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ABSTRACT

Fictitious Self-Play (FSP) has achieved significant empirical success in solving
extensive-form games. However, from a theoretical perspective, it remains un-
known whether FSP is guaranteed to converge to Nash equilibria in Markov games.
As an initial attempt, we propose an FSP algorithm for two-player zero-sum Markov
games, dubbed as smooth FSP, where both agents adopt an entropy-regularized pol-
icy optimization method against each other. Smooth FSP builds upon a connection
between smooth fictitious play and the policy optimization framework. Specifically,
in each iteration, each player infers the policy of the opponent implicitly via policy
evaluation and improves its current policy by taking the smoothed best-response via
a proximal policy optimization (PPO) step. Moreover, to tame the non-stationarity
caused by the opponent, we propose to incorporate entropy regularization in PPO
for algorithmic stability. When both players adopt smooth FSP simultaneously, i.e.,
with self-play, in a class of games with Lipschitz continuous transition and reward,
we prove that the sequence of joint policies converges to a neighborhood of a Nash
equilibrium at a sublinear Õ(1/T ) rate, where T is the number of iterations. To
our best knowledge, we establish the first finite-time convergence guarantee for
FSP-type algorithms in zero-sum Markov games.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) (Bu et al., 2008; Sutton & Barto, 2018) has achieved
great empirical success, e.g., in playing the game of Go (Silver et al., 2016; 2017), Dota 2 (Berner et al.,
2019), and StarCraft 2 (Vinyals et al., 2019), which are all driven by policy optimization algorithms
which iteratively update the policies that are parameterized using deep neural networks. Empirically,
the popularity of policy optimization algorithms for MARL is attributed to the observations that they
usually converges faster than value-based methods that iteratively update the value functions (Mnih
et al., 2016; O’Donoghue et al., 2016).

Compared with their empirical success, the theoretical aspect of policy optimization algorithms in
MARL setting (Littman, 1994; Hu & Wellman, 2003; Conitzer & Sandholm, 2007; Pérolat et al.,
2016; Zhang et al., 2018) remains less understood. Although convergence guarantees for various
policy optimization algorithms have been established under the single-agent RL setting (Sutton et al.,
2000; Konda & Tsitsiklis, 2000; Kakade, 2002; Agarwal et al., 2019; Wang et al., 2019), extending
those theoretical guarantees to arguably one of the simplest settings of MARL, two-player zero-sum
Markov game, suffers from challenges in the following two aspects. First, in such a Markov game,
each agent interact with the opponent as well as the environment. Seen from the perspective of each
agent, it belongs to an environment that is altered by the actions of the opponent. As a result, due
to the existence of an opponent, the policy optimization problem of each agent has a time-varying
objective function, which is in stark contrast with the value-based methods such as value-iteration
Shapley (1953); Littman (1994), where there is a central controller which specifies the policies
of both players. When the joint policy of both players are considered, the problem of solving the
optimal value function corresponds to finding the fixed point of the Bellman operator, which is
defined independently of the policy of the players. Second, when viewing the policy optimization
in zero-sum Markov game as an optimization problem for both players together, although we have
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a fixed objective function, the problem is minimax optimization with a non-convex non-concave
objective. Even for classical optimization, such a kind of optimization problem remains less less
understood (Cherukuri et al., 2017; Rafique et al., 2018; Daskalakis & Panageas, 2018; Mertikopoulos
et al., 2018). It is observed that first-order methods such as gradient descent might fail to converge
(Balduzzi et al., 2018; Mazumdar & Ratliff, 2018).

As an initial step to study policy optimization for MARL, we propose a novel policy optimization
algorithm for any player of a multi-player Markov game, which is dubbed as smooth fictitious self-
play (FSP). Specifically, when a player adopts smooth FSP, in each iteration, it first solves a policy
evaluation problem that estimates the value function associate with the current joint policy of all
players. Then it update its own policy via an entropy-regularized proximal policy optimization (PPO)
Schulman et al. (2017) step, where the update direction is obtained from the estimated value function.
This algorithm can be viewed as an extension of the fictitious play (FP) algorithm that is designed
for normal-form games (Von Neumann & Morgenstern, 2007; Shapley, 1953) and extensive-form
games (Heinrich et al., 2015; Perolat et al., 2018) to Markov-games. FP is a general algorithmic
framework for solving games where an agent first infer the policy of the opponents and then adopt
a policy that best respond to the inferred opponents. When viewing our algorithm as a FP method,
instead of estimating the policies of the opponents directly, the agent infers the opponent implicitly
by estimating the value function. Besides, policy update corresponds to a smoothed best-response
policy Swenson & Poor (2019) based on the inferred value function.

To examine the theoretical merits of the proposed algorithm, we focus on two-player zero-sum
Markov games and let both players follow smooth FSP, i.e., with self-play. Moreover, we restrict to a
class of Lipschitz games (Radanovic et al., 2019) where the impact of each player’s policy change
on the environment is Lipschitz continuous with respect to the magnitude of policy change. For
such a Markov game, we tackle the challenge of non-stationarity by imposing entropy regularization
which brings algorithmic stability. In addition, to establish convergence to Nash equilibrium, we
explicitly characterize the geometry of the policy optimization problem from a functional perspective.
Specifically, we prove that the objective function, as a bivariate function of the two players’ policies,
despite being non-convex and non-concave, satisfies a one-point strong monotonicity condition
(Facchinei & Pang, 2007) at a Nash equilibrium. Thanks to such benign geometry, we prove that
smooth FSP converges to a neighborhood of a Nash equilibrium at a sublinear Õ(1/T ) rate, where
T is the number of policy iterations and Õ hides logarithmic factors. Moreover, as a byproduct of
our analysis, if any of the two players deviates from the proposed algorithm, it is shown the other
player that follows smooth FSP exploits such deviation by finding the best-response policy at a same
sublinear rate. Such a Hannan consistency property exhibited in our algorithm is related to Hennes
et al. (2020), which focus on normal-form games. Thus, our results also serve as a first step towards
connecting regret between minimization in normal-form/extensive-form games and Markov games.

Contribution. Our contribution is two-fold. First, we propose a novel policy optimization algorithm
for Markov games, which can be viewed as a generalization of FP. Second, when applied to a class
of two-player zero-sum Markov games satisfying a Lipschitz regularity condition, our algorithm
provably enjoys global convergence to a neighborhood of a Nash equilibrium at a sublinear rate.
To the best of our knowledge, we propose the first provable FSP-type algorithm with finite time
convergence guarantee for zero-sum Markov games.

Related Work. There is a large body of literature on the value-based methods to zero-sum Markov
games (Lagoudakis & Parr, 2012; Pérolat et al., 2016; Zhang et al., 2018; Zou et al., 2019). More
recently, Perolat et al. (2018) prove that actor-critic fictitious play asymptotically converges to the
Nash equilibrium, while our work provides finite time convergence guarantee to a neighborhood of a
Nash equilibrium. In addition, Zhang et al. (2020) study the sample comlexity of planning algorithm
in the model-based MARL settting as opposed to the model-free setting with function approximation
in this paper.

Closely related to smooth FSP proposed in this paper, there is a line of work in best-response
algorithms (Heinrich et al., 2015; Heinrich & Silver, 2016), which have also shown great empirical
performances (Dudziak, 2006; Xiao et al., 2013; Kawamura et al., 2017). However, they are only
applicable to extensive-form games and not directly applicable to stochastic games. Also, our smooth
FSP is related to Swenson & Poor (2019), which focus on the potential games. It does not enforce
entropy-regularization and only provides asymptotic convergence guarantee to a neighborhood of the
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Nash equilibrium for smooth fictitious play in multi-player two-action potential games. Moreover, our
work also falls into the realm of regularizing and smoothing techniques in reinforcement learning (Dai
et al., 2017; Geist et al., 2019; Shani et al., 2019; Cen et al., 2020), which focus on the single-agent
setting.

2 BACKGROUND

In this section, we briefly introduce the general setting of reinforcement learning for two-player
zero-sum Markov games.

Zero-Sum Markov Games. We consider the two-player zero-sum Markov game
(S,A1,A2,P, r, γ), where S ⊂ Rd is a compact state space, A1 and A2 are finite action spaces of
Player 1 and Player 2, respectively, P : S × S ×A1 ×A2 → [0, 1] is the Markov transition kernel,
r : S ×A1×A2 → [−1, 1] is the reward function of Player 1, which implies that the reward function
of Player 2 is −r, and γ ∈ (0, 1) is the discount factor. Let r1 = r and r2 = −r be the reward
functions of Player 1 and Player 2, respectively. For notational simplicity, throughout this paper, we
write Player −i as Player i’s opponent, where i ∈ {1, 2}. In the rest of this paper, we omit i ∈ {1, 2}
where it is clear from the context. Also, we denote by Eπi,π−i [ · ] the expectation over the trajectory
induced by the policy pair [πi;π−i].

Given a policy π−i : A−i×S → [0, 1] of Player−i, the performance of a policy πi : Ai×S → [0, 1]

of Player i is evaluated by its state-value function (Vi-function) V π
i,π−i

i : S → R, which is defined
as

V π
i,π−i

i (s) = Eπi,π−i
[ ∞∑
t=0

γt · ri(st, ait, a−it )

∣∣∣∣ s0 = s

]
. (2.1)

Correspondingly, the performance of a policy πi : Ai × S → [0, 1] of Player i is evaluated by its
action-value function (Qi-function) Qπ

i,π−i

i : S ×Ai×A−i → R, which is defined by the following
Bellman equation,

Qπ
i,π−i

i (s, ai, a−i) = ri(s, a
i, a−i) + γ · Es′∼P(· | s,ai,a−i)

[
V π

i,π−i

i (s′)
]
.

We denote by νπi,π−i(s) and σπi,π−i(s, ai, a−i) = πi(ai | s) · π−i(a−i | s) · νπi,π−i(s) the station-
ary state distribution and the stationary state-action distribution associated with the policy pair
[πi;π−i], respectively. Correspondingly, we denote by Eσπi,π−i [ · ] and Eνπi,π−i [ · ] the expectations
E(s,ai,a−i)∼σπi,π−i [ · ] and Es∼νπi,π−i [ · ], respectively. Throughout this paper, we denote by 〈·, ·〉 the
inner product between vectors.

Let [π1
∗, π

2
∗] be a Nash equilibrium of the two-player zero-sum Markov game (S,A1,A2,P, r, γ),

which exists (Shapley, 1953) and satisfies
J (π1, π2

∗) ≤ J (π1
∗, π

2
∗) ≤ J (π1

∗, π
2)

for all policy pairs [π1;π2]. Here we define the performance function as

J (π1, π2) = Eν∗
[
V π

1,π2

1 (s)
]
, (2.2)

where ν∗ is the stationary distribution σπ1
∗,π

2
∗
.

