
A Roto-translation invariance

A.1 Rotations in 2 dimensions

In 2-dimensional settings, there exists a single scalar angular position, the yaw angle θ. Following
eqs. (3) and (5), we compute the rotation matrices Q, R and R̃ as follows:

Q(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(11)

R(θ) = Q(θ)⊕Q(θ) =

(
Q(θ) 02×2

02×2 Q(θ)

)
(12)

R̃(θ) = Q(θ)⊕Q(θ)⊕Q(θ) =

(
Q(θ) 0

Q(θ)
0 Q(θ)

)
(13)

The second rotation matrix Q in R̃ is used to rotate the angular positions. In order to perform the
transformation, we have to express the angular positions in a format suitable for linear transformations;
we do so by transforming them to rotation matrices, perform a matrix multiplication, and then
transform the angular positions back to angle format. In 2 dimensions, we use eq. (11) to convert the
angular positions θ to matrix format. After the rotation, we can convert them back to angle format
using the 2-argument arc-tangent function:

θ = atan2(sin θ, cos θ) (14)

Simplified rotations In 2 dimensions, the computations can be simplified since rotations commute.
First, we show that chained rotations result in angle addition/subtraction, that is:

Q(θi) ·Q(θj) =

(
cos θi − sin θi
sin θi cos θi

)
·
(
cos θj − sin θj
sin θj cos θj

)
(15)

=

(
cos θi cos θj − sin θi sin θj − cos θi sin θj − sin θi cos θj
sin θi cos θj + cos θi sin θj − sin θi sin θj + cos θi cos θj

)
(16)

=

(
cos(θi + θj) − sin(θi + θj)
sin(θi + θj) cos(θi + θj)

)
(17)

= Q(θi + θj) (18)
Following the same approach, we compute the inverse rotation:

Q⊤(θi) ·Q(θj) = Q(−θi) ·Q(θj) = Q(θj − θi) (19)
Thus, instead of rotating the angular positions (expressed in rotation matrix form) using the rotation
matrix Q, in practice we perform the transformation directly to the angles via addition/subtraction,
and replace the matrix Q with the identity matrix I1×1. This results in the following equations that
replace eqs. (3) and (4):

R̃(θ) = Q(θ)⊕ I1×1 ⊕Q(θ) =

(
Q(θ) 0

I1×1

0 Q(θ)

)
(20)

vtj|i = R̃t⊤
i

[
rtj,i, θ

t
j − θti ,u

t
j

]
(21)

Angular position approximation In order to approximate the yaw angle θ using the velocity vector
u = (ux, uy)

⊤, we transform the velocities to polar coordinates and use the azimuth angle of the
polar representation to compute θ as follows:

θ = tan−1

(
uy
ux

)
(22)

In practice, we use the 2-argument arc-tangent function atan2(y, x) to compute θ.

Computing the relative angular position can result in angles outside the range [−π, π), which can
lead to discrepancies. Thus, we wrap the computed angle difference so that it always belongs in
that range. Furthermore, in all cases that angles are not used geometrically (e.g. for rotations), we
normalize them by dividing by π, resulting in an output range of [−1, 1).
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A.2 Rotations 3 dimensions

In 3 dimensions, the computation of rotation matrices is more involved than the 2D case. As described
in section 3.1, we decompose the rotation matrix Q(ω) into 3 chained elemental rotations Qz(θ),
Qy(ϕ) and Qx(ψ). The elemental rotation matrices are computed as follows:

Qz(θ) =

(
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

)
(23)

Qy(ϕ) =

(
cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

)
(24)

Qx(ψ) =

(
1 0 0
0 cosψ − sinψ
0 sinψ cosψ

)
(25)

Next, we compose the elemental matrices to compute the full rotation matrix:

Q(ω) = Qz(θ)Qy(ϕ)Qx(ψ) (26)

=

(
cosϕ cos θ sinψ sinϕ cos θ − cosψ sin θ cosψ sinϕ cos θ + sinψ sin θ
cosϕ sin θ sinψ sinϕ sin θ + cosψ cos θ cosψ sinϕ sin θ − sinψ cos θ
− sinϕ sinψ cosϕ cosψ cosϕ

)
(27)

Q⊤(ω) = Q⊤
x (ψ)Q

⊤
y (ϕ)Q

⊤
z (θ) (28)

