
Metropolis-Hastings Data Augmentation
for Graph Neural Networks (Supplement)

Hyeonjin Park1∗, Seunghun Lee1∗, Sihyeon Kim1, Jinyoung Park1

Jisu Jeong2,3, Kyung-Min Kim2,3 , Jung-Woo Ha2,3 , Hyunwoo J. Kim1†

Korea University1, NAVER CLOVA2, NAVER AI LAB3

{hyeonjin961030, llsshh319, sh_bs15, lpmn678, hyunwoojkim}@korea.ac.kr
{jisu.jeong, kyungmin.kim.ml, jungwoo.ha}@navercorp.com

A Summary

We provide additional experimental results and discussion that are not in the main paper due to the
limited space. This supplement includes (1) Reproducibility (e.g., dataset statistics, implementation
details and hyperparameter settings), (2) Proof of Lemma 3.1, (3) Additional experiments (e.g., more
visualizations about augmented graphs by MH-Aug, further ablation studies and node classifica-
tion results on large datasets), and (4) Further discussion (e.g., normalization term for our target
distribution, calculation of acceptance ratio and negative societal impacts & limitations of our works).

B Reproducibility

B.1 Dataset Statistics

Table 1 summarizes the statistics of five benchmark datasets – Cora3, Citeseer, Amazon Computers,
Amazon Photo, and Coauthor CS and two large datasets for additional experiments – CORA Full
and ogbn-arxiv 4. We use the same experimental settings on every dataset as semi-supervised graph
representation learning [1–3].

Table 1: Statistics and details of datasets for node classification.

Dataset # Nodes # Edges # Features # Classes # Train # Validation # Test
CORA 2,708 5,429 1,433 7 140 500 1,000
CITESEER 3,327 4,732 3,703 6 120 500 1,000
Amazon Computers 13,752 245,778 767 10 200 300 13,252
Amazon Photo 7,650 119,043 745 8 160 240 7,250
Coauthor CS 18,333 81,894 6,805 15 300 450 17,583
CORA Full 19,793 65,311 8,710 70 1,311 1,800 16,682
ogbn-arxiv 169,343 1,166,243 128 40 90,941 29,799 48,603

B.2 Implementation Details

We conduct 10 trials and report the mean and standard deviation over the trials for every experiment.
In details, we set the number of layers to 2 and the dimensionality of hidden representations to 64 for
every datasets, except for the dimensionality of GAT hidden representations to 16 and the number of
∗First two authors have equal contribution
†is the corresponding author
3Licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence
4Copyright (c) 2019 OGB Team. Licensed under MIT License

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

heads to 8. Models are optimized by the Adam [4] optimizer for 2,000 epochs. As for the baselines,
we adopt vanilla models, augmentation-based supervised learning (DropEdge5 [5], AdaEdge [6]), and
semi-supervised learning framework (GAug6 [7], SSL [8], BVAT7 [9], UDA* [10], GraphMix [11]).
We implement the UDA [10] which is a semi-supervised framework for consistency training on image
recognition and natural language processing. Herein we directly implement it for graph structured
data and denote with a superscript asterisk ‘*’ in the Table 1 from the main paper. For GraphMix
with GraphSAGE as base GNNs, we simply adopt the aggregation function of GraphSAGE. The
source code for baseline is from the original paper. Our MH-Aug is implemented in Pytorch [12]
with the geometric deep learning library Torch-Geometric [13]. All the experiments in this paper
are conducted on a single Tesla V100 with 16GB memory size. As for the software version, we use
Python 3.8.3, Pytorch 1.5.0 8 and Pytorch geometric 1.6.2 9.

B.3 Hyperparameter Settings

We delineate additional hyperparameters such as coefficients (i.e., αE , βE , αV and βV) of the linear
function for standard deviation of the target distribution σ(·)(εi) = α(·) ∗ εi + β(·) w.r.t. edges E and
nodes V , respective coefficients of regularization for Kullback-Leibler divergence loss γ1 and entropy
loss γ2, the standard deviation of proposal distribution σ∆,(·) w.r.t. edges and nodes, and the mean of
proposal distribution µ(·) w.r.t. edges and nodes. We empirically perform hyperparameter search for
each dataset. Table 2 reports the best hyperparameters of MH-Aug on GCN.

