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A PRELIMINARIES

Notation. We use lowercase boldfaced letters to denote vectors, sgn(·) to denote the sign function,
and 1(·) to denote the indicator function. For any vector x and finite-sample set S, let xk be the
k-th element of x and |S| be the cardinality of S. Consider a metric space (X ,�), where X is the
input space and � : X ⇥ X ! R is a distance metric. For any x 2 X and ✏ > 0, let B✏(x;�) =

{x0 2 X : �(x0,x)  ✏} be the ball centered at x with radius ✏ and metric �, where we write
B✏(x) = B✏(x;�) when � is free of context. For any set C ✓ X , let ⇧C(x) = argminx02C �(x0,x)
be the projection of x onto C. Let µ be a probability distribution on X . The empirical distribution of
µ based on a sample set S is defined as: µ̂S(C) =

P
x2S 1(x 2 C)/|S| for any C ✓ X .

Adversarial Robustness. Adversarial robustness captures the classifier’s resilience to small adversar-
ial perturbations. In particular, we work with the following definition of adversarial robustness:
Definition A.1 (Adversarial Robustness). Let X ✓ Rn be input space, Y be label space, and µ be
the underlying distribution of inputs and labels. Let � be a distance metric on X and ✏ > 0. For any
classifier M✓ : X ! Y , the adversarial robustness of M✓ with respect to µ, ✏ and � is defined as:

Rob✏(M✓;µ) = 1� Pr
(x,y)⇠µ

⇥
9 x0 2 B✏(x) s.t. M✓(x

0
) 6= y

⇤
. (4)

When ✏ = 0, Rob0(M✓;µ) is equivalent to the clean accuracy of M✓. In practice, the probability
density function of the underlying distribution µ is typically unknown. Instead, we only have access
to a set of test examples Ste sampled from µ, thus a classifier’s adversarial robustness is estimated
by replacing µ in Equation 4 with its empirical counterpart based on Ste. To be more specific, the
testing-time adversarial robustness of M✓ with respect to Ste, ✏ and � is given by:

Rob✏(M✓; µ̂Ste) = 1� 1

|Ste|
X

(x,y)2Ste

max
x02B✏(x)

1
�
M✓(x

0
) 6= y

�
, (5)

where µ̂Ste denotes the empirical measure of µ based on Ste. We remark that robust generalization,
the main subject of this study, captures how well a model can classify adversarially-perturbed
inputs that are not used for training, which is essentially the testing-time adversarial robustness
Rob✏(M✓; µ̂Ste). In this work, we focus on the `p-norm distances as the perturbation metric �, since
they are most widely-used in existing literature on adversarial examples. Although `p distances may
not best reflect the human-perceptual similarity (Sharif et al., 2018) and perturbation metrics beyond
`p-norm such as geometrically transformed adversarial examples (Kanbak et al., 2018; Xiao et al.,
2018) were also considered in literature, there is still a significant amount of interest in understanding
and improving model robustness against `p perturbations. We hope that our insights gained from `p
perturbations will shed light on how to learn better robust models for more realistic adversaries.

Adversarial Training. Among all the existing defenses against adversarial examples, adversarial

training (Madry et al., 2018; Zhang et al., 2019; Carmon et al., 2019) is most promising in producing
robust models. Given a set of training examples Str sampled from µ, adversarial training aims to
solve the following min-max optimization problem:

min
✓2⇥

Lrob(M✓;Str), where Lrob(M✓;Str) =
1

|Str|
X

(x,y)2Str

max
x02B✏(x)

L
�
M✓,x

0, y
�
. (6)

Here, ⇥ denotes the set of model parameters, and L is typically set as a convex surrogate loss such
that L

�
M✓,x, y

�
is an upper bound on the 0-1 loss 1

�
M✓(x) 6= y

�
for any (x, y). For instance,

L is set as the cross-entropy loss in vanilla adversarial training (Madry et al., 2018), whereas the
combination of a cross-entropy loss for clean data and a regularization term for robustness is used in
TRADES (Zhang et al., 2019). In theory, if Str well captures the underlying distribution µ and the
robust loss Lrob(M✓;Str) is sufficiently small, then M✓ is guaranteed to achieve high adversarial
robustness Rob✏(M✓;µ).