Regularized Markov Games. Based on the definition of the two-player zero-sum Markov game
(S,A1,A2,P, r, γ), we define its entropy-regularized counterpart (S,A1,A2,P, r, γ, λ1, λ2), where
λ1, λ2 ≥ 0 are the regularization parameters. Specifically, (S,A1,A2,P, r, γ, λ1, λ2) is defined
as the two-player general-sum Markov game with the reward function of Player i replaced by its
entropy-regularized counterpart rπ

i,π−i

(i) : S ×Ai ×A−i → R, which is defined as

rπ
i,π−i

(i) (s, ai, a−i) = ri(s, a
i, a−i)− λi · log πi(ai | s). (2.3)

With a slight abuse of notation, we write

rπ
i,π−i

i (s) = Eπi,π−i
[
ri(s, a

i, a−i)
]
,

rπ
i,π−i

(i) (s) = Eπi,π−i
[
rπ

i,π−i

(i) (s, ai, a−i)
]

= rπ
i,π−i

i (s) + λi ·H
(
πi(· | s)

)
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as the state-reward function and the entropy-regularized state-reward function, respectively. Here
H(πi(· | s)) = −

∑
ai∈Ai π

i(ai | s) · log πi(ai | s) is the Shannon entropy. For Player i, the entropy-

regularized state-value function (V(i)-function) V π
i,π−i

(i) : S → R and the entropy-regularized

action-value function (Q(i)-function) Qπ
i,π−i

(i) : S ×Ai ×A−i → R are defined as

V π
i,π−i

(i) (s) = Eπi,π−i
[ ∞∑
t=0

γt · rπ
i,π−i

(i) (st, a
i
t, a
−i
t )

∣∣∣∣ s0 = s

]
, (2.4)

Qπ
i,π−i

(i) (s, ai, a−i) = ri(s, a
i, a−i) + γ · Es′∼P(· | s,ai,a−i)

[
V π

i,π−i

(i) (s′)
]
, (2.5)

respectively. By the definition of rπ
i,π−i

(i) in (2.3), we have that, for all policy pairs [πi;π−i] and
s ∈ S, ∣∣∣Eπi,π−i[rπi,π−i(i) (s, ai, a−i)

]∣∣∣ ≤ 1 + λi · log |Ai|,

which, by (2.4) and (2.5) implies that, for all policy pairs [πi;π−i] and (s, ai, a−i) ∈ S ×Ai ×A−i,∣∣V πi,π−i(i) (s)
∣∣ ≤ V max

(i) =
1 + λi · log |Ai|

1− γ
, (2.6)

∣∣Qπi,π−i(i) (s, ai, a−i)
∣∣ ≤ Qmax

(i) = 1 +
γ · (1 + λi · log |Ai|)

1− γ
. (2.7)

3 FICTITIOUS SELF-PLAY FOR ZERO-SUM MARKOV GAMES

In this section, we introduce smooth fictitious self-play (FSP) for two-player zero-sum Markov games.

3.1 FSP: FROM MATRIX GAMES TO MARKOV GAMES

FSP is an algorithmic framework for finding the Nash equilibria of games. It consists of two building
blocks: (I) inferring the opponent’s policy by playing against each other, namely fictitious play, and
(II) improving the two players’ policies with symmetric updating rules, namely self-play. Specifically,
Player i best responds to a mixed policy of Player −i, which is a weighted average of Player −i’s
historical policies. Here playing a mixed policy π−i = α · π−i + (1− α) · π−i′ means that, at the
beginning of the game, the player chooses to play the policy π−i with probability α and play the
policy π−i′ with probability 1− α.

FSP is originally developed for normal-form games (Von Neumann & Morgenstern, 2007; Shapley,
1953) and extensive-form games (Heinrich et al., 2015; Heinrich & Silver, 2016). In (entropy-
regularized) two-player zero-sum matrix games, which are the special cases of (entropy-regularized)
two-player zero-sum Markov games with |S| = 1 and no state transition, mixing two policies π−i
and π−i′ with probabilities α and 1− α, respectively, is equivalent to averaging the corresponding
Qi-functions, i.e.,

Q
πi,α·π−i+(1−α)·π−i′
i = α ·Qπ

i,π−i

i + (1− α) ·Qπ
i,π−i′

i .

In other words, in a two-player zero-sum matrix game, Player i is equivalently best responding to
a weighted average of the historical Qi-functions by taking the corresponding greedy action. To
generalize FSP to the two-player zero-sum Markov game (S,A1,A2,P, r, γ), we propose to let
Player i best respond to the following weighted average of the historical marginalized Q(i)-functions
at the t-th iteration,

Qt+1,(i)(s, a
i) = (1− αt,(i)) ·Qt,(i)(s, ai) + αt,(i) · Q̃

πit,π
−i
t

(i) (s, ai), (3.1)

where αt,(i) ∈ [0, 1] is the mixing rate. Here the marginalized Q(i)-function Q̃π
i,π−i

(i) (s, ai) is defined
as

Q̃π
i,π−i

(i) (s, ai) = Eπ−i
[
Qπ

i,π−i

(i) (s, ai, a−i)
]
. (3.2)
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Recursively applying the symmetric updating rule in (3.1), we obtain

Qt+1,(i)(s, a
i) =

t∑
τ=0

{[
ατ,(i) ·

t∏
k=τ+1

(1− αk,(i))
]
· Q̃π

i
τ ,π
−i
τ

(i) (s, ai)

}
,

which is the weighted average of the historical marginalized Q(i)-functions. Here we use the
convention that

∏t
k=t+1(1− αk,(i)) = 1. Correspondingly, (3.1) induces the following symmetric

policy updating rule,

πi,bestt+1 (ai | s) = 1
(
ai = argmax

ai′∈Ai

{
Qt+1,(i)(s, a

i′)
})
, (3.3)

where the obtained policy πi,bestt+1 best responds to Qt+1,(i) defined in (3.1) by taking the correspond-
ing greedy action.

3.2 MARKOV GAMES: FROM FSP TO SMOOTH FSP

FSP is only known to converge asymptotically even in two-player zero-sum matrix games (Robinson,
1951). Instead, we consider smooth FSP, which uses the following smoothed best-response,

πit+1(ai | s) ∝ exp
{
Et+1,(i)(s, a

i)
}
. (3.4)

Here the ideal energy function Et+1,(i)(s, a
i) = κt+1,(i) · Qt+1,(i)(s, a

i) is proportional to the
weighted average of the historical marginalized Q(i)-functions defined in (3.1) with the normalization
parameter κt+1,(i) > 0.

In the sequel, we simplify the symmetric updating rules in (3.1) and (3.4). Let the stepsizes be
αt,(i) = κt+1,(i) · αt,(i), α′t,(i) = κt+1,(i)/κt,(i) · (1− αt,(i)). (3.5)

Recall that Q̃π
i
t,π
−i
t

(i) , which is the marginalized Q(i)-function, is defined in (3.2). Corresponding to
(3.1), we have the following symmetric updating rule for the energy functions,

Et+1,(i)(s, a
i) = α′t,(i) · Et,(i)(s, a

i) + αt,(i) · Q̃
πit,π

−i
t

(i) (s, ai), (3.6)

which gives the following symmetric policy updating rule equivalent to (3.4),

πit+1(ai | s) ∝
(
πit(a

i | s)
)α′t,(i) · exp

{
αt,(i) · Q̃

πit,π
−i
t

(i) (s, ai)
}
.

We call Et+1,(i) the ideal energy function, since it is directly obtained from the symmetric updating
rule in (3.3), which operates in the functional space given the marginalized Q(i)-functions.

3.3 IMPLEMENTING SMOOTH FSP

In practice, it remains to approximate the ideal energy function Et+1,(i) within a parameterized
function class, which is further used to parameterize the policy πit+1. For notational simplicity, we
concatenate the parameters of the policies πit+1 and π−it+1 into a single parameter θt+1 ∈ Θ, which
gives the parameterized policy pair [πiθt ;π

−i
θt

]. Meanwhile, we need to estimate the marginalizedQ(i)-

function Q̃
πiθt ,π

−i
θt

(i) (s, ai) defined in (3.2). In practice, the parameterization of the energy function
and the marginalized Q(i)-function are set to be neural networks, which means that Θ = RN with
N being the size of the neural network. To implement smooth FSP, given θt ∈ Θ, we find the best
parameter θt+1 ∈ Θ that minimizes the mean squared error (MSE),

Eσt
[ ∑
i∈{1,2}

(
Eθt+1,(i)(s, a

i)− Êt+1,(i)(s, a
i)
)2]

, (3.7)

where Êt+1,(i)(s, a
i) = α′t,(i) · Eθt,(i)(s, a

i) + αt,(i) · Q̂
πiθt ,π

−i
θt

(i) (s, ai) (3.8)

is the estimated ideal energy function. Here Q̂
πiθt ,π

−i
θt

(i) (s, ai) is the estimator of the marginalized Q(i)-

function Q̃
πiθt ,π

−i
θt

(i) (s, ai). Such an estimator is obtained based on the data generated by smooth FSP
via policy evaluation (Sutton et al., 2000). For notational simplicity, in (3.7) and the rest of the paper,
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we write the stationary state-action distribution σπiθt ,π
−i
θt

and the stationary state distributionνπiθt ,π
−i
θt

associated with the policy pair [πiθt ;π
−i
θt

] as σt and νt, respectively.

We define the bounded function class FR with the radius R > 0 as FR = {f : ‖f‖∞ ≤ R}.
Algorithm 1 gives the implementation of smooth FSP for two-player zero-sum Markov games.

Algorithm 1 Smooth FSP for Two-Player Zero-Sum Markov Games
1: Require Two-player zero-sum Markov game (S,A1,A2,P, r, γ), number of iterations T , reg-

ularization parameters {λi}i∈{1,2}, truncation parameters {Qmax
(i) , Emax

(i) }i∈{1,2}, and stepsizes
{αt,(i), α′t,(i)}0≤t≤T−1,i∈{1,2}

2: Initialize the energy function Eθ0,(i)(s, ai)← 0 (i ∈ {1, 2})
3: For t = 0, . . . , T − 1 and i ∈ {1, 2} do
4: Set the policy πiθt(· | s) ∝ exp{Eθt,(i)(s, · )}

5: Generate the marginalized Q(i)-function estimator Q̂
πiθt ,π

−i
θt

(i) (s, ai) ∈ FQmax
(i)

using the data

generated by fictitious play with the policy pair [πiθt ;π
−i
θt

]
6: Update the estimated ideal energy function

Êt+1,(i)(s, a
i)← α′t,(i) · Eθt,(i)(s, a

i) + αt,(i) · Q̂
πiθt ,π

−i
θt

(i) (s, ai)

7: Minimize (3.7) to obtain the energy function Eθt+1,(i)(s, a
i) ∈ FEmax

(i)

8: End
9: Output: {πiθt}0≤t≤T−1,i∈{1,2}

4 MAIN RESULTS

In this section, we establish the convergence of smooth FSP for two-player zero-sum Markov games
by casting it as regularized proximal policy optimization (PPO).

4.1 SMOOTH FSP AS REGULARIZED PPO

In the sequel, we connect the energy function update in (3.8) with regularized PPO. Corresponding
to the estimated ideal energy function updates Êt+1,(i) in (3.8), we define the estimated ideal policy
update as

π̂it+1(· | s) ∝ exp{Êt+1,(i)(s, · )}. (4.1)
We have the following proposition states the equivalence between smooth FSP and regularized PPO.

Proposition 4.1. For all 0 ≤ t ≤ T − 1, let the stepsizes αt,(i) and α′t,(i) of Algorithm 1 satisfy

λi = (1− α′t,(i))/αt,(i) > 0.

