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Abstract

This paper demonstrates that the performance of coincidence detection - a classic neuromorphic signal pro-
cessing method found in Rosenblatt’s perceptrons with distributed transmission times, can be competitive to a
state-of-the-art deep learning method for pattern recognition. Hence, we cannot remain comfortably numb to the
prevailing dogma that efficient matrix-vector operations is all we need; but should enquire with greater vigour if
more advanced continual learning methods (running on spiking neural network hardware with neuromodulatory
mechanisms at multiple timescales) can beat the accuracy of task-specific deep learning methods. With regards
to deployability, coincidence detection is an interpretable shallow learning method and its applications provide
a commercial use-case for neuromorphic hardware such as Intel Loihi.

1 Introduction

Frank Rosenblatt and his team (1957-1971) built and analyzed several kinds of perceptrons [1][2][3][4] - networks of
sensory, association and receptor neurons; which in contemporary deep learning terminology relates to the input,
hidden and output layers. The propagating signals were binary (compatible with a spike-based view), the synaptic
delays (transmission times) and weights (memory states) could be analog, the network could be recurrent and was
often randomly interconnected, and learning often meant tuning the weights of the association-receptor subnetwork
by some error-corrective reinforcement. The synaptic delays were not learnt but instead randomly distributed in
Rosenblatt’s Tobermory perceptrons [5], and this was rich enough to realize concentration-invariant and uniform
time-warp invariant spatiotemporal classification by logarithmic encoding and coincidence detection. However, the
processing speed of commercial Von Neumann computers advanced exponentially and outperformed neuromorphic
hardware on yesterdecade’s benchmarks [6]. The Tobermory perceptron was forgotten, nevertheless, the utility of
logarithmic encoding and coincidence detection was formalized by John Hopfield [7] as an efficient solution to the
analog match problem in pattern recognition.

Now, half a century after the accidental demise of Rosenblatt, neuromorphic signal processors are making a
comeback. For example, (1) Intel’s Loihi with spike-time dependent plasticity mechanisms for learning olfactory
pattern recognizers [8]; (2) Physical reservoir computing networks [9] where the interconnectivity of the hidden
layer is unchanged, closer to the spirit of Rosenblatt’s randomly interconnected sensory-association subnetwork.

Here, to strengthen the case for revisiting classic methods on novel and modern hardware, we evaluate the
performance of coincidence detection in comparison to a deep learning method. Nothing more, nothing less, although
this work was triggered by a rabid interest in employing artificial intelligence to sniff out infections and prevent
future pandemics.

2 Methods

Here, we consider the work [10] of an interdisciplinary team, where a 26 layer convolutional neural network with
residual connections (ResNet-26) was successfully trained for classifying pathogenic bacteria by Raman spectroscopy.
In their work, there are N = 30 classes of bacterial isolates and they begin with a ResNet-26 pre-trained on N×2000
spectra, then for each class n = 1 : N there are M = 100 training spectra, and similarly N×M = 3000 test spectra.
Each spectrum x contains 1000 floating-point numbers ranging between 0 and 1. Although compute intensive, their
deep learning method proved to be a tool of great convenience for pattern recognition in a challenging dataset,
where intra-isolate spectra were often more dissimilar than inter-isolate spectra.

Our method to tackle the above dataset, is inspired by the theory of how coincidence detection [7] in animal brains
is fundamental for odour classification in complex and turbulent mixtures. Each class n has a vector representation
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Table 1: Test accuracy (%)

ResNet-26 Coincidence detection

82.2± 0.3 (from [10]) 82.7 (this work)

wn that is learnt, and an input vector x results in an output class y(x) = argn max(x
∧

wn) where we introduce
the operator

∧
to represent the coincidence between two signals. The analytical nature of coincidence detection

depends on the specificities of the ion-channels and the membranes involved [11], and may even incorporate nonlinear
leaky-integrate [12] multiple timescale mechanisms. We do not yet have a complete theory of neuromorphic signal
processing, so here we introduce an approximation for the translation and scale-invariant property of coincidence
detection as

argn max(x
∧

wn) ≈ argn max(wn · x̂), (1)

where x̂ is the zero-mean unit-variance normalization of x.
Thus, the approximation in Eq. (1) allows y(x) to be learnt by a logistic regression on the normalized dataset.