=

(
cosϕ cos θ cosϕ sin θ − sinϕ

sinψ sinϕ cos θ − cosψ sin θ sinψ sinϕ sin θ + cosψ cos θ sinψ cosϕ
cosψ sinϕ cos θ + sinψ sin θ cosψ sinϕ sin θ − sinψ cos θ cosψ cosϕ

)
(29)

R(ω) =

(
Q(ω) 03×3

03×3 Q(ω)

)
(30)

R̃(ω) =

(
Q(ω) 0

Q(ω)
0 Q(ω)

)
(31)

Similar to the 2D case, in order to rotate the angular positions we have to convert them to a format
suitable for linear transformations. We use eqs. (26) and (27) to perform the conversion. After
rotation, we convert the angular positions back to angle format. Using Ω to denote the transformed
angular positions expressed in matrix format, we have the following:

ω =

(
θ
ϕ
ψ

)
=

atan2(Ω1,0,Ω0,0)
sin−1(−Ω2,0)

atan2(Ω2,1,Ω2,2)

 (32)

We use Pytorch3D [62] for this conversion, specifically the function matrix_to_euler_angles,
following the ZYX convention.

Angular position approximation Using the velocity angles to approximate angular positions and
create the local coordinate frames in 3 dimensions is not as straight-forward as the 2-dimensional
case. The spherical coordinates representation of the velocity vector gives us 2 angles instead of the 3
that are required to fully describe a 6-DOF 3D rigid body.

In the following equations, we use the notation convention (ρ, θ, ϕ) to represent the radial distance,
azimuthal angle and polar angle, respectively. The transformations from Cartesian to spherical
coordinates are as follows:

ρ =
√
u2x + u2y + u2z (33)

θ = tan−1

(
uy
ux

)
(34)

ϕ = cos−1

(
uz
ρ

)
(35)
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In practice, similar to the 2-dimensional setting, we use the atan2 function to compute θ. Furthermore,
we add ϵ = 1e− 8 to the denominator in eq. (35) and clamp the fraction in the range [−1, 1] to avoid
numerical instabilities that may occur, especially during backpropagation.

Having access to 2 angular positions, we compute the rotation matrix Q as follows:

Q(ω)
ψ=0
= Qz(θ)Qy(ϕ) =

(
cosϕ cos θ − sin θ sinϕ cos θ
cosϕ sin θ cos θ sinϕ sin θ
− sinϕ 0 cosϕ

)
(36)

Q⊤(ω)
ψ=0
= Q⊤

y (ϕ)Q
⊤
z (θ) =

(
cosϕ cos θ cosϕ sin θ − sinϕ
− sin θ cos θ 0

sinϕ cos θ sinϕ sin θ cosϕ

)
(37)

Finally, similar to the 2-dimensional setting, we normalize relative angular positions so that their
output range is [−1, 1).

A.3 Proof of roto-translation invariance

Our method explicitly infers the graph structure over a discrete latent graph and simultaneously learns
the dynamical system. Learning the graph structure is a roto-translation invariant task; we want
to predict the same edge distribution for each pair of vertices regardless of the global rotation of
translation. On the other hand, trajectory forecasting is a roto-translation equivariant task; a global
translation and rotation to the input trajectories should affect the output trajectories equivalently. In
this section, we derive the proof on roto-translation invariance/equivariance.

Let Qg ∈ RD×D be a global rotation matrix in D dimensions and τg ∈ RD×1 be a global translation
vector. As explained in section 2.1, input trajectories are described by the states xti = [pti,u

t
i].

Similarly, we use vti = [pti,ω
t
i ,u

t
i] to denote the augmented states, described by the linear position,

angular position and linear velocity. Finally, we introduce the notation X and V to denote the set of
states and augmented states, respectively, organized in matrix form.

In the following equations, we remove time indices to reduce clutter. Similar to eq. (3) we define the
matrices Rg and R̃g . We have:

Rg = Qg ⊕Qg (38)

R̃g = Qg ⊕Qg ⊕Qg (39)

Equivalently, we define the augmented translation vectors δg and δ̃g:

δg = [τg,0D] (40)

δ̃g = [τg,0D,0D] (41)

The definition above holds because velocities and angular positions are translation invariant.