Table 2: Hyperparameters of MH-Aug on GCN.
Hyperparameters CORA CITESEER Computers Photo CS

αE , βE 10, 1 5, 1 10, 1 10, 1 0, 0.1
αV , βV 1, 1 10, 0.1 10, 0.1 10, 1 5, 0.1
γ1 0.5 0.2 4 3 0.2
γ2 0.5 0.5 0.4 0.5 0.4

σ∆,(E),σ∆,(V) 0.1, 0.01 0.005, 0.1 0.05, 0.01 0.01, 0.005 0.001, 0.01
µE , µV 0.3, 0.7 0.2, 0.5 0, 0.1 0.5, 0 0.8, 0.2
λ1, λ3 5, 1 1, 10 1, 10 1, 10 10, 5
λ2, λ4 0.9999, 0.999 0.9999, 0.999 0.9999, 0.9999 0.9999, 0.9999 0.9999, 1

C Proof of Lemma

Theorem C.1. (Convergence Theorem) Let X = (Xt)t≥0 be a Markov chain with transition kernel
K. If X is irreducible, aperiodic and has stationary distribution π, then there exist

P (Xt = x|X0 = x0)→ π(x) as t→∞, for all x and every initial state x0. (1)

Theorem C.2. (Existence of a Stationary distribution) A sufficient but not necessary condition is
detailed balance, which requires that each transition x→ x′ is reversible.
Definition C.1. A Markov chain with invariant measure π is reversible if and only if

πiKij = πjKji (2)

for all states i and j, where K is the transition kernel.
Lemma 3.1. Let the sequence of augmented graphs {G(t)}0≤t≤T be the Markov chain produced
by MH-Aug. If we define the acceptance ratio A with target distribution P in (4) and proposal
distribution Q in (6), the sequence converges to a unique stationary target distribution P .

Proof of Lemma 3.1. By Theorem C.1, we can show that MH-Aug converges to the target distribution
P , if Markov chain of MH-Aug is irreducible, aperiodic and has stationary distribution. First, we
will show the existence of stationary distribution by Theorem C.2 and Definition C.1.

5Copyright (c) 2019 DropEdge. Licensed under MIT License
6Copyright (c) 2021 Tong Zhao. Licensed under MIT License
7Copyright (c) 2019 Zhijie. Licensed under MIT License
8Copyright (c) 2016-Facebook, Inc (Adam Paszke), Licensed under BSD-style license
9Copyright (c) 2020 Matthias Fey. Licensed under MIT License

2

The acceptance ratio A(G,G′) of Metropolis-Hastings algorithm can be calculated with the proposal
distribution Q and the target distribution P . Then, the transition kernel K(G′|G) can be written as

K(G′|G) = Q(G′|G)A(G,G′) + δG(G′)r(G), (3)

where r(G) = 1−
∫
A(G, s)Q(s|G)ds is the probability of rejecting G′, which is generated by the

proposal distribution Q and δG(·) denotes the Dirac delta function located at G. Then, the reversibility
can be shown as

P (G)K(G′|G) = P (G)Q(G′|G)A(G,G′)

= P (G)Q(G′|G) min{1, P (G′)Q(G|G′)
P (G)Q(G′|G)

}

= min{P (G)Q(G′|G), P (G′)Q(G|G′)},

(4)

P (G′)K(G|G′) = P (G′)Q(G|G′)A(G′,G)

= P (G′)Q(G|G′) min{1, P (G)Q(G′|G)

P (G′)Q(G|G′)
}

= min{P (G′)Q(G|G′), P (G)Q(G′|G)}.

(5)

P (G)K(G′|G) = min{P (G)Q(G′|G), P (G′)Q(G|G′)} = P (G′)K(G|G′). (6)

By Definition C.1, P in (4) is reversible and there exists a stationary distribution for Markov chain by
Theorem C.2. Note that we do not consider the case of rejection because it is trivial that the detailed
balance equation always satisfies when G = G′. Now, we need to show that the Markov chain of
MH-Aug is irreducible and aperiodic. The transition kernel K(Gj |Gi) for all i, j is defined as:

K(Gj |Gi) = Q(Gj |Gi)A(Gi,Gj) + δGi(Gj)r(Gi). (7)

Since Q(Gj |Gi)A(Gi,Gj) > 0 and δGi(Gj)r(Gi) ≥ 0, Markov chain of MH-Aug has positive
probability for all 0 ≤ ∆Gi ≤ 1 and 0 ≤ ∆Gj ≤ 1 to reach any range in the support of the proposal
distribution. Thus, it is irreducible. Similarly, the probability of Gi to stay at Gi, which can be written
asK(Gi|Gi), is strictly greater than 0. Thus, its period is 1, which means that it is aperiodic. Therefore,
by Theorem C.1, MH-Aug converges to the stationary target distribution P .