We discard the pre-training data, pre-process the training and test spectra by a range-1 mean filter, and use the
default method for logistic regression in Wolfram Mathematica (L2-regularization = 0.0001, optimization method
= limited-memory BFGS). Code is provided in the supplemental material for reproducibility.

3 Result and outlook

The coincidence detection (via normalized logistic regression) method introduced here achieves a test accuracy
greater than ResNet-26 (see Table 1), and it took less than 3 seconds to train the classifier on a modern desk-
top (without any special-purpose GPUs). Check https://openreview.net/attachment?id=xT5rDp5VqKO&name=

supplementary_material for Wolfram Mathematica and Python code and plots of the training and test data, and
confusion matrices. Note that the training data was fit all at once to a 100% accuracy. With a more neuromorphic
coincidence detection method and a learning method that adapts the synaptic delays w continually, to keep track
under changing environmental conditions, we may achieve even greater accuracies.

Reviewer contributions

This paper has been previously reviewed at NeurIPS 2022 (https://openreview.net/forum?id=xT5rDp5VqKO) but
not recommended for immediate publication for reasons including that it has been only tested on a single dataset.
I believe it is good to present this work in a reasonable venue and thereby motivate stakeholders to test coincidence
detection on more datasets. Here below, I summarize relevant contributions as author responses to a selection of
reviews. Note that the review process also revealed a typo in the supplementary material, where it was wrongly
commented that ”standardization is performed across samples...” - it should instead read as ”standardization is
performed samplewise - each sample has a zero-mean and unit-variance across its features...”.

Reviewer V6Wx: The simple ”coincidence” detector gives very good results compared with a deep net. Although
this could be demonstrating an advantage of coincidence detection, it may also be that the classification problem
is actually not that difficult. Paper [10] seems to only apply a deep net to the problem. The authors only apply a
linear function. What do other functions do? k-nearest neighbors, SVMs, ...?

1. Is there no more suitable implementation of coincidence detection, e.g., within a spiking net?
2. Is your model in eq 1 not simply a perceptron? (With normalized inputs and a max on the outputs)

Response: Ref. [10] already explored traditional methods (k-NN, SVM) and justified their choice for a deep
learning method.

1. Yes, references [11] and [12] point to this, but are expensive to implement on conventional hardware. Future
work should compare how the approximate implementation of coincidence detection compares to more advanced
methods on neuromorphic hardware.

2. Yes, is it not beautiful? Did you notice that the normalization is performed across a different axis in
comparison to the standard suggestion of Python sklearn for logistic regression? (Conventional wisdom is that it
is a bad idea to do a normalization in this way, which is why perceptrons were not employed with this kind of
pre-processing until now. This paper instead argues from the theory of coincidence detection that it is actually a
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good idea for preprocessing datasets that are compatible with the analog match problem, which turns out to be
true upon evaluation in this empirical dataset.)

Reviewer ctyh: There is an interesting empirical observation here, yet the narrative is too shallow...

Response: The result in table-1 speaks for itself (i.e. here is a novel method with better performance in com-
parison to the impactful deep learning method by a large team of researchers in Stanford university, cited over
300 times). Of course, this novel method will need to be applied to other datasets (which is why it needs to be
presented in a conference to gain the attention of fellow researchers). Moreover, references [7], [11], [12] have been
thoughtfully chosen as related work.

Reviewer QphW: Authors should consider generating more stats on their accuracy % and provide a more
thorough comparison with the baseline (ResNet-26). Further, authors should share additional experiments breaking
down the contribution of standardization and smoothing steps. Lastly, explaining why their model fares better than
the deep learning model...

Response: The reviewer asks for more stats, but is it not futile? Given that this is anyhow based on performance
on a single dataset? The focus of this paper is to demonstrate that the approximation for coincidence detection
introduced here is able to solve an analog match problem (discussed insightfully by Hopfield [7], but not as well-
known as it should be). That the model fares slightly better is a bonus, actually deep learning methods can
surely learn a coincidence detector (albeit in a computationally expensive way). Moreover, in order to ensure
reproducibility, the method was tested in two programming languages Mathematica (yielding an accuracy of 82.7%
as reported in the main text) and Python (yielding an accuracy of 82.9% as reported in the supplementary material).
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