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Abstract

We study the generalization properties of unregularized gradient methods applied
to separable linear classification—a setting that has received considerable attention
since the pioneering work of Soudry et al. [14]. We establish tight upper and
lower (population) risk bounds for gradient descent in this setting, for any smooth
loss function, expressed in terms of its tail decay rate. Our bounds take the form
Θ(𝑟2

ℓ,𝑇
/𝛾2𝑇 + 𝑟2

ℓ,𝑇
/𝛾2𝑛), where 𝑇 is the number of gradient steps, 𝑛 is size of

the training set, 𝛾 is the data margin, and 𝑟ℓ,𝑇 is a complexity term that depends
on the tail decay rate of the loss function (and on 𝑇). Our upper bound greatly
improves the existing risk bounds due to Shamir [13] and Schliserman and Koren
[12], that either applied to specific loss functions or imposed extraneous technical
assumptions, and applies to virtually any convex and smooth loss function. Our
risk lower bound is the first in this context and establish the tightness of our general
upper bound for any given tail decay rate and in all parameter regimes. The proof
technique used to show these results is also markedly simpler compared to previous
work, and is straightforward to extend to other gradient methods; we illustrate this
by providing analogous results for Stochastic Gradient Descent.

1 Introduction

Recently, there has been a marked increase in interest regarding the generalization capabilities of
unregularized gradient-based learning methods. One specific area of attention in this context has
been the setting of linear classification with separable data, where a pioneering work by Soudry et al.
[14] showed that, when using plain gradient descent to minimize the empirical risk on a linearly
separable training set with an exponentially-tailed classification loss (such as the logistic loss), the
trained predictor will asymptotically converge in direction to the max-margin solution. As a result,
standard margin-based generalization bounds for linear predictors suggest that, provided the number
of gradient steps (𝑇) is sufficiently large, the produced solution will not overfit, despite the lack of
explicit regularization and the fact that its magnitude (i.e., Euclidean norm) increases indefinitely
with 𝑇 . This result has since been extended to incorporate other optimization algorithms and loss
functions [3, 4, 8, 9, 5].
Despite the high interest in this problem, the tight finite-time (population) risk performance of
unregularized gradient methods, and even just of gradient descent, have not yet been fully understood.
The convergence to a high margin solution exhibited by Soudry et al. [14] (for the logistic loss) occurs
at a slow logarithmic rate, thus, the risk bounds for the trained predictors only become effective when𝑇
is at least exponentially large in comparison to the size of the training set 𝑛 and the margin 𝛾. In a more
recent work, Shamir [13] established risk bounds of the form 𝑂 (1/𝛾2𝑇 + 1/𝛾2𝑛) for several gradient
methods in this setting (still with the logistic loss), that apply for smaller and more realistic values of 𝑇 .
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Table 1: Comparison between the bounds established in this work and bounds established in previous work for
for gradient descent on 𝛾-separable data; here, 𝑇 is the number of gradient steps and 𝑛 is the size of the training
set. Logarithmic factors other than log𝑇 factors are suppressed from the bounds. Examples of how our general
bounds are instantiated for some concrete loss functions are presented in Table 2 below.

Paper Class of losses Type of bound Upper bound Lower bound

Shamir [13] Logistic loss 0-1 loss
(population)

log2 𝑇
𝛾2𝑇

+ 1
𝛾2𝑛

1
𝛾2𝑇

(a)

Schliserman and
Koren [12]

General convex;
Risk
(population)

𝑟2
𝜙,𝑇

𝛾2𝑇
+

𝑇 𝛿𝑟2−2𝛿
𝜙,𝑇

𝛾2𝑛
–smooth; Lipschitz;

(𝑐, 𝛿)-self-bounded;(b)

Decay rate of 𝜙
General convex;

Risk
(population)

𝑟2
𝜙,𝑇

𝛾2𝑇
+

𝑇2𝛿𝑟4−4𝛿
𝜙,𝑇

𝛾4𝑛1+2𝛿
–smooth;

(𝑐, 𝛿)-self-bounded;(b)

Decay rate of 𝜙

Telgarsky [16]
Convex linear models; Risk

(population)
𝑟𝜙,𝑇

𝛾
√
𝑇

(d) –quadratically-bounded;(c)

Decay rate of 𝜙

This paper
Convex linear models; Risk

(population)
𝑟2
𝜙,𝑇

𝛾2𝑇
+

𝑟2
𝜙,𝑇

𝛾2𝑛

𝑟2
𝜙,𝑇

𝛾2𝑇
+

𝑟2
𝜙,𝑇

𝛾2𝑛
smooth;
Decay rate of 𝜙

a The lower bound is shown for the empirical (logistic) risk.
b 𝑓 is (𝑐, 𝛿)-self-bounded if for every 𝑥, it holds that ∥∇ 𝑓 (𝑥)∥ ≤ 𝑐 𝑓 (𝑥)1−𝛿 ; for 𝛿 < 1/2, this property is
stronger than smoothness of 𝑓 .
c ℓ is (𝑐1, 𝑐2)-quadratically-bounded if, for every 𝑥 and 𝑧, |ℓ′ (𝑥, 𝑧) | ≤ 𝑐1 + 𝑐2 (∥𝑥∥ + ∥𝑧∥).
d The upper bound is valid when 𝑇 ≤ 𝑛.

Later Schliserman and Koren [12] gave a more general analysis that extends the bounds of Shamir
[13] to a wide range of smooth loss functions satisfying a certain “self-boundedness” condition, and
Telgarsky [16] provided a test-loss analysis of stochastic mirror descent on “quadratically-bounded”
losses. However, all of these works either assume a specific loss (e.g., the logistic loss), impose
various conditions on the loss function (beyond smoothness), or do not establish the tightness of their
bounds in all regimes of parameters (𝑇, 𝑛 and 𝛾), and especially in the regime where the number of
gradient steps 𝑇 is larger than the sample size 𝑛 (see Table 1 for details).

1.1 Our contributions

In this work, we close these gaps by showing nearly matching upper and lower risk bounds for gradient
descent, which hold essentially for any smooth loss function, and for any number of steps 𝑇 and
sample size 𝑛. Compared to recent prior work in this context [13, 16, 12], our results do not require
any additional assumptions on the loss function besides its smoothness, and they strictly improve
upon the existing bounds by their dependence on 𝑇 . Further, to the best of our knowledge, risk lower
bounds were not previously explored in this context, and the lower bounds we give establish, for the
first time, the precise risk convergence rate of gradient descent for any smooth loss function and in all
regimes of 𝑇 and 𝑛.
In some more detail, our results assume the following form. Let C𝜙,𝛽 be the class of nonnegative,
convex and 𝛽-smooth loss functions ℓ(𝑢) that decay to zero (as 𝑢 → ∞) faster than a reference “tail
function” 𝜙 : [0,∞) → ℝ. The function 𝜙 is merely used to quantify how rapidly the tails of loss
functions in C𝜙,𝛽 decay to zero. Then, the risk upper and lower bounds we prove for gradient descent
are of the following form:2

𝛽𝑟2
𝜙,𝑇

𝛾2𝑇
+
𝛽𝑟2

𝜙,𝑇

𝛾2𝑛
. (1)

2For simplicity, we specialize the bounds here to gradient descent with stepsize 𝜂 = Θ(1/𝛽), but the bounds
hold more generally to any stepsize smaller than 𝑂 (1/𝛽).
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Table 2: Examples of tight population risk bounds established in this paper for gradient descent on 𝛾-separable
data, instantiated for several different loss tail decay rates. Details on the derivation of the bounds from the
general Theorems 1 and 2 can be found in Appendix A.

Tail decay (𝜙) 𝑟𝜙,𝑇 Risk bound

exp(−𝑥) log(𝑇) Θ

(
log2 (𝑇)
𝛾2𝑇

+ log2 (𝑇)
𝛾2𝑛

)
𝑥−𝛼 (𝛾2𝑇) 1

𝛼+2 Θ

( ( 1
𝛾

) 2𝛼
2+𝛼

( 1
𝑇

𝛼
2+𝛼

+ 𝑇
2

2+𝛼

𝑛

))
exp(−𝑥𝛼) log

1
𝛼 (𝑇) Θ

(
log

2
𝛼 (𝑇)
𝛾2𝑇

+ log
2
𝛼 (𝑇)
𝛾2𝑛

)

The bounds depend on the tail function 𝜙 through the term 𝑟𝜙,𝑇 that, roughly, equals 𝜙−1 (𝜀) for 𝜀
chosen such that 𝜀 ≈ (𝜙−1 (𝜀))2/𝛾2𝑇 (for the precise statements refer to Theorems 1 and 2, and for
concrete examples of implied bounds, see Table 2).
The form of Eq. (1) resembles the bounds given in recent work by Schliserman and Koren [12].
However, the latter work imposed an extraneous “self-boundedness” assumption (stronger than
smoothness, see Table 1) that we do not require, and they did not establish the tightness of their
bounds, as we do in this paper by providing matching lower bounds. On the flip side, their upper
bounds apply in a broader stochastic convex optimization setup, whereas our bounds are specialized
to generalized linear models for classification.
In terms of techniques, our proof methodology is also distinctly (and perhaps somewhat surprisingly)
simple compared to previous work. Our upper bounds rely on two elementary properties that gradient
methods admit when applied to a smooth and realizable objective: low training loss and low norm of
the produced solutions. Both properties are obtained from fairly standard arguments and convergence
bounds for smooth gradient descent, when paired with conditions implied by the decay rate of the loss
function. Finally, to bound the gap between the population risk and the empirical risk, we employ a
classical result of Srebro et al. [15] that bounds the generalization gap of linear models in the so-called
“low-noise” (i.e., nearly realizable) smooth regime using local Rademacher complexities. Somewhat
surprisingly, this simple combination of tools already give sharp risk results that improve upon the
state-of-the-art [13, 12, 16] both in terms of tightness of the bounds and the light set of assumptions
they rely on.
We remark here that the proof scheme summarized above can be generalized to essentially any
gradient method for which one can prove simultaneously bounds on the optimization error and the
norm of possible solutions produced by the algorithm. In the sequel, we focus for concreteness on
standard gradient descent, but in Appendix B we also give bounds for Stochastic Gradient Descent
(SGD), which is shown to admit both of these properties with high probability over the input sample.
An interesting conclusion from our bounds pertains to the significance of early stopping. We see that
gradient descent, even when applied on a smooth loss functions that decay rapidly to zero, might
overfit with respect the the surrogate loss (i.e., reach a trivial Θ(1) risk) as the number of steps 𝑇
grows. The time by which gradient descent starts overfitting depends on the tail decay rate of the loss
function: the slower the decay rate, the shorter the time it takes to overfit. Interestingly, a similar
phenomenon may not occur for the zero-one loss of the trained predictor. For example, Soudry et al.
[14] show that with the logistic loss, gradient descent does not overfit in terms of the zero-one as 𝑇
approached infinity—whereas, at the same time, it does overfit as 𝑇 → ∞ in terms of the logistic loss
itself, as seen from our lower bounds.

