
Supplementary Material

This section contains supplementary material to support the main paper text. The contents include:

• (§S1) A video demonstrating our agents ACO memory creation process and reward calculation
described in Sec. 3.4.

• (§S2) A video comparing our agents to baseline policies to supplement Fig. 4.
• (§S3) Algorithm for creating and updating ACO memory described in Sec. 3.4.
• (§S4) Figures illustrating the correspondences between scenes in EPIC Kitchens and observations

in THOR using our method (Sec. 3.3)
• (§S5) Additional qualitative figures to supplement Fig. 2 in the main paper.
• (§S6) Detection model architecture details and additional implementation details related to Sec. 3.2
• (§S7) Policy architecture details, training details and hyperparameters for our model in Sec. 3.5
• (§S8) Implementation details for baselines in Sec. 4 (Baselines).
• (§S9) Goal descriptions for each task presented in Sec. 4 (Tasks).
• (§S11) Task-specific breakdown of results presented in Sec. 4.1 and Sec. 4.2.
• (§S10) Additional experiments varying model architecture and combined reward schemes to

supplement Sec. 4.

S1 ACO memory creation and reward calculation demo video

In the video, we show the process of creating and building the activity-context memory described
in Sec. 3.4. The video shows the first-person view of the agent as it performs a series of object
interactions (top left). We overlay masks for objects that are manipulated (red), nearby objects whose
activity-context object (ACO) memory is updated (blue), the distance threshold under which objects
are considered near to each other (teal). Finally, we show how the presence of these objects affects
the reward provided to the agent (top right). The video illustrates that bringing a mug to the sink or a
pot to the stove results in high rewards as they are aligned with activities, while bringing a knife to
the garbage bin is far less valuable.

S2 Video demo of our policy compared to baselines

In the video, we show rollouts of various policies during training to supplement Fig. 4 in the main
paper. The video compares the baseline approaches to our method. It shows each step in a trajectory
and the corresponding reward given to the agent, illustrating the contribution of activity-context
objects to the total reward in our method compared to the uniform reward provided in the baselines.
As mentioned in Sec. 4.1, our agents receive variable rewards (non-uniformly sized red dots) based on
nearby ACOs (blue crosses), which encourages agents to move objects to more meaningful positions
aligned with activities.

S3 ACO memory creation and update algorithm

We present the algorithm for creating and maintaining the ACO memory in Algorithm 1. This
corresponds to the steps outlined in Sec. 3.4 of the main paper and the accompanying reward equation
Equation 5. Note that in practice, we normalize φ(ot, o) in L16 of Algorithm 1 such that the
maximum rewarding ACO offers a reward of 1.0, to ensure that agents do not ignore objects with
scores distributed across many potential ACOs.

S4 ACO correspondences between EPIC and THOR scenes

As mentioned in Sec. 3.3 we translate from ACO pairs learned in video to a reward used in simulation.
We show qualitative results for which scenes in THOR correspond to activities observed in EPIC in
Fig. S1. The first column of each row shows a frame from an EPIC video clip showing a particular
human activity. The remaining columns show similar “states” from THOR that our agents deem

1

Algorithm 1 Activity-context reward memory.

Input: ACO memoryM, visitation count c, distance metric d, distance threshold ε
Input: State st, action (at, ot), held object o at time-step t

1: function UPDATEMEM(st, at, ot,M)
2: if at = “put" then . Put o at position p
3: M(o′)←M(o′)

⋃
{(o, p) | d(o, o′) < ε}

4: else if at = “take" then . Take ot from location pt
5: M(ot)← {}
6: M(o′)←M(o′)r {(ot, pt)} | ∀o′ ∈M
7: end if
8: return Updated memoryM
9: end function

10:
11: function ACREWARD(st, at, ot,M)
12: if at 6∈ AI or c(at, ot) > 0 then return 0 ;
13: M← UPDATEMEM(st, at, ot,M,)
14: Z ← max

o∈O
φ(ot, o)

15: RACO ←
∑

o∈M(ot)

φ(ot, o)/Z . Equation 5

16: c(at, ot)← c(at, ot) + 1
17: return Rφ
18: end function

desirable to reach based on the distribution of ACOs present. Interactions performed in these states
are highly rewarded following our approach.