D Additional Experiments

D.1 Further Visualizations of Augmented Graphs by MH-Aug

As shown in Figure 1, we provide more visualizations of augmented graphs by MH-Aug with various
settings. Original samples in the first column are a 3-hop ego-graph from CORA and the corresponding
augmented samples in the other columns are generated from original samples. Augmented samples
are drawn from three different target distributions as same as the main paper. We only consider the
edge drop, not the node drop in this visualization for simplicity and fix the number of dropped edges
∆G′E to evaluate the effect of µE and σE in the target distribution. Mini maps represent the Edge-Drop
probability directly calculated from P .

In Figure 1, we can verify two things. First, MH-Aug samples the augmented graphs following the
target distribution. If the Edge-Drop probability of a specific edge is high according to the target
distribution (red), then the corresponding edge tends to be dropped in the augmented graph drawn
by MH-Aug. Second, MH-Aug controls the strength and diversity of augmentation with µE and σE .
When µE , which controls the expected augmentation strength, is large, e.g., µE = 1, σE = 0.05, more
important edges (e.g., edges acting as bridges between hub nodes) tend to be dropped. Conversely,
when µE is small, e.g., µE = 0, σE = 0.05, relatively unimportant edges are likely to be dropped. It
verifies that we can control the strength of the augmentation by µE even with the same number of
dropped edges. Moreover, by adjusting σE , we can control the diversity of augmentation. The mini
map in the fourth column of Figure 1 shows that if σE increases, the Edge-Drop probability of all
edges becomes uniform, i.e., MH-Aug subsumes DropEdge as a special case. Thus, if we set σE
to be large, MH-Aug generates samples with diverse augmentation strength. In sum, the ego-graph
perspective enables the explicit control of augmentation strength and diversity to make an advanced
augmentation.

3

Figure 1: Diverse G′ sampled by MH-Aug. Additional visualizations of subgraphs on CORA dataset.
The original graphs G on the first column are 3-hop ego-graphs from yellow nodes. The graphs on
other columns are augmented graphs drawn by MH-Aug.

D.2 Ablation Study

As an ablation study, we conduct experiments with MH-Aug (w/o Reg), our framework trained
in the supervised setting, MH-Aug (w/o Normalization), which has the target distribution without
normalization term (i.e., λ2 = 0 and λ4 = 0) and MH-Aug (w/o Entropy), which trained in the semi-
supervised setting but without entropy loss Lh. Table 3 shows the contribution of each component
in our framework. The results present the importance of each component and it is worth noting that
normalization is crucial to generate desired samples. On Computers, we observed that MH-Aug (w/o
Normalization) underperforms the vanilla supervised training.

D.3 Results on Large Datasets

We also evaluate our framework on two relatively large datasets – CORA Full and ogbn-arxiv. Cora-
Full is proposed in [2] and ogbn-arxiv is in [3]. We randomly select K ∈ {10, 20} nodes per class
from the training set. We conduct 10 trials for CORA Full and 3 trials for ogbn-arxiv and report the
mean and standard deviation over the trials for every experiment. The results are presented in Table

4

Table 3: Ablation study of MH-Aug with GCN.
Methods CORA CITESEER Computers Photo CS

Vanilla 81.54±0.76 71.64±0.31 79.68±2.16 89.02±1.49 91.45±0.28

MH-Aug (w/o Reg) 83.55±0.34 72.96±0.48 80.95±2.03 89.65±1.67 91.81±0.33

MH-Aug (w/o Normalization) 82.88±0.62 74.81±0.48 73.49±2.20 90.75±1.41 92.45±0.62

MH-Aug (w/o Entropy) 82.53±0.49 71.63±0.57 80.88±1.90 89.82±1.63 91.96±0.60

MH-Aug 85.16±0.35 75.49±0.29 82.80±2.08 90.87±1.49 92.60±0.43

4. We can observe that MH-Aug outperforms overall base model (i.e., GCN10, GraphSAGE11 and
GAT12). Our framework surpasses the vanilla models on both ogbn-arxiv and CORA Full datasets.
When K=10, MH-Aug achieves the improvement of 6.83% against the vanilla model on average.
With 10 labeled data per class, our method provides 6.25% performance improvement compared to
the vanilla model on average.

Table 4: Node classification results on large datasets with K labeled data per class.