Summary of contributions. To summarize, the main contribution of this paper are as follows:

• Our first main result (in Section 3) is a high probability risk upper bound for gradient descent in the
setting of separable classification with a convex and smooth loss function. Our bound matches the
best known upper bounds [13, 12] and greatly extend them to allow for virtually any convex and
smooth loss function, considerably relaxing various assumptions imposed by prior work.
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• Our second main result (in Section 4) is a nearly matching lower bound for the risk of gradient
descent, establishing the tightness of our analysis given the smoothness and tail-decay conditions.
The tightness of our bounds holds across tail decay rates and different regimes of the parameters
𝑇, 𝑛 and 𝛾. To our knowledge, these constitute the first (let alone tight) risk lower bounds in this
context, despite a long line of work on linear classification with separable data.

• We also provide analogous results for Stochastic Gradient Descent with replacement (in Appendix B),
mainly to emphasize that that our analysis uses only two elementary properties of the optimization
algorithm: low optimization error and low norm of the produced solution. The same analysis can
be generalized to any gradient method that admits these two properties.

1.2 Additional related work

Unregularized gradient methods on separable data. The most relevant work to ours is of
Schliserman and Koren [12], who used algorithmic stability and two simple conditions of self-
boundedness and realizability which the loss functions hold, to get generalization bounds for gradient
methods with constant step size in the general setting of stochastic convex and smooth optimization.
Then, they derived risk bounds which hold in expectation for the setting of linear classification with
separable data for every loss function which decays to 0. The exact bound was depend in the rate of
decaying to 0 of the function. For the Lipschitz case their risk bound with respect to the loss function
ℓ is 𝑂 (ℓ−1 (𝜀)2/𝛾2𝑇 + ℓ−1 (𝜀)2/𝛾2𝑛) for any choice of 𝜀 such that 𝜀/ℓ−1 (𝜀)2 ≤ 1/𝛾2𝑇 . For example,
for the logistic loss, the bound translates to 𝑂 (log2 (𝑇)

/
𝛾2𝑇 + log2 (𝑇)

/
𝛾2𝑛).

In another work, Telgarsky [16], showed a high probability risk bound for 𝑇 ≤ 𝑛 for Batch Mirror
Decent with step size 𝜂 ≃ 1/

√
𝑇 in linear models, using a reference vector, which when selected

properly, can be translated to a risk bound of 𝑂 (ℓ−1 (𝜀)
/
𝛾
√
𝑇) for gradient descent applied on the

loss function ℓ, and to a 𝑂 (log𝑇
/
𝛾
√
𝑇) for the logistic loss.

Fast rates for smooth and realizable optimization. The problem of smooth and realizable
optimization, also known as the “low-noise” regime of stochastic optimization, is a very well
researched problem. Srebro et al. [15] showed that stochastic gradient descent achieved risk bound of
𝑂 (1/𝑛) in this setting. For linear models, they also showed that ERM achieve similar fast rates by
using local Rademacher complexities. Later [10] showed that SGD converges linearly when the loss
function is also strongly convex. In more recent works, [7] used stability arguments to show that SGD
with replacement with 𝑇 = 𝑛 achieve risk of 𝑂 (1/𝑛).

Lower bounds. A lower bound related to ours appears in Ji and Telgarsky [4]. In this work, the
authors showed a lower bound of ∥𝑤′

𝑡 − 𝑤∗∥ ≥ log(𝑛)/log(𝑇). In our work, however, we get lower
bound directly for the loss itself and not for this objective. More recently, Shamir [13] showed a lower
bound of Ω(1/𝛾2𝑇) for the empirical risk of GD when applied on the logistic loss which is tight
up to log factors. When generalizing this technique for other objectives, e.g., functions that decay
polynomially to zero, the log factors become polynomial factors and the bound becomes not tight,
even in the regime 𝑇 ≪ 𝑛 where the 1/𝑇 term in the bounds is dominant. In contrast, we establish
nearly tight bounds for virtually any tail decay rate, and in all regimes of 𝑇 and 𝑛.

2 Problem Setup

We consider the following typical linear classification setting. Let D be distribution over pairs (𝑥, 𝑦),
where 𝑥 ∈ ℝ𝑑 is a 𝑑-dimensional feature vector and 𝑦 ∈ ℝ is a real number that represents the
corresponding label. We assume that data is scaled so that ∥𝑥∥ ≤ 1 and |𝑦 | ≤ 1 (with probability
one with respect to D). We focus on the setting of separable, or realizable, linear classification with
margin. Formally, we make the following assumption.
Assumption 1 (realizability). There exists a unit vector 𝑤∗ ∈ ℝ𝑑 and 𝛾 > 0 such that 𝑦(𝑤∗ · 𝑥) ≥ 𝛾
almost surely with respect to the distribution D.

Equivalently, we will identify each pair (𝑥, 𝑦) with the vector 𝑧 = 𝑦𝑥, and realizability implies that
𝑤∗ · 𝑧 ≥ 𝛾 with probability 1. Our assumptions then imply that ∥𝑧∥ ≤ 1 with probability 1.
Given a nonnegative loss function ℓ : ℝ → ℝ+, the objective is to determine a model 𝑤 ∈ ℝ𝑑 that
minimizes the (population) risk, defined as the expected value of the loss function over the distribution
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D, namely
𝐿 (𝑤) = 𝔼𝑧∼D [ℓ(𝑤 · 𝑧)] . (2)

For finding such a model, we use a set of training examples 𝑆 = {𝑧1, ..., 𝑧𝑛} which drawn i.i.d. from
D and an empirical proxy, the empirical risk, which is defined as

�̂� (𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑤 · 𝑧𝑖). (3)

2.1 Loss functions

The loss functions ℓ considered in this paper are nonnegative, convex and 𝛽-smooth.3 We also require
that ℓ is strictly monotonically decreasing and lim𝑢→∞ ℓ(𝑢) = 0. The vast majority of loss functions
used in supervised learning for classification satisfy these conditions; these include, for example,
the logistic loss (ℓ(𝑢) = log(1 + 𝑒−𝑢)), the probit loss (ℓ(𝑢) = − log( 1

2 − 1
2 erf (𝑢))), and the squared

hinge loss (ℓ(𝑢) = (max{1 − 𝑢, 0})2).
A main goal of this paper is to quantify how do the achievable bounds on the risk depend on properties
of the loss function ℓ used, and most crucially on the rate in which ℓ decays to zero as its argument
approaches infinity. To formalize this, we need a couple of definitions.
Definition 1 (tail function). We say that 𝜙 : [0,∞) → ℝ is a tail function if 𝜙

(i) is a nonnegative, 1-Lipschitz and 𝛽-smooth convex function;
(ii) is strictly monotonically decreasing such that lim𝑢→∞ 𝜙(𝑢) = 0;
(iii) satisfies 𝜙(0) ≥ 1

2 and |𝜙′ (0) | ≥ 1
2 .

Every tail function 𝜙 defines a class of loss functions characterized by the rate 𝜙 decays to zero.
Definition 2 (𝜙-tailed class). For a tail function 𝜙, the class C𝜙,𝛽 is the set of all nonnegative, convex,
𝛽-smooth and monotonically decreasing loss functions ℓ : ℝ → ℝ+ such that ℓ(𝑢) ≤ 𝜙(𝑢) for all
𝑢 ≥ 0.

We detail several examples for tail functions in Appendix A.

2.2 Gradient Descent

The algorithm that we focus in this paper is standard gradient descent (GD) with a fixed step size
𝜂 > 0 applied to the empirical risk �̂�; this method is initialized at 𝑤1 = 0 and at each step 𝑡 = 1, . . . , 𝑇
performs an update

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇�̂� (𝑤𝑡 ). (4)
The algorithm returns the final model, 𝑤𝑇 .
We remark however that most of the results we present in the sequel can be straightforwardly adapted
to other gradient methods; we include results for Stochastic Gradient Descent (SGD) in Appendix B,
and the same proof techniques can be used to analyze multi-epoch and/or mini-batched SGD, gradient
flow, and more.

3 Risk Upper Bounds

We begin by giving a general upper bound for the risk of gradient descent, when the loss function ℓ is
taken from the class C𝜙,𝛽 . Our main result in this section is the following.
Theorem 1. Let 𝜙 be a tail function and let ℓ be any loss function from the class C𝜙,𝛽 . Fix 𝑇 ,𝑛 and
𝛿 > 0. Then, with probability at least 1 − 𝛿 (over the random sample 𝑆 of size 𝑛), the output of GD
applied on �̂� with step size 𝜂 ≤ 1/2𝛽 initialized at 𝑤1 = 0 has

𝐿 (𝑤𝑇 ) ≤
4𝐾 (𝜙−1 (𝜀))2

𝛾2𝜂𝑇
+

32𝐾𝛽(𝜙−1 (𝜀))2 (log3 𝑛 + 4 log 1
𝛿

)
𝛾2𝑛

+
4𝐾 (𝜙−1 (𝜀))2 log 1

𝛿

𝛾2𝜂𝑇𝑛

for any 𝜀 ≤ 1
2 such that 𝜂𝛾2𝑇 ≤ (𝜙−1 (𝜀))2/𝜀, where 𝐾 < 105 is a numeric constant.

3A differentiable function ℓ : ℝ → ℝ is said to be 𝛽-smooth overℝ if ℓ(𝑣) ≤ ℓ(𝑢) +ℓ′ (𝑢) · (𝑣−𝑢) + 1
2 𝛽(𝑣−𝑢)

2

for all 𝑢, 𝑣 ∈ ℝ.
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The expression (𝜙−1 (𝜀))2/𝜀 increases indefinitely as 𝜀 approaches 0; therefore, for any 𝑇 , there exists
an 𝜀 > 0 that satisfies the theorem’s condition. For several examples of how this bound is instantiated
for different tail decay functions 𝜙, see Table 2 and Appendix A.
In the remainder of this section we prove Theorem 1. The structure of the the proof will be as follows:
First, we bound the norm of the GD solution; by smoothness and realizability, we get that the norm
will remain small compared to a reference point with small loss value. Second, we get a bound on the
optimization error in this setting, the relies on the same reference point. Finally, we use a fundamental
result due to Srebro et al. [15] (reviewed in the subsection below) together with both bounds to derive
the risk guarantee. As discussed broadly in the introduction, this proof scheme can be generalized to
other gradient methods which satisfy the properties of model with low norm and low optimization
error.

3.1 Preliminaries: Uniform Convergence Using Rademacher Complexity

One property of linear models is that in this class of problems is that we have dimension-independent
and algorithm-independent uniform convergence bounds, that enables to bound the difference between
the empirical risk and the population risk of a specific model. A main technical tool for bounding
this difference is the Rademacher Complexity [2]. The worst-case Rademacher complexity of an
hypothesis class 𝐻 for any sample size 𝑛 is given by:

𝑅𝑛 (𝐻) = sup
𝑧1 ,...𝑧𝑛

𝔼𝜎∼Unif ({±1}𝑛 )

[
sup
ℎ∈𝐻

1
𝑛

����� 𝑛∑︁
𝑖=1

ℎ(𝑧𝑖)𝜎𝑖

�����
]
.