First, we will prove that the transformation to the local coordinate systems is invariant to global
translations and rotations. Let J denote the function that converts the augmented states to the local
coordinate frames. It is formulated as follows:

vj|i = J(V)j (42)

= R̃⊤(ωi)[pj − pi,ωj ,uj ] (43)

= R̃⊤(ωi)[rj,i,ωj ,uj ] (44)

Local coordinate frames translation invariance To prevent the notation from clutter, in the
following equations, we will slightly abuse mathematical notation and use the convention V + δg to
denote the translation of each augmented state in V. Programmatically, we can say that we broadcast
δg to match the size of V.

J(V + δg)j = R̃⊤(ωi)[pj + τg − (pi − τg),ωj ,uj ] (45)

= R̃⊤(ωi)[rj,i,ωj ,uj ] (46)
= J(V)j (47)
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Local coordinate frames rotation invariance For the canonicalization of the local coordinate
systems, we use the matrices R̃i = R̃(ωi). These matrices transform under global rotation via the
following transformation:

R̂i = Rg ·R(ωi) (48)

R̂⊤
i = R⊤(ωi) ·R⊤

g (49)
ˆ̃Ri = R̃g · R̃(ωi) (50)

ˆ̃R
⊤
i = R̃⊤(ωi) · R̃⊤

g (51)

Then, we proceed as follows:

J
(
R̃g ·V

)
j
= ˆ̃R

⊤
(ωi) · [Qg · pj −Qg · pi,Qg · ωj ,Qg · uj ] (52)

= R̃⊤(ωi) · R̃⊤
g · [Qg · rj,i,Qg · ωj ,Qg · uj ] (53)

= R̃⊤(ωi) · R̃⊤
g · R̃g · [rj,i,ωj ,uj ] (54)

= R̃⊤(ωi) · [rj,i,ωj ,uj ] (55)
= J(V)j (56)

Encoder roto-translation invariance Next, we will prove that the encoder is rotation and trans-
lation invariant. Let F denote the encoder. The encoder takes as inputs the set of roto-translated
augmented states Vlocal =

{
vj|i | j, i ∈ {1, . . . , N}

}
. We have already proven that these inputs are

invariant to global translations and rotations. Thus, it follows that the encoder is also roto-translation
invariant.

Decoder roto-translation equivariance The decoder takes as inputs the set of roto-translated
augmented states Vlocal =

{
vj|i | j, i ∈ {1, . . . , N}

}
as well as the predicted latent edges zj,i. We

use Z = {zj,i | j, i ∈ {1, . . . , N}, j ̸= i} to denote the set of all latent edges.

To prove that the decoder is equivariant to global rotations and translations, we will split its func-
tionality into 2 consecutive components. Let G be the first component that predicts the differences
in position and velocity ∆x in the local coordinate systems. Let H be the second component that
transforms the predictions from the local coordinate systems to the global coordinate system, as
described by eq. (70). The first part of the decoder takes as inputs the augmented states Vlocal as well
as the latent edges Z. Z is the output of the encoder, and as we proved earlier, it is invariant. Vlocal is
also invariant. Hence, G is roto-translation invariant.

Finally, we have to prove that H is equivariant to global translations and rotations. H is a function of
X and Vlocal and is defined as H(X,Vlocal)i = xi +R(ωi) ·G(Vlocal)i.

First, we will prove that H is translation equivariant. We have the following:

H(X,Vlocal)i = xi +R(ωi) ·G(Vlocal)i (57)

H
(
X+ δg,Vlocal + δ̃g

)
i
= xi + δg +R(ωi) ·G

(
Vlocal + δ̃g

)
i

(58)

= xi + δg +R(ωi) ·G(Vlocal)i (59)
= H(X,Vlocal)i + δg (60)

Next, we will prove that H is rotation equivariant. We have the following:

H
(
Rg ·X, R̃g ·Vlocal

)
i
= Rg · xi +Rg ·R(ωi) ·G

(
R̃g ·Vlocal

)
i

(61)

= Rg · (xi +R(ωi) ·G(Vlocal)i) (62)
= Rg ·H(X,Vlocal)i (63)
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B Implementation details

