padding ReLU 4× 4× 64

Flatten - 1024
FC Linear 64∗

MLP(`)
v FC ReLU 64∗

MLP(`)
v FC ReLU 64∗

MLPpiv FC Softmax Nmax

MLPoff FC Softmax Noff

MLPval FC Linear 1

7



Figure s.7: Qualitative results for unseen images of all classes in MNIST construction task. The first
two columns are already shown in the main article.

8



References
[1] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive

cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

[2] J. Kim, H. Chung, J. Lee, M. Cho, and J. Park. Combinatorial 3D shape generation via sequential
assembly. In Neural Information Processing Systems Workshop on Machine Learning for
Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.

[3] R. Thompson, G. Elahe, T. DeVries, and G. W. Taylor. Building LEGO using deep generative
models of graphs. In Neural Information Processing Systems Workshop on Machine Learning
for Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.

[4] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems (NeurIPS), volume 28, pages 2692–2700, Montreal, Quebec, Canada, 2015.

9


	Action Validity Prediction Network
	Details of Benchmarks
	MNIST Construction
	Randomly-Assembled Object Construction
	ModelNet Construction

	Details of Baseline Methods and Our Method
	Bayesian Optimization
	Supervised Learning Model
	MLP-based Model
	Brick-by-Brick

	Additional Experimental Results
	Comparison on Graph Neural Networks
	Limitations and Societal Impacts

