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A PROOF OF PROPOSITION [4.1]

Proof. Forall (s,a’) € S x A, taking the derivative of the Lagrangian of the optimization problem
with simplex constraints over 7°,

<Q?ff (s, ) = A log g, (-] ), ' (| s) — mp, (-] 5))

—KL(7"(-| s) || 5, (-] ) + C - ( Z m'(a’|s) — 1) +C'- Z m'(a" | s)
ate Al a’e A
with respect to 7¢(a’ | s), we obtain

o (i) (@?f)‘ "o (s,a%) — A - log T, (a'|s)) —logm'(a’ | s) +logmp, (a’ |s) + C +C' -1,
(A1)
where C is a constant. Setting (A.T) to zero we further have

. . . B _A’iat i , T ’L
T (a'|s) = (ﬂét(a”|s))1 @ exp{ay, ) Q(e’ o (s,a)—l—C—i—C’—l}
= exp{aj ) - €, (5,0") + i) - Q(St’ “(s,a")+C+C —1},
where the second equality follows from A; = (1 — o (;))/ ;). Thus, we know that @2 is

1| 8) ocexplag ;) -Ea, i) (8, )+ iy Qwet o ¢ (s, - )}, which coincides with (3:3). Therefore,
we finish the proof. O

B DISCUSSION ON ASSUMPTION [4.4]

In this section, we make a detailed discussion on Assumption [4.4] First, we give the following

—i

.. . . ATy T
condition on the mean squared error of the estimations Q(:)‘ ’ and &y, ()

Condition B.1 (Approximation Error). Forall 0 < ¢ < T — 1, the estimator @7(29; o (s,a’) of the

marginalized Q(i)—function Q0 ™ox (s,a’) satisfies

o, 570 ™o, iy) 2
By, (@0 ™ (s.0%) ~ G ™ (s.0%)7] <2 (B.1)
and the energy function update &, , (;)(s,a’) satlsfy
i & iy) 2
EUt, [(59t+1,(i)(87 a ) - 59t+17(i)(57a )) ] < 8;' (B.2)

Condition can be satisfied for arbitrary small errors ¢, and ¢; if the following conditions are
satisfied: (I) the representation powers of parametrization &, (;)(s,a") and the paramerization

of @er)“waf are strong enough. (II) the algorithms for learning §t+17(i) (s,a’) and @:f)“we* attain

stationary points after sufficiently many iterations. In this section, as an example we take the most

commonly used neural network parameterization for &, ,, (;)(s,a’) and Q( o Moy .

Representation Power. There is a line of literature discussing the representation power of neural
networks (see, e.g., Daniely et al.| (2016); [Khrulkov et al.|(2017))) showing that the overparameterized
neural networks possess strong representation power. Specifically, the representation power of neural
networks can be approximated as a subset of the reproducing kernel Hilbert space (RKHS) with
neural tangent kernel (Jacot et al., 2018}; |(Chizat & Bachl 2018;|Allen-Zhu et al.||2018} Lee et al.,[2019;
Arora et al.,[2019)), which is a sufficiently rich function class. Moreover, we present the following
lemma Justlfylng the choice of the truncation parameter 5 ma" in Theorem

Lemma B.2 (Bounded Energy Function). Let the regularlzation parameter \; and the stepsizes
Qv (35 O (1) be chosen as in Theorem In Algorithm setting ™ = Q™ (\i — M;) makes

the function class ‘/—"gzlil)ax always cover the range of the estimated energy function update a)(i)
obtained in Line [6]of Algorithm
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Proof. See Appendix [H|for a detailed proof. O

Lemmastates that, truncating the energy functions &y, ;) within the function class ]-"Q?;?x J(hi—M;)
does not compromise the MSE &} defined in (B.2).

Learning Algorithms. There are some recent advances (Cai et al., 2019; [Liu et al., [2019) show-
ing that, when equipped with neural network parameterization, temporal-difference (TD) learning
converges to the stationary point. Also, as discussed in |Liu et al.[(2019), under neural network
parameterization, stochastic gradient descent also converges to the optima at a sublinear rate.