We are interested in models that achieve low empirical risk on smooth objectives. A fundamental
result of Srebro et al. [15] bounds the generalization gap under such conditions:
Proposition 1 (15, Theorem 1). Let 𝐻 be a hypothesis class with respect to some non negative and
𝛽-smooth function, ℓ(𝑡 · 𝑦), such that for every 𝑤 ∈ 𝐻, 𝑥, 𝑦, |ℓ(𝑤𝑥 · 𝑦) | ≤ 𝑏. Then, for any 𝛿 > 0 we
have, with probability at least 1 − 𝛿 over a sample of size 𝑛, uniformly for all ℎ ∈ 𝐻,

𝐿 (ℎ) ≤ �̂� (ℎ) + 𝐾 ©­«
√︁
�̂� (ℎ) ©­«

√︁
𝛽 log1.5 (𝑛)𝑅𝑛 (𝐻) +

√︄
𝑏 log 1

𝛿

𝑛

ª®¬ + 𝛽 log3 (𝑛)𝑅2
𝑛 (𝐻) +

𝑏 log 1
𝛿

𝑛

ª®¬ .
where 𝐾 < 105 is a numeric constant.

3.2 Properties of Gradient Descent on Smooth Objectives

In this section we prove that GD satisfies the two desired properties- low norm and low optimization
error. We begin with showing that the norm of 𝑤𝑇 , the output of GD after 𝑇 iterations, is low, as
stated in the following lemma,
Lemma 1. Let 𝜙 be a tail function and let ℓ ∈ C𝜙,𝛽 . Fix any 𝜀 > 0 and a point 𝑤∗

𝜀 ∈ ℝ𝑑 such that
�̂� (𝑤∗

𝜀) ≤ 𝜀 (exists due to realizability). Then, the output of 𝑇-steps GD, applied on �̂� with stepsize
𝜂 ≤ 1/𝛽 initialized at 𝑤1 = 0 has,

∥𝑤𝑇 ∥ ≤ 2∥𝑤∗
𝜀 ∥ + 2

√︁
𝜂𝜀𝑇.

Now, we bound the optimization error of GD on every function ℓ ∈ C𝜙,𝛽 , by using a variant of Lemma
13 from [12]. The proof is fairly standard and appears in Appendix C.
Lemma 2. Let 𝜙 be a tail function and let ℓ ∈ C𝜙,𝛽 . Fix any 𝜀 > 0 and a point 𝑤∗

𝜀 ∈ ℝ𝑑 such that
�̂� (𝑤∗

𝜀) ≤ 𝜀. Then, the output of 𝑇-steps GD, applied on �̂� with stepsize 𝜂 ≤ 1/𝛽 initialized at 𝑤1 = 0
has,

�̂� (𝑤𝑇 ) ≤
∥𝑤∗

𝜀 ∥2

𝜂𝑇
+ 2𝜀.

3.3 Proof of Theorem 1

We now turn to prove Theorem 1. The proof is a simple consequence of the properties proved above
and Proposition 1. We first claim that there exists a model 𝑤∗

𝜀 with low norm such that �̂� (𝑤∗
𝜀) ≤ 𝜀,
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which implies, through Lemmas 1 and 2, that 𝑤𝑇 of gradient descent has both low optimization error
and it remains bounded within a ball of small radius. Then, we use Proposition 1 to translate the low
optimization error to low risk.
Proof of Theorem 1. First, we show that there exists a model 𝑤∗

𝜀 with low norm such that �̂� (𝑤∗
𝜀) ≤ 𝜀.

Let 𝜀 ≤ 1
2 and ℓ ∈ C𝜙,𝛽 . By separability, there exists a unit vector 𝑤∗ such that 𝑤∗ · 𝑧𝑖 ≥ 𝛾 for every

𝑧𝑖 in the training set 𝑆. Moreover, ℓ is monotonic decreasing. Then, for 𝑤∗
𝜀 =

(
𝜙−1 (𝜀)/𝛾

)
𝑤∗ and

every 𝑧𝑖 ∈ 𝑆,

ℓ(𝑤∗
𝜀 · 𝑧𝑖) = ℓ

(
𝜙−1 (𝜀)
𝛾

𝑤∗ · 𝑧𝑖
)
≤ ℓ

(
𝜙−1 (𝜀)
𝛾

· 𝛾
)
≤ ℓ

(
𝜙−1 (𝜀)

)
.

Then, by the fact that 𝜙−1 (𝜀) ≥ 0, we have ℓ(𝑤∗
𝜀 · 𝑧𝑖) ≤ ℓ(𝜙−1 (𝜀)) ≤ 𝜙(𝜙−1 (𝜀)) = 𝜀 for all 𝑖, hence

�̂� (𝑤∗
𝜀) =

1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑤∗
𝜀 · 𝑧𝑖) ≤ 𝜀.

Now, for 𝜀 such that 𝜂𝛾2𝑇 ≤ (𝜙−1 (𝜀))2/𝜀, we get by Lemma 1,

∥𝑤𝑇 ∥ ≤ 2∥𝑤∗
𝜀 ∥ + 2

√︁
𝜂𝜀𝑇 ≤ 4𝜙−1 (𝜀)

𝛾
.

For the same 𝜀, by Lemma 2,

�̂� (𝑤𝑇 ) ≤
∥𝑤∗

𝜀 ∥2

𝜂𝑇
+ 2𝜀 ≤ 3

𝜙−1 (𝜀)2

𝛾2𝜂𝑇
.

Denote 𝐵𝜀 = {𝑤 : ∥𝑤∥ ≤ 𝑟𝜀}, where for brevity 𝑟𝜀 = 4𝜙−1 (𝜀)
/
𝛾. We have, by Lemma 10,

𝑓 (𝑥) ≤ 2 𝑓 (𝑦) + 𝛽∥𝑥 − 𝑦∥2 for all 𝑥, 𝑦 ∈ ℝ𝑑 (see proof in Appendix C). Then, together with the fact
that ∥𝑧∥, ∥𝑧′∥ ≤ 1 and choosing 𝜀 such that 𝜀 ≤ 𝜙−1 (𝜀)2/𝛾2𝜂𝑇 , with probability 1,

𝑏 = max
𝑤∈𝐵𝜀

|ℓ(𝑤 · 𝑧) | ≤ 2ℓ(𝑤∗
𝜀𝑧) + 4𝛽𝑟2

𝜀 ≤ 2𝜀 + 4𝛽𝑟2
𝜀 ≤ 𝑟2

𝜀

8𝜂𝑇
+ 4𝛽𝑟2

𝜀 .

Moreover, 𝐵𝜀 is hypothesis class of linear predictors with norm at most 𝑟𝜀 . We know that the
norm of the examples is at most 1, thus, it follows that the Rademacher complexity of 𝐵𝜀 is
𝑅𝑛 (𝐵𝜀) = 𝑟𝜀

/√
𝑛 [e.g., 6, Theorem 3].

Now, by the choice of 𝜀, we have �̂� (𝑤𝑇 ) ≤ 3𝑟2
𝜀

/
16𝜂𝑇 . Thus, Proposition 1 implies that with

probability at least 1 − 𝛿, for every 𝑤 ∈ 𝐵𝜀 and any 𝜀 such that 𝜀 ≤ 𝜙−1 (𝜀)2/𝛾2𝜂𝑇 ,

𝐿 (𝑤𝑇 ) ≤
3𝑟2

𝜀

16𝜂𝑇
+ 𝐾 ©­«

√︄
3𝑟2

𝜀

16𝜂𝑇
©­«
√︁
𝛽 log1.5 𝑛

𝑟𝜀√
𝑛
+

√︄
𝑏 log 1

𝛿

𝑛

ª®¬ + 𝛽 log3 𝑛
𝑟2
𝜀

𝑛
+
𝑏 log 1

𝛿

𝑛

ª®¬ .
Plugging in the bound on 𝑏, dividing by 𝑟2

𝜀 and using twice the fact that 𝑥𝑦 ≤ 1
2𝑥

2 + 1
2 𝑦

2 for all 𝑥, 𝑦,

𝐿 (𝑤𝑇 )
𝑟2
𝜀

≤ 3
16𝜂𝑇

+ 𝐾
©­­«
√︄

3
16𝜂𝑇

©­­«
√
𝛽 log1.5 𝑛
√
𝑛

+

√︄
( 1

8𝜂𝑇 + 4𝛽) log 1
𝛿

𝑛

ª®®¬+
𝛽 log3 𝑛

𝑛
+
( 1

8𝜂𝑇 + 4𝛽) log 1
𝛿

𝑛

ª®®¬
≤ 3

16𝜂𝑇
+ 𝐾 ©­«

√︄
3

16𝜂𝑇
©­«
√
𝛽 log1.5 𝑛
√
𝑛

+

√︄
log 1

𝛿

8𝜂𝑇𝑛
+

4𝛽 log 1
𝛿

𝑛

ª®¬ + 𝛽 log3 𝑛

𝑛
+

log 1
𝛿

8𝜂𝑇𝑛
+

4𝛽 log 1
𝛿

𝑛

ª®¬
≤ 3

16𝜂𝑇
+ 𝐾

©­­«
3

32𝜂𝑇
+ 1

2
©­«
√
𝛽 log1.5 𝑛
√
𝑛

+

√︄
log 1

𝛿

8𝜂𝑇𝑛
+

4𝛽 log 1
𝛿

𝑛

ª®¬
2

+ 𝛽 log3 𝑛

𝑛
+

log 1
𝛿

8𝜂𝑇𝑛
+

4𝛽 log 1
𝛿

𝑛

ª®®¬
≤ 3

16𝜂𝑇
+ 𝐾

(
3

32𝜂𝑇
+ 𝛽 log3 𝑛

𝑛
+

log 1
𝛿

8𝜂𝑇𝑛
+

4𝛽 log 1
𝛿

𝑛
+ 𝛽 log3 𝑛

𝑛
+

log 1
𝛿

8𝜂𝑇𝑛
+

4𝛽 log 1
𝛿

𝑛

)

≤ 7𝐾
32𝜂𝑇

+
2𝐾𝛽

(
log3 𝑛 + 4 log 1

𝛿

)
𝑛

+
𝐾 log 1

𝛿

4𝜂𝑇𝑛
The theorem follows by rearranging the inequality. □
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4 Risk Lower Bounds

In this section we present our second main result: a lower bound showing that the bound we proved in
Section 3 for gradient descent is essentially tight for loss functions in the class C𝜙,𝛽 , for any given tail
function 𝜙 and any 𝛽 > 0. Formally, we prove the following theorem.
Theorem 2. There exists a constant 𝐶 such that the following holds. For any tail function 𝜙, sample
size 𝑛 ≥ 35 and any 𝑇 , there exist a distribution D and a loss function ℓ ∈ C𝜙,𝛽 , such that for 𝑇-steps
GD over a sample 𝑆 = {𝑧𝑖}𝑛𝑖=1 sampled i.i.d. from D, initialized at 𝑤1 = 0 with stepsize 𝜂 ≤ 1/2𝛽, it
holds that

𝔼[𝐿 (𝑤𝑇 )] ≥ 𝐶
𝛽(𝜙−1 (128𝜀))2

𝛾2𝑛
+ 𝐶 (𝜙−1 (8𝜀))2

𝛾2𝜂𝑇
.

for any 𝜀 < 1
256 such that 𝜂𝛾2𝑇 ≥ (𝜙−1 (𝜀))2/𝜀.

