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APPENDIX

A EXPERIMENT ON LSUN-BEDROOM AND AFHQ

We’ve validated DDSM’s effectiveness and scalability on two extra datasets, LSUN-bedroom
(64x64) and AFHQ (64x64). LSUN-bedroom is entirely non-object-centric. While AFHQ is object-
centric but from a domain different from CelebA. SaDiffusion achieves 59% and 71% acceleration
on the respective datasets without compromising image quality, as detailed in Table A.

The search results in Figure A of LSUN-bedroom and AFHQ further validate our analysis of the
dataset’s attributes. The LSUN-bedroom results parallels those of CIFAR-10, due to their shared
high variety, while AFHQ echoed the patterns seen in CelebA-HQ, as both centrally feature face
contours.

Table A: Evaluation on LSUN-bedroom and AFHQ

LSUN-bedroom AFHQ
Method FID GFLOPs FID GFLOPs
ADM 5.027 49.88 7.244 49.88
DDSM 5.289 20.48 6.249 14.72
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Figure A: search results on LSUN-bedroom and AFHQ

B COMPARISON WITH CONCURRENT WORK DIFF-PRUNING

We elucidate the differences and provide an empirical comparison with the recent Diff-pruning Fang
et al. (2023a;b). Diff-pruning employs a Taylor expansion over pruned timesteps to effectively
reduce computational overhead. This approach primarily focuses on pruning the entire network.
Our method, in contrast, adopts a strategy of adaptively pruning the network at various timesteps.
This approach allows for a more nuanced and efficient solution. For a clearer understanding of
these differences, we conducted an empirical comparison with Diff-pruning. Table B showcases our
experiment on CelebA 64x64 using 100 steps. Our DDSM not only achieves a FID comparable to
Diff-pruning but also demonstrates superior efficiency.
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Table B: Experimental comparison with Diff-Pruning, on CelebA 64x64, 100 steps.
Metric Baseline Diff-pruning DDSM
FID (Lower is better) 6.48 6.24 6.04
GFLOPS (Lower is better) 49.9 26.6 19.6

C COMBINING WITH THE EDM SAMPLER

Our DDSM is compatible with recent sampling schedulers, such as DPM Lu et al. (2022a),
DPM++ Lu et al. (2022b), uniPC Zhao et al. (2023), and EDM Karras et al. (2022). These samplers
are primarily focused on devising novel noise schedules to enhance the performance of diffusion
models. Our method, which adaptively prunes at different steps, is theoretically compatible with
these approaches. Among these samplers, we have chosen EDM for our experiments, as we believe
this selection could demonstrate our method’s suitability for similar methods. In the experiment, we
kept the pretrained weights of DDSM. We then replaced the original DDPM scheduler with EDM’s
Heun Discrete 2nd order method and initiated a new search process. The results, as illustrated in
Table C, show that DDSM effectively integrates with EDM on the unconditional CIFAR-10 dataset,
achieving 45% and 56% total TFLOPs saving for 50 steps and 100 steps. Note that, the quality can
be further improved when retraining the network with EDM’s setting.

Table C: Experiment result of combining DDSM with EDM, on CIFAR-10.
Metric EDM50 EDM50+DDSM EDM100 EDM100+DDSM
FID 3.65 3.61 3.41 3.49
Total TFLOPs 0.61 0.34 1.22 0.54

D EXPERIMENT ON CELEBA-HQ 128X128

We conduct experiments on CelebA-HQ-128x128 to prove that our DDSM is applicable with higher
resolution data. In this experiment, we train a new slimmable supernet from scratch, and directly
employ the search result on CelebA-HQ-64x64 to super network. Table D shows the result.

Table D: Experiment result on CelebA-HQ 128x128.
Metric ADM DDSM
FID (Lower is better) 7.53 7.71
GFLOPS (Lower is better) 194.00 76.18

E EXPERIMENT ON CONDITIONAL CIFAR-10

We also conduct experiments on conditional CIFAR-10 to prove that our DDSM is applicable with
guided diffusion. In this experiment, we train a guided diffusion slimmable supernet from scratch,
and directly employ the search result on unconditional CIFAR-10 to super network. Table E shows
the result.

F IMPLEMENTATION DETAILS

Architecture Our implementation of slimmable networks draws inspiration from the US-Net.
These networks are characterized by their ability to operate at various widths, providing a flexi-
ble and universal solution for network scalability. During the training of slimmable networks, we
focus on optimizing the smallest, largest, and a selection of randomly sampled middle-sized sub-
networks. This approach implicitly enhances the performance of all potential networks within the
supernet.