Next, by Lemmas 4.7-4.8 of [Liu et al.[|(2019), we lay out error bounds in the form of those in
Assumption [d.4]

Lemma B.3. ¢, and €} in Assumption[4.4]take the forms of

€ = max {|A1|} . (5;)2, 62 = E; . lg{li};}{(é;(;,} + & - wz"
do* dv*

i€{1,2}
;= Ea - y *i = EU 3
wt ¢ |: dO’t dl/t :| ¢ﬂ’9t ¢ |: :|
Here the density ratios are Radon-Nikodym derivatives.
Thus, as long as the learning algorithms run sufficiently many iterations such that the errors e; and &}
are sufficiently small, for o defined in (4.13), o = O(1) can be achieved. Finally, we remark that,
with some recent advances in the variance reduced techniques for policy optimization (Papini et al.}

2018; Xu et al.,2020; Shen et al.,|2019; | Xu et al.,|2019; Huang et al., 2020), we expect the MSEs in
(B.1)) and being further reduced, which could possibly allow us to use relatively smaller neural

where

dri  dm ,
dwé dﬁé

P
T, T,

networks for @ () and &y, , | (;)- This can help to boost practicality of smooth FSP due to the

reduced computational cost associated with the reduced network size. We leave this direction to our
future research.

C PROOF OF THEOREM

In this section, we lay out the proof of Theorem .5 We have the following proposition on the
regularization bias of J(;) (7", 7~") defined in (@.3).

Proposition C.1 (Regularization Bias). The regularized performance function J(;) (7, =) satisfies

Ar-l 1

J(nt,7?) < (7(1)(7T1,7T2) < J(nt,7?) + %7 (C.1)
-
Az -1 2

~J(x, 7% < J2) (w2, 7 < =J(x, 7?) + %W (C.2)

-7

for all policy pairs 7!, 2.

Proof. See Appendix [D|for a detailed proof. O

Based on Assumptions {.2]and[4.3] we have the following lemma on the Lipschitz continuity of the
marginalized @) ;)-function. Recall that ¢ is the concentrability coefficient in Assumptionand Li
is the Lipschitz coefficient in Assumptiond.3]

Lemma C.2 (Lipschitz Marginalized Q;)-Function). Suppose that Assumption holds. We
choose the regularization parameter J\;, the truncation parameter 5(“;‘)(“", and the stepsizes ay (), @} i

) )
as in Theorem We have for all [7%; m~*] = [r} ; 7, ] generated by the policy update in Line EI of
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Algorithm [T] that,
’EV* |:<QVE;)77T7 (Sa ) - QVE;)JT* (57 . )77Ti(' | 5) - 7'1';( ‘ 8)>i| ’

< zwi-{EV*[KL<wz;<-|s>||wi< ()" KL L) || 774 19) 7]

max + Qmax . ] . 1/2 1/2
T E,- [KL(Tri(- BIExE s))} E,- [KL(W*—l N Eae \s))} }
Proof. See Appendix [E|for a detailed proof. O

Recall that J;) (7%, w=%) is defined in ([@.3). We present the following extended performance differ-
ence lemma, which extends the performance difference lemma of |Kakade & Langford| (2002) to the
two-agent setting with entropy regularization.

Lemma C.3 (Extended Performance Difference). We have for all [7%; 7~%] that,
i _—i i —i Ai i i
[j(i)(ﬂ-wﬂ-* ) - \7(1)(71- ) Tx )] + 1_ v Ky |:KL(7T*( | S) H T ( ‘ S)):|
1 Artmt i i i
= B (@7 ) = A logm () m [ 5) = w | 9)].

Proof. See Appendix [F for a detailed proof. O

The following lemma establishes the one-step descent of the KL-divergence between a Nash equilib-

rium [r}; 72] and the policy sequence {75 ; 75 |}o<i<7 -1 generated by Lineof Algorithm|1]in the

infinite-dimensional policy space, which extends the analysis of mirror descent (Nemirovski & Yudin
1983} [Nesterov} 2013). Recall that the energy function &, (;) is obtained in Lineof AlgorithmE]

and the ideal energy function update £,41 (;) is defined in @I0).