We remark that the right-hand side of the bound is well defined, as we restrict 𝜀 to be sufficiently
small so as to ensure that all arguments to 𝜙−1 are at most 1

2 (recall that 𝜙 admits all values in [0, 1
2 ]

due to our assumptions that 𝜙(0) ≥ 1
2 ). Further, the lower bound above matches the upper bound

given in Theorem 1 up to constants, unless the tail function 𝜙 decays extremely slowly, and slower
than any polynomial (at this point, however, the entire bound becomes almost vacuous).
To prove Theorem 2, we consider two different regimes: the first is where 𝑇 ≫ 𝑛, when the first term
in the right-hand side of the bound is dominant; and the 𝑇 ≪ 𝑛 regime where the second term is
dominant. We begin by focusing on the first regime, and prove the following.
Lemma 3. There exists a constant 𝐶1 such that the following holds. For any tail function 𝜙, sample
size 𝑛 ≥ 35 and any 𝛾 and 𝑇 , there exist a distribution D with margin 𝛾, a loss function ℓ ∈ C𝜙,𝛽

such that for GD over a sample 𝑆 = {𝑧𝑖}𝑛𝑖=1 sampled i.i.d. from D, initialized at 𝑤1 = 0 with stepsize
𝜂 ≤ 1/2𝛽, it holds that

𝔼[𝐿 (𝑤𝑇 )] ≥ 𝐶1
𝛽𝜙−1 (128𝜀)2

𝛾2𝑛
,

for any 𝜀 < 1
256 such that 𝜂𝛾2𝑇 ≥ (𝜙−1 (𝜀))2/𝜀.

To prove the lemma, we construct a learning problem for which the risk of GD can be lower bounded.
We design a loss function ℓ which exhibits a decay to zero at a rate similar to that of the function 𝜙 for
𝑥 > 0, and behaves as a quadratic function for 𝑥 ≤ 0. The distribution D is constructed such that
there are two fixed examples in its support, denoted 𝑧1 and 𝑧2, that are both sampled with constant
probability and are almost opposite in direction to each other: 𝑧2 is aligned with −𝑧1 except for a
small component, denoted 𝑣, which is orthogonal to 𝑧1. Crucially, since 𝑧1 and 𝑧2 point in nearly
opposite directions, minimizing optimization error requires the GD iterate to have a substantial
component aligned with the vector 𝑣 (otherwise, the loss for 𝑧2 will be large). Finally, we define
another example, denoted as 𝑧3, that has a significant component in the opposite direction −𝑣. We
arrange the distribution D so that 𝑧3 is sampled with with probability roughly 1/𝑛. The lower bound
now follows by observing that, if 𝑧3 is sampled at test time, but did not appear in the training set
(this happens with probability ≈ 1/𝑛), the test error is quadratically large in the magnitude of the GD
iterate along −𝑣.
We now turn to formally proving Lemma 3.
Proof. Given 𝛾 ≤ 1

8 , let us define the following distribution D:

D =


𝑧1 := (1, 0, 0) with prob. 59

64 (1 − 1
𝑛
);

𝑧2 := (− 1
2 , 3𝛾, 0) with prob. 5

64 (1 − 1
𝑛
);

𝑧3 := (0,− 1
8 , 4𝛾 +

1
4 ) with prob. 1

𝑛
,

and loss function:

ℓ(𝑥) =
{
𝜙(𝑥) 𝑥 ≥ 0;
𝜙(0) + 𝜙′ (0)𝑥 + 𝛽

2 𝑥
2 𝑥 < 0.

First, note that the distribution is separable: for 𝑤∗ = (𝛾, 1
2 ,

1
4 ) it holds that 𝑤∗𝑧𝑖 = 𝛾 for every 𝑖 ∈

{1, 2, 3}. Moreover, Lemma 11 in Appendix D ensures that indeed ℓ ∈ C𝜙,𝛽 .
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Next, let 𝑆 be a sample of 𝑛 i.i.d. examples from D and let 𝑧′ ∼ D be a validation example independent
from 𝑆. Denote by 𝛿2 ∈ [0, 1] the fraction of appearances of 𝑧2 in the sample 𝑆, and by 𝐴1, 𝐴2 the
following events;

𝐴1 = {𝑧′ = 𝑧3 ∧ 𝑧3 ∉ 𝑆}, 𝐴2 =
{
𝛿2 ∈

[ 1
32 ,

1
8
]}
.

In Lemma 12 (found in Appendix D), we show that

Pr(𝐴1 ∩ 𝐴2) ≥
1

120𝑒𝑛
. (5)

Furthermore, as in the proof of Theorem 1, there exists a vector 𝑤∗
𝜀 which holds ∥𝑤∗

𝜀 ∥ ≤ 𝜙−1 (𝜀)
/
𝛾.

Then by Lemma 2 and the choice of 𝜀,

�̂� (𝑤𝑇 ) ≤ 2𝜀 + 2𝜙−1 (𝜀)2

𝛾2 ≤ 4𝜀. (6)

For the remainder of the proof, we condition on the event 𝐴1 ∩ 𝐴2. First, we show that 𝑤𝑡 · 𝑧2 ≥ 0.
Indeed, if it were not the case, then ℓ(𝑤𝑇 · 𝑧2) > 𝜙(0); together with Eq. (6) we obtain

1
64

> 4𝜀 ≥ �̂� (𝑤𝑇 ) ≥ 𝛿2ℓ(𝑤𝑇 · 𝑧2) ≥
1

32
𝜙(0).

which is a contradiction to 𝜙(0) ≥ 1
2 . Moreover, 𝑤𝑇 (1) ≥ 0. Again, we show this by contradiction.

Conditioned on 𝐴2, we have 𝛿1 >
7
8 . Then, if 𝑤𝑇 (1) < 0, ℓ(𝑤𝑇 · 𝑧1) > 𝜙(0), and

1
64

> 4𝜀 ≥ �̂� (𝑤𝑇 ) ≥ 𝛿1ℓ(𝑤𝑇 · 𝑧1) >
7
8
𝜙(0) ≥ 7

16
.

which is a contradiction. In addition, we notice that 𝑧3 is the only possible example whose third entry
is non zero. Given the event 𝐴1, we know that 𝑧3 is not in 𝑆. Equivalently, for every 𝑧 ∈ 𝑆, 𝑧(3) = 0.
As a result,

𝑤𝑡 (3) = −𝜂
𝑡−1∑︁
𝑠=1

∇�̂� (𝑤𝑡 ) = −𝜂
𝑡−1∑︁
𝑠=1

1
𝑛

∑︁
𝑧∈𝑆

𝑧(3)ℓ′ (𝑤𝑠𝑧) = 0.

Then, we get that,
𝑤𝑇 · 𝑧3 = −1

8
𝑤𝑡 (2). (7)

Then, using the fact that 𝑤𝑇 · 𝑧2 ≥ 0, ℓ(𝑤𝑇 · 𝑧2) = 𝜙(𝑤𝑇 · 𝑧2), and conditioned on 𝐴2, we have

ℓ(𝑤𝑇 · 𝑧2) = 𝜙(𝑤𝑇 · 𝑧2) ≤ 32�̂� (𝑤𝑇 )),
which implies

𝑤𝑇 · 𝑧2 ≥ 𝜙−1 (32�̂� (𝑤𝑇 )). (8)
Therefore, by combining Eq. (8) with the fact that 𝑤𝑡 (1) ≥ 0,

3𝛾𝑤𝑇 (2) ≥ −𝑤𝑇 (1)
2

+ 3𝛾𝑤𝑇 (2) = 𝑤𝑇 · 𝑧2 ≥ 𝜙−1 (32�̂� (𝑤𝑇 )).

which implies, 𝑤𝑇 (2) ≥ 1
3𝛾 𝜙

−1 (32�̂� (𝑤𝑇 )). By Eq. (7),

𝑤𝑇 · 𝑧3 = −1
8
𝑤𝑇 (2) ≤ − 1

24𝛾
𝜙−1 (32�̂� (𝑤𝑇 )).

We therefore see that for every 𝜀 such that 𝜀 ≥ (𝜙−1 (𝜀))2/𝛾2𝑇𝜂,

ℓ(𝑤𝑇 · 𝑧3) ≥
𝛽

2
(𝑤𝑇 · 𝑧3)2 ≥ 𝛽

2

(
1

24𝛾
𝜙−1 (32�̂� (𝑤𝑇 ))

)2
≥ 𝛽

1152𝛾2
(
𝜙−1 (128𝜀)

)2
,

where in the final inequality we again used Eq. (6). We conclude the proof using Eq. (5) and the law
of total expectation,

𝔼[𝐿 (𝑤𝑇 )] = 𝔼[ℓ(𝑤𝑇 · 𝑧′)] ≥ 𝔼[ℓ(𝑤𝑇 · 𝑧′) | 𝐴1 ∩ 𝐴2] Pr(𝐴1 ∩ 𝐴2).
(Expectations here are taken with respect to both the sample 𝑆 and the validation example 𝑧′.) □
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Second, we focus the second expression in the lower bound of Theorem 2, which is dominant in the
early stages of optimization.
Lemma 4. There exists a constant 𝐶2 such that the following holds. For any tail function 𝜙, and for
any 𝑛, 𝑇 and 𝛾, there exist a distribution D with margin 𝛾, a loss function ℓ ∈ C𝜙,𝛽 such that for GD
initialized at 𝑤1 = 0 with stepsize 𝜂 ≤ 1/2𝛽 over an i.i.d. sample 𝑆 = {𝑧𝑖}𝑛𝑖=1 from D and 𝑤1 = 0
holds

𝔼[𝐿 (𝑤𝑇 )] ≥ 𝐶2
(𝜙−1 (8𝜀))2

𝛾2𝑇𝜂
,

for any 𝜀 ≤ 1
16 such that 𝜂𝛾2𝑇 ≥ 𝜙−1 (𝜀)2/𝜀.

The argument for proving Lemma 4 is similar to that of Lemma 3. Here we define a 1-Lipschitz loss
function ℓ that decays to zero at the same rate as 𝜙, and a distribution such that there is a possible
example 𝑧1 which is sampled with high probability and an almost “opposite” example 𝑧2, that with
constant probability, appears rarely in the training set 𝑆. The lower bound follows from the fact
that although 𝑧2 appears in the dataset, the gradients of the loss function are bounded and thus not
large enough so as to make the trained predictor classify 𝑧2 correctly. The full proof can be found in
Appendix D.2.
Finally, we derive Theorem 2 directly from Lemmas 3 and 4:
Proof of Theorem 2. Let 𝐶 = 1

2 min{𝐶1, 𝐶2}, where 𝐶1 and 𝐶2 are the constants from Lemmas 3
and 4, respectively. If (𝜙−1 (8𝜀))2/𝛾2𝑇𝜂 ≥ 𝛽(𝜙−1 (128𝜀))2/𝛾2𝑛, the theorem follows from Lemma 4;
otherwise, it follows from Lemma 3. □
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A Derivation of Risk Bounds in Table 2

In this section, we explain how to apply our risk bounds for GD with several popular choices of
𝜙-tailed classes.

A.1 Exponentially-tailed functions

We begin with functions that decay exponentially to zero. For any 𝛼 > 0 we define following the tail
function, 𝜙𝛼 (𝑦) = 𝑒−𝑦

𝛼

. There are a lot of popular loss functions loss function ℓ ∈ 𝐶𝜙𝛼 ,𝛽 , e.g., the
logistic loss ℓ(𝑦) = log(1 + 𝑒−𝑦). holds ℓ ∈ 𝐶𝜙1 ,1. For this class of functions function, we get the
following risk bound:
Corollary 1. If ℓ ∈ 𝐶𝜙𝛼 ,𝛽 , the output of gradient descent on 𝐹 with step size 𝜂 = 1

2𝛽 and 𝑤1 = 0
holds, with probability of 1 − 𝛿, for a suitable choice of 𝜀,

𝐿 (𝑤𝑇 ) = �̃�
(

log
2
𝛼 𝑇

𝛾2𝑇
+ log

2
𝛼 𝑇

𝛾2𝑛

)
.

