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ABSTRACT

We investigate the approximation and estimation rates of conditional diffusion
transformers (DiTs) with classifier-free guidance. We present a comprehensive
analysis for “in-context” conditional DiTs under various common assumptions:
generic and strong Hölder, linear latent (subspace), and Lipschitz score function
assumptions. Importantly, we establish minimax optimality of DiTs by leveraging
score function regularity. Specifically, we discretize the input domains into infinites-
imal grids and then perform term-by-term Taylor expansions on the conditional
diffusion score function under the Hölder smooth data assumption. This enables
fine-grained use of transformers’ universal approximation through a more detailed
piecewise constant approximation, and hence obtains tighter bounds. Additionally,
we extend our analysis to latent settings. Our findings establish statistical limits for
DiTs, and offer practical guidance toward more efficient and accurate designs.

1 INTRODUCTION
We investigate the approximation and estimation rates of conditional Diffusion Transformers (DiTs)
with classifier-free guidance. Specifically, we derive score approximation, score estimation, and
distribution estimation guarantees for “in-context” conditional DiTs introduced by Peebles and Xie
(2023). We provide a comprehensive analysis under various data and score function assumptions, in-
cluding generic and strong Hölder, linear latent (subspace), and Lipschitz score function assumptions.
Moreover, we show that the analysis of both conditional DiTs and their latent variants lead to the first
known minimax optimality of unconditional DiTs under the strong Hölder data assumption.

Transformer-based conditional diffusion models are at the forefront of generative AI due to their
success as scalable and flexible backbones for image (Zhao et al., 2024; Wu et al., 2024a; Bao et al.,
2023; Batzolis et al., 2021) and video generation (Liu et al., 2024; Ni et al., 2023; Saharia et al., 2022;
Voleti et al., 2022). However, the theoretical understanding of conditional DiTs remains limited. On
the one hand, while prior work (Hu et al., 2024) reports approximation and estimation rates of DiTs
using the established universality of transformers (Yun et al., 2020), their results are not tight and
are limited to unconditional diffusion. On the other hand, existing theoretical works on conditional
diffusion models only focus on ReLU networks (Fu et al., 2024a; Yuan et al., 2024), model-free
settings (Ye et al., 2024; Guo et al., 2024) or generative sampling process (Dinh et al., 2023), without
considering the transformer architectures. This work addresses this gap by providing a timely analysis
of the statistical limits of both conditional and unconditional DiTs.

In this work, we present a comprehensive analysis of conditional DiT and its latent setting under
four common data and score function assumptions. We also establish the minimax optimality of
unconditional DiT and its latent version by deriving the tight distribution estimation error bounds.
Our techniques include two key parts: (i) Discretizing the input domains into infinitesimal grids.
(ii) On each grid, performing term-by-term Taylor expansions on the conditional diffusion score
function under generic and stronger Hölder smooth data assumptions, motivated by the local diffused
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Table 1: Summary of Theoretical Results. The initial data is dx-dimensional, and the condition is dy-
dimensional. Furthermore, d is the feature dimensions of transformer network function class (Definition 2.2).
For latent DiT, the latent variable is d0-dimensional. σ2

t = 1 − e−t is the denoising scheduler. The sample
size is n, and 0 < ϵ < 1 represents the precision parameter. While we report asymptotics for large dx, d0, we
reintroduce the n dependence in the estimation results to emphasize sample complexity convergence. Lastly, we
adopt standard O(·),Ω(·),Θ(·) to omit constant factors and Õ(·) to omit logarithmic factors.

Assumption Score
Approximation

Score
Estimation

Dist. Estimation
(Total Variation Distance)

Minimax
Optimality

Generic Hölder Smooth Data
Dist. (Sections 3.1 and 3.3) O((log

(
1
ϵ

)
)dx/σ4

t ) n−Θ(1/d) · (log n)O(dx) n−Θ(1/d) · (log n)O(dx) é

Strong Hölder Smooth Data
Dist. (Sections 3.2 and 3.3) Õ(ϵ2/σ2

t ) n−Θ(1/d) · (log n)O(dx) n−Θ(1/d) · (log n)O(dx) Ë

Latent Subspace + Generic
Hölder Smooth Data Dist.
(Appendix A)

O((log
(
1
ϵ

)
)d0/σ4

t ) n−Θ(1/d0) · (log n)O(d0) n−Θ(1/d0) · (log n)O(d0) é

Latent Subspace + Stronger
Hölder Smooth Data Dist.
(Appendix A)

Õ(ϵ2/σ2
t ) n−Θ(1/d0) · (log n)O(dx) n−Θ(1/d0) · (log n)O(d0) Ë

polynomial analysis (Fu et al., 2024a; Oko et al., 2023). These techniques leverage the nice regularity
of the score function imposed by the Hölder smoothness data assumptions and hence enable fine-
grained use of transformers’ universal approximation (Kajitsuka and Sato, 2024; Yun et al., 2020)
through a more detailed piecewise constant approximation. Consequently, we obtain tighter bounds.