BaseGNNs Method ogbn-arxiv CORA Full
K=10 K=20 K=10 K=20

GCN Vanilla 47.83±1.13 54.17±1.80 54.14± 0.72 59.99± 0.39

MH-Aug 56.19±0.44 61.22±0.33 56.27±1.97 62.79±0.49

GraphSAGE Vanilla 42.35±1.52 49.19±0.42 52.31± 1.18 58.85± 0.43

MH-Aug 59.01±0.28 61.09±0.67 52.46±0.88 62.57±0.73

E Further Discussion

E.1 Normalization Term of Target Distribution

As mentioned in Figure 4 of the main paper, the normalization in the target distribution P by the
number of possible augmented graphs corresponding to the same change ratio,

(|E|
|E|·∆G′

E

)
, is crucial

to generate ego-graphs with the desired ego-graph change ratio µE . In this part, we simulate the
sampling process of MH-Aug with a simple distribution (i.e., uniform distribution) as the target
distribution. To examine the necessity of normalization, we observe the distribution of augmented
graphs w.r.t. the change ratio space, i.e., ∆G′E (the first row in Figure 2) and the sample space, i.e.,
G′ (the second row in Figure 2). If we define the target distribution without normalization, it follows
uniform distribution aspect to the sample space as shown in Figure 2(c). However, in the perspective
of the change ratio space, the change ratio is concentrated on 0.5 as described in Figure 2(a). This is
natural, as the number of possible subgraphs on 0.5 change ratio

(|E|
|E|·0.5

)
is overwhelmingly large

compared to the other change ratios. Since our desired target distribution is related to the change
ratio ∆G′E , we need to generate samples that follow target distribution (e.g., uniform distribution) in
terms of the change ratio space. By adopting normalization with the number of possible augmented
graphs corresponding to the same change ratio, MH-Aug generates augmented graphs following the
target distribution in the perspective of the change ratio space as shown in Figure 2(b). Note that, if
we draw the same number of subgraphs for each change ratio, it is inevitable to sample the identical
subgraphs that have extreme change ratios. For instance, Figure 2(d) shows that the original graph
(∆G′E = 0) and the graph without any edge (∆G′E = 1) are most frequently sampled since they have
only one possible subgraph with the same change ratio.

10Copyright (c) 2016 Thomas Kipf. Licensed under MIT License
11Copyright (c) 2017 William L. Hamilton, Rex Ying. Licensed under MIT License
12Copyright (c) 2018 Petar Veličković. Licensed under MIT License

5

(a) Distribution of ∆G′E w/o Normalization (b) Distribution of ∆G′E w/ Normalization

(c) Distribution of G′ w/o Normalization (d) Distribution of G′ w/ Normalization

Figure 2: The effect of normalization term. The plots above show the distribution of augmented
graphs w.r.t. the change ratio space ∆GE and the sample space G. We conduct the experiments with
a uniform distribution as the target distribution. (a) and (b) present the distribution of the change
ratio ∆GE w/o and w/ normalization. (c) and (d) show the distribution of sample G w/o and w/
normalization.

E.2 Calculation of Acceptance Ratio

In Metropolis-Hastings algorithm, the acceptance ratio A is given as:

A = min

{
1,

P (G′)Q(G(t)|G′)
P (G(t))Q(G′|G(t))

}
. (8)

Here, we only consider the augmentation of edge for simplicity. The target distribution of MH-Aug
can be written as follow:

PE(G′) ∝

 |V|∏
i

exp

(
−

(∆G′i,(E) − µE)
2

2σ2
E

)λ1

·

 1(|E|
|E|·∆G′

E

)
λ2

,

lnPE(G′) ∝ λ1

|V|∑
i

[
−

(∆G′i,(E) − µE)
2

2σ2
E

]
− λ2 ln

(
|E|

|E| ·∆G′E

) (9)

The proposal distribution of MH-Aug can be written as:

QE(G(t)|G′) ∝
φ(ξ

(t)
E)

Φ(β′E)− Φ(α′E)
· 1(|E|
|E|·∆G′

E

) ,
lnQE(G(t)|G′) ∝ ln

φ(ξ
(t)
E)

Φ(β′E)− Φ(α′E)
− ln

(|E|
|E| ·∆G(t)

E

)
,

(10)

where α′E =
a−∆G′

E
σ∆

, β′E =
b−∆G′

E
σ∆

, ξ
(t)
E =

∆G(t)
E −∆G′

E
σ∆

, φ(x) = 1√
2π

exp(− 1
2x

2) as the probability
density function of the standard normal distribution and Φ(x) = 1