However, directly solving the min-max optimization problem 6 for non-convex models such as neural
networks is challenging. It is typical to resort to some good heuristic algorithm to approximately
solve the problem, especially for the inner maximization problem. In particular, (Madry et al., 2018)
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proposed to alternatively solve the inner maximization using an iterative projected gradient descent
method (PGD-Attack) and solve the outer minimization using SGD, which is regarded as the go-to
approach in the research community. We further explain its underlying mechanism below. For any
intermediate model M✓ produced during adversarial training, the PGD-Attack updates the (perturbed)
inputs according to the following update rule:

xs+1 = ⇧B✏(x)

�
xs + ↵ · sgn(rxsL(M✓,xs, y)

�
for any (x, y) and s 2 {0, 1, . . . , S � 1}, (7)

where x0 = x, ↵ > 0 denotes the step size and S denotes the total number of iterations. For the
ease of presentation, we use Apgd to denote the PGD-Attack such that for any example (x, y) and
classifier M✓, it generates x0

= xS = Apgd(x; y,M✓, ✏) based on the update rule 7. After generating
the perturbed input for each example in a training batch, the model parameter ✓ is then updated by a
single SGD step with respect to L(M✓,x0, y) for the outer minimization problem in Equation 6.

B EXPERIMENTAL DETAILS OF SECTION 2

In this section, we provide the scaled-up version of Figure 1 for better presentation in Figure 6, and
then explain the experimental details for producing the heatmaps and the histograms illustrated in
Section 2.

Given a model M✓ (e.g., Best Model and Last Model) and a set of examples S sampled from the
underlying distribution µ (e.g., CIFAR-10 training and testing datasets), adversarial examples are
generated by the PGD-Attack within the perturbation ball B✏(x) centered at x with radius ✏ = 8/255
under the `1 threat model, which follows the settings of generating training samples in Section 4,
e.g., the PGD-Attack is iteratively conducted by 10 steps with the step size of 2/255. We record the
predicted labels of the generated adversarial examples with respect to each model, and then plot the
classwise label distributions as heatmaps in Figure 1.

In general, let HM be the m⇥m matrix representing the heatmap, where Y = {1, 2, . . . ,m} denotes
the label space. For any j, k 2 Y , the (j, k)-th entry of HM with respect to M✓ and S is defined as:

HMj,k =

����
�
(x, y) 2 S : y = j and M✓

�
Apgd(x; y,M✓, ✏)

�
= k

 ����
����
�
(x, y) 2 S : y = j

 ����
, (8)

where Apgd is the PGD-Attack defined by the update rule 7. More specifically, for any (x, y) 2 S , we
construct the corresponding adversarial example by the PGD-Attack, i.e., x0

= Apgd(x; y,M✓, ✏)
�
.

Then, we measure the predicted label ŷ = M✓(x0
). In that case, for the given training data, we

could construct (ground-truth, predicted) label pairs, simply denoted by {(y, ŷ)}. Afterward, we first
cluster {(y, ŷ)} separately by the ground-truth label, e.g., the subset of ground-truth label j includes
all pairs such that y = j (denoted by {(y, ŷ)}j), which corresponds to the rows of heatmaps. Further,
for each subset, we group it into sub-subsets separately by the predicted labels, e.g., {(y, ŷ)}j,k
contains all pairs in {(y, ŷ)}j such that ŷ = k. Consequently, the number of adversarial examples of
the ground truth label j is calculated as:

|{(y, ŷ)}j | =
����
�
(x, y) 2 S : y = j

 ����.

Meanwhile, the number of adversarial examples of ground truth label j but predicted as label k is
measured as:

|{(y, ŷ)}j,k| =
����
�
(x, y) 2 S : y = j and M✓

�
Apgd(x; y,M✓, ✏)

�
= k

 ����,

where ŷ = M✓

�
Apgd(x; y,M✓, ✏)

�
. Finally, we compute the (j, k)-th entry of the heatmap HMj,k

as the ratio of |{(y, ŷ)}j,k| to |{(y, ŷ)}j |, i.e., Equation 8.

Moreover, following the same settings, we plot the corresponding label-level variance and adversarial
certainty in Figure 2. Specifically, we first measure the label-level variance of the training-time
adversarial examples of the last model (Figure 1(a)) and the best model (Figure 1(c)) conditioned on
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(c) Best Model (Train)
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(d) Best Model (Test)

Figure 6: Heatmaps of predicted class distribution of training-time and testing-time generated
adversarial examples with respect to models produced from the last epoch and the best epoch of
adversarial training, where darker colors indicate larger probabilities.

the ground-truth label, as shown in Figure 2(a). Taking the ground-truth label j as an example, the
label-level variance can be formulated as:

Var
(label)
j =

s
1

|Y|
X

k2Y
(HMj,k �HMj)

2,

where HMj averages all HMj,k with different k, and Y = {1, 2, ...,m} is the label space.