The figures also illustrate our automatic mapping from the video vocabulary OV to the agent
environment vocabulary O for objects using word embedding similarity described in Sec. 3.3. For
example, “garlic:paste” in EPIC is mapped to other food-like objects in THOR like “tomatoes” (left,
bottom row); “drawers” are mapped to both “cabinets” and “drawers” (right, top row).

EPIC Translated states in THOR EPIC Translated states in THOR

Figure S1: Discovered EPIC←→ THOR ACO correspondences. First column shows a human activity from
EPIC. Subsequent columns show similar states from THOR which provide high rewards when interactions are
performed with objects once the agent is in that state.

S5 Additional ACO detection results on EPIC-Kitchens

We show additional detection results to supplement Fig. 2 (left). These images show sampled (object,
ACO) tuples (Equation 2) in red and blue respectively. The last column shows failure cases due to
incorrect active object detections and incorrect object instance detection.

2

Figure S2: Additional EPIC detections to supplement Fig. 2. Last column shows failure cases.

S6 Pre-trained detection model and ACO scoring details

Pre-trained detection models As mentioned in Sec. 3.2, we use two detection models in our
approach – (1) An active object detector which generates high-confidence box proposals for objects
being interacted with hands (but does not assign object class labels to them) and (2) An object
instance detector that produces a set of named objects and boxes for visible object instances. For (1)
we use pre-trained models provided by authors of [56]3. For (2) we use pre-computed detections per
frame using a Faster-RCNN model released by the authors of EPIC-Kitchens [13]. We set confidence
thresholds of 0.5 for all models.

Activity context curation details To infer each frame’s activity-context following Equation 2, we
use a manually curated list of moveable objects from EPIC, though it is possible to automatically infer
this list from action labels on video clips (all objects that are picked up), or using the aforementioned
hand-object detectors. Of the 398 objects in EPIC, 349 are moveable. We list the remaining objects
in the table below.

tap top microwave machine:washing toaster machine:sous:vide flame
cupboard oven button processor:food knob window fire
drawer maker:coffee juicer plug ladder heater grill
hand sink scale kitchen wall door:kitchen time
fridge heat rack:drying floor tv table timer
hob dishwasher freezer fan:extractor shelf rug desk
bin blender light chair stand switch lamp

ACO mapping details As mentioned in Sec. 3.3, to match object classes between AI2-iTHOR and
EPIC Kitchens we map each (object, ACO) tuple in the video object spaceOV to corresponding tuples
in environment object space O following Equation 4. We use a GloVe [45] similarity threshold of
0.6. Lower values lead to undesirable mappings across object classes (e.g., toasters and refrigerators
which are both appliances, but participate in distinct activities) .

S7 Policy architecture and training details

We provide additional architecture and training details to supplement information provided in Sec. 3.5
in the main paper.

Policy network As mentioned in Sec. 3.5, we use a ResNet-18 observation encoder pretrained with
observations from 5M iterations of training of an interaction exploration agent [40]. We transfer

3https://github.com/ddshan/hand_object_detector

3

the backbone only and freeze it during task training. Each RGB observation is encoded to a 512-D
feature. A single linear embedding layer is used to embed the previous action and the currently held
object (or null) to vectors of dimension 32 each. The total observation feature is the concatenation of
these three features. All architecture hyperparams are listed in Table S1 (Policy network).

Training hyperparameters We modify the Habitat-Lab codebase [52] to support training agents
in the THOR simulator platform [33]. We search over λφ ∈ {0.01, 0.1, 1.0, 5.0} for Equation 6
and select λφ = 1.0 which has the highest consolidated performance on validation episodes for all
methods following the procedure in Sec. 4.2. All training hyperparameters are listed in Table S1 (RL
training).