Moreover, if 𝛾2𝑇 ≥ 2564 and 𝛼
4 ≥ log log(𝜂𝛾2𝑇 )

log(𝜂𝛾2𝑇 ) , there exists a function ℓ̄ ∈ 𝐶𝜙𝛼 ,𝛽 and a distribution
D such that

𝔼[�̄� (𝑤𝑇 )] = Ω̃

(
log

2
𝛼 𝑇

𝛾2𝑇
+ log

2
𝛼 𝑇

𝛾2𝑛

)
.

Proof. First, 𝜙−1 (𝑥) = log
1
𝛼 ( 1

𝑥
). For the upper bound we choose 𝜀 = 1/𝜂𝛾2𝑇 , which holds

𝜂𝛾2𝑇 ≤ (𝜙−1 (𝜀))2/𝜀. Then,

𝜙−1 (𝜀) = log
1
𝛼 (𝛾2𝜂𝑇)

Then, by Theorem 1, with probability 1 − 𝛿,

�̄� (𝑤𝑇 ) ≤
4𝐾 (𝜙−1 (𝜀))2

𝛾2𝜂𝑇
+

32𝐾𝛽(𝜙−1 (𝜀))2 (log3 𝑛 + 4 log 1
𝛿

)
𝛾2𝑛

+
4𝐾 (𝜙−1 (𝜀))2 log 1

𝛿

𝛾2𝜂𝑇𝑛

= 𝑂

(
(log 𝛾2𝑇) 2

𝛼

𝛾2𝑇
+
(log 𝛾2𝑇) 2

𝛼

(
log3 𝑛 + 4 log 1

𝛿

)
𝛾2𝑛

)
For the lower bound we choose, 𝜀 = (𝛾2𝜂𝑇)− 1

2 , which holds

(𝜂𝛾2𝑇𝜀) 𝛼
2 = (𝜂𝛾2𝑇) 𝛼

2 𝜀
𝛼
2 = (𝜂𝛾2𝑇) 𝛼

2 · (𝜂𝛾2𝑇) −𝛼
4 = (𝜂𝛾2𝑇) 𝛼

4 ≥ (𝜂𝛾2𝑇)
log log(𝜂𝛾2𝑇 )

log(𝜂𝛾2𝑇 ) = log(𝜂𝛾2𝑇)

𝜂𝛾2𝑇𝜀 ≥ log(𝜂𝛾2𝑇) 2
𝛼 = log

2
𝛼

1
𝜀2 = 2

2
𝛼 log

2
𝛼 ( 1
𝜀
) ≥ log

2
𝛼 ( 1
𝜀
)

Then,

𝜙−1 (8𝜀) = log
1
𝛼 ( 1

8
𝛾
√︁
𝜂𝑇) = ( 1

2
) 1
𝛼 log

1
𝛼 ( 1

64
𝛾2𝜂𝑇) ≥ ( 1

2
) 1
𝛼 log

1
𝛼 (4𝛾

√︁
𝜂𝑇) ≥ ( 1

2
) 2
𝛼 log

1
𝛼 (𝛾2𝜂𝑇)

𝜙−1 (128𝜀) = log
1
𝛼 ( 1

128
𝛾
√︁
𝜂𝑇) = ( 1

2
) 1
𝛼 log

1
𝛼 ( 1

1282 𝛾
2𝜂𝑇) ≥ ( 1

2
) 1
𝛼 log

1
𝛼 (4𝛾

√︁
𝜂𝑇) ≥ ( 1

2
) 2
𝛼 log

1
𝛼 (𝛾2𝜂𝑇)

As a result, by Theorem 2, there exists a function ℓ̄ ∈ 𝐶𝜙𝛼 ,𝛽 and a distribution

𝔼[�̄� (𝑤𝑇 )] ≥ 𝐶
𝛽(𝜙−1 (128𝜀))2

𝛾2𝑛
+ 𝐶 (𝜙−1 (8𝜀))2

𝛾2𝜂𝑇

= Ω

(
log

2
𝛼 (𝛾2𝑇)
𝛾2𝑛

+ log
2
𝛼 (𝛾2𝑇)
𝛾2𝑇

)
.

□

12



A.2 Polynomially-tailed losses

Now we turn to discuss loss functions with polynomially-decaying tails. For any 𝛼 > 0 we define
following the tail function, 𝜙𝛼 (𝑦) = 𝑦−𝛼 . Again, we get risk bounds for every loss function ℓ ∈ 𝐶𝜙𝛼 ,𝛽 .

Corollary 2. If ℓ ∈ 𝐶𝜙𝛼 ,𝛽 , the output of gradient descent on 𝐹 with step size 𝜂 = 1
2𝛽 and 𝑤1 = 0

holds, with probability of 1 − 𝛿, for a suitable choice of 𝜀,

𝐿 (𝑤𝑇 ) = �̃�
((

1
𝛾

) 2𝛼
2+𝛼

(
1

𝑇
𝛼

2+𝛼
+ 𝑇

2
𝛼+2

𝑛

))
.

Moreover, if 𝛾2𝑇 ≥ there exists a function ℓ̄ ∈ 𝐶𝜙𝛼 ,𝛽 and a distribution D such that

𝔼[�̄� (𝑤𝑇 )] = Ω

((
1
𝛾

) 2𝛼
2+𝛼

(
1

𝑇
𝛼

2+𝛼
+ 𝑇

2
𝛼+2

𝑛

))
.

Proof. First, we note that 𝜙−1 (𝑥) = 𝑥−
1
𝛼 . Then, for both upper and lower bound, we choose

𝜀 =

(
1

𝜂𝛾2𝑇

) 𝛼
2+𝛼 which holds (𝜙−1 (𝜀))2/𝜀 = 𝜂𝛾2𝑇 . Now,

𝜙−1 (𝜀) = (𝜂𝛾2𝑇) 1
𝛼+2

Then, by Theorem 1, with probability 1 − 𝛿,

�̄� (𝑤𝑇 ) ≤
4𝐾 (𝜙−1 (𝜀))2

𝛾2𝜂𝑇
+

32𝐾𝛽(𝜙−1 (𝜀))2 (log3 𝑛 + 4 log 1
𝛿

)
𝛾2𝑛

+
4𝐾 (𝜙−1 (𝜀))2 log 1

𝛿

𝛾2𝜂𝑇𝑛

= 𝑂

(
(𝛾2𝑇) 2

𝛼+2

𝛾2𝑇
+
((𝛾2𝑇) 2

𝛼+2
(
log3 𝑛 + 4 log 1

𝛿

)
𝛾2𝑛

)
= 𝑂

(
1

(𝛾2𝑇) 𝛼
𝛼+2

+
𝑇

2
𝛼+2

(
log3 𝑛 + 4 log 1

𝛿

)
𝛾

𝛼
𝛼+2 𝑛

)
Moreover,

𝜙−1 (8𝜀) = 8
−1
𝛼 (𝜂𝛾2𝑇) 1

𝛼+2

𝜙−1 (128𝜀) = 128
−1
𝛼 (𝜂𝛾2𝑇) 1

𝛼+2

As a result, by Theorem 2, there exists a function ℓ̄ ∈ 𝐶𝜙𝛼 ,𝛽 and a distribution

𝔼[�̄� (𝑤𝑇 )] ≥ 𝐶
𝛽(𝜙−1 (128𝜀))2

𝛾2𝑛
+ 𝐶 (𝜙−1 (8𝜀))2

𝛾2𝜂𝑇

= Ω

(
(𝛾2𝑇) 2

𝛼+2

𝛾2𝑛
+ (𝛾2𝑇) 2

𝛼+2

𝛾2𝑇

)
.

= Ω

(
1

(𝛾2𝑇) 𝛼
𝛼+2

+ 𝑇
2

𝛼+2

𝛾
𝛼

𝛼+2 𝑛

)
□

B Upper bound for Stochastic Gradient Descent With Replacement

We also show generalization bound for Stochastic Gradient Descent (SGD) which is a randomized
algorithm which achieves low optimization error in high probability.
Given a dataset 𝑆 = {𝑧1, ...𝑧𝑛}, we define ℓ𝑖 (𝑤) = ℓ(𝑤 · 𝑧𝑖). Then, SGD with replacement is initialized
at a point 𝑤1 = 0 and at each step 𝑡 = 1, . . . , 𝑇 , samples randomly an index 𝑖𝑡 ∈ [𝑛] and performs an
update

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇ℓ𝑖𝑡 (𝑤𝑡 ), (9)
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where 𝜂 > 0 is the step size of the algorithm. We consider a standard variant of SGD that returns the
average iterate, namely 𝑤𝑇 = 1

𝑇

∑𝑇
𝑡=1 𝑤𝑡 . We start with showing a deterministic bound on the norm

of the iterate of the algorithm. Then, we show high probability bound for the empirical risk �̂�. Then,
the proof of the risk bound is identical to the proof of the risk bound for GD (see Theorem 1). As
a result, we will not show the full proof, but only the bounds on the norm (see Lemma 5) and the
empirical risk (see Lemma 8).
Lemma 5. Let 𝑇 . Let 𝜙 be a tail function and let ℓ ∈ C𝜙,𝛽 . Assume that for every 𝜀 > 0 there exists a
point 𝑤∗

𝜀 such that for every 𝑖, ℓ𝑖 (𝑤∗
𝜀) ≤ 𝜀. Then, the output of SGD with replacement, applied on �̂�

with step size 𝜂 ≤ 1
𝛽

initialized at 𝑤1 = 0 has,

∥�̄�𝑇 ∥ ≤ 2∥𝑤∗
𝜀 ∥ + 2

√︁
𝜂𝜀𝑇.