Lemma C.4 (One-Step Descent). Suppose that the stepsizes satisfy o )= =1— Ajay (4. For the

policy sequence {779 Yo<i<r—1 generated by the policy update in Line EI of Algorithm l we have for
all ses that

KL(r. (| 8) || 7, ,, (-15) = KL(7i(- | 5) || 75, (-] 5)) (C3)
> <591+1,(i)(85 ) - ?tJrl (7,) (57 ),7‘(’1( | S) - Trét(' |8)> - 1/2 : H89t+1,( ( 89*“(74 H

+a e (- Qﬂe" (s ,~)+Ai-logﬂét(‘IS),WiHS)—Wét(~\8)>~

Proof. See Appendix [G]for a detailed proof. O

Proof of Theorem[.3] For notational simplicity, we write KL(7% (-] s) || ﬂ-ét+1 (-s)) as KLy (3 (s)
throughout this proof. By the choices of the stepsizes in @.I5) of Theorem (4.5 we have a; ;) =

1 — A (iy- By Lemma[C.4] we have under (@.12)) of Assumption 4.4 that,
Ey- [KLi11,)(5)] — B [KLy, s )} (C4

<€+ ay ) - Ep- {< QWQ“7T ( Sy )+ Ai- logwét(- |s), 7 (-|s) — ’ﬂ'ét(- | s)>}

(D

—i
7r9t T

Fang B [(Q ™ (s )+ Q™ (s )L 8) = i, (1))

(II)
EV* [1/2 : ||€91,+1,(1,)( 59’“(1 H i|

(I1T)
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For (I), by Lemma|[C.3] we have

M = (1—7) [T (mh,, 7" = Toy (xh, 7m%)] = X - Eoe [KLy 3 ()] (C.5)
For (1), by Lemma[C.2} we have
(I1) < /205 -1 - {]EV* [KL,2 (s) - KLy2 (5)] (C.6)
% By [KLy ) ()] % - By [KLy (i) (5)] 1/2}
< (1 W) (6 Bue KLy i) ()] + 1 Bue [KLy i (5)] ).

For (I11), by (@.11)) of Assumption}4.4|and the definition of EA’tH,(i) in @ we have

) < By [[|0,40.0 () = Eurn () + [Ern(5:) = Ea (s )l2] @)
<€+ O‘i(i) . EV* )\l : 5&9,5, ( ) + Q‘([rf)t ﬂ—et ( S, - )Hio:|
<e+aig B, { [|€0,.0) (s || +2 ||Q( (‘9’ ')”io}
<e+ [2+207 /(N — M;)?] - (Qmax) Saf ()

Here the last inequality follows from the truncations er:)t o ¢ J—'.erf;tx and &, ;) € .Fg(n})ax, where

Then plugglng @, @), and (C7) into (C4), we obtain
‘/(n;ax + Qmax .
E, - [KLt+1,(i)(5)] -l -| -1+ ———

L—n
Vrglax + Qmax
slatas (1 " ()1_> i (i) B [KLy (i) (5)]

+ (1 - ’Y)O‘t,(z) : [j(z) (ﬂ'éﬁ Ty ) ~7( )( w0 Ty )] + [2 =+ 2A$/()\7 ) ] (Ql(’rzl)ax) at2,(i)'
Summing (C8) for i € {1,2} and setting v (1) = o (2) = 7, We obtain

> . Ll} . at,u)} By [KLy ) (5)]

1/2 (C8)

A=m- Y [Ty m?) = Tay(ms,, w00 (€.9)
i€{1,2}
. Vr_nax max .
-y {1 - {)\Z_ B {2+ Die{1.2)( iz) +QF C)] _Li} 'ﬁt} By [KLy g3y (5)]
ie{1,2} -7
— Z Ey- [KLy11,0)(s)] + [Q(et +¢€}) + Z [242X3 /(N = My)?] - (QF™)* -
ie{1,2} ie{1,2}
= > [I==M)-n] By [KLy ()] = D Eope [KLgi,(5)(5)]
ie{1,2} ie{1,2}
+{2(et+e;)+ Z (24203 /(X = My)*] - Q™) - }
1€{1,2}
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Multiplying the both sides of (C.9) by ¢ + 1 and setting 1, = 1/[(t + 1) - min;e 1 23 {X\i — M)},
we obtain forall 0 <t < T — 1,

1—7 P i
. : jz (Wiﬂr*t)_ji (thﬂ—*l)
min;e gy 03 { N — M} i€§2}[ @ A ]

> B [KLi(s)] = (t4+1) - 30 B [KLigr ()]
i€{1,2} ie{1,2}
Zie{m} [2 + 207 /(N — Mz)2] : (QI(I;)dX)Q }
(t + 1) . miIlie{LQ}{)\i — M2}2