At the t-th iteration of Algorithm 1, the policy update in (4.1) is equivalent to solving the regularized
PPO subproblem,

π̂it+1 = argmax
πi

{
Eνt
[
αt,(i) ·

〈
Q̂
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s), π
i(· | s)− πiθt(· | s)

〉
(4.2)

−KL
(
πi(· | s)

∥∥πiθt(· | s))]}.
Here Q̂

πiθt ,π
−i
θt

(i) (s, ai) is the estimator of the marginalized Q(i)-function Q̃
πiθt ,π

−i
θt

(i) (s, ai).

Proof. See Appendix A for a detailed proof.
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Proposition 4.1 implies that smooth FSP proximally improves the policy πi based on the regularized
performance function,

J(i)(πi, π−i) = Eν∗
[
V π

i,π−i

(i) (s)
]
. (4.3)

Proposition C.1 implies that, the smaller the regularization parameter λi is, the closer the regularized
performance function J(i) is to the performance function J . In the rest of the paper, we show that,
with a proper choice of λi, smooth FSP converges to a neighborhood of a Nash equilibrium [π1

∗;π
2
∗]

at a sublinear rate of Õ(1/T ).

4.2 CONVERGENCE TO NASH EQUILIBRIUM

Let P(st = s |πi, π−i, s0 ∼ ν) be the probability that the trajectory, which is generated by the
policy pair [πi;π−i] with the initial state distribution s0 ∼ ν, reaches the state s at the timestep t.
Correspondingly, let

ρπ
i,π−i

ν (s) = (1− γ) ·
∞∑
t=0

γt · P(st = s |πi, π−i, s0 ∼ ν) (4.4)

be the visitation measure of [πi;π−i] with the initial state distribution s0 ∼ ν. Also, for notational
simplicity, we define

ρπ
i,π−i

ν,πi′,π−i′
(s) = (1− γ) ·

∞∑
t=0

γt · P
(
st+1 = s

∣∣πi, π−i, (s0, ai0, a−i0 ) ∼ νπi′π−i′
)

(4.5)

as the visitation measure of the policy pair [πi;π−i] with the initial state-action distribution νπi′π−i′.
We lay out the following assumption on the concentrability coefficient. With a slight abuse of notation,
we write ν and πi′ in the subscripts as s and ai, respectively, when they are point masses.
Assumption 4.2 (Concentrability Coefficient). We assume that for the two-player zero-sum Markov
game (S,A1,A2,P, r, γ), there exists ζ > 0 such that

Eν∗
[∣∣dρπi,π−i∗

s,ai,π−i∗
/dν∗

∣∣2]1/2 ≤ ζ
for all s ∈ S, ai ∈ Ai, and πi = πiθt generated by the policy update in Line 4 of Algorithm 1. Here

dρ
πi,π−i∗
s,ai,π−i∗

/dν∗ is the Radon-Nikodym derivative, where ρπ
i,π−i∗
s,ai,π−i∗

is defined in (4.5).

The notion of concentrability coefficient in Assumption 4.2 is commonly used in the literature (Munos
& Szepesvári, 2008; Antos et al., 2008; Farahmand et al., 2010; Tosatto et al., 2017; Yang et al.,
2019).

For all policy pairs [πi;π−i], we define the Markov state transition kernel as

Pπ
i,π−i(· | s) = Eπi,π−i

[
P(· | s, ai, a−i)

]
. (4.6)

With a slight abuse of notation, we write Pπi,π−i as the Markov state transition operator induced by
the Markov state transition kernel defined in (4.6), such that

[Pπ
i,π−i ◦ h](s) =

∫
s′∈S

h(s′)Pπ
i,π−i(ds′ | s), (4.7)

where h : S → R is an L1-integrable function and the Lebesgue measure over S ⊂ Rd is used.
Correspondingly, we define the operator norm of an operator O as

‖O‖op = sup
h
‖O ◦ h‖L1(S)

/
‖h‖L1(S) = sup

‖h‖L1(S)≤1
‖O ◦ h‖L1(S),

where ‖ · ‖L1(S) is the L1-norm over the state space S . The following assumption characterizes the
Lipschitz continuity of Pπi,π−i and rπ

i,π−i with respect to π−i.
Assumption 4.3 (Lipschitz Game). We assume that for the two-player zero-sum Markov game
(S,A1,A2,P, r, γ), there exists ιi > 0 such that for all s ∈ S and [πi;π−i],

‖Pπ
i,π−i∗ − Pπ

i,π−i‖op ≤ ιi · Eν∗
[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2, (4.8)∣∣rπi,π−i∗ (s)− rπ
i,π−i(s)

∣∣ ≤ ιi ·KL
(
π−i∗ (· | s)

∥∥π−i(· | s))1/2. (4.9)
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The Lipschitz coefficient ιi in (4.8) of Assumption 4.3 quantifies to the influence of Player −i
on the nonstationary environment that Payer i faces. Such a notion of influence is proposed by
Radanovic et al. (2019) in the tabular setting. In particular, the expected KL-divergence between
the policies is used in place of the distance maxs∈S ‖π−i(· | s) − π−i′(· | s)‖1 in Radanovic et al.
(2019). Such an assumption is also related to the linear-quadratic game (LQG) literature (see, e.g.,
Zhang et al. (2019)), where the Lipschitz continuity is established based on the special structure in
the LQG model. In Lemma C.2, we show that such a Lipschitz coefficient ιi quantifies the Lipschitz
continuity of the marginalized Q(i)-function of the entropy-regularized two-player Markov game
(S,A1,A2,P, r, γ, λ1, λ2).

Recall that π̂it+1 ∝ exp{Êt+1,(i)} is defined in (4.1), where Êt+1,(i) is defined in (3.8). Also, recall
that πiθt+1

∝ exp{Eθt+1,(i)} is defined in Line 4 of Algorithm 1, where Eθt+1,(i) is obtained by
minimizing (3.7) in Line 7 of Algorithm 1. Meanwhile, we define the ideal policy update as

πit+1(· | s) ∝ exp
{
Et+1,(i)(s, · )

}
,

where Et+1,(i)(s, a
i) = α′t,(i) · Eθt,(i)(s, a

i) + αt,(i) · Q̃
πiθt ,π

−i
θt

(i) (s, ai) (4.10)

is the corresponding ideal energy function update.

We lay out the following assumption on the errors that arise from the estimation of the marginalized

Q(i)-function Q̃
πiθt ,π

−i
θt

(i) and the minimization of the MSE in (3.7).

Assumption 4.4 (Estimation Error). We assume that there exist εt, ε′t > 0 such that for all 0 ≤ t ≤
T − 1,

Eν∗
[∥∥Eθt+1,(i)(s, ·)− Êt+1,(i)(s, ·)

∥∥2
∞

]
≤ εt, (4.11)∣∣∣∣Eν∗[〈Eθt+1,(i)(s, ·)− Et+1,(i)(s, ·), πi∗(· | s)− πiθt(· | s)

〉]∣∣∣∣ ≤ ε′t. (4.12)

Assumption 4.4 characterizes the estimation error through the policy updates in Line 7 of Algorithm
1. In particular, (4.11) upper bounds the errors arising from the minimization of the MSE in (3.7),
which is zero as long as the representation power of the parameterized class of the energy functions
is sufficiently strong. Meanwhile, by (3.7) and (4.10), the gap between Eθt+1,(i) and Et+1,(i) involves

(I) the gap between Êt+1,(i) and Et+1,(i), which arises from the gap between Q̂
πiθt ,π

−i
θt

(i) and Q̃
πiθt ,π

−i
θt

(i) ,

and (II) the gap between Eθt+1,(i) and Êt+1,(i), which arises the minimization of the MSE in (3.7).

Hence, ε′t in (4.12) is zero as long as the estimator Q̂
πiθt ,π

−i
θt

(i) of Q̃
πiθt ,π

−i
θt

(i) is accurate and εt is zero.

We summarize εt and ε′t into the following total error σ,

σ =

T−1∑
t=0

(t+ 1) · (εt + ε′t). (4.13)

As discussed in Lemmas 4.7 and 4.8 of Liu et al. (2019), under Assumption 4.2, when we use
sufficiently deep and wide neural networks equipped with the rectified linear unit (ReLU) activation
function to parameterize the marginalized Q(i)-functions and the energy functions, Assumption 4.4
can be satisfied with σ = Õ(1). See Appendix B for a detailed discussion.

We are now ready to present the following theorem on the convergence of the policy sequence
{[π1

θt
;π2
θt

]}0≤t≤T−1 to a neighborhood of a Nash equilibrium [π1
∗;π

2
∗]. Recall that Qmax

(i) and V max
(i)

are defined in (2.6) and (2.7), respectively. Also, recall that ζ is the concentrability coefficient in
Assumption 4.2, ιi is the Lipschitz coefficient in Assumption 4.3, and σ is defined in (4.13).
Theorem 4.5 (Convergence of Smooth FSP to Nash Equilibrium). Suppose that Assumptions 4.2-4.4
hold. We set the regularization parameter λi ≥ 2Mi, where

Mi =
[
2 +

∑
i∈{1,2}(V

max
(i) +Qmax

(i) · ζ)/(1− γ)
]
· ιi. (4.14)

In Algorithm 1, we set Emax
(i) = Qmax

(i) /(λi −Mi) and

αt,(i) =
1

(t+ 1) ·mini∈{1,2}{λi −Mi}
, α′t,(i) = 1− λi

(t+ 1) ·mini∈{1,2}{λi −Mi}
. (4.15)
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For the policy sequence {[π1
θt

;π2
θt

]}0≤t≤T−1 generated by the policy update in Line 7 of Algorithm
1, we have

1

T
·
T−1∑
t=0

[
J (π1

∗, π
2
θt)− J (π1

θt , π
2
∗)
]
≤
∑
i∈{1,2}

[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2

(1− γ) ·mini∈{1,2}{λi −Mi}
· log T

T
(4.16)

+
2σ ·mini∈{1,2}{λi −Mi}

(1− γ) · T
+

∑
i∈{1,2}

λi · log |Ai|.

Proof. See Appendix C for a detailed proof. The key to our proof is the convergence of infinite-
dimensional mirror descent with the primal and dual errors. In particular, the errors are characterized
in Appendix B.

Recall that the Lipschitz coefficient ιi is defined in Assumption 4.3. In Lemma C.2, we interpret ιi
as the Lipschitz coefficient of the marginalized Q(i)-function. Meanwhile, recall that Theorem 4.5
requires λi ≥ 2Mi, where Mi scales linearly with ιi. Hence, the smaller the Lipschitz coefficient ιi
is, the smaller the regularization parameter λi can be, which in turn leads to a smaller regularization
bias characterized in Proposition C.1. Thus, the policy sequence {[π1

θt
;π2
θt

]}0≤t≤T−1 generated by
Algorithm 1 converges to a smaller neighborhood of a Nash equilibrium [π1

∗;π
2
∗].

We give the following two sufficient conditions for the Lipschitz coefficients. (I) The two players have
similar influence to the game, i.e., ι1/ι2 = O(1): a sufficient requirement on both of the Lipschitz
coefficients is

ιi ≤ (1− γ)2
/[

8(1 + γ) · log |Ai|
]
, i ∈ {1, 2}.