RL training

Optimizer Adam
Learning rate 2.5e-4
parallel actors 64
PPO mini-batches 2
PPO epochs 4
PPO clip param 0.2
Value loss coefficient 0.5
Entropy coefficient 0.01
Normalized advantage? Yes
Training episode length 256
LSTM history length 256
training steps (× 1e6) 5

Policy network

Backbone resnet18
Input image size 256×256
LSTM hidden size 512
layers 2

Table S1: RL policy architecture and training hyperparameters.

S8 Baseline implementation details

We present implementation details for baselines in Sec. 4 (Baselines). NAVEXP and INTEXP baselines
use the same architecture as our model described in Sec. S7, but vary in the reward they receive
during training. SCENEPRIORS uses a different backbone architecture that uses a GCN based state
encoder as described below.

NAVEXP Agents are rewarded for visiting new objects such that the object is visible and within
interaction range (less than 1.5m away). A constant reward is provided for every new object class
visited. This is similar to previous implementations [50, 17, 40]. We use the implementation from
[40].

INTEXP Following [40], agents are rewarded for new object interactions. The reward provided
has the form in Equation 5, but provides a constant reward regardless of ACOs present. We use the
author’s code.

SCENEPRIORS We modify the architecture in [66], which was built for object search. We use the
author’s code. First, we remove the goal object encoding as the agent is not searching for a single
object. Second, we replace the backbone network with our shared ResNet backbone to ensure fair
comparison. We use a GCN encoding dimension of 512. The remaining architecture details are
consistent with [66].

4

S9 Goal condition details for all tasks

We next list out formal goal conditions for all tasks described in Sec. 4 of the main paper (Tasks).
Each goal is specified as a conjunction of predicates that need to be satisfied in a candidate goal state.
The goal is satisfied if for any object o in the environment, the following conditions are true:

• STORE: inReceptacle(o, Drawer) ∧ isClosed(Drawer) ∧ isStorable(o)
• HEAT: inReceptacle(o, StoveBurner) ∧ isToggledOn(StoveKnob) ∧ isHeatable(o)
• COOL: inReceptacle(o, Fridge) ∧ isClosed(Fridge) ∧ isCoolable(o)
• CLEAN: inReceptacle(o, SinkBasin) ∧ isToggledOn(Faucet) ∧ isCleanable(o)
• SLICE: isHolding(Knife) ∧ isSliceable(o)
• PREP: [inReceptacle(o, Pot) | inReceptacle(o, Pan)] ∧ isCookable(o)
• TRASH: inReceptacle(o, GarbageCan) ∧ isTrashable(o)

where inReceptacle checks if an object is inside/on top of a particular object, is-X-able filters for ob-
jects with specific affordances (e.g., only objects that can be placed on the stove like pots/pans/kettles
satisfy isHeatable), isClosed and isToggledOn checks for specific object states, and isHolding checks
if the agent is holding a specific type of object (e.g., for SLICE this has to be a Knife or a ButterKnife).
Further, for each task that involves moving objects to receptacles, the object must originally have
been outside the receptacle (e.g., outside the Fridge for COOL; off the stovetop for HEAT).

S10 Additional ablation experiments

We present a comparison of different backbone architectures (ResNet18 vs. ResNet50) and aggrega-
tion modules (LSTM vs. GRU) for both our model and the baselines in Table S3. We evaluate on the
unseen test episodes for 4 interaction-heavy tasks. The average results of 2 training runs are in the
table below. Using stronger backbones seems to help marginally, but does not offer conclusive results.
Using the simpler GRU based aggregation (instead of LSTM) results in large improvements. Overall,
the trends remain consistent across all configurations: Vanilla < NavExp < Ours. Architectural
changes alone in the baselines (to either the backbone, or the aggregation mechanism) are not enough
to compensate for task difficulty — performance on Cool, Store and Heat remain low (<10%) for
Vanilla and NavExp.

In Table S2 we show the results of our policies combined with rewards from a navigation exploration
agent. As mentioned in Sec. 4.1, while our agent excels in interaction-heavy tasks, navigation
exploration agents perform well on interaction-light tasks which often require finding a single object
and bringing it to the right location. For example in the Trash task, there is a single garbage can that
navigation agents quickly find as they cover area, but that our agents struggle to find early on. The
two strategies can be combined to address this issue. Table S2 shows average results of 2 runs where
we add the two reward functions together with equal weights (=0.5) to achieve the best performance.