Telescoping (CI0) over 0 < ¢t < T — 1, by Zthl 1/t < logT and the nonnegativity of the
KL-divergence, we obtain

1—7 o
T- mlnze{12}{)\ - M;} Z Z ‘7() g )*.7(1-)(7T9t,7r* )]

+ {2(t+1) (et +ep) + (C.10)

t=0 €{1,2}
T—1 2 X max T
T =0 mlnie{lg}{/\l — Mz} =1 t
— Y By [KLy i (s)]
1€{1,2}
L Dieqioy (220 /(N = Mi)?] - (QF5)? log T (C.11)
- T min;e gy 03 { N — M;}? T’ .

where o is defined in (#.13). Finally, by Proposition [C.I] we have
> [T m) = Ty (o, )] 2 T (o) = T (mi,ml) = D i log| A,

i€{1,2} ie{1,2}
combining which with (C.I1)), we obtain

T-1
1
T ' Z [j(ﬂ-ivﬂ-gt) - j(ﬂ-éﬂﬂ-z)]

t=0

20 - minieqn o {Ai = Mi} Liepop 242X/ (N = M)’] - (QE™)* logT + > Ai-log A

- (1-7v)-T (1 =) - mingegy 23 {\i — M;} i)
Thus, we conclude the proof of Theorem [.3] O
D PROOF OF PROPOSITION[C.]]
Proof. By the definition of J(1) (7', 7?) and J (7', 72), we have

1 2
j(l)(W177T2) - J(Trlvﬂj) = E [Vv(Tlr)’ﬂ— ( ) - ‘/17‘— . (S)}
1 w2 w2
—1_ ~y ']Eswp:ivwz [T(1)7 () =7 " (s")]
1
= 1= Byt [)\1 .H(nl(-|s))]
Since 0 < H(7!(-|s)) < log|.A'|, we further obtain
A -l !
T ) < Tl ) < Tt n?) o+ AE,

which finishes the proof of (C.I). Using the same argument, we can also prove (C.2).Thus, we
conclude the proof of Proposition [C.1} O
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E PROOF OF LEMMA

In the subsequent analysis, using the notion of the state-transition operator P " in @7), we write
p;ri;fwl_i, which is defined in (@.3), as
Prarne z—[ Zv’* (P }oP“ o4, (E.1)
t=
where d, is the Dirac delta function.

Lemma E.1. Under Assumption[.3] we have

Yii —1 -1
s [KL (- 5) | 7= |)]

1/2

I:(Pﬂ'i,’ﬂ'_i)t o (Pﬂi,ﬂ'*_i)t]

Proof. Since ||P™ llop < 1 (Lasota & Mackey, 2013), we have

lPm = ey,
_ H(Pﬂi,ﬂﬂ')t—l ° (IP‘/ri,Trfi _ fPTI'i,ﬂ':i) + [(zpﬂi,ﬂfi)t—l _ (zp‘n’i,ﬂ:i)t—l] Ofpwi,w;i

(E.2)

op

S H('Pﬂi’ﬂﬁi)t_l o (,P_n_i,ﬂ_fi _ 'Pﬂ'i’ﬂ':i)Hop + H [(,Pﬂ—ijnfi)t—l o (,P‘n—i,n:i)t—l] otPTl'i77T:i

op
<P = P g+ || (PO — (P |
Recursively applying (E-2)) gives
H(,Pﬂﬂ,ﬂfi)t _ (Pwl,w:l)tHop <t- H'Pﬂ' K 7)71'1,#*
<t By [KL(m ' 9) 7 1) ],
where the second inequality follows from Assumption @3] Thus, we have
I:(Pﬂ‘i,‘n'_i)t - (Pﬂj,ﬂ t < Z’Y || Pﬂ' K i 'PW T l) Hop
op
. ‘ , 1/2
< (Zm ) 1 By [KL(W;Z(- BIExd s))}
t=0
v i 1/2
- o B |:KL(7T* BIES .|S))} 7
which concludes the proof of Lemma[E-] O

Now we are ready to prove Lemma|[C.2}

Proof of Lemma[C.2] By the definition of the Q;)-function in (2.5), we have

Q™ (s.a',a™) =rils,a'a7) 4 Egnp( s [V T ()],
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which gives