(II) One of the two players (without loss of generality, we assume it is Player 2) has dominant
influence to the game compared to the other: let ι1/ι2 = z > 0, in which case we set Mi in (4.14) as

Mi =
√

2z ·
[
2 +

∑
i∈{1,2}(V

max
(i) +Qmax

(i) · ζ)/(1− γ)
]
· ι2, {1, 2}.

Then one sufficient requirement on the ratio z is

z ≤ (1− γ)4
/[

16(1 + γ)ι2 · log
(
|A1| · |A2|

)]2
.

As z moves towards zero, the convergence guarantee approaches those for single-controller case.
Please see Appendix I for a more detailed illustration on case(II).

We remark in the following that, with stronger assumptions, we can strengthen Theorem 4.5 to satisfy
Hannan consistency.
Remark 4.6 (Hannan Consistency). When Assumptions 4.2-4.4 hold for any policy [πi′;π−i′]
instead of only a Nash equilibrium [πi∗;π

−i
∗ ], we can prove that, when one of the player does not

update the policy as described in Algorithm 1, the opposing player can exploit the strategies it plays.
Specifically, for example, when Player 2 plays the policy sequence {π̃2

t }0≤t≤T−1 while Player 1
updates its policy according to Algorithm 1, we have

sup
π1

{
1

T
·
T−1∑
t=0

[
J (π1, π̃2

t )− J (π1
θt , π̃

2
t )
]}

(4.17)

≤ σ · (λ1 −M1)

(1− γ) · T
+

[
2 + 2λ21/(λ1 −M1)2

]
· (Qmax

(1) )2

(1− γ) · (λ1 −M1)
· log T

T
+ λ1 · log |A1|,

which implies that the policy sequence {π1
θt
}0≤t≤T−1 converges to the best policy in hindsight with

respect to {π̃2
t }0≤t≤T−1. As a consequence, we can also replace the left-hand side of (4.16) by the

following duality gap,

sup
π1

{
1

T
·
T−1∑
t=0

J (π1, π2
θt)

}
− inf

π2

{
1

T
·
T−1∑
t=0

J (π1
θt , π

2)

}
. (4.18)

See Appendix J for a more detailed illustration on Remark 4.6.
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András Antos, Csaba Szepesvári, and Rémi Munos. Fitted Q-iteration in continuous action-space
mdps. In Advances in Neural Information Processing Systems, pp. 9–16, 2008.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. arXiv preprint
arXiv:1901.08584, 2019.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.
The mechanics of n-player differentiable games. arXiv preprint arXiv:1802.05642, 2018.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent reinforcement
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
38(2):156–172, 2008.

Qi Cai, Zhuoran Yang, Jason D Lee, and Zhaoran Wang. Neural temporal-difference learning
converges to global optima. arXiv preprint arXiv:1905.10027, 2019.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of
natural policy gradient methods with entropy regularization. arXiv preprint arXiv:2007.06558,
2020.

Ashish Cherukuri, Bahman Gharesifard, and Jorge Cortes. Saddle-point dynamics: conditions for
asymptotic stability of saddle points. SIAM Journal on Control and Optimization, 55(1):486–511,
2017.

Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable programming.
arXiv preprint arXiv:1812.07956, 2018.

Vincent Conitzer and Tuomas Sandholm. Awesome: A general multiagent learning algorithm that
converges in self-play and learns a best response against stationary opponents. Machine Learning,
67(1-2):23–43, 2007.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song.
SBEED: Convergent reinforcement learning with nonlinear function approximation. arXiv preprint
arXiv:1712.10285, 2017.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances in Neural Information
Processing Systems, pp. 2253–2261, 2016.

Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent in
min-max optimization. In Advances in Neural Information Processing Systems, pp. 9236–9246,
2018.

William Dudziak. Using fictitious play to find pseudo-optimal solutions for full-scale poker. In IC-AI,
pp. 374–380, 2006.

Francisco Facchinei and Jong-Shi Pang. Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems. Springer Science & Business Media, 2007.

10



Under review as a conference paper at ICLR 2021
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A PROOF OF PROPOSITION 4.1

Proof. For all (s, ai) ∈ S ×Ai, taking the derivative of the Lagrangian of the optimization problem
with simplex constraints over πi,

αt,(i) ·
〈
Q̂
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s), π
i(· | s)− πiθt(· | s)

〉
−KL

(
πi(· | s)

∥∥πiθt(· | s))+ C ·
( ∑
ai∈Ai

πi(ai | s)− 1

)
+ C ′ ·

∑
ai∈Ai

πi(ai | s)

with respect to πi(ai | s), we obtain

αt,(i) ·
(
Q̂
πiθt ,π

−i
θt

(i) (s, ai)− λi · log πiθt(a
i | s)

)
− log πi(ai | s) + log πiθt(a

i | s) + C + C ′ − 1,

(A.1)
where C is a constant. Setting (A.1) to zero we further have

πit+1(ai | s) =
(
πiθt(a

i | s)
)1−λiαt,(i) · exp

{
αt,(i) · Q̂

πiθt ,π
−i
θt

(i) (s, ai) + C + C ′ − 1
}

= exp
{
α′t,(i) · Eθt,(i)(s, a

i) + αt,(i) · Q̂
πiθt ,π

−i
θt

(i) (s, ai) + C + C ′ − 1
}
,

where the second equality follows from λi = (1 − α′t,(i))/αt,(i). Thus, we know that (4.2) is

πit+1(· | s) ∝ exp{α′t,(i) ·Eθt,(i)(s, ·)+αt,(i) ·Q̂
πiθt ,π

−i
θt

(i) (s, · )}, which coincides with (3.3). Therefore,
we finish the proof.

B DISCUSSION ON ASSUMPTION 4.4

In this section, we make a detailed discussion on Assumption 4.4. First, we give the following

condition on the mean squared error of the estimations Q̂
πiθt ,π

−i
θt

(i) and Eθt+1,(i).

Condition B.1 (Approximation Error). For all 0 ≤ t ≤ T − 1, the estimator Q̂
πiθt ,π

−i
θt

(i) (s, ai) of the

marginalized Q(i)-function Q̃π
i
θt
,π−iθt (s, ai) satisfies

Eσt
[(
Q̂
πiθt ,π

−i
θt

(i) (s, ai)− Q̃
πiθt ,π

−i
θt

(i) (s, ai)
)2] ≤ εt, (B.1)

and the energy function update Eθt+1,(i)(s, a
i) satisfy

Eσt
[(
Eθt+1,(i)(s, a

i)− Êθt+1,(i)(s, a
i)
)2] ≤ ε′t. (B.2)

Condition B.1 can be satisfied for arbitrary small errors εt and ε′t if the following conditions are
satisfied: (I) the representation powers of parametrization Eθt+1,(i)(s, a

i) and the paramerization

of Q̂
πiθt ,π

−i
θt

(i) are strong enough. (II) the algorithms for learning Êt+1,(i)(s, a
i) and Q̃

πiθt ,π
−i
θt

(i) attain
stationary points after sufficiently many iterations. In this section, as an example, we take the most

commonly used neural network parameterization for Eθt+1,(i)(s, a
i) and Q̂

πiθt ,π
−i
θt

(i) .

Representation Power. There is a line of literature discussing the representation power of neural
networks (see, e.g., Daniely et al. (2016); Khrulkov et al. (2017)) showing that the overparameterized
neural networks possess strong representation power. Specifically, the representation power of neural
networks can be approximated as a subset of the reproducing kernel Hilbert space (RKHS) with
neural tangent kernel (Jacot et al., 2018; Chizat & Bach, 2018; Allen-Zhu et al., 2018; Lee et al., 2019;
Arora et al., 2019), which is a sufficiently rich function class. Moreover, we present the following
lemma justifying the choice of the truncation parameter Emax

(i) in Theorem 4.5.

Lemma B.2 (Bounded Energy Function). Let the regularization parameter λi and the stepsizes
αt,(i), α

′
t,(i) be chosen as in Theorem 4.5. In Algorithm 1, setting Emax

(i) = Qmax
(i) /(λi −Mi) makes

the function class FEmax
(i)

always cover the range of the estimated energy function update Êt,(i)
obtained in Line 6 of Algorithm 1.
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Proof. See Appendix H for a detailed proof.

Lemma B.2 states that, truncating the energy functions Eθt,(i) within the function classFQmax
(i)

/(λi−Mi)

does not compromise the MSE ε′t defined in (B.2).

Learning Algorithms. There are some recent advances (Cai et al., 2019; Liu et al., 2019) show-
ing that, when equipped with neural network parameterization, temporal-difference (TD) learning
converges to the stationary point. Also, as discussed in Liu et al. (2019), under neural network
parameterization, stochastic gradient descent also converges to the optima at a sublinear rate.

Next, by Lemmas 4.7-4.8 of Liu et al. (2019), we lay out error bounds in the form of those in
Assumption 4.4.

Lemma B.3. εt and ε′t in Assumption 4.4 take the forms of
εt = max

i∈{1,2}

{
|Ai|

}
· (ε′t)2, ε′t = ε′t · max

i∈{1,2}
{φ∗πiθt

}+ εt · ψ∗t ,

where

ψ∗t = Eσt
[∣∣∣∣dσ∗dσt

− dν∗

dνt

∣∣∣∣], φ∗πiθt
= Eσt

[∣∣∣∣dπi∗dπi0
−

dπiθt
dπi0

∣∣∣∣],
Here the density ratios are Radon-Nikodym derivatives.

Thus, as long as the learning algorithms run sufficiently many iterations such that the errors εt and ε′t
are sufficiently small, for σ defined in (4.13), σ = Õ(1) can be achieved. Finally, we remark that,
with some recent advances in the variance reduced techniques for policy optimization (Papini et al.,
2018; Xu et al., 2020; Shen et al., 2019; Xu et al., 2019; Huang et al., 2020), we expect the MSEs in
(B.1) and (B.2) being further reduced, which could possibly allow us to use relatively smaller neural

networks for Q̂
πiθt ,π

−i
θt

(i) and Eθt+1,(i). This can help to boost practicality of smooth FSP due to the
reduced computational cost associated with the reduced network size. We leave this direction to our
future research.

C PROOF OF THEOREM 4.5

In this section, we lay out the proof of Theorem 4.5. We have the following proposition on the
regularization bias of J(i)(πi, π−i) defined in (4.3).

Proposition C.1 (Regularization Bias). The regularized performance function J(i)(πi, π−i) satisfies

J (π1, π2) < J(1)(π1, π2) ≤ J (π1, π2) +
λ1 · log |A1|

1− γ
, (C.1)

−J (π1, π2) < J(2)(π2, π1) ≤ −J (π1, π2) +
λ2 · log |A2|

1− γ
(C.2)

for all policy pairs [π1, π2].

Proof. See Appendix D for a detailed proof.

Based on Assumptions 4.2 and 4.3, we have the following lemma on the Lipschitz continuity of the
marginalized Q(i)-function. Recall that ζ is the concentrability coefficient in Assumption 4.2 and ιi
is the Lipschitz coefficient in Assumption 4.3.