Proof. By Lemma 9 (see Appendix C), we know that for every 𝑤, ∥∇ℓ𝑖𝑡 (𝑤)∥2 ≤ 2𝛽ℓ𝑖𝑡 (𝑤). Therefore,
by using 𝜂 ≤ 1

𝛽
, for every 𝜀,

∥𝑤𝑡+1 − 𝑤∗
𝜀 ∥2 = ∥𝑤𝑡 − 𝜂∇ℓ𝑖𝑡 (𝑤𝑡 ) − 𝑤∗

𝜀 ∥2

= ∥𝑤𝑡 − 𝑤∗
𝜀 ∥2 − 2𝜂⟨𝑤𝑡 − 𝑤∗

𝜀 ,∇ℓ𝑖𝑡 ⟩ + 𝜂2∥∇ℓ𝑖𝑡 (𝑤𝑡 )∥2

≤ ∥𝑤𝑡 − 𝑤∗
𝜀 ∥2 + 2𝜂ℓ𝑖𝑡 (𝑤∗

𝜀) − 2𝜂ℓ𝑖𝑡 (𝑤∗
𝜀) + 2𝛽𝜂2ℓ𝑖𝑡 (𝑤𝑡 )

≤ ∥𝑤𝑡 − 𝑤∗
𝜀 ∥2 + 2𝜂ℓ𝑖𝑡 (𝑤∗

𝜀)
≤ ∥𝑤𝑡 − 𝑤∗

𝜀 ∥2 + 2𝜂𝜀.
By summing until time 𝑇 ,

∥𝑤𝑇 − 𝑤∗
𝜀 ∥2 ≤ ∥𝑤1 − 𝑤∗

𝜀 ∥2 + 2𝑇𝜂𝜀
= ∥𝑤∗

𝜀 ∥2 + 2𝜂𝜀𝑇.
By taking a square root, using the fact that ∀𝑥, 𝑦 ≥ 0 √

𝑥 + 𝑦 ≤
√
𝑥 + √

𝑦,

∥𝑤𝑇 − 𝑤∗
𝜀 ∥ ≤ ∥𝑤∗

𝜀 ∥ + 2
√︁
𝜂𝜀𝑇. (10)

and by using triangle inequality,

∥𝑤𝑇 ∥ ≤ ∥𝑤𝑇 − 𝑤∗
𝜀 ∥ + ∥𝑤∗

𝜀 ∥ ≤ 2∥𝑤∗
𝜀 ∥ + 2

√︁
𝜂𝜀𝑇.

and finally by another use of traingle inequality,

∥�̄�𝑇 ∥ ≤ 1
𝑇

𝑇∑︁
𝑡=1

∥𝑤𝑇 ∥ ≤ 2∥𝑤∗
𝜀 ∥ + 2

√︁
𝜂𝜀𝑇.

□

Now, we prove the next lemma and bound the regret of 𝑆𝐺𝐷 with replacement.
Lemma 6. Let 𝑇 . Let 𝜙 be a tail function and let ℓ ∈ C𝜙,𝛽 . Then, the iterate of SGD with replacement,
applied on �̂� with step size 𝜂 ≤ 1

2𝛽 initialized at 𝑤1 = 0 has, for every 𝑤 ∈ 𝑅𝑑 ,

1
𝑇

𝑇∑︁
𝑡=1

ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) −
2
𝑇

𝑇∑︁
𝑡=1

ℓ(𝑤 · 𝑧𝑖𝑡 ) ≤
∥𝑤∥2

2𝜂𝑇
.

Proof. The proof is almost the same as of [12]. For every 𝑤, iteration 𝑗 and possible 𝑖 𝑗 , by Lemma 9
and convexity,

∥𝑤 𝑗+1 − 𝑤∥2 ≤ ∥𝑤 𝑗 − 𝑤∥2 − 2𝜂⟨∇ℓ𝑖 𝑗 (𝑤 𝑗 ) (𝑤 𝑗 − 𝑤)⟩ + 𝜂2∥∇ℓ𝑖 𝑗 (𝑤 𝑗 )∥2

≤ ∥𝑤 𝑗 − 𝑤∥2 + 2𝜂ℓ(𝑤 · 𝑧𝑖 𝑗 ) − 2𝜂ℓ(𝑤 𝑗 · 𝑧𝑖 𝑗 ) + 2𝜂2𝐿ℓ(𝑤 𝑗 · 𝑧𝑖 𝑗 )
≤ ∥𝑤 𝑗 − 𝑤∥2 + 2𝜂ℓ(𝑤 · 𝑧𝑖 𝑗 ) − 𝜂ℓ(𝑤 𝑗 · 𝑧𝑖 𝑗 ).

Taking average on 𝑗 = 1...𝑇 , we get

1
𝑇

𝑇∑︁
𝑡=1

ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) −
2
𝑇

𝑇∑︁
𝑡=1

ℓ(𝑤 · 𝑧𝑖𝑡 ) ≤
∥𝑤∥2

2𝜂𝑇
.

□

14



We use the following concentration bound, taken from [1], Lemma 9.
Lemma 7. Suppose 𝑍1, ...𝑍𝑇 is a sequence such that for every 𝑡 ≤ 𝑇 , 𝔼 (𝑍𝑡 |𝑍1...𝑍𝑡−1) = 0. and let
𝑍 =

∑𝑇
𝑡=1 𝑍𝑡 . Assume that |𝑍𝑡 | ≤ 𝑏 for all 𝑡, and define 𝑉 =

∑𝑇
𝑡=1 𝔼

[
𝑍2
𝑡 | F𝑡−1

]
. Then, for any 𝛿 > 0

and 𝜆 ∈ [0, 1/𝑏] , with probability of 1 − 𝛿,

𝑍 ≤ 𝜆𝑉 + 1
𝜆

log
1
𝛿
.

Then, we can get high probability guarantee for SGD with replacement.
Lemma 8. Let 𝑇 and 𝛿 > 0. Let 𝜙 be a tail function and let ℓ ∈ C𝜙,𝛽 . Assume that for every
𝜀 > 0 there exists a point 𝑤∗

𝜀 such such that for every 𝑖, ℓ𝑖 (𝑤∗
𝜀) ≤ 𝜀. Then, the output of SGD with

replacement, applied on �̂� with step size 𝜂 ≤ 1
𝛽

initialized at 𝑤1 = 0 has, with probability of 1 − 𝛿,

�̂� (�̄�𝑇 ) ≤
∥𝑤∗

𝜀 ∥2

𝜂𝑇
+ 5𝜀 +

8
(
3𝜀 + 16𝛽∥𝑤∗

𝜀 ∥2 + 16𝜂𝜀𝑇
)

𝑇
log

(
1
𝛿

)
.

Proof. Let 𝑤. We define
𝑍𝑡 = ℓ(𝑤∗

𝜀 · 𝑧𝑖𝑡 ) − �̂� (𝑤∗
𝜀) − ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) + �̂� (𝑤𝑡 ).

By the fact that 𝑤𝑡 , 𝑖𝑡 is independent, 𝔼 (𝑍𝑡 |𝑍1...𝑍𝑡−1) = 0. First,
𝑏 = max

𝑡
|𝑍𝑡 |

≤ 𝜀 + max
𝑡 ,𝑖

ℓ(𝑤𝑡 · 𝑧𝑖) (ℓ(𝑤∗
𝜀 · 𝑧𝑖𝑡 ) ≤ 𝜀, definition of �̂�, nonnegativity)

≤ 𝜀 + max
𝑖, ∥𝑤 ∥≤2∥𝑤∗

𝜀 ∥+2
√
𝜂𝜀𝑇

ℓ(𝑤 · 𝑧𝑖) (Lemma 5)

≤ 𝜀 + 2 max
𝑖
ℓ(𝑤∗

𝜀 · 𝑧𝑖) + 16𝛽∥𝑤∗
𝜀 ∥2 + 16𝜂𝜀𝑇 (Lemma 10)

≤ 3𝜀 + 16𝛽∥𝑤∗
𝜀 ∥2 + 16𝜂𝜀𝑇.

We denote 𝑏 = 3𝜀 + 16𝛽∥𝑤∗
𝜀 ∥2 + 16𝜂𝜀𝑇 . Then,
max
𝑡

|𝑍𝑡 | ≤ 3𝜀 + 16𝛽∥𝑤∗
𝜀 ∥2 + 16𝜂𝜀𝑇 = 𝑏.

Moreover, we denote 𝔼𝑡 [·] the expectation conditioned on the randomness of the algorithm before
step 𝑡. Then,

𝑉 =

𝑇∑︁
𝑡=1

𝔼𝑡

[(
ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) − �̂� (𝑤𝑡 ) − ℓ(𝑤 · 𝑧𝑖𝑡 ) + �̂� (𝑤)

)2
]

≤ 𝑏

𝑇∑︁
𝑖=1

𝔼𝑡

[
|ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) − �̂� (𝑤𝑡 ) − ℓ(𝑤 · 𝑧𝑖𝑡 ) + �̂� (𝑤) |

]
≤ 𝑏

𝑇∑︁
𝑖=1

𝔼𝑡

[
ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) |

]
+ 𝑏

𝑇∑︁
𝑖=1

𝔼𝑡

[
ℓ(𝑤 · 𝑧𝑖𝑡 ) |

]
+ 𝑏

𝑇∑︁
𝑖=1

𝔼𝑡

[
�̂� (𝑤𝑡 ) |

]
+ 𝑏

𝑇∑︁
𝑖=1

𝔼𝑡

[
�̂� (𝑤) |

]
≤ 2𝑏

𝑇∑︁
𝑖=1

�̂� (𝑤𝑡 ) + 2𝑏𝑇
𝑇∑︁
𝑖=1

�̂� (𝑤)

By Lemma 7, with probability 1 − 𝛿 by choosing 𝜆 = 1
4𝑏 ,

𝑇∑︁
𝑡=1

𝑍𝑡 ≤
1
2

𝑇∑︁
𝑖=1

�̂� (𝑤𝑡 ) +
1
2
𝑇 �̂� (𝑤) + 4𝑏

𝑇
log

(
1
𝛿

)
.

Then, with probability 1 − 𝛿,

1
𝑇

𝑇∑︁
𝑖=1

�̂� (𝑤𝑡 ) − �̂� (𝑤) =
1
𝑇

𝑇∑︁
𝑡=1

ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) − ℓ(𝑤 · 𝑧𝑖𝑡 ) +
1
𝑇

𝑇∑︁
𝑡=1

𝑍𝑡

≤ 1
𝑇

𝑇∑︁
𝑖=1

ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) −
1
𝑇

𝑇∑︁
𝑖=1

ℓ(𝑤 · 𝑧𝑖𝑡 ) +
1

2𝑇

𝑇∑︁
𝑡=1

�̂� (𝑤𝑡 ) +
1
2
�̂� (𝑤) + 4𝑏 log

(
1
𝛿

)
.
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By organizing,

1
2𝑇

𝑇∑︁
𝑖=1

�̂� (𝑤𝑡 ) ≤
1
𝑇

𝑇∑︁
𝑖=1

ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) −
1
𝑇

𝑇∑︁
𝑖=1

ℓ(𝑤 · 𝑧𝑖𝑡 ) +
3
2
�̂� (𝑤) + 4𝑏

𝑇
log

(
1
𝛿

)
.

Moreover, with probability 1 − 𝛿, by Lemma 6 and Jensen inequality

�̂�

(
1
𝑇

𝑇∑︁
𝑖=1

𝑤𝑡

)
≤ 1
𝑇

𝑇∑︁
𝑖=1

�̂� (𝑤𝑡 ) ≤
2
𝑇

𝑇∑︁
𝑖=1

ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) −
2
𝑇

𝑇∑︁
𝑖=1

ℓ(𝑤 · 𝑧𝑖𝑡 ) + 3�̂� (𝑤) + 8𝑏
𝑇

log
(

1
𝛿

)
= 2

(
1
𝑇

𝑇∑︁
𝑖=1

ℓ(𝑤𝑡 · 𝑧𝑖𝑡 ) −
2
𝑇

𝑇∑︁
𝑖=1

ℓ(𝑤 · 𝑧𝑖𝑡 )
)
+ 2�̂� (𝑤) + 3�̂� (𝑤) + 8𝑏

𝑇
log

(
1
𝛿

)
≤ ∥𝑤∥2

𝜂𝑇
+ 5�̂� (𝑤) + 8𝑏

𝑇
log

(
1
𝛿

)
.