By (@ (5 ) = Q™ (5, ), | 9) =7l |9))] ’ (E.3)

= B [ (8) = 1™ (), | 8) — i s>>H
(n
B ([P o VT 1(s) = [P o VT N(8), 7 | s) = i |s>>]]
(1)
Upper Bounding (I): By the Cauchy Schwartz inequality, we have
() < By [flr ™ ) I C L) = 1) (E4)

S\@-LrEm {KL(W*—z(‘s)HW—zH ))1/2 KL( i(s i(-|s))1/2}7

where the second inequality follows from Assumption[4.3]and the Pinsker’s inequality. Meanwhile,
we have

(1) = [ [ (77 (5) = r7 (), m 7 | 9) = (| s>>} (E5)
SV B [KL(rLC | s) [ 7 19) 2 KL (x| 1),
where the inequality follows from the same argument as (E-4). Comblmng (E-4) and (E.3), we obtain
i i 1/2 —i 1/2
(D) < /26 1_; - E,- [KL(W*(~ 1) || 71 9)) 7 KL (-] s) || 7| 9)) ] (E.6)
Upper Bounding (IT): Recall that we have
i 1 it
V" (s) = i B, i [r Y (s')]
1 T
=B, QT A H (T 1)
which gives
(L=9) - [P o V™ J(s) = [P o V™ | (s)] (E.7)

< (14—Ai.1ogLAﬂ) npsalﬂil—-pba?ﬂ;i CE, e [KLGCL) [ C10) .

T

i

s,at,my

(I11) )

where the first inequality follows from (@.9) of Assumption and pgaf;,1 is defined in (@.5).
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By (E-I)), we have
(1) = {va (P ) }opa“oé —[Zv (P ]735
L1(S)
‘ |:Z ’Yt P7T K i (Pwi,ﬂ*i)t}:| Ofpai,ﬂ'fi 063
L1(S)
& i . i . s
t=0 L1(8)
Since ||P™™ '||op < 1, we have
-y Zv Py <@ A Py <
op t=0
plugging which and Lemma@mto (E-8) gives
(1) < [P =P AP op - 106y s)
op
H Z7t ,Pﬂ ™ SPT =PT o ||5s||L1(S)
t=
5 p » 1/2
< _.E,. [KL(W* anlExd s))] . (E.9)
By the Cauchy-Schwartz inequality, we have
dp™ .
s,al,mi " —i —i /2
(IV) =Eg |:dl/* ' KL(TF* ( |5) || ™ ( | 5)) :|
::T—il_l 2 1/2 1/2
< E,~ [ dy* - } By [KL( LS| LS ))}
, , 1/2
<(-E,- [KL(w*l(- s) || 7 ~|s))] : (E.10)

where the last 1nequahty follows from Assumption @ and the Pinsker’s inequality. Plugging (E-9)
and (E-I0) into (E.7), we obtain for all s € S and a* € A’ that,

—1

[P o V™ (s) — [P o VT ) (s)]

(%)
ymax 4 ¢ , . 1/2
< S B KL (L) |G s) |
which further gives
) < B[ oV 16) — P oV ) 1) )] ®1n
ViRd* +¢ » iy 1/2 , _
< B B KL 7)) B [ - w19l
V2 (VImax 4 ¢) oy, , ) 1/2 ) , 1/2
< (1)77 By [KL(r (| 9) 7)) | B [KL(mi (] ) || 7| 9))]
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where the first inequality follows from the Cauchy-Schwartz inequality and the last inequality follows

from the Pinsker’s inequality. Alternatively, we can also write

(I1) = |E,- _<[<7>”’*' — P ) oV (), m (| 8) — (| s>>:
+E,- [( [Pt o (V™ = VT )(s),w (| s) — i s>>] \
<[B (i =Py ov T Yl = w1 9)|
(V)
i [ R R A D1
(V1)
By @3) of Assumptlon | we have forall s € Sand a™* € A~ that,
[P =Py o VT | (5)] < Ve P = P
) . 1/2
SV B [KL(rLC | s) [ 7 19)]
which gives
) <51 —P”*)ovgj’”’i](s)Hw JLAPEEAEIN
<V2 VB B, {KL(wi( ls) || (- | s))} " g, [KL(w;i(- Bl EaQE)
< fl _V:lx A [KL(wz;(-|s) |;7ﬂ‘(-|s))r/2 .. [KL(w;f(- BIE: |s))}

Here the second inequality follows from the Pinsker’s inequality.