Lemma C.2 (Lipschitz Marginalized Q(i)-Function). Suppose that Assumption 4.2 holds. We
choose the regularization parameter λi, the truncation parameter Emax

(i) , and the stepsizes αt,(i), α′t,(i)
as in Theorem 4.5. We have for all [πi;π−i] = [πiθt ;π

−i
θt

] generated by the policy update in Line 4 of
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Algorithm 1 that,∣∣∣∣Eν∗[〈Q̃πi,π−i(i) (s, · )− Q̃π
i,π−i∗

(i) (s, · ), πi(· | s)− πi∗(· | s)
〉]∣∣∣∣

≤
√

2ιi · ι−i ·
{
Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))1/2 ·KL
(
π−i∗ (· | s)

∥∥π−i(· | s))1/2]
+
V max
(i) +Qmax

(i) · ζ
1− γ

· Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2 · Eν∗[KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2}.
Proof. See Appendix E for a detailed proof.

Recall that J(i)(πi, π−i) is defined in (4.3). We present the following extended performance differ-
ence lemma, which extends the performance difference lemma of Kakade & Langford (2002) to the
two-agent setting with entropy regularization.

Lemma C.3 (Extended Performance Difference). We have for all [πi;π−i] that,[
J(i)(πi∗, π−i∗ )− J(i)(πi, π−i∗ )

]
+

λi
1− γ

· Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))]
=

1

1− γ
· Eν∗

[〈
Q̃
πi,π−i∗
(i) (s, · )− λi · log πi(· | s), πi∗(· | s)− πi(· | s)

〉]
.

Proof. See Appendix F for a detailed proof.

The following lemma establishes the one-step descent of the KL-divergence between a Nash equilib-
rium [π1

∗;π
2
∗] and the policy sequence {[π1

θt
;π2
θt

]}0≤t≤T−1 generated by Line 4 of Algorithm 1 in the
infinite-dimensional policy space, which extends the analysis of mirror descent (Nemirovski & Yudin,
1983; Nesterov, 2013). Recall that the energy function Eθt,(i) is obtained in Line 7 of Algorithm 1
and the ideal energy function update Et+1,(i) is defined in (4.10).

Lemma C.4 (One-Step Descent). Suppose that the stepsizes satisfy α′t,(i) = 1− λiαt,(i). For the
policy sequence {πiθt}0≤t≤T−1 generated by the policy update in Line 4 of Algorithm 1, we have for
all s ∈ S that,
KL
(
πi∗(· | s)

∥∥πiθt+1
(· | s)

)
−KL

(
πi∗(· | s)

∥∥πiθt(· | s)) (C.3)

≥
〈
Eθt+1,(i)(s, ·)− Et+1,(i)(s, ·), πi∗(· | s)− πiθt(· | s)

〉
− 1/2 ·

∥∥Eθt+1,(i)(s, ·)− Eθt,(i)(s, ·)
∥∥2
∞

+ αt,(i) ·
〈
−Q̃

πiθt ,π
−i
θt

(i) (s, · ) + λi · log πiθt(· | s), π
i
∗(· | s)− πiθt(· | s)

〉
.

Proof. See Appendix G for a detailed proof.

Proof of Theorem 4.5. For notational simplicity, we write KL(πi∗(· | s) ‖πiθt+1
(· | s)) as KLt,(i)(s)

throughout this proof. By the choices of the stepsizes in (4.15) of Theorem 4.5, we have α′t,(i) =

1− λiαt,(i). By Lemma C.4, we have under (4.12) of Assumption 4.4 that,

Eν∗
[
KLt+1,(i)(s)

]
− Eν∗

[
KLt,(i)(s)

]
(C.4)

≤ ε′t + αt,(i) · Eν∗
[〈
−Q̃π

i
θt
,π−i∗

(i) (s, · ) + λi · log πiθt(· | s), π
i
∗(· | s)− πiθt(· | s)

〉]
︸ ︷︷ ︸

(I)

+ αt,(i) · Eν∗
[〈
−Q̃

πiθt ,π
−i
θt

(i) (s, · ) + Q̃
πiθt ,π

−i
∗

(i) (s, · ), πi∗(· | s)− πiθt(· | s)
〉]

︸ ︷︷ ︸
(II)

+ Eν∗
[
1/2 ·

∥∥Eθt+1,(i)
(s, ·)− Eθt,(i)(s, ·)

∥∥2
∞

]
︸ ︷︷ ︸

(III)

.
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For (I), by Lemma C.3, we have
(I) = (1− γ) ·

[
J(i)(πiθt , π

−i
∗ )− J(i)(πi∗, π−i∗ )

]
− λi · Eν∗

[
KLt,(i)(s)

]
. (C.5)

For (II), by Lemma C.2, we have

(II) ≤
√

2ιi · ι−i ·
{
Eν∗
[
KL

1/2
t,(i)(s) ·KL

1/2
t,(i)(s)

]
(C.6)

+
V max
(i) +Qmax

(i) · ζ
1− γ

· Eν∗
[
KLt,(i)(s)

]1/2 · Eν∗[KLt,(−i)(s)
]1/2}

≤
(

1 +
V max
(i) +Qmax

(i) · ζ
1− γ

)
·
(
ιi · Eν∗

[
KLt,(i)(s)

]
+ ι−i · Eν∗

[
KLt,(−i)(s)

])
.

For (III), by (4.11) of Assumption 4.4 and the definition of Êt+1,(i) in (3.8), we have

(III) ≤ Eν∗
[∥∥Eθt+1,(i)(s, ·)− Êt+1,(i)(s, ·)

∥∥2
∞ +

∥∥Êt+1,(i)(s, ·)− Eθt,(i)(s, ·)
∥∥2
∞

]
(C.7)

≤ εt + α2
t,(i) · Eν∗

[∥∥−λi · Eθt,(i)(s, · ) + Q̂
πiθt ,π

−i
θt

(i) (s, · )
∥∥2
∞

]
≤ εt + α2

t,(i) · Eν∗
[
2λ2i ·

∥∥Eθt,(i)(s, · )∥∥2∞ + 2 ·
∥∥Q̂πiθt ,π−iθt(i) (s, · )

∥∥2
∞

]
≤ εt +

[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2 · α2
t,(i).

Here the last inequality follows from the truncations Q̂
πiθt ,π

−i
θt

(i) ∈ FQmax
(i)

and Eθt,(i) ∈ FEmax
(i)

, where
Emax
(i) = Qmax

(i) /(λi −Mi).

Then plugging (C.5), (C.6), and (C.7) into (C.4), we obtain

Eν∗
[
KLt+1,(i)(s)

]
−
{

1−
[
λi −

(
1 +

V max
(i) +Qmax

(i) · ζ
1− γ

)
· ιi
]
· αt,(i)

}
· Eν∗

[
KLt,(i)(s)

]
≤ (εt + ε′t) +

(
1 +

V max
(i) +Qmax

(i) · ζ
1− γ

)
· ι−i · αt,(i) · Eν∗

[
KLt,(−i)(s)

]1/2
(C.8)

+ (1− γ)αt,(i) ·
[
J(i)(πiθt , π

−i
∗ )− J(i)(πi∗, π−i∗ )

]
+
[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2 · α2
t,(i).

Summing (C.8) for i ∈ {1, 2} and setting αt,(1) = αt,(2) = ηt, we obtain

(1− γ)ηt ·
∑

i∈{1,2}

[
J(i)(πi∗, π−i∗ )− J(i)(πiθt , π

−i
∗ )
]

(C.9)

≤
∑

i∈{1,2}

{
1−

{
λi −

[
2 +

∑
i∈{1,2}(V

max
(i) +Qmax

(i) · ζ)

1− γ

]
· ιi
}
· ηt
}
· Eν∗

[
KLt,(i)(s)

]
−

∑
i∈{1,2}

Eν∗
[
KLt+1,(i)(s)

]
+

[
2(εt + ε′t) +

∑
i∈{1,2}

[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2 · η2t
]

=
∑

i∈{1,2}

[
1− (λi −Mi) · ηt

]
· Eν∗

[
KLt,(i)(s)

]
−

∑
i∈{1,2}

Eν∗
[
KLt+1,(i)(s)

]
+

{
2(εt + ε′t) +

∑
i∈{1,2}

[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2 · η2t
}
.
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Multiplying the both sides of (C.9) by t+ 1 and setting ηt = 1/[(t+ 1) ·mini∈{1,2}{λi −M(i)}],
we obtain for all 0 ≤ t ≤ T − 1,

1− γ
mini∈{1,2}{λi −Mi}

·
∑

i∈{1,2}

[
J(i)(πi∗, π−i∗ )− J(i)(πiθt , π

−i
∗ )
]

≤ t ·
∑

i∈{1,2}

Eν∗
[
KLt,(i)(s)

]
− (t+ 1) ·

∑
i∈{1,2}

Eν∗
[
KLt+1,(i)(s)

]
+

{
2(t+ 1) · (εt + ε′t) +

∑
i∈{1,2}

[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2

(t+ 1) ·mini∈{1,2}{λi −Mi}2

}
. (C.10)

Telescoping (C.10) over 0 ≤ t ≤ T − 1, by
∑T
t=1 1/t ≤ log T and the nonnegativity of the

KL-divergence, we obtain

1− γ
T ·mini∈{1,2}{λi −Mi}

·
T−1∑
t=0

∑
i∈{1,2}

[
J(i)(πi∗, π−i∗ )− J(i)(πiθt , π

−i
∗ )
]

≤ 1

T
·
{

2 ·
T−1∑
t=0

(t+ 1) · (εt + ε′t) +

∑
i∈{1,2}

[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2

mini∈{1,2}{λi −Mi}2
·
T∑
t=1

1

t

}
−

∑
i∈{1,2}

Eν∗
[
KLT,(i)(s)

]
≤ 2σ

T
+

∑
i∈{1,2}

[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2

mini∈{1,2}{λi −Mi}2
· log T

T
, (C.11)

where σ is defined in (4.13). Finally, by Proposition C.1, we have∑
i∈{1,2}

[
J(i)(πi∗, π−i∗ )− J(i)(πiθt , π

−i
∗ )
]
≥ J (π1

∗, π
2
θt)− J (π1

θt , π
2
∗)−

∑
i∈{1,2}

λi · log |Ai|,

combining which with (C.11), we obtain

1

T
·
T−1∑
t=0

[
J (π1

∗, π
2
θt)− J (π1

θt , π
2
∗)
]

≤
2σ ·mini∈{1,2}{λi −Mi}

(1− γ) · T
+

∑
i∈{1,2}

[
2 + 2λ2i /(λi −Mi)

2
]
· (Qmax

(i) )2

(1− γ) ·mini∈{1,2}{λi −Mi}
· log T

T
+

∑
i∈{1,2}

λi · log |Ai|.

Thus, we conclude the proof of Theorem 4.5.

D PROOF OF PROPOSITION C.1

Proof. By the definition of J(1)(π1, π2) and J (π1, π2), we have

J(1)(π1, π2)− J (π1, π2) = Eν∗
[
V π

1,π2

(1) (s)− V π
1,π2

1 (s)
]

=
1

1− γ
· E

s′∼ρπ
1,π2

ν∗

[
rπ

1,π2

(1) (s′)− rπ
1,π2

1 (s′)
]

=
1

1− γ
· E

s′∼ρπ
1,π2

ν∗

[
λ1 ·H

(
π1(· | s)

)]
.