B.1 LoCS

Encoder & Prior The embeddings h
(2)
j,i are fed into 2 LSTMs [22], one forward in time that

computes the prior and one backwards in time for the encoder. The hidden state from the forward
LSTM is used to compute the prior distribution, while the hidden states from both the forward and
the backward LSTM are concatenated to compute the encoder distribution, according to the following
equations:

ht(j,i),prior = LSTMprior

(
h
(2)
j,i ,h

t−1
(j,i),prior

)
(64)

ht(j,i),enc = LSTMenc

(
h
(2)
j,i ,h

t+1
(j,i),enc

)
(65)

pϕ
(
zt|x1:t, z1:t−1

)
= softmax

(
fprior

(
ht(j,i),prior

))
(66)

qϕ
(
ztj,i|x

)
= softmax

(
fenc

([
ht(j,i),prior,h

t
(j,i),enc

]))
(67)

The functions fenc, fprior are MLPs that map the hidden states to RK , where K is the number of latent
edge types.

Decoder Following [19, 27], we use 2 different decoders based on whether the governing dynamics
are Markovian. In both cases, the decoders have similar structure with [19, 27]; the main difference
is that we operate entirely on the roto-translated local coordinate frames. In order to convert our
predictions back to the global coordinate frame, we perform an inverse rotation by Rt

i = R(ωti) =
Q(ωti)⊕Q(ωti).

Markovian decoder In many applications, such as dynamical systems in physics, the governing
dynamics satisfy the Markov property pθ(xt+1|x1:t, z1:t) = pθ(x

t+1|xt, zt). In this case, we use the
following decoder:

mt
j,i =

∑
k

zt(j,i),kf
k
([

vtj|i,v
t
i|i

])
(68)

mt
i = f (3)v

g(3)v (vti|i)+ 1

|N (i)|
∑

j∈N (i)

mt
j,i

 (69)

µt+1
i = xti +Rt

i · f (4)v

(
mt
i

)
(70)

p(xt+1
i |xt, zt) = N

(
µt+1
i , σ2I

)
(71)

The functions f (3)v , f
(4)
v and fk, k ∈ {1, . . .K} are MLPs, while g(3)v is a linear layer. The output of

the model is the mean estimate of a multivariate isotropic Gaussian distribution with fixed variance.

Recurrent decoder In most real-world applications, the Markovian assumption does not hold. In
this case we use a recurrent decoder.

mt
j,i =

∑
k

zt(j,i),kf
k
([

vtj|i,v
t
i|i

])
(72)

mt
i = f (3)v

g(3)v (vti|i)+ 1

|N (i)|
∑

j∈N (i)

mt
j,i

 (73)

htj,i =
∑
k

zt(j,i),kg
k
([
htj ,h

t
i

])
(74)

nti =
1

|N (i)|
∑

j∈N (i)

ht(j,i) (75)

ht+1
i = GRU

([
nti,m

t
]
,hti
)

(76)
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µt+1
i = xti +Rt

i · f (4)v

(
ht+1
i

)
(77)

p(xt+1
i |x1:t, z1:t) = N

(
µt+1
i , σ2I

)
(78)

The functions gk, k ∈ {1, . . .K} are MLPs. The GRU block [7] is identical to the one used in [27].

Loss Following [19], we train our models by minimizing the Evidence Lower Bound (ELBO),
which comprises the reconstruction loss of the predicted trajectories (positions and velocities) and
the KL divergence.

L(ϕ, θ) = Eqϕ(z|x)[log pθ(x|z)]−KL[qϕ(z|x)||pϕ(z|x)] (79)

As mentioned earlier, we assume the outputs follow an isotropic Gaussian distribution with fixed
variance. The reconstruction loss and the KL divergence take the following form:

Eqϕ(z|x)[log pθ(x|z)] = −
∑
i

∑
t

||xti − µti||
2σ2

+
1

2
log
(
2πσ2

)
(80)

KL[qϕ(z|x)||pϕ(z|x)] =
T∑
t=1

H(qϕ(z
t
ji|x))−

∑
zt
ji

qϕ(z
t
ji|x) log pθ(ztji|x1:t, z1:t−1)

 (81)

H denotes the entropy operator. In all experiments, we set σ2 = 10−5.