In addition, according to Equation 1 defined in Section 2, we measure the adversarial certainty of the
last and the best models, as illustrated in Figure 2(b), with respect to the predicted logits of all the
adversarial examples conditioned on the ground-truth label.
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Figure 7: The visualized results evaluating adversarial certainty based on PRN18 of TRADES and
MART using CIFAR-10 at different epochs.

Table 4: Testing-time adversarial robustness (%) of AT with/without EDAC/EDAC_Reg under `1
threat model across different model architectures and benchmark datasets.

Dataset Architecture Method Clean PGD-20 PGD-100 CW1 AutoAttack

SVHN

PRN18
AT 89.63 (88.64) 42.25 (51.00) 41.37 (50.30) 42.84 (48.19) 39.52 (46.02)
+ EDAC 90.58 (89.63) 45.86 (54.42) 43.92 (53.78) 43.75 (50.15) 40.68 (48.23)
+ EDAC_Reg 90.65 (90.21) 45.39 (53.06) 43.77 (52.28) 43.66 (49.64) 41.10 (47.39)

WRN34
AT 91.51 (89.72) 46.81 (53.43) 44.94 (52.77) 45.76 (50.43) 41.71 (49.50)
+ EDAC 91.26 (91.83) 60.42 (67.95) 56.71 (64.85) 56.98 (65.09) 42.33 (50.42)
+ EDAC_Reg 91.76 (92.13) 62.19 (65.96) 59.54 (63.68) 60.05 (63.87) 42.46 (49.95)

CIFAR-10

PRN18
AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ EDAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)
+ EDAC_Reg 83.78 (83.54) 45.39 (50.86) 44.87 (50.49) 44.18 (48.96) 42.41 (47.02)

WRN34
AT 86.47 (85.86) 47.25 (55.31) 46.73 (55.00) 47.85 (54.04) 45.84 (51.94)
+ EDAC 86.48 (85.10) 52.02 (57.93) 51.69 (57.68) 51.51 (54.98) 49.75 (53.33)
+ EDAC_Reg 85.69 (76.89) 48.81 (48.91) 47.54 (48.86) 47.55 (45.98) 44.24 (44.99)

CIFAR-100

PRN18
AT 54.58 (53.64) 20.29 (27.80) 20.00 (27.66) 20.18 (25.40) 18.52 (23.45)
+ EDAC 54.85 (55.01) 22.46 (27.73) 22.19 (27.48) 21.11 (25.37) 19.09 (23.95)
+ EDAC_Reg 54.67 (53.11) 21.78 (28.86) 21.50 (28.70) 20.56 (26.00) 19.29 (23.40)

WRN34
AT 57.23 (54.45) 25.64 (30.30) 25.38 (29.97) 24.09 (27.57) 22.76 (25.46)
+ EDAC 58.15 (58.04) 26.08 (31.55) 25.89 (31.43) 24.77 (29.19) 23.66 (27.08)
+ EDAC_Reg 57.57 (58.34) 24.46 (30.97) 24.13 (30.89) 24.04 (28.92) 22.68 (26.71)

C EXPERIMENTAL DETAILS OF SECTION 4

For the empirical evaluation in Section 4, we set ✏ = 8/255, and train the model for 200 epochs
using SGD with the momentum of 0.9. Besides, the initial learning rate is 0.1, and is divided by 10
at the 100

th epoch and at the 150
th epoch. And the adversarial attack used in training is PGD-10

with a step size of 2/255, while we utilize the commonly-used attack benchmarks of PGD-20 (Madry
et al., 2018), PGD-100 (Madry et al., 2018), CW1 (Carlini & Wagner, 2017) and AutoAttack (Croce
& Hein, 2020) in testing. In addition, we also measure the Clean performance to investigate the
influence on clean images. Regarding other hyperparameters, we follow the settings described in
their original papers. In all cases, we evaluate the performance of the last (best) model in terms of
testing-time robust accuracy.