Since 0 < H(π1(· | s)) ≤ log |A1|, we further obtain

J (π1, π2) < J(1)(π1, π2) ≤ J (π1, π2) +
λ1 · log |A1|

1− γ
,

which finishes the proof of (C.1). Using the same argument, we can also prove (C.2).Thus, we
conclude the proof of Proposition C.1.
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E PROOF OF LEMMA C.2

In the subsequent analysis, using the notion of the state-transition operator Pπi,π−i in (4.7), we write
ρπ

i,π−i

s,ai,π−i , which is defined in (4.5), as

ρπ
i,π−i

s,ai,π−i =

[
(1− γ) ·

∞∑
t=0

γt · (Pπ
i,π−i)t

]
◦ Pa

i,π−i ◦ δs, (E.1)

where δs is the Dirac delta function.

Lemma E.1. Under Assumption 4.3, we have∥∥∥∥ ∞∑
t=0

γt ·
[
(Pπ

i,π−i)t − (Pπ
i,π−i∗ )t

]∥∥∥∥
op

≤ γιi
(1− γ)2

· Eν∗
[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2.

Proof. Since ‖Pπ1,π2‖op ≤ 1 (Lasota & Mackey, 2013), we have∥∥(Pπ
i,π−i)t − (Pπ

i,π−i∗ )t
∥∥
op

(E.2)

=
∥∥∥(Pπ

i,π−i)t−1 ◦ (Pπ
i,π−i − Pπ

i,π−i∗ ) +
[
(Pπ

i,π−i)t−1 − (Pπ
i,π−i∗ )t−1

]
◦ Pπ

i,π−i∗

∥∥∥
op

≤
∥∥(Pπ

i,π−i)t−1 ◦ (Pπ
i,π−i − Pπ

i,π−i∗ )
∥∥
op

+
∥∥∥[(Pπi,π−i)t−1 − (Pπ

i,π−i∗ )t−1
]
◦ Pπ

i,π−i∗

∥∥∥
op

≤ ‖Pπ
i,π−i − Pπ

i,π−i∗ ‖op +
∥∥(Pπ

i,π−i)t−1 − (Pπ
i,π−i∗ )t−1

∥∥
op
.

Recursively applying (E.2) gives∥∥(Pπ
i,π−i)t − (Pπ

i,π−i∗ )t
∥∥
op
≤ t · ‖Pπ

i,π−i − Pπ
i,π−i∗ ‖op

≤ t · ιi · Eν∗
[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))1/2],
where the second inequality follows from Assumption 4.3. Thus, we have∥∥∥∥ ∞∑

t=0

γt ·
[
(Pπ

i,π−i)t − (Pπ
i,π−i∗ )t

]∥∥∥∥
op

≤
∞∑
t=0

γt ·
∥∥(Pπ

i,π−i)t − (Pπ
i,π−i∗ )t

∥∥
op

≤
( ∞∑
t=0

tγt
)
· ιi · Eν∗

[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2
=

γιi
(1− γ)2

· Eν∗
[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2,
which concludes the proof of Lemma E.1.

Now we are ready to prove Lemma C.2.

Proof of Lemma C.2. By the definition of the Q(i)-function in (2.5), we have

Qπ
i,π−i

(i) (s, ai, a−i) = ri(s, a
i, a−i) + γ · Es′∼P(· | s,ai,a−i)

[
V π

i,π−i

(i) (s′)
]
,
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which gives∣∣∣∣Eν∗[〈Q̃πi,π−i(i) (s, · )− Q̃π
i,π−i∗

(i) (s, · ), πi(· | s)− πi∗(· | s)
〉]∣∣∣∣ (E.3)

=

∣∣∣∣Eν∗[〈r· ,π−ii (s)− r· ,π
−i
∗

i (s), πi(· | s)− πi∗(· | s)
〉

+
〈
[P · ,π

−i
◦ V π

i,π−i

(i) ](s)− [P · ,π
−i
∗ ◦ V π

i,π−i∗
(i) ](s), πi(· | s)− πi∗(· | s)

〉]∣∣∣∣
=

∣∣∣∣Eν∗[〈r· ,π−ii (s)− r· ,π
−i
∗

i (s), πi(· | s)− πi∗(· | s)
〉]∣∣∣∣︸ ︷︷ ︸

(I)

+

∣∣∣∣Eν∗[〈[P · ,π−i ◦ V πi,π−i(i) ](s)− [P · ,π
−i
∗ ◦ V π

i,π−i∗
(i) ](s), πi(· | s)− πi∗(· | s)

〉]∣∣∣∣︸ ︷︷ ︸
(II)

.

Upper Bounding (I): By the Cauchy-Schwartz inequality, we have

(I) ≤ Eν∗
[∥∥r· ,π−ii (s)− r· ,π

−i
∗

i (s)
∥∥
∞ ·
∥∥πi(· | s)− πi∗(· | s)∥∥1] (E.4)

≤
√

2 · ιi · Eν∗
[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))1/2 ·KL
(
πi∗(· | s)

∥∥πi(· | s))1/2],
where the second inequality follows from Assumption 4.3 and the Pinsker’s inequality. Meanwhile,
we have

(I) =

∣∣∣∣Eν∗[〈rπi, ·i (s)− rπ
i
∗, ·
i (s), π−i(· | s)− π−i∗ (· | s)

〉]∣∣∣∣ (E.5)

≤
√

2 · ι−i · Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))1/2 ·KL
(
π−i∗ (· | s)

∥∥π−i(· | s))1/2],
where the inequality follows from the same argument as (E.4). Combining (E.4) and (E.5), we obtain

(I) ≤
√

2ιi · ι−i · Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))1/2 ·KL
(
π−i∗ (· | s)

∥∥π−i(· | s))1/2]. (E.6)

Upper Bounding (II): Recall that we have

V π
i,π−i

(i) (s) =
1

1− γ
· E

s′∼ρπ
i,π−i
s

[
rπ

i,π−i

(i) (s′)
]

=
1

1− γ
· E

s′∼ρπ
i,π−i
s

[
rπ

i,π−i

i (s′) + λi ·H
(
πi(· | s′)

)]
,

which gives

(1− γ) ·
∣∣[Pai,π−i ◦ V πi,π−i(i) ](s)− [Pa

i,π−i∗ ◦ V π
i,π−i∗

(i) ](s)
∣∣ (E.7)

=

∣∣∣∣Es′∼ρπi,π−i
s,ai,π−i

[
rπ

i,π−i

i (s′) + λi ·H
(
πi(· | s′)

)]
− E

s′∼ρπ
i,π
−i
∗

s,ai,π
−i
∗

[
r
πi,π−i∗
i (s′) + λi ·H

(
πi(· | s′)

)]∣∣∣∣
≤
∣∣∣∣Es′∼ρπi,π−i

s,ai,π−i

[
rπ

i,π−i

i (s′) + λi ·H
(
πi(· | s′)

)]
− E

s′∼ρπ
i,π
−i
∗

s,ai,π
−i
∗

[
rπ

i,π−i

i (s′) + λi ·H
(
πi(· | s′)

)]∣∣∣∣
+ ιi · E

s′∼ρπ
i,π
−i
∗

s,ai,π
−i
∗

[∥∥π−i(· | s′)− π−i∗ (· | s′)
∥∥
1

]
≤
(
1 + λi · log |Ai|

)
· ‖ρπ

i,π−i

s,ai,π−i − ρ
πi,π−i∗
s,ai,π−i∗

‖L1(S)︸ ︷︷ ︸
(III)

+ιi · E
s′∼ρπ

i,π
−i
∗

s,ai,π
−i
∗

[
KL
(
π−i∗ (· | s′)

∥∥π−i(· | s′))1/2]︸ ︷︷ ︸
(IV)

,

where the first inequality follows from (4.9) of Assumption 4.3, and ρπ
i,π−i

s,ai,π−i is defined in (4.5).
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By (E.1), we have

(III) = (1− γ) ·
∥∥∥∥[ ∞∑

t=0

γt · (Pπ
i,π−i)t

]
◦ Pa

i,π−i ◦ δs −
[ ∞∑
t=0

γt · (Pπ
i,π−i∗ )t

]
◦ Pa

i,π−i∗ ◦ δs
∥∥∥∥
L1(S)

≤ (1− γ) ·
∥∥∥∥[ ∞∑

t=0

γt ·
[
(Pπ

i,π−i)t − (Pπ
i,π−i∗ )t

]]
◦ Pa

i,π−i ◦ δs
∥∥∥∥
L1(S)

+

∥∥∥∥[(1− γ) ·
∞∑
t=0

γt · (Pπ
i,π−i)t

]
◦ (Pa

i,π−i − Pa
i,π−i∗ ) ◦ δs

∥∥∥∥
L1(S)

. (E.8)

Since ‖Pπi,π−i‖op ≤ 1, we have∥∥∥∥(1− γ) ·
∞∑
t=0

γt · (Pπ
i,π−i)t

∥∥∥∥
op

≤ (1− γ) ·
∞∑
t=0

γt · ‖Pπ
i,π−i‖top ≤ 1,

plugging which and Lemma E.1 into (E.8) gives

(III) ≤ (1− γ) ·
∥∥∥∥ ∞∑
t=0

γt ·
[
(Pπ

i,π−i)t − (Pπ
i,π−i∗ )t

]∥∥∥∥
op

· ‖Pa
i,π−i‖op · ‖δs‖L1(S)

+

∥∥∥∥(1− γ) ·
∞∑
t=0

γt · (Pπ
i,π−i)t

∥∥∥∥ · ‖Pai,π−i − Pai,π−i∗ ‖op · ‖δs‖L1(S)

≤ ιi
1− γ

· Eν∗
[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2. (E.9)

By the Cauchy-Schwartz inequality, we have

(IV) = Es′∼ν∗
[dρ

πi,π−i∗
s,ai,π−i∗

dν∗
·KL

(
π−i∗ (· | s)

∥∥π−i(· | s))1/2]

≤ Eν∗
[∣∣∣∣dρ

πi,π−i∗
s,ai,π−i∗

dν∗

∣∣∣∣2]1/2 · Es′∼ν∗[KL
(
π−i∗ (· | s′)

∥∥π−i(· | s′))]1/2
≤ ζ · Eν∗

[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2, (E.10)

where the last inequality follows from Assumption 4.2 and the Pinsker’s inequality. Plugging (E.9)
and (E.10) into (E.7), we obtain for all s ∈ S and ai ∈ Ai that,∣∣[Pai,π−i ◦ V πi,π−i(i) ](s)− [Pa

i,π−i∗ ◦ V π
i,π−i∗

(i) ](s)
∣∣

≤
V max
(i) + ζ

1− γ
· ιi · Eν∗

[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2,
which further gives

(II) ≤ Eν∗
[∥∥[P · ,π

−i
◦ V π

i,π−i

(i) ](s)− [P · ,π
−i
∗ ◦ V π

i,π−i∗
(i) ](s)

∥∥
∞ ·
∥∥πi(· | s)− πi∗(· | s)∥∥1] (E.11)

≤
V max
(i) + ζ

1− γ
· ιi · Eν∗

[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2 · Eν∗[∥∥πi(· | s)− πi∗(· | s)∥∥1]
≤