In practical terms, our slimmable UNet adheres to the structure of ADM, but with a significant
modification: all convolution layers are replaced by slimmable convolutions. These specialized
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Table E: Experiment result on conditional CIFAR-10.
Metric ADM DDSM
FID (Lower is better) 2.48 2.52
GFLOPS (Lower is better) 12.14 6.20

convolutions are capable of adaptively processing tensors with a varying number of input channels.
To accommodate a broader range of sub-networks, we adjusted the group number in the group
normalization layer from 32 to 16. Additionally, we chose to omit the Batch Normalization (BN)
calibration stage, as proposed in [11], since our diffusion UNet exclusively utilizes GroupNorm.

Regarding the sizes of the sub-networks, we offer seven different options, corresponding to 2
8 , 3

8 , 4
8 ,

5
8 , 6

8 , 7
8 , and 8

8 of the original ADM’s width. To find more efficient strategies, we manually exclude
some large width options. For example, in CIFAR-10, we exclude the 7

8 and 8
8 options. In most

cases, the total strategy space is of 7num timesteps.

Search and Evaluation In the searching phase, the FID was computed by comparing the entire
training dataset with the generated images. Empirical findings indicate that the FID score offers
more consistent performance measurement compared to the loss; therefore, we aimed to search for
a strategy yielding a lower FID. For the search parameters, the process encompasses a total of 10
iterations, with each iteration involving a population of 50, and maintaining a mutation rate of 0.001.
The initial generation crucially includes a mix of uniform non-step-aware strategies and some ran-
dom strategies. This specific approach to initialization and mutation has been empirically found to
facilitate easier convergence of the search algorithm. Furthermore, a weight parameter is incorpo-
rated, which multiplies the GFLOPs to strike a balance between image quality and computational
efficiency. For CIFAR-10, we set the weight parameter to 0.1 to favor higher image quality, while for
CelebA, the FLOPs weight parameter is adjusted to 0.25. These parameters were manually selected
to ensure that there are no compromises in generation quality.

Compatibility Experiments For the DDIM experiment, we adopted the weights from the 1000-
step ADM model and applied the DDIM sampling schedule. As indicated in Table 4, our method
significantly boosts DDIM’s speed by 48%, 45%, 53%, and 62% for 10, 50, 100, and 1000 steps,
respectively. This suggests that while additional steps enhance generation quality, they also intro-
duce excess computational load. Our approach proves increasingly beneficial as the number of steps
increases. In our latent diffusion experiment, we employed the AutoEncoderKL of SD1.4 to trans-
form images into latent vectors, upon which our DDSM was trained. To adapt to the reduced spatial
size, we modified the U-Net downsampling from 4 to 2. Our DDSM achieved a 60% acceleration in
latent diffusion methods.

G DISCUSSION ON THE EXTRA COST

In this section, we discuss the extra cost introduced by our DDSM in the training and searching
stage. Although we introduce extra training and search cost, DDSM still shows its advantages in
inference. In deep learning algorithms, a common manner is we train a model once and repeatedly
use this model to infer results. Nowadays, well-known Diffusion models all conform to this manner,
like StableDiffusion and Imagen. They require a large amount of time to train. But once they are
trained, they could repeatedly generate billions of images. Therefore, in terms of efficiency, we
usually care more about the inference speed due to its repetitiveness.

Our method aims to reduce the inference cost of diffusion models. We prune the diffusion inference
process with its step-aware strategy, accomplishing at most 76% acceleration. These cost savings
could be counted repeatedly. The more samples we produce, the more benefits our framework
demonstrates. In DDSM, we indeed introduce extra training and search cost, but these costs only
take once. Concretely, the training cost of the slimmable network is about 2 times to 3 times of
the normal diffusion model’s training. The search cost depends on the search hyper-parameters. In
our setting, it is approximately the same time as training a normal diffusion model. In Table F, we
present the time cost of our DDSM on NVIDIA RTX 3090’s GPU hours.
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Table F: Total GPU hours of our DDSM.

CIFAR-10 CelebA
DDPM-train 278 435
DDSM-train 502 1036
DDSM-search 320 524

H SEPARATED LINE GRAPHS OF SEARCH RESULTS

We plot the search result separately for better visualization, as shown in Figure B

Figure B: Line graphs of the search results across all 5 datasets.

I QUALITATIVE RESULT

We present the generation result of DDSM in Figure C. It shows that the efficient DDSM could
produce high-quality images.
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(a) CIFAR-10 (b) CelebA (c) ImageNet

(d) LSUN-bedroom (e) AFHQ

Figure C: Generated images of DDSM on CIFAR-10, CelebA, ImageNet, LSUN-bedroom, and
AFHQ.
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