COOL STORE HEAT CLEAN SLICE PREP TRASH
NAVEXP [50] 0.05 0.01 0.01 0.43 0.29 0.33 0.25
OURS 0.26 0.12 0.13 0.53 0.36 0.26 0.13
OURS + NAVEXP 0.25 0.05 0.19 0.50 0.34 0.41 0.26

Table S2: Combined policy experiments. Navigation exploration offers complementary reward signals that
can be combined with our method for stronger performance.

ResNet18 + LSTM ResNet50 + LSTM ResNet18 + GRU
COOL STORE HEAT CLEAN COOL STORE HEAT CLEAN COOL STORE HEAT CLEAN

VANILLA 0.07 0.00 0.02 0.29 0.04 0.00 0.01 0.26 0.31 0.03 0.03 0.38
NAVEXP [50] 0.02 0.02 0.01 0.44 0.02 0.00 0.00 0.42 0.00 0.00 0.03 0.35
OURS 0.30 0.16 0.11 0.55 0.15 0.11 0.12 0.36 0.52 0.31 0.17 0.73

Table S3: Backbone architecture ablations. Performance on four interaction-heavy tasks.

5

S11 Task-specific results breakdown

We include task level breakdowns of results from Sec. 4.2 of the main paper. These results highlight
the strengths and weaknesses of all models on a task-specific level to supplement overall task success
results in Table 1 of the main paper. These include Task success vs. training iteration (Fig. S3) and
Task success vs. instance difficulty (Fig. S4)

0 1 2 3 4 5
iterations (×106)

0.00

0.05

0.10

0.15

0.20

su
cc

es
s

StoreTask

0 1 2 3 4 5
iterations (×106)

0.00

0.05

0.10

0.15

su
cc

es
s

HeatTask

0 1 2 3 4 5
iterations (×106)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

su
cc

es
s

CoolTask

0 1 2 3 4 5
iterations (×106)

0.0

0.1

0.2

0.3

0.4

0.5

su
cc

es
s

CleanTask

0 1 2 3 4 5
iterations (×106)

0.0

0.1

0.2

0.3

0.4

su
cc

es
s

SliceTask

0 1 2 3 4 5
iterations (×106)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

su
cc

es
s

PrepTask

0 1 2 3 4 5
iterations (×106)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

su
cc

es
s

TrashTask

ScenePriors [66]Vanilla NavExp [50] IntExp [40] Ours

Figure S3: Task success vs. training iteration. This is the task-specific version of Fig. 5 (left) that shows
convergence rates of all methods.

0 1 2 3 4 5 6 7
Difficulty

0.00

0.05

0.10

0.15

0.20

 S
uc

ce
ss

StoreTask

0 1 2 3 4 5 6 7
Difficulty

0.00

0.05

0.10

0.15

0.20

0.25

 S
uc

ce
ss

HeatTask

0 1 2 3 4 5 6 7
Difficulty

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

 S
uc

ce
ss

CoolTask

0 1 2 3 4 5 6 7
Difficulty

0.3

0.2

0.1

0.0

0.1

0.2

0.3

 S
uc

ce
ss

CleanTask

0 1 2 3 4 5 6 7
Difficulty

0.10

0.05

0.00

0.05

0.10

0.15

 S
uc

ce
ss

SliceTask

0 1 2 3 4 5 6 7
Difficulty

0.2

0.1

0.0

0.1

0.2

 S
uc

ce
ss

PrepTask

0 1 2 3 4 5 6 7
Difficulty

0.2

0.1

0.0

0.1

0.2

 S
uc

ce
ss

TrashTask

ScenePriors [66] NavExp [50] IntExp [40] Ours

Figure S4: Task success vs. navigation difficulty. This is the task-specific version of Fig. 5 (right) that shows
improvement in success over the baseline model. Note: we show absolute improvement (instead of relative) as
the baseline has zero success for some tasks and some difficulty levels.

6