√
2 · (V max

(i) + ζ) · ιi
1− γ

· Eν∗
[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2 · Eν∗[KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2,
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where the first inequality follows from the Cauchy-Schwartz inequality and the last inequality follows
from the Pinsker’s inequality. Alternatively, we can also write

(II) =

∣∣∣∣Eν∗[〈[(Pπi, · − Pπi∗, ·) ◦ V πi,π−i(i)

]
(s), π−i(· | s)− π−i∗ (· | s)

〉]
+ Eν∗

[〈[
P · ,π

−i
∗ ◦ (V π

i,π−i

(i) − V π
i,π−i∗

(i) )
]
(s), πi(· | s)− πi∗(· | s)

〉]∣∣∣∣
≤
∣∣∣∣Eν∗[〈[(Pπi, · − Pπi∗, ·) ◦ V πi,π−i(i)

]
(s), π−i(· | s)− π−i∗ (· | s)

〉]∣∣∣∣︸ ︷︷ ︸
(V)

+

∣∣∣∣Eν∗[[(Pπi,π−i∗ − Pπi∗,π−i∗ ) ◦ (V π
i,π−i

(i) − V π
i,π−i∗

(i) )
]
(s)
]∣∣∣∣︸ ︷︷ ︸

(VI)

. (E.12)

By (4.8) of Assumption 4.3, we have for all s ∈ S and a−i ∈ A−i that,∣∣∣[(Pπi,a−i − Pπi∗,a−i) ◦ V πi,π−i(i)

]
(s)
∣∣∣ ≤ V max

(i) · ‖Pπ
i,a−i − Pπ

i
∗,a
−i
‖op

≤ V max
(i) · ι−i · Eν∗

[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2,
which gives

(V) ≤ Eν∗
[∥∥∥[(Pπi, · − Pπi∗, ·) ◦ V πi,π−i(i)

]
(s)
∥∥∥
∞
·
∥∥π−i(· | s)− π−i∗ (· | s)

∥∥
1

]
(E.13)

≤
√

2 · V max
(i) · ι−i · Eν∗

[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2 · Eν∗[KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2.
≤

√
2 · V max

(i)

1− γ
· ι−i · Eν∗

[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2 · Eν∗[KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2.
Here the second inequality follows from the Pinsker’s inequality.

Meanwhile, we have

(VI) ≤ Eν∗
[∣∣∣[(Pπi,π−i∗ − Pπi∗,π−i∗ ) ◦ (V π

i,π−i

(i) − V π
i,π−i∗

(i) )
]
(s)
∣∣∣] (E.14)

≤ ‖Pπ
i,π−i∗ − Pπ

i
∗,π
−i
∗ ‖op · Eν∗

[∣∣V πi,π−i(i) (s)− V π
i,π−i∗

(i) (s)
∣∣]

≤ ι−i · Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2 · Eν∗[∣∣V πi,π−i(i) (s)− V π
i,π−i∗

(i) (s)
∣∣].

By the same argument in the proof of Lemma C.3, we have

V π
i,π−i

(i) (s)− V π
i,π−i∗

(i) (s) =
1

1− γ
· E

s′∼ρπ
i,π
−i
∗

s

[〈
Q̃π

i,π−i

(i) (s′, ·), π−i∗ (· | s′)− π−i(· | s′)
〉]
,

which gives

Eν∗
[∣∣V πi,π−i(i) (s)− V π

i,π−i∗
(i) (s)

∣∣] ≤ 1

1− γ
· E

s′∼ρπ
i,π
−i
∗

ν∗,πi∗,π
−i
∗

[∥∥Q̃πi,π−i(i) (s′, ·)
∥∥
∞ ·
∥∥π−i∗ (· | s′)− π−i(· | s′)

∥∥
1

]
≤
Qmax

(i)

1− γ
· E

s′∼ρπ
i,π
−i
∗

ν∗,πi∗,π
−i
∗

[∥∥π−i∗ (· | s′)− π−i(· | s′)
∥∥
1

]
≤

√
2 ·Qmax

(i) · ζ
1− γ

· Eν∗
[
KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2, (E.15)

where the last inequality follows from the same arguments in (E.10). Taking (E.15) into (E.14), we
obtain

(VI) ≤

√
2 ·Qmax

(i) · ζ
1− γ

· ι−i · Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2 · Eν∗[KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2,
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pugging which and (E.13) into (E.12) gives

(II) ≤

√
2 · (V max

(i) +Qmax
(i) · ζ)

1− γ
· ι−i · Eν∗

[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2 · Eν∗[KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2.
(E.16)

Combining (E.11) and (E.16), we obtain

(II) ≤
V max
(i) +Qmax

(i) · ζ
1− γ

·
√

2ιi · ι−i · Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2 · Eν∗[KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2.
(E.17)

Finally, taking (E.6) and (E.17) in to (E.3), we obtain∣∣∣∣Eν∗[〈Q̃πi,π−i(i) (s, · )− Q̃π
i,π−i∗

(i) (s, · ), πi(· | s)− πi∗(· | s)
〉]∣∣∣∣

≤
√

2ιi · ι−i ·
{
Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))1/2 ·KL
(
π−i∗ (· | s)

∥∥π−i(· | s))1/2]
+
V max
(i) +Qmax

(i) · ζ
1− γ

· Eν∗
[
KL
(
πi∗(· | s)

∥∥πi(· | s))]1/2 · Eν∗[KL
(
π−i∗ (· | s)

∥∥π−i(· | s))]1/2},
which concludes the proof of Lemma C.2.

F PROOF OF LEMMA C.3

Proof. The proof extends that of Lemma 6.1 in Kakade & Langford (2002) to zero-sum Markov
games. By the definition of V π

i,π−i

(i) (s) in (2.1), we have

V
πi∗,π

−i
∗

(i) (s) (F.1)

= Eπi∗,π−i∗

[ ∞∑
t=0

γt ·
(
r
πi∗,π

−i
∗

(i) (st, a
i, a−i) + V

πi,π−i∗
(i) (st)− V

πi,π−i∗
(i) (st)

) ∣∣∣∣ s0 = s

]

= Eπi∗,π−i∗

[ ∞∑
t=0

γt ·
(
r
πi∗,π

−i
∗

(i) (st, a
i, a−i) + γ · V π

i,π−i∗
(i) (st+1)− V π

i,π−i∗
(i) (st)

) ∣∣∣∣ s0 = s

]
+ V

πi,π−i∗
(i) (s).

By the definition of Q(i)-function, we have

Q
πi,π−i∗
(i) (s, ai, a−i) = r(s, ai, a−i) + γ · Es′∼P(· | s,ai,a−i)

[
V
πi,π−i∗
(i) (s′)

]
,

which gives

Eπi∗,π−i∗
[
r
πi∗,π

−i
∗

(i) (s) + γ · Es′∼P(· | s,ai,a−i)
[
V
πi,π−i∗
(i) (s′)

]
− V π

i,π−i∗
(i) (s)

]
(F.2)

= Eπi∗,π−i∗
[
r(s, a1, a−i)− λi · log πi∗(a

i | s) + γ · Es′∼P(· | s,ai,a−i)
[
V
πi,π−i∗
(i) (s′)

]
− V π

i,π−i∗
(i) (s)

]
= Eπi∗,π−i∗

[
Q
πi,π−i∗
(i) (s, ai, a−i)− V π

i,π−i∗
(i) (s)

]
+ λi ·H

(
πi∗(· | s)

)
=
〈
Q̃
πi,π−i∗
(i) (s, · ), πi∗(· | s)− πi(· | s)

〉
+ λi ·H

(
πi∗(· | s)

)
− λi ·H

(
πi(· | s)

)
.

Here the last equality follows from

V
πi,π−i∗
(i) (s) = Eπi,π−i∗

[
Q
πi,π−i∗
(i) (s, ai, a−i)− λi · log πi(ai | s)

]
=
〈
Q̃
πi,π−i∗
(i) (s, · ), πi(· | s)

〉
+ λi ·H

(
πi(· | s)

)
.

For the entropy terms in (F.2), we have
H
(
πi∗(· | s)

)
=
〈
− log πi∗(· | s), πi∗(· | s)

〉
=
〈
− log πi(· | s), πi∗(· | s)

〉
−
〈

log
(
πi∗(· | s)/πi(· | s)

)
, πi∗(· | s)

〉
=
〈
− log πi(· | s), πi∗(· | s)

〉
−KL

(
πi∗(· | s)

∥∥πi(· | s)),
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which gives
H
(
πi∗(· | s)

)
−H

(
πi(· | s)

)
=
〈
− log πi(· | s), πi∗(· | s)− πi(· | s)

〉
−KL

(
πi∗(· | s)

∥∥πi(· | s)). (F.3)
Taking (F.2) and (F.3) into (F.1), we have

V
πi∗,π

−i
∗

(i) (s)− V π
i,π−i∗

(i) (s) (F.4)

= Eπi∗,π−i∗

[ ∞∑
t=0

γt ·
(〈
Q̃
π1,π−i∗
(i) (st, · )− λi · log πi(· | st), πi∗(· | st)− πi(· | st)

〉
− λi ·KL

(
πi∗(· | st)

∥∥πi(· | st))) ∣∣∣∣ s0 = s

]
=

1

1− γ
· E

s′∼ρπ
i
∗,π
−i
∗

s

[〈
Q̃
π1,π−i∗
(i) (s′, · )− λi · log πi(· | s′), πi∗(· | s′)− πi(· | s′)

〉
− λi ·KL

(
πi∗(· | s′)

∥∥πi(· | s′))],
where ρπ

i
∗,π
−i
∗

s is defined in (4.4) as the visitation measure of the policy pair [πi∗;π
−i
∗ ] starting from

state s. Taking Eν∗ [ · ] on both sides of (F.4) and recalling the definition of J(i)(πi, π−i) in (4.3), we
have

J(i)(πi∗, π−i∗ )− J(i)(πi, π−i∗ ) +
λi

1− γ
· Eν∗

[
KL
(
πi∗(· | s)

∥∥πi(· | s))]
=

1

1− γ
· Eν∗

[〈
Q̃
πi,π−i∗
(i) (s, · )− λi · log πi(· | s), πi∗(· | s)− πi(· | s)

〉]
.

Here we use the fact that Es′∼ν∗ [ · ] = E
s′∼ρπ

i
∗,π
−i
∗

s ,s∼ν∗
[ · ]. Thus,we finish the proof of Lemma

C.3.

G PROOF OF LEMMA C.4

Proof. First, we have for any s ∈ S that,
KL
(
πi∗(· | s)

∥∥πiθt(· | s))−KL
(
πi∗(· | s)

∥∥πiθt+1
(· | s)

)
(G.1)

= KL
(
πiθt+1

(· | s)
∥∥πiθt(· | s))+

〈
log

[
πiθt+1

(· | s)
πiθt(· | s)

]
, πiθt(· | s)− π

i
θt+1

(· | s)
〉

+

〈
log

[
πiθt+1

(· | s)
πiθt(· | s)

]
, πi∗(· | s)− πiθt(· | s)

〉
= KL

(
πiθt+1

(· | s)
∥∥πiθt(· | s))+

〈
log

[
πiθt+1

(· | s)
πiθt(· | s)

]
, πiθt(· | s)− π

i
θt+1

(· | s)
〉

+

〈
log

[
πiθt+1

(· | s)
πiθt(· | s)

]
− αt,(i) ·

(
Q̃
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s)
)
, πi∗(· | s)− πiθt(· | s)

〉
+ αt,(i) ·

〈
Q̃
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s), π
i
∗(· | s)− πiθt(· | s)

〉
.