Finally, for 𝑤 = 𝑤∗
𝜀 ,

�̂� (�̄�𝑇 ) ≤
∥𝑤∗

𝜀 ∥2

𝜂𝑇
+ 5𝜀 +

8
(
3𝜀 + 16𝛽∥𝑤∗

𝜀 ∥2 + 16𝜂𝜀𝑇
)

𝑇
log

(
1
𝛿

)
.

□

C Proofs of Section 3

Proof of Lemma 1. From 𝛽-smoothness, we know that ∥∇�̂� (𝑤)∥2 ≤ 2𝛽�̂� (𝑤) for any 𝑤 (see Lemma 9
in Appendix C). Therefore, by using 𝜂 ≤ 1/𝛽, for every 𝜀,

∥𝑤𝑡+1 − 𝑤∗
𝜀 ∥2 = ∥𝑤𝑡 − 𝜂∇�̂� (𝑤𝑡 ) − 𝑤∗

𝜀 ∥2

= ∥𝑤𝑡 − 𝑤∗
𝜀 ∥2 − 2𝜂⟨𝑤𝑡 − 𝑤∗

𝜀 ,∇�̂� (𝑤𝑡 )⟩ + 𝜂2∥∇�̂� (𝑤𝑡 )∥2

≤ ∥𝑤𝑡 − 𝑤∗
𝜀 ∥2 + 2𝜂�̂� (𝑤∗

𝜀) − 2𝜂�̂� (𝑤𝑡 ) + 2𝛽𝜂2 �̂� (𝑤𝑡 )
≤ ∥𝑤𝑡 − 𝑤∗

𝜀 ∥2 + 2𝜂�̂� (𝑤∗
𝜀)

≤ ∥𝑤𝑡 − 𝑤∗
𝜀 ∥2 + 2𝜂𝜀.

By summing until time 𝑇 ,

∥𝑤𝑇 − 𝑤∗
𝜀 ∥2 ≤ ∥𝑤1 − 𝑤∗

𝜀 ∥2 + 2𝑇𝜂𝜀 = ∥𝑤∗
𝜀 ∥2 + 2𝜂𝜀𝑇.

By taking a square root, using the fact that ∀𝑥, 𝑦 ≥ 0 √
𝑥 + 𝑦 ≤

√
𝑥 + √

𝑦 and using triangle inequality,

∥𝑤𝑇 ∥ ≤ ∥𝑤𝑇 − 𝑤∗
𝜀 ∥ + ∥𝑤∗

𝜀 ∥ ≤ 2∥𝑤∗
𝜀 ∥ + 2

√︁
𝜂𝜀𝑇.

□

We rely on the following standard lemma about smooth functions (proof can be found in, e.g., 11, or
in 15).
Lemma 9. For a non-negative and 𝛽-smooth 𝑓 : ℝ𝑑 → ℝ, it holds that ∥∇ 𝑓 (𝑤)∥2 ≤ 2𝛽 𝑓 (𝑤) for all
𝑤 ∈ ℝ𝑑 .
Proof of Lemma 2. The proof follows the argument of [12]. First, by 𝛽-smoothness, for every 𝑡 and
𝜂 ≤ 1/𝛽,

�̂� (𝑤𝑡+1) ≤ �̂� (𝑤𝑡 ) + ∇�̂� (𝑤𝑡 ) · (𝑤𝑡+1 − 𝑤𝑡 ) +
𝛽

2
∥𝑤𝑡+1 − 𝑤𝑡 ∥2

= �̂� (𝑤𝑡 ) − 𝜂∥∇�̂� (𝑤𝑡 )∥2 + 𝜂
2𝛽

2
∥∇�̂� (𝑤𝑡 )∥2

≤ �̂� (𝑤𝑡 ) −
𝜂

2
∥∇�̂� (𝑤𝑡 )∥2

≤ �̂� (𝑤𝑡 ).
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Hence,

�̂� (𝑤𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

�̂� (𝑤𝑡 ). (11)

Moreover, from standard regret bounds for gradient updates, for any 𝑤 ∈ ℝ𝑑 ,

1
𝑇

𝑇∑︁
𝑡=1

( �̂� (𝑤𝑡 ) − �̂� (𝑤)) ≤
∥𝑤1 − 𝑤∥2

2𝜂𝑇
+ 𝜂

2𝑇

𝑇∑︁
𝑡=1

∥∇�̂� (𝑤𝑡 )∥2.

By Lemma 9,

1
𝑇

𝑇∑︁
𝑡=1

( �̂� (𝑤𝑡 ) − �̂� (𝑤)) ≤
∥𝑤∥2

2𝜂𝑇
+ 𝜂𝛽
𝑇

𝑇∑︁
𝑡=1

�̂� (𝑤𝑡 ).

Using 𝜂 ≤ 1/2𝛽 gives

1
𝑇

𝑇∑︁
𝑡=1

�̂� (𝑤𝑡 ) ≤
∥𝑤∥2

𝜂𝑇
+ 2�̂� (𝑤).

For 𝑤 = 𝑤∗
𝜀 we get by Eq. (11),

�̂� (𝑤𝑇 ) ≤
1
𝑇

𝑇∑︁
𝑡=1

�̂� (𝑤𝑡 ) ≤
∥𝑤∗

𝜀 ∥2

𝜂𝑇
+ 2�̂� (𝑤∗

𝜀) ≤
∥𝑤∗

𝜀 ∥2

𝜂𝑇
+ 2𝜀.

□

Lemma 10. Let 𝑓 : ℝ𝑑 → ℝ be a 𝛽-smooth and nonnegative function. Then 𝑓 (𝑥) ≤ 2 𝑓 (𝑦)+𝛽∥𝑥 − 𝑦∥2

for all 𝑥, 𝑦 ∈ ℝ𝑑 .
Proof. For any 𝑥, 𝑦 ∈ ℝ𝑑:

𝑓 (𝑥) ≤ 𝑓 (𝑦) + ∇ 𝑓 (𝑦) · (𝑥 − 𝑦) + 𝛽

2
∥𝑥 − 𝑦∥2 (𝛽-smoothness)

≤ 𝑓 (𝑦) + 1
2𝛽

∥∇ 𝑓 (𝑦)∥2 + 𝛽

2
∥𝑥 − 𝑦∥2 + 𝛽

2
∥𝑥 − 𝑦∥2 (∀𝑐 > 0 : 𝑥𝑦 ≤ 1

2𝑐 𝑥
2 + 𝑐

2 𝑦
2)

≤ 2 𝑓 (𝑦) + 𝛽∥𝑥 − 𝑦∥2. (Lemma 9)

□

D Proof of Section 4

D.1 Proof of Lemma 3

Lemma 11. Let 𝜙 be a tail function. Let ℓ(𝑥) be the following function,

ℓ(𝑥) =
{
𝜙(𝑥) if 𝑥 ≥ 0;
𝜙(0) + 𝑥𝜙′ (0) + 𝛽

2 𝑥
2 if 𝑥 < 0.

Then, ℓ ∈ C𝜙,𝛽 .
Proof. First, it is easy to verify that ℓ is continuously differentiable. Second, ℓ is non negative: for
𝑥 ≥ 0 by the non negativity of 𝜙 and for 𝑥 < 0 by the fact that 𝜙′ (0) ≤ 0. Moreover, ℓ is convex.
We need to prove that every 𝑥 < 𝑦, ℓ′ (𝑥) ≤ ℓ′ (𝑦) For 𝑥, 𝑦 < 0, we get it by the convexity of 𝜙. For
𝑥, 𝑦 > 0, we get it by the fact ℓ there is a sum of convex function and linear function. For 𝑥 < 0 < 𝑦,
by the convexity of 𝜙,

ℓ′ (𝑥) = 𝜙′ (0) + 𝛽𝑥 ≤ 𝜙′ (0) ≤ 𝜙′ (𝑦).
In addition, ℓ is 𝛽-smooth. We need to prove that every 𝑥 < 𝑦, ℓ′ (𝑦) − ℓ′ (𝑥) ≤ 𝛽(𝑦 − 𝑥) For 𝑥, 𝑦 ≥ 0,
we get it by the smoothness of 𝜙. For 𝑥, 𝑦 ≤ 0, we get it by the fact that ℓ is a sum of 𝛽-smooth
function and a linear function. For 𝑥 ≤ 0 ≤ 𝑦, by the smoothness of 𝜙,

ℓ′ (𝑦) − ℓ′ (𝑥) = 𝜙′ (𝑦) − 𝜙′ (0) − 𝛽𝑥 ≤ 𝛽(𝑦 − 𝑥).
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Finally, ℓ is strictly monotonically decreasing. We need to prove that every 𝑥 < 𝑦, ℓ(𝑦) > ℓ(𝑥). For
𝑥, 𝑦 > 0, we get it by the monotonicity of 𝜙. For 𝑥 < 𝑦 < 0,

ℓ(𝑦) = 𝜙(0) + 𝜙′ (0)𝑦 + 𝛽

2
𝑦2 ≤ 𝜙(0) + 𝜙′ (0)𝑥 + 𝛽

2
𝑥2 = ℓ(𝑥).

For 𝑥 < 0 < 𝑦,

ℓ(𝑦) = 𝜙(𝑦) ≤ 𝜙(0) ≤ 𝜙(0) + 𝜙′ (0)𝑥 + 𝛽

2
𝑥2 = ℓ(𝑥).

□

Lemma 12. Let 𝑆 ∼ D𝑛 be a sample of size 𝑛, and let 𝑧′ ∼ D be a validation example. Moreover,
Assume 𝑛 ≥ 35 and let 𝛿2 be the fraction of 𝑧2 in 𝑆. We define the following event,

𝐴 = {𝑧3 ∉ 𝑆} ∩ {𝑧′ = 𝑧3} ∩ {𝛿2 ∈ [ 1
32 ,

1
8 ]}.

Then,

Pr(𝐴) ≥ 1
120𝑒𝑛

Proof. The proof follows directly by Lemma 13 and Lemma 14. We define the following events,

𝐴1 = {𝑧3 ∉ 𝑆} ∩ {𝑧′ = 𝑧3}, 𝐴2 = {𝛿2 ∈ [ 1
32 ,

1
8 ]}.

By Lemma 13.

Pr(𝐴1) ≥
1

2𝑒𝑛
.

By 𝐿𝑒𝑚𝑚𝑎 14,

Pr(𝐴2 |𝐴1) ≥
1

60
.

Then, combining both results,

Pr(𝐴) ≥ Pr(𝐴1) Pr(𝐴2 | 𝐴1) ≥
1

120𝑒𝑛
.

□

Lemma 13. Let 𝑆 ∼ D𝑛 be a sample of size 𝑛, and let 𝑧′ ∼ D be a validation example. Then,

Pr(𝐴1) = Pr(𝑧3 ∉ 𝑆 ∧ 𝑧′ = 𝑧3) ≥
1

2𝑒𝑛
.

Proof. First, we know that,

Pr(𝑧3 ∉ 𝑆 ∧ 𝑧′ = 𝑧3) = Pr(𝑧′ = 𝑧3) · Pr(𝑧′ ∉ 𝑆 | 𝑧′ = 𝑧3).

and,

Pr(𝑧′ = 𝑧3) =
1
𝑛
.

Moreover,

Pr(𝑧′ ∉ 𝑆 | 𝑧′ = 𝑧3) = 𝑃(𝑧3 ∉ 𝑆) = (1 − 1
𝑛
)𝑛 ≥ 1

𝑒
(1 − 1

𝑛
) ≥ 1

2𝑒
.