Meanwhile, we have

(E.14)

(VI) S ]EV* |: [(Pﬂ'i,ﬂ':i . Pﬂi, ) (Vv(ﬂ') T —i _ Vzrl‘n'*_l)] (S)‘:|
S IP7 e P B IV ) -V ]
; . 1/2 i b
<ty By [KL(ﬂ'i( s) H (-] s))} E.- ||V (s) — Viy (s)”

By the same argument in the proof of Lemma|[C.3] we have
T, -t 't )T 1
Ve () =V

which glves

—i ﬂ_i)ﬂ_:i 1 s »
[ o s) -V (S)H S B et [HQU) ) i 1)
€E” ~ ~
1L B ) = w1
\/> Qmax C 4 1/2
<1 [KL( Js) |7 C )] @15)
where the last inequality follows from the same arguments in (EI0). Taking (E-13)) into (E-14), we
obtain
V2 Qmax. , ‘ 1/2 ‘ ‘
(VD) € 0= o B [KL (i (L) |7 9)] B [KL(rC L) |7 | 9)

22

* (3) = 71 — ,-y . E‘g/,\,p:i‘ﬂ;i |:<Q(Z)a

T ) = D)),

— 718

(E.12)



Under review as a conference paper at ICLR 2021

pugging which and (ET3) into (E12) gives
\/§ max Qmax .
(Im) < e )
1 =7

Combining (E-1T) and (E-16)), we obtain

Vmax _|_ Qmax
(H) < (Z—C

(E.16)

(E.17)
Finally, taking and (ET7) in to (E.3)), we obtain

B Q0 (5, ) = Q0 (5. 1w 8) = 7 |9)] \
< m {Em [KL(WiC | 5) || (-] ))1/2 KL( (-1s) H i S))l/Q]

W B [KL( (19 | 1)) B [KL () |7 [ 9)] 1/2}’

which concludes the proof of Lemma[C.2] O

F PROOF OF LEMMA

Proof. The proof extends that of Lemma 6.1 in Kakade & Langford| (2002)) to zero-sum Markov
games. By the definition of V) ) in 2:I), we have

V{T;’”* (s) (F.1)

7 .

=B [ 7 ) V) =V )

[Z’Y (z*)’ i 5t7a a- )+’Y'V(Tir)’ﬂ* (8t41) —V(?)”T* (s1))

By the definition of Q;)-function, we have

Q™ (s,a',a™) =r(s,a",a™") + 7 Egp(ysaia [V ™ (5],
which gives

By o [rz’})’”? )+ Bt o [V ™ ()] = V™ (9)] (F2)
pimmt (5,00 a7 = A log (| 8) + 7 B atam [V ™ ()] = V™ (5)]
QT (a0 = VT (9)] A H(m (| 9))
= <Q@>’”*i(sv Do (c]8) = 7 18) + A H(mh(-]9) = A H(x'(:|5)).

Here the last equality follows from

‘/('fir)',ﬂ:(s) = Ewi,rr:i [Q?’i)m:'(s, ai7 a—i) —\; -log ﬂ_i(ai | S)]

= (@™ (s, )i 18)) + A H (x| 5)).
For the entropy terms in (F2)), we have
H(ri(-]5)) = (- IOgW(|5)a7Ti('|3)>
(~logn'(: | ),mi(-] 5)) = (log(xi(-| 5)/7 (-] 5)), wi (-] 5))
(—logm'(-]s),m(-|5)) = KL(mi(-|s) || 7"(- | 5)),

23
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which gives

H(m, (-] 5)) = H(x'(-|5))

= (—logm'(-[s), m.(-|5) = 7'(-]5)) = KL(mi(-]s) | 7'(-] ). (F.3)
Taking (F.2) and into (EI)), we have
Vi () = VT () (F4)

=B [0 (@5 (on ) = A tog s [s0) = ()

t=0

= T . Es’wpﬂi’w*_i |:<Q771)777* (5/7 ) -\ - log 7Ti(. |3/)’7ri(. | s/) _ 7ri(. | S/)>
-\ - KL( (18" H7r |s’))},
where p?l " is defined in (@4) as the visitation measure of the policy pair [ [ 7 startmg from

state s. Taking E, | -] on both sides of (F4) and recalling the definition of 7(;) (7,7~ ") in @3], we
have