Recall that

πit+1(· | s) ∝ exp
{

(1− λiαt,(i)) · Eθt,(i)(s, ·) + αt,(i) · Q̃
πiθt ,π

−i
θt

(i) (s, · )
}

∝ exp
{
Eθt,(i)(s, ·) + αt,(i) ·

(
Q̃
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s)
)}
.

Let

Zt+1,(i)(s) =
∑
ai∈Ai

exp
{
Eθt,(i)(s, a

i) + αt,(i) ·
(
Q̃
πiθt ,π

−i
θt

(i) (s, ai)− λi · log πiθt(a
i | s)

)}
,
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and
Zθt,(i)(s) =

∑
ai∈Ai

exp
{
Eθt+1,(i)(s, a

i)
}
.

where are only dependent on the state s. It can be verified that 〈logZθt,(i)(s), π
i(· | s)− πi′(· | s)〉 =

〈logZt,(i)(s), π
i(· | s)−πi′(· | s)〉 = 0 for all t, πi, and πi′, which implies that, on the right-hand-side

of (G.1),〈
log πiθt(· | s) + αt,(i) ·

(
Q̃
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s)
)
, πi∗(· | s)− πiθt(· | s)

〉
=
〈
Eθt,(i)(s, ·)− logZθt,(i)(s) + αt,(i) ·

(
Q̃
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s)
)
, πi∗(· | s)− πiθt(· | s)

〉
=
〈
Eθt,(i)(s, ·) + αt,(i) ·

(
Q̃
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s)
)
− logZt+1,(i)(s), π

i
∗(· | s)− πiθt(· | s)

〉
=
〈
log πit+1(· | s), πi∗(· | s)− πiθt(· | s)

〉
, (G.2)

and〈
log

[
πiθt+1

(· | s)
πiθt(· | s)

]
, πiθt(· | s)− π

i
θt+1

(· | s)
〉

=
〈
Eθt+1,(i)(s, ·)− Eθt,(i)(s, ·), π

i
θt(· | s)− π

i
θt+1

(· | s)
〉

−
〈
logZθt+1,(i)(s), π

i
θt(· | s)− π

i
θt+1

(· | s)
〉

+
〈
logZθt,(i)(s), π

i
θt(· | s)− π

i
θt+1

(· | s)
〉

=
〈
Eθt+1,(i)(s, ·)− Eθt,(i)(s, ·), π

i
θt(· | s)− π

i
θt+1

(· | s)
〉
. (G.3)

Plugging (G.2) and (G.3) into (G.1), we obtain
KL
(
πi∗(· | s)

∥∥πiθt(· | s))−KL
(
πi∗(· | s)

∥∥πiθt+1
(· | s)

)
(G.4)

=

〈
log

[
πiθt+1

(· | s)
πit+1(· | s)

]
, πi∗(· | s)− πiθt(· | s)

〉
+
〈
Eθt+1,(i)(s, ·)− Eθt,(i)(s, ·), π

i
θt(· | s)− π

i
θt+1

(· | s)
〉

+ αt,(i) ·
〈
Q̃
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s), π
i
∗(· | s)− πiθt(· | s)

〉
+ KL

(
πiθt+1

(· | s)
∥∥πiθt(· | s))

≥
〈

log

[
πiθt+1

(· | s)
πit+1(· | s)

]
, πi∗(· | s)− πiθt(· | s)

〉
−
∥∥Eθt+1,(i)(s, ·)− Eθt,(i)(s, ·)

∥∥
∞ ·
∥∥πiθt(· | s)− πiθt+1

(· | s)
∥∥
1

+ αt,(i) ·
〈
Q̃
πiθt ,π

−i
θt

(i) (s, · )− λi · log πiθt(· | s), π
i
∗(· | s)− πiθt(· | s)

〉
+ 1/2 ·

∥∥πiθt+1
(· | s)− πiθt(· | s)

∥∥2
1
,

where in the last inequality we use the Cauchy-Schwartz inequality and the Pinsker’s inequality.
Rearranging the terms in (G.4), we finish the proof of Lemma C.4.

H PROOF OF LEMMA B.2

Proof. We prove the lemma by induction. First, since |Q̂
πiθ0

,π−iθ0
(i) (s, ai)| ≤ Qmax

(i) , we have∣∣Ê1,(i)(s, ai)∣∣ =
∣∣(1− λiα0,(i)) · Eθ0,(i)(s, a

i) + α0,(i) · Q̂
πiθ0

,π−iθ0
(i) (s, ai)

∣∣
= α0,(i) ·

∣∣Q̂πiθ0 ,π−iθ0(i) (s, ai)
∣∣ ≤ Qmax

(i) /(λi −M(i)),

where the last inequality follows from α0,(i) = 1/(λi−Mi). This means that setting |Eθ1,(i)(s, ai)| ≤
Qmax

(i) /(λi −Mi) covers the range of Ê1,(i)(s, ai).

Now suppose that |Êθt,(i)(s, ai)| ≤ Qmax
(i) /(λi −Mi). By λi ≥ 2Mi, we have for all t ≥ 1 that,

λiαt,(i) =
λi

(t+ 1) · (λi −Mi)
≤ λi

2(λi −Mi)
≤ 1.
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Thus, we have that, for all t ≥ 1 and (s, ai) ∈ S ×Ai,∣∣Êt+1,(i)(s, a
i)
∣∣ =

∣∣(1− λiαt,(i)) · Eθt,(i)(s, ai) + αt,(i) · Q̂
πiθt ,π

−i
θt

(i) (s, ai)
∣∣

≤
(

1− λi
(t+ 1) · (λi −Mi)

)
·
∣∣Eθt,(i)(s, ai)∣∣+

1

(t+ 1) · (λi −Mi)
·
∣∣Q̂πiθt ,π−iθt(i) (s, ai)

∣∣
≤ t · (λi −Mi)−Mi

(t+ 1) · (λi −Mi)
·
Qmax

(i)

λi −Mi
+

Qmax
(i)

(t+ 1) · (λi −Mi)

≤ t

t+ 1
·
Qmax

(i)

λi −Mi
+

Qmax
(i)

(t+ 1) · (λi −Mi)
=

Qmax
(i)

λi −Mi
,

which means that setting |Eθt+1,(i)(s, a
i)| ≤ Qmax

(i) /(λi−Mi) covers the range of Êt+1,(i)(s, a
i). By

induction, we conclude the proof of Lemma B.2.

I IMBALANCED INFLUENCE

When the two players have imbalanced influence to the game (without loss of generality, we assume
Player 2 has a dominant influence to the game), we let ι1/ι2 = z. In this case, we can replace (C.6)
by

(II) ≤
√

2z · ι2 ·
{
Eν∗
[
KL

1/2
t,(i)(s) ·KL

1/2
t,(i)(s)

]
+
V max
(i) +Qmax

(i) · ζ
1− γ

· Eν∗
[
KLt,(i)(s)

]1/2 · Eν∗[KLt,(−i)(s)
]1/2}

≤
√

2z ·
(

1 +
V max
(i) +Qmax

(i) · ζ
1− γ

)
·
(
ι2 · Eν∗

[
KLt,(i)(s)

]
+ ι2 · Eν∗

[
KLt,(−i)(s)

])
.

As a consequence, with Mi in (4.14) replaced by

Mi =
√

2z ·
[
2 +

∑
i∈{1,2}(V

max
(i) +Qmax

(i) · ζ)/(1− γ)
]
· ι2, i ∈ {1, 2},

the convergence guarantee established in Theorem 4.5 remains valid. Taking λ1 = λ2 = x · ι2
√

2z
into λi ≥ 2Mi, we obtain

x ≥ 2 +
∑
i∈{1,2}(V

max
(i) +Qmax

(i) · ζ)/(1− γ).

For the above inequality to hold, we have a sufficient requirement for the ratio z as

z ≤ (1− γ)4
/[

16(1 + γ)ι2 · log
(
|A1| · |A2|

)]2
.

J STRONGER ASSUMPTION: HANNAN CONSISTENCY

In the proof of Theorem 4.5 in Appendix C, we replace π2
θt

and π2
∗ with π̃2

t . Also, we replace π1
∗ with

π1
† = argmax

π1

{
1

T
·
T−1∑
t=0

J (π1, π̃2
t )

}
.

With stronger assumptions stated in 4.2, corresponding to (C.8), we have
(1− γ)αt,(1) ·

[
J(1)(π1

† , π̃
2
t )− J(1)(π1

θt , π̃
2
t )
]

≤ Eν∗
[
KL†t+1,(1)(s)

]
−
{

1−
{
λ1 −

[
1 +

V max
(1) +Qmax

(1) · ζ
1− γ

]
· ι1
}
· αt,(1)

}
· Eν∗

[
KL†t,(1)(s)

]
(εt + ε′t) +

[
2 + 2λ21/(λ1 −M1)2

]
· (Qmax

(1) )2 · α2
t,(1), (J.1)

where KL†t+1,(1)(s) = KL(π1
† (· | s) ‖π1

θt
(· | s)). Here we drop the KL-divergence term for Player 2

since π2
∗ and π2

θt
are replaced by the same policy π̃2

t . Also, the regularization parameter λ2 is dropped
since now Player 2 no longer uses such a regularization parameter to update its policies. Multiplying
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both sides of (J.2) and setting the stepsize αt,(1) as the stepsize choice in Theorem 4.5, we obtain
1− γ

(λ1 −M1)
·
[
J(1)(π1

† , π̃
2
t )− J(1)(π1

θt , π̃
2
t )
]

≤ t · Eν∗
[
KL†t,(1)(s)

]
− (t+ 1) · Eν∗

[
KL†t+1,(1)(s)

]
+ (t+ 1) · (εt + ε′t) +

[
2 + 2λ21/(λ1 −M1)2

]
· (Qmax

(1) )2

(t+ 1) · (λ1 −M1)
, (J.2)

applying same argument in the proof of Theorem 4.5, we obtain

sup
π1

{
1

T
·
T−1∑
t=0

[
J (π1, π̃2

t )− J (π1
θt , π̃

2
t )
]}

=
1

T
·
T−1∑
t=0

[
J (π1

† , π̃
2
t )− J (π1

θt , π̃
2
t )
]

≤ σ · (λ1 −M1)

(1− γ) · T
+

[
2 + 2λ21/(λ1 −M1)2

]
· (Qmax

(1) )2

(1− γ) · (λ1 −M1)
· log T

T
+ λ1 · log |A1|.

Thus, we conclude the proof of (4.17). Using the same argument as above, we can also prove the
same result for Player 2 when Player 1 does not update its policies according to Algorithm 1. Setting
π̃1
t = π1

† = π1
∗ and π̃2

t = π2
† = π2

∗, and combining such result for both players, we can replace the
left-hand side of the convergence guarantee established in Theorem 4.5 by (4.18). Thus, the proposed
Algorithm 1 is Hannan consistent.
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