Spherical coordinate relative positions Many works in the literature [41, 44] employ distance-
based message-passing steps and filters as a means to better model interactions. We also find that
explicitly incorporating Euclidean distances is useful in practice. We augment the canonicalized
states vj|i with the spherical representations of the relative positions rj,i. We denote the spherical
relative positions as sj,i. They are computed as follows:

stj,i = cart2spherical
(
Qt⊤(ωi) · rtj,i

)
(82)

The spherical representations are computed within the roto-translated coordinate frames and thus,
have no effect on the roto-translation invariance. We modify eq. (6), omitting the time indices for
clarity:

h
(1)
j,i = f (1)e

([
vj|i, sj,i,vi|i

])
(83)

Similarly, we modify eqs. (68) and (72) as follows:

mt
j,i =

∑
k

zt(j,i),kf
k
([

vtj|i, s
t
j,i,v

t
i|i

])
(84)

Anisotropic filtering The anisotropic filters presented in section 3.4 are used to compute the latent
edge embeddings. Specifically, we replace the filters in eq. (6) in the encoder. The filter generating
network is a 2-layer MLP with ELU [9] activation in the hidden layer. In the inD [4] experiment, we
also use anisotropic filters in the decoder. These filters replace the filters in eq. (72). In this case, we
use a 2-layer MLP with tanh activation in the hidden layer. In all experiments, we use the spherical
relative positions as input to the filter generating network instead of the Cartesian relative positions.
Using ∆ptj,i =

[
stj,i,Q

t⊤(ωi) · ωtj
]

to denote the canonicalized relative linear and angular positions,
the encoder and decoder filter generating networks are formulated as:

h
(1),t
j,i = WF

(
∆ptj,i

)
·
[
vtj|i, s

t
j,i,v

t
i|i

]
(85)

mt
j,i =

∑
k

zt(j,i),kW
k
F
(
∆ptj,i

)
·
([

vtj|i, s
t
j,i,v

t
i|i

])
(86)

B.2 NRI & dNRI

We use the official dNRI implementation from https://github.com/cgraber/cvpr_dNRI. We
use the same repository for its NRI implementation as well.
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B.3 EGNN

We use the official EGNN implementation from https://github.com/vgsatorras/egnn. In all
experiments we use the EGNN model with position and velocity inputs/outputs. Each layer is defined
as hl+1,pl+1,ul+1 = EGCL

(
hl,pl,ul

)
.

The hidden state at the input layer h0
i is computed via a linear layer ψh that embeds the input (scalar)

speed of each node to the hidden dimension of the model, h0
i = ψh

(∥∥u0
i

∥∥). Each EGNN layer is
formulated as follows:

mj,i = ϕe

(
hli,h

l
j ,
∥∥plj − pli

∥∥2
2

)
(87)

ul+1
i = ϕv

(
hli
)
uli +

1

|N (i)|
∑

j∈N (i)

(
plj − pli

)
· ϕx(mj,i) (88)

pl+1
i = pli + ul+1

i (89)

mi =
∑

j∈N (i)

ϕw(mj,i) ·mj,i (90)

hl+1
i = ϕh

(
hli,mi

)
(91)

The functions ϕe, ϕv, ϕx, ϕh, ϕw are MLPs with learnable parameters that closely follow the original
work. More specifically, the functions ϕe, ϕv, ϕx and ϕh are 2-layer MLPs, and the function ϕw is a
linear layer with a sigmoid activation used to weigh the messages before aggregation.

The EGNN model comprises 4 layers and the hidden dimensions in all layers are 64. The training and
evaluation schemes are identical to the other models, except that the model is trained by minimizing
the negative log-likelihood of a Gaussian distribution of the positions and velocities, following
Equation 80.

B.4 Computing resources

We ran all experiments on internal clusters using single GPU jobs. 3 different GPU models were used
in total, namely the Nvidia RTX 2080 Ti, Nvidia GTX 1080 Ti, and Nvidia TitanX. The source code
was written in PyTorch [61], version 1.4.0 with CUDA 10.0.

B.5 Hyperparameters & training details

For the synthetic experiment, we follow [19] and train models for 200 epochs. We use 2 edges types
and hardcode the first edge type to indicate absence of interactions, with a no-edge prior of 0.9. For
the charged particles [27], we use 2 edges types with a uniform prior and train the models for 200
epochs. For inD [4], we follow [19] and train models for 400 epochs. We use 4 edge types and
hardcode the first to indicate absence of interactions. For motion capture [10] subject #35, we follow
[19] and train models for 600 epochs. We use 4 edge types and hardcode the first to indicate absence
of interactions. In all experiments, we train LoCS using Adam [25] with a learning rate of 5e−4.