T (el ) = T (' w4 12 B [KL(rL (L 5) [ 71 9))]

1—
1 St : . i
RS (@0 (5, ) = A log wi(- ), mh (- | ) = 7'(-] 9)) .
Here we use the fact that Egrpe[-] = E | [-]. Thus,we finish the proof of Lemma
S,NPS*Y * ,SNI/*
IC.3 -

G PROOF OF LEMMA

Proof. First, we have for any s € S that,
KL (i (-] 5) || mh, (- 9)) = KL(xi (-] 5) | 75, (-] 9)) (G.1)

= KL (e, (19,10 + (tog [9(('))} T 15) = 7, (1)

<1og [e(ﬂ'))} (- |s) — wét'c | s>>
—KL(r,., (19 73, 1) + (log [”ﬂ(('ﬂ T C15) = 7, (19)
+ (log [99((”))} g (@ (5 = o (19,7 19) = 1))

+ <Q”9“”9f $,+) = Ni - logmy, (- 8), wh(-| 8) — mp, (-] ).
Recall that v
ﬂ+1(' | 5) o exp{(l - /\iat,(i)) '50t,( (8,°) + OB Q(Gt o (s, )}

x exp{‘(:Ot,(i)( ) 4y (Q:e)t el (s,+) = A -logmp, (- S))}
Let

Zii ()= Y eXP{fet,(i)(Svai) + o) - (@(:)t’ " (s,a’) = X; - logmp, (a’ |5))}7

ate Al
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and
Zo,iy(s) = Y exp{&,,, i)(s,a")}.
at€ A
where are only dependent on the state s. It can be verified that (log Zy, ;) (s), (- | s) — 7'(|8)) =
(log Zy 1y(s), (- | 5) —i'(-|s)) = Oforall t, =, and 7", which implies that, on the right-hand-side
of s

(log 5, (1) + - (@ ™ (s ) = A logmh, (1), 7| 8) = 4, |5))

= (0., (3:°) — 108 Zo, (i) (s ) o) Q0T (s ) = A logmh, (). |5) — b, (1)

= (E0,0(5.) a0y (@0 ™ (5 ) = Ai-Tommh (-1 8)) 108 Zegr (y(s), 7| 8) — 4, -] )

= (log T,y (-] 8), mi(- | s) —mp, (- ]5)), (G.2)

M CI9]
<lg[w} i, (1s) = ( |s>>
(oo (52) — Eony (5.0, (18) — i (-] 9))
(108 Zoy v (o ()04, (-1 8) — b, (1)) + (108 Zoy (o ()., (| 8) — b, (| )

= (Eo,01,(5:7) = €01, (8, ), 5, (- | 8) = g, (-] ) (G3)
Plugging (G.2) and (G.3) into (G.I), we obtain
KL(7 (- | s) || m,(-|s)) — KL(mi(-|s) || 7, (- s)) (G4)

(o, (19)] i i i
— (g T ) = 1)) B (5 ) — 07, 1) =y, 1)

(

+ a0 (Q]
(-
(

)
(7o, (18)] i i
> (log| |, mL(-18) = mh, (- 18) ) = [|€0rs.9)(5:7) = Earyy (5, o, - |, (- 8) — mh,.,, (-
Tipa(]s) |
+an - (Q T (s, ) = A log mp, (-] 8), M (| 8) = mh, (-] 5)) +1/2 - ||mp, (-] 8) — mp, (-
where in the last 1nequahty we use the Cauchy-Schwartz inequality and the Pinsker’s mequahty.
Rearranging the terms in (G.4)), we finish the proof of Lemma[C.4] O

H PROOF OF LEMMA B2

T 77'riri .
Proof. We prove the lemma by induction. First, since |Q (;)0 0 (s,ah)| < Q)™ we have

[€1,9(5:0)] = (1 = Ao, i) - o ) (5:0%) + 0.y - Q™ (5|

_ao ‘Q 90’ 00 )’<Q?Zlax/ M(z)
where the last inequality follows from ag,) =1 / ()\Z- — M;). This means that setting |y, ;) (s, a’)| <
QUy™/(Ai = M;) covers the range of 317@) (s,a%).