D ADDITIONAL RESULTS

EDAC Improves Adversarial Certainty. Recall that we compare the adversarial certainty of AT and
AT-EDAC in Figure 4(b) (Section 4.1). We further depict the influence of EDAC on other adversarial
training methods, including TRADES and MART, in Figure 7. In particular, we observe similar
trends as in Figure 4(b), i.e., our EDAC could indeed help gain better adversarial certainty.
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Table 5: Testing-time adversarial robustness (%) of AWP and Consistency with/without EDAC on
CIFAR-10 and PRN18 under `1 threat model.

Method Clean PGD-20 PGD-100 CW1 AutoAttack

AT-AWP 83.76 (82.37) 52.99 (54.04) 52.71 (53.89) 51.07 (51.22) 48.75 (49.33)
+ EDAC 84.07 (82.67) 54.55 (55.17) 54.30 (55.00) 51.76 (52.03) 49.80 (49.96)

TRADES-AWP 81.46 (81.28) 52.71 (53.69) 52.54 (53.55) 50.37 (50.61) 49.54 (49.92)
+ EDAC 82.69 (82.85) 54.06 (54.68) 53.80 (54.49) 51.44 (51.53) 50.51 (50.63)

MART-AWP 78.13 (77.27) 53.26 (53.62) 53.06 (52.58) 49.05 (48.39) 46.53 (47.01)
+ EDAC 80.03 (78.65) 54.79 (55.16) 54.67 (54.93) 49.58 (49.14) 47.47 (47.73)

AT-Consistency 85.28 (84.66) 55.43 (56.72) 55.16 (56.46) 50.81 (51.13) 48.08 (48.48)
+ EDAC 85.36 (85.17) 56.65 (57.19) 56.31 (56.90) 51.29 (51.72) 49.00 (49.46)

TRADES-Consistency 83.68 (83.51) 53.00 (53.06) 52.78 (52.79) 48.85 (48.89) 47.75 (47.77)
+ EDAC 84.78 (84.73) 53.73 (53.96) 53.48 (53.72) 49.37 (49.41) 48.15 (48.19)

MART-Consistency 78.21 (78.11) 56.33 (56.85) 56.31 (56.81) 47.33 (47.47) 45.53 (45.73)
+ EDAC 81.91 (81.35) 58.59 (58.76) 58.29 (58.56) 50.08 (50.21) 48.28 (48.59)

Table 6: Testing-time adversarial robustness (%) of AT with/without EDAC on PreActResNet-18
under `2 threat model against PGD-20 across different benchmark datasets.

Method SVHN CIFAR-10 CIFAR-100

Best Last Best Last Best Last

AT (Madry et al. 2018) 66.45 63.20 66.02 65.18 39.23 35.68
+ EDAC 69.11 67.44 69.10 67.37 40.75 36.32

Other Benchmark Datasets. We extend the evaluation of EDAC to more benchmark datasets, includ-
ing SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky & Hinton, 2009) and CIFAR-100 (Krizhevsky
& Hinton, 2009), on the adversarial robustness. Table 4 shows that EDAC consistently improves
robust generalization across different datasets. For instance, surprisingly, EDAC could increase
the adversarial robustness by 14.52% for the WRN34 best model of AT against PGD-20. These
improvements further demonstrate the effectiveness and generalizability of EDAC.

Comparisons With Alternative Regularization Method. As shown in Table 4, compared with
EDAC_Reg, involving extragradient steps could bring better and more stable improvements. In some
cases, EDAC_Reg is even harmful to robust generalization, e.g., when a WideResNet-34-10 model is
trained on CIFAR-10.

Extension to Other Adversarial Training Methods. In Section 4.2, we depict the generalizability
of EDAC to AT-AWP and AT-Consistency. We now provide the full results of the cases of AT,
TRADE and MART in Table 5. Similarly, EDAC shows consistent improvements in extensive cases,
which indicates the compatibility of adversarial certainty with other insights for improving robust
generalization.

`2 Norm-Bounded Perturbation. In the above evaluation, we focus on the `1 norm-bounded
perturbations. Meanwhile, the `2 norm is also a prevalent perturbation setting in adversarial training.
Thus, in Table 6, we evaluate our method under the `2 threat model. Similarly, EDAC depicts
consistent improvements in adversarial robustness on best and last epochs and different benchmark
datasets, which shows the efficacy of EDAC against adversarial attacks with `2 perturbations.
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