2 (1 + erf(x√
2
)) as its cumulative

distribution function. For simplicity, we denote the first term (i.e., truncated Gaussian given µ = G′,

6

σ = σ∆, and range=[a,b]) as T N (G(t);G′, σ∆, a, b) where a and b are the range of truncated

Gaussian distribution and they are fixed to 0 and 1 respectively. Then, α = P (G′)Q(G(t)|G′)
P (G(t))Q(G′|G(t))

can be
calculated as follow:

lnα = lnP (G′)− lnP (G(t)) + lnQ(G(t)|G′)− lnQ(G′|G(t))

= λ1

|V|∑
i

[
−

(∆G′i,(E) − µE)
2

2σ2
E

]
− λ2 ln

(
|E|

|E| ·∆G′E

)

− λ1

|V|∑
i

− (∆G(t)
i,(E) − µE)

2

2σ2
E

+ λ2 ln

(|E|
|E| ·∆G(t)

E

)

+ ln T N (G(t)|G′)− ln

(|E|
|E| ·∆G(t)

E

)
− ln T N (G′|G(t)) + ln

(
|E|

|E| ·∆G′E

)

= λ1

|V|∑
i

[
−

(∆G′i,(E) − µE)
2

2σ2
E

]
− λ1

|V|∑
i

− (∆G(t)
i,(E) − µE)

2

2σ2
E

+ ln T N (G(t)|G′)− ln T N (G′|G(t))

+ (1− λ2) ln

(
|E|

|E| ·∆G′E

)
− (1− λ2) ln

(|E|
|E| · |∆G(t)

E |

)

= λ1

|V|∑
i

[
−

(∆G′i,(E) − µE)
2

2σ2
E

]
− λ1

|V|∑
i

− (∆G(t)
i,(E) − µE)

2

2σ2
E

+ ln T N (G(t)|G′)− ln T N (G′|G(t))

+ (1− λ2) ln
Beta(|E| − |E| ·∆G(t) + 1, |E| ·∆G(t) + 1)

Beta(|E| − |E| ·∆G′ + 1, |E| ·∆G′ + 1)
,

(11)

where Beta(·) is the beta function. Since the calculation of a combination might cause a numerical
error, in our implementation we adopt betaln in scipy [14] instead of the combination. It can be
calculated similarly in the case of considering both edge and node augmentation.

E.3 Negative Societal Impacts and Limitations

Negative Societal Impacts. MH-AUG is a generic semi-supervised learning framework with a
novel augmentation method. We believe that there is no direct negative societal impact of this work.
However, like other augmentation methods or GNN models for graph-structured data, our generic
framework can be used for malicious activities. GNNs are capable to extract uncharted knowledge
from the graph data (e.g., a graph with private information extracted from social media). Through the
misappropriation of graphs with sensitive information, it might incite or manipulate public opinion.
To mitigate the potential problems, illegal data collection should be prevented and it is encouraged to
put the dataset under rigorous scrutiny before the release.

Limitations. Since we adopt the MCMC sampling for augmentation, our method also has the
burn-in issue that is common in MCMC methods. To mitigate this problem, we start from the original
graph which is at an area with a high probability density. But, for an extreme target distribution, this
initialization might not be sufficient to resolve the burn-in issue and better initialization needs to be
studied. In addition, we propose a simple target distribution based on Gaussian distribution with a
normalization. However, there might be more ideal target distributions for effective augmentation.
These are left for future works.

7

References
[1] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In ICLR, 2017.

[2] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. In NeurIPS W, 2018.

[3] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Arxiv, 2020.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[5] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

[6] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In AAAI, 2020.

[7] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In AAAI, 2021.

[8] Qikui Zhu, Bo Du, and Pingkun Yan. Self-supervised training of graph convolutional networks.
Arxiv, 2020.

[9] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolu-
tional networks. In ICML W, 2019.

[10] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmen-
tation for consistency training. In NeurIPS, 2020.

[11] Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian
Tang. Graphmix: Improved training of gnns for semi-supervised learning. In AAAI, 2021.

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, 2019.

[13] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR W, 2019.

[14] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001–.

8

	Summary
	Reproducibility
	Dataset Statistics
	Implementation Details
	Hyperparameter Settings

	Proof of Lemma
	Additional Experiments
	Further Visualizations of Augmented Graphs by MH-Aug
	Ablation Study
	Results on Large Datasets

	Further Discussion
	Normalization Term of Target Distribution
	Calculation of Acceptance Ratio
	Negative Societal Impacts and Limitations