Now suppose that \Sgt )(s,a")] < Qma"/( — M;). By \; > 2M;, we have for all ¢t > 1 that,

NiQuy (i = Ai < Ai <1
PO T @41 (- M) T 200 - M) T

25

T (s, ) = A logmh, (-] ), (| 8) = mh, (- | 8)) + KL (., (- 9) || 76, (-] 9))

9],
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Thus, we have that, for all t > 1 and (s,a’) € S x A?,

[ (s,0)] = |(1 = N w) fet (i) (8,0") + 0 (i) Qu " (s,a)]

/\Trl —t

. 1 Ty
<(1- -1&, (i v . St
( ) ol iy 196
o, O o
—(t -l- 1) N—=M;) N—DM;, (t+1)-(N—M;)
t max max max

(@) (®) (4)

St l N -M; (D) (N—M) AN - M
which means that setting |, , (;)(s, a")] < QP> /(X; — M;) covers the range of gt+1,(i)(57 a’). By
induction, we conclude the proof of Lemma@ O

I IMBALANCED INFLUENCE

When the two players have imbalanced influence to the game (without loss of generality, we assume
Player 2 has a dominant influence to the game), we let ¢1 /t2 = z. In this case, we can replace (C.6)
by

(1) < V22 - 13- {Be KL, () - KL (5)]
‘/(II;B.X + Qmax .

L=y
Vmax 4 Qmax .
v (1 ()1—7()> (12 Eur [KLy (8] + 12 Bue [KLi 1) (5] ).

As a consequence, with M; in (#.14) replaced by
= V22 24 Y o (VB + Q- Q)/(L=7)] -ea, i€ {1,2},

the convergence guarantee established in Theoremremains valid. Taking \; = Ao = - 19V 22
into \; > 2M;, we obtain

2243 cn (V™ +QE™ -/ =)
For the above inequality to hold, we have a sufficient requirement for the ratio z as

< (1 7)4/ [16(1 + )12 - log (| A |A2|)]2.

e [KLy i) ()] - B [KLe iy ()] 7

J STRONGER ASSUMPTION: HANNAN CONSISTENCY

In the proof of Theoremin Appendix we replace 713 and 72 with 2. Also, we replace 7} with

77% = argmax{ Z J(7t,72) }
With stronger assumptions stated in[4.2] correspondlng to (C.8)), we have
(1= ag,q) - [Ty (7, 77) = Ty (74, 77)]
< B, [KLf,, 1 (s)] - {1 - {Al - [1 n V“f_%”} 'Ll} -am)} ‘E,- [KL{ ;) (s)]
(ee + ) + [24+ 22/ (0 = M)?] - (QEET)* - of ), .1
where KLtJrl (1)( s) = KL(?TT( |'s) || 74, (- | s)). Here we drop the KL-divergence term for Player 2

since 2 and 779 are replaced by the same policy 72. Also, the regularization parameter A is dropped
since now Player 2 no longer uses such a regularization parameter to update its policies. Multiplying
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both sides of (.2) and setting the stepsize o (1) as the stepsize choice in Theorem .5} we obtain

1 — ~ ~
s [k ) = o )]

<t-By [KL ()] = (E+1) - B [KLL 4(5)]

[2+ 203/ (0 — M1)?] - (Qp3)?
(t+1)- (A — M) ’

applying same argument in the proof of Theorem [4.3] we obtain

Sup{; .Tf[y(wlﬁf) - J(wéﬁ?)]}

+(t+1) (et +€)+ J.2)

t=0
1 T-1
= - >[I 7 - I, 7))
t=0
O — 2+ 2)3/(\ — My)?] - (QEs)?
o (>\1 Ml) + [ 1/( ! 1) } ( @) ) 'logT + A1 ~10g|«41|-
(=) T (1) = 34 .

Thus, we conclude the proof of (#:17). Using the same argument as above, we can also prove the
same result for Player 2 when Player 1 does not update its policies according to Algorithm[I] Setting
7, =m =i and 77 = 7§ = 77, and combining such result for both players, we can replace the

left-hand side of the convergence guarantee established in Theorem &.3|by (#.18). Thus, the proposed
Algorithm|T]is Hannan consistent.
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