Encoder & Prior f
(1)
v and f (2)e are 2-layer MLPs with ELU [9] activations after each layer and

Batch Normalization [58] at the end, with 256 hidden and output dimensions. g(1)v is a linear layer
with 256 output dimensions. LSTMprior and LSTMenc are LSTMs [22] with 64 hidden dimensions.
fprior and fenc are 3-layer MLPs with ELU activations after the first 2 layers, 128 hidden dimensions,
and K output dimensions, where K is the number of latent edge types. The filter generating network
WF is a 2-layer MLP, with ELU after the first layer, 256 hidden dimensions. For the experiment on
inD [4], we use 64 hidden dimensions for the filter generating network instead.

Decoder g
(3)
v is a linear layer with 256 output dimensions. fk are 2-layer MLPs with ReLU [60]

activations after each layer and gk are 2-layer MLPs with tanh activations after each layer. f (3)v is
the identity function and f (4)v is a 3-layer MLP with ReLU activations after the first 2 layers, 256
hidden dimensions and 2D output dimensions.
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Groundtruth LoCS (Ours)

0.001

dNRI

0.166

NRI

0.135

EGNN

0.366

0.115 0.272 1.029 0.348

0.004 0.345 0.151 0.344

0.060 1.975 1.991 0.595

0.007 0.048 0.622 0.863

0.001 0.158 0.155 0.272

Figure 7: Qualitative results on synthetic dataset, scenes #0 – #5

The filter generating network WF is a 2-layer MLP, with tanh activation after the first layer and
256 hidden dimensions. For the experiment on inD [4], we use 64 hidden dimensions for the filter
generating network instead.

The GRU block [7] in the recurrent decoder is identical to the one used in [27], with 256 hidden
dimensions.

C Qualitative results

C.1 Synthetic

Figure 7 shows comparative qualitative results for the synthetic dataset [19]. The numbers below
each sub-figure represent respective MSE errors.
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C.2 Charged

Figure 8 shows comparative qualitative results for 3D charged particles [27]. The numbers below
each sub-figure represent respective errors.

C.3 InD

Figure 9 shows comparative qualitative results for inD [4].

C.4 Charged - Interactive

Figure 10 shows comparative qualitative results for the highly interactive subset of 3D charged
particles. The numbers below each sub-figure represent respective errors.

D Quantitative results

D.1 Charged particles

Figure 11 shows MSE and L2 errors for charged particles [27].

D.2 Traffic trajectory forecasting

Figure 12 shows MSE and L2 errors for inD [4].

D.3 Motion capture

Figure 13 shows MSE and L2 errors for motion capture [10], subject #35.

D.4 Ablation experiments

The following figures show the complete error curves for the ablation experiments. Figure 14 shows
the errors for the highly interactive charged particles subset. Figure 15 shows the results of training
dNRI using speed normalization. Figure 16 shows the impact of anisotropic continuous filtering
in our method. The roto-translated local coordinate frames already outperform compared methods,
while incorporating the anisotropic filters boosts performance even further. Finally, fig. 17 shows the
impact of rotation in local coordinate frames, specifically in scenarios without intrinsic orientations,
such as charged particles.
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Groundtruth LoCS (Ours)
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Figure 8: Qualitative results on charged particles, scenes #0 – #5
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Figure 9: Qualitative results on inD

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See appendix B.4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

Code will be released upon acceptance
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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Groundtruth LoCS (Ours)

3.170

dNRI

4.509

NRI

1.710

EGNN

1.652

0.169 0.177 1.236 0.227

0.504 108.162 0.707 0.555

0.195 0.168 1.299 0.458

0.114 0.228 0.811 0.583

0.618 3.401 1.375 3.181

Figure 10: Qualitative results on interactive subset of charged particles, scenes #0 – #5
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Figure 11: Results on Charged particles dataset
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Figure 12: Results on InD dataset
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Figure 13: Results on motion capture (#35)
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Figure 14: Results on Charged particles interactive subset
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Figure 15: Results on synthetic dataset; impact of speed norm normalization
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Figure 16: Results on InD dataset; impact of anisotropic filtering
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Figure 17: Results on charged particles dataset; impact of rotation in roto-translated local coordinate
frames
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