Combining everything together proves our claim. □

Lemma 14. Assume 𝑛 ≥ 35 and let 𝛿2 be the fraction of 𝑧2 in 𝑆. Then

Pr(𝐴2 | 𝐴1) = Pr
(
𝛿2 ∈ [ 1

32 ,
1
8 ] | 𝐴1

)
≥ 1

60
.
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Proof. Let 𝑝′
𝑖
= Pr(𝑧𝑖 = 𝑧2 | 𝐴1). Note that by the fact that 𝑖 ≠ 𝑗 , 𝑧𝑖 , 𝑧 𝑗 are indepndent. Then, for

every 𝑖 ≠ 𝑗 , 𝑝′
𝑖
= 𝑝′

𝑗
. Then, by the fact that every example is independent,

𝑝′𝑖 = Pr(𝑧𝑖 = 𝑧2 | 𝑧3 ∉ 𝑆)
= Pr(𝑧𝑖 = 𝑧2 | 𝑧𝑖 ≠ 𝑧3)

=
Pr(𝑧𝑖 = 𝑧2)
Pr(𝑧𝑖 ≠ 𝑧3)

=
1

1 − 1
𝑛

Pr(𝑧𝑖 = 𝑧2)

=
5

64
.

Then,

𝔼[𝛿2 | 𝐴1] =
1
𝑛

𝑛∑︁
𝑖=1

Pr(𝑧𝑖 = 𝑧2 | 𝐴1) =
1
𝑛

𝑛∑︁
𝑖=1

𝑝′𝑖 =
5

64
,

and,

Var(𝛿2 | 𝐴1) = Var
(

1
𝑛

𝑛∑︁
𝑖=1

1{𝑧𝑖=𝑧2 } | 𝐴1

)
=

1
𝑛2

𝑛∑︁
𝑖=1

Var(1{𝑧𝑖=𝑧2 } | 𝐴1) =
5 · 59
642𝑛

.

Finally, by Chebyshev’s inequality, for 𝑛 ≥ 35,

Pr(𝐴2 | 𝐴1) = Pr
(
𝛿2 ∈ [ 1

32 ,
1
8 ] | 𝐴1

)
= Pr

(��𝛿2 − 5
64

�� ≤ 3
64 | 𝐴1

)
= 1 − Pr

(��𝛿2 − 5
64

�� ≥ 3
64 | 𝐴1

)
≥ 1 − 642

9
Var(𝛿2 | 𝐴1)

= 1 − 5 · 59
9𝑛

≥ 1 − 5 · 59
315

≥ 1
60
.

□

D.2 Proof of Lemma 4

Lemma 15. Let 𝜙 be a tail function. Let ℓ(𝑥) be the following function,

ℓ(𝑥) =
{
𝜙(𝑥) if 𝑥 ≥ 0;
𝜙(0) + 𝜙′ (0)𝑥 if 𝑥 < 0.

Then, ℓ ∈ C𝜙,𝛽 .
Proof. First, it is easy to verify that ℓ is continuously differentiable. Second, ℓ is non negative: for
𝑥 ≥ 0 by the non negativity of 𝜙 and for 𝑥 < 0 by the fact that 𝜙′ (0) ≤ 0. Moreover, ℓ is convex.
We need to prove that every 𝑥 < 𝑦, ℓ′ (𝑥) ≤ ℓ′ (𝑦) For 𝑥, 𝑦 < 0, we get it by the convexity of 𝜙. For
𝑥, 𝑦 > 0, we get it by the linearity of ℓ. For 𝑥 < 0 < 𝑦, by the convexity of 𝜙,

ℓ′ (𝑥) = 𝜙′ (0) ≤ 𝜙′ (𝑦) = ℓ′ (𝑦).

In addition, ℓ is 𝛽-smooth. We need to prove that every 𝑥 < 𝑦, ℓ′ (𝑦) − ℓ′ (𝑥) ≤ 𝛽(𝑦 − 𝑥) For 𝑥, 𝑦 ≥ 0,
we get it by the smoothness of 𝜙. For 𝑥, 𝑦 ≤ 0, we get it by the linearity of ℓ. For 𝑥 ≤ 0 ≤ 𝑦, by the
smoothness of 𝜙,

ℓ′ (𝑦) − ℓ′ (𝑥) = 𝜙′ (𝑦) − 𝜙′ (0) ≤ 𝛽𝑦 ≤ 𝛽(𝑦 − 𝑥).
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Finally, ℓ is strictly monotonically decreasing. We need to prove that every 𝑥 < 𝑦, ℓ(𝑦) > ℓ(𝑥). For
𝑥, 𝑦 > 0, we get it by the monotonicity of 𝜙. For 𝑥 < 𝑦 < 0,

ℓ(𝑦) = 𝜙(0) + 𝜙′ (0)𝑦 ≤ 𝜙(0) + 𝜙′ (0)𝑥 = ℓ(𝑥).
For 𝑥 < 0 < 𝑦,

ℓ(𝑦) = 𝜙(𝑦) ≤ 𝜙(0) ≤ 𝜙(0) + 𝜙′ (0)𝑥 = ℓ(𝑥).
□

Proof of Lemma 4. First, we give a sketch of the proof: The proof argument is similar to that of
Lemma 3. A key difference is that the example that GD classifies incorrectly does appear in the
dataset (though rarely). We define a 1-Lipschitz loss function ℓ that decays to zero at the same rate as
𝜙, and a distribution such that there is another possible example 𝑧1 and an almost “opposite” example
𝑧2, that with constant probability, appears limited times in the training samples 𝑆. The lower bound
follows from the fact that although 𝑧2 appears in the dataset, the gradients of the loss function are
sufficiently large so as to make the trained predictor correct on 𝑧2.

For the proof, given 𝛾 ≤ 1
8 and 𝜀 ≤ 1

16 , consider the following distribution;

D =

{
𝑧1 := (1, 0) with prob. 1 − 𝑝;
𝑧2 := (− 1

2 , 3𝛾) with prob. 𝑝,

where 𝑝 =
𝜙−1 (8𝜀)
72𝛾2𝑇𝜂

. Note that the distribution is separable, as for 𝑤∗ = (𝛾, 1
2 ) it holds that

𝑤∗𝑧1 = 𝑤∗𝑧2 = 𝛾. Further, consider the following loss function;

ℓ(𝑥) =
{
𝜙(𝑥) if 𝑥 ≥ 0;
𝜙′ (0)𝑥 + 𝜙(0) otherwise.

First, Lemma 15 below ensures that ℓ ∈ C𝜙,𝛽 .
Next, let 𝑆 be a sample of 𝑛 i.i.d. examples from D. Denote by 𝛿2 ∈ [0, 1] the fraction of appearances
of 𝑧2 in the sample 𝑆, and by 𝐴1 the event that 𝛿2 ≤ 2𝑝. By Markov’s inequality, we have Pr(𝐴1) ≥ 1

2 .
Furthermore, as in the proof of Theorem 1, there exists a vector 𝑤∗

𝜀 which holds ∥𝑤∗
𝜀 ∥ ≤ 𝜙−1 (𝜀)

𝛾
.

Then by Lemma 2 and the choice of 𝜀,

�̂� (𝑤𝑇 ) ≤ 2𝜀 + 2𝜙−1 (𝜀)2

𝛾2 ≤ 4𝜀. (12)

Now, we assume that 𝐴1 holds. We know that

𝛿2 ≤ 2𝑝 ≤ 𝜙−1 (8𝜀)
36𝛾2𝑇𝜂

≤ 𝜀 ≤ 1
2
, (13)

thus, conditioned on 𝐴1 and by Eq. (12),

4𝜀 ≥ �̂� (𝑤𝑇 ) > (1 − 𝛿2)ℓ(𝑤𝑇 · 𝑧1) ≥
1
2
ℓ(𝑤𝑇 (1)). (14)

If 𝑤𝑇 (1) < 0, we get that

4𝜀 >
1
2
ℓ(0) = 1

2
𝜙(0) ≥ 1

4
which is a contradiction to our assumption that 𝜀 ≤ 1

16 . Then 𝑤𝑇 (1) ≥ 0 and from Eq. (14),
8𝜀 ≥ ℓ(𝑤𝑇 (1)) = 𝜙(𝑤𝑇 (1)). which implies that

𝑤𝑇 (1) ≥ 𝜙−1 (8𝜀). (15)

Now, by the fact that 𝜙′ (0) ≤ 1 it follows that ℓ is 1-Lipschitz. Then, from the GD update rule,

𝑤𝑡+1 (2) = 𝑤𝑡 (2) − 3𝜂 · 𝛾𝛿2ℓ
′ (𝑤𝑡 · 𝑧2) ≤ 𝑤𝑡 (2) + 3𝛾𝛿2𝜂,

from which it follows that

𝑤𝑇 (2) ≤ 3𝛾𝛿2𝜂𝑇. (16)
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From Eqs. (13), (15) and (16) we now obtain that

𝑤𝑇 · 𝑧2 ≤ 9𝛾2𝛿2𝑇𝜂 −
1
2
𝜙−1 (8𝜀)

≤ 9𝛾2𝑇𝜂
𝜙−1 (8𝜀)
36𝛾2𝑇𝜂

− 1
2
𝜙−1 (8𝜀)

= −1
4
𝜙−1 (8𝜀).

By the fact that ∀𝑥 < 0 : ℓ(𝑥) ≥ − 1
2𝑥, this implies that in the event 𝐴1 it holds that:

ℓ(𝑤𝑇 · 𝑧2) ≥ −1
2
𝑤𝑇 · 𝑧2 ≥ 1

8
𝜙−1 (8𝜀). (17)

Finally, for a new validation example 𝑧′ ∼ D (independent from the sample 𝑆),

Pr({𝑧′ = 𝑧2} ∩ 𝐴1) = Pr(𝑧′ = 𝑧2 | 𝐴1) Pr(𝐴1) ≥
1
2
𝑃(𝑧′ = 𝑧2) =

1
2
𝑝 ≥ 𝜙−1 (8𝜀)

144𝛾2𝑇𝜂
. (18)

To conclude, from Eqs. (17) and (18) we have

𝔼[ℓ(𝑤𝑇 𝑧
′)] ≥ 𝔼[ℓ(𝑤𝑇 𝑧

′) | {𝑧′ = 𝑧2} ∩ 𝐴1] Pr({𝑧′ = 𝑧2} ∩ 𝐴1)

≥ 𝜙−1 (8𝜀)
144𝛾2𝑇𝜂

· 1
8
𝜙−1 (8𝜀)

=
𝜙−1 (8𝜀)2

1152𝛾2𝑇𝜂
.

□

21


	Introduction
	Our contributions
	Additional related work

	Problem Setup
	Loss functions
	Gradient Descent

	Risk Upper Bounds
	Preliminaries: Uniform Convergence Using Rademacher Complexity
	Properties of Gradient Descent on Smooth Objectives
	Proof of Theorem 1

	Risk Lower Bounds
	Derivation of Risk Bounds in Table 2
	Exponentially-tailed functions
	Polynomially-tailed losses

	Upper bound for Stochastic Gradient Descent With Replacement
	Proofs of Section 3
	Proof of Section 4
	Proof of Lemma 3
	Proof of Lemma 4