Contributions. We summarize the theoretical results in Table 1. Our contributions are threefold:

• Score Approximation. We characterize the approximation limit of matching the conditional DiT
score function with a transformer-based score estimator. The approximation results explain the
expressiveness of conditional DiT and its latent version, and guide the score network’s structural
configuration for practical implementations (Theorems 3.1, 3.2 and A.1). The results also show
that the latent version achieves a better approximation for the score function.

• Score and Distribution Estimation. We study the score and distribution estimation of conditional
DiTs in practical training scenarios. Specifically, we provide a sample complexity bound for score
estimation (Theorems 3.3 and D.3), using norm-based covering number bound of transformer
architecture. Additionally, we show that the learned score estimator can recover the initial data
distribution in both conditional DiT and its latent setting (Theorems 3.4 and A.2).

• Minimax Optimal Estimator. We extend our analysis to unconditional DiT and investigate
whether the generated data distribution achieves the minimax optimality in the total variation
distance. Specifically, we show that the upper bounds on the distribution estimation error match
the lower bounds under stronger Hölder smooth data distribution (Theorem 3.5 and Remark A.3).

Organization. Section 2 presents preliminaries and the problem setup. Section 3 presents the results
of conditional DiTs. Appendix A presents the results of latent conditional DiTs. Appendix C.1
presents related works’ discussions. The appendix contains an extended and improved version of (Hu
et al., 2024) on conditional DiTs (Appendix E), additional results, and detailed proofs.

Notations. The index set {1, ..., I} is denoted by [I], where I ∈ N+. We denote (column) vectors by
lower case letters, and matrices by upper case letters. Let a[i] denote the i-th component of vector
a. Let Aij denotes the (i, j)-th entry of matrix A. ∥x∥, ∥x∥1 and ∥x∥∞ denote the Euclidean norm,
1-norm, and infinite norm. ∥W∥2 and ∥W∥F denote the spectral norm and Frobenius norm. Lastly,
we adopt standard O(·),Ω(·),Θ(·) to omit constant factors and Õ(·) to omit logarithmic factors.

2 BACKGROUND AND PRELIMINARIES

In this section, we provide a high-level overview of the conditional diffusion model with classifier-free
guidance in Section 2.1 and conditional Diffusion Transformer (DiT) networks in Section 2.2.

2.1 CONDITIONAL DIFFUSION MODEL WITH CLASSIFIER-FREE GUIDANCE

Forward and Backward Conditional Diffusion Process. In the forward process, conditional
diffusion models gradually add noise to the original data x0 ∈ Rdx . Give a condition y ∈ Rdy ,
and x0 ∼ P0(·|y). Let xt denote the noisy data at the timestamp t, with marginal distribution and
density as Pt(·|y) and pt(·|y). The conditional distribution Pt(xt|y) follows N(αtx0, σ

2
t Idx), where
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R(·)

Reshape Layer

Embed

Concat fT ∈ T h,s,r

Transformer Network

R−1(·)

Reversed
Reshape Layer

x ∈ Rdx
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Timestep t

Rd×L

Rd×2
Rd×(L+2) RdxRd×(L+2) Rd×L

Figure 1: Conditional DiT Network Architecture. The architecture consists of a reshape layer R(·), a
reversed reshape layer R−1(·), and the embedding layers for label y and timestep t. The embeddings of y and t
are concatenated with input sequences and then processed by a transformer network fT ∈ T h,s,r .

αt = e−t/2, σ2
t = 1 − e−t, and w(t) > 0 is a nondecreasing weighting function. In practice, the

forward process terminates at a large enough T such that PT is close to N(0, Idx). In the backward
process, we obtain x←t by reversing the forward process. The generation of x←t depends on the score
function ∇ log pt(·|y). See Appendix F.1 for the details. In below, when the context is clear, we
suppress the notation dependence of xt on the time step t.

Classifier-Free Guidance. Classifier-free guidance (Ho and Salimans, 2022) is the standard
workhorse for training condition diffusion models. It approximates both conditional and unconditional
score functions using neural networks sW with parameters W . It uses the following loss function:

ℓ(x0, y; sW ) =

∫ T

t0

1

T − t0
Eτ,xt∼N(αtx0,σ2

t Idx )

[
∥sW (xt, τy, t)−∇xt

log ϕt (xt|x0)∥22
]
dt,

where ∇xt log ϕt (xt|x0) = −(xt − αtx0)/σ
2
t , t0 is a small cutoff to stabilize training1. τ = ∅

denotes the unconditional version, τ = id denotes the conditional version, and P (τ = ∅) = P (τ =
id) = 0.5. To train sW , we select n i.i.d. samples {x0,i, yi}ni=1, where x0,i ∼ P0(·|yi). We use

L̂(sW ) :=
1

n

n∑
i=1

ℓ(x0,i, yi; sW ), (2.1)

as the empirical loss. In addition, we denote population loss as L(sW ). See Appendix F.2 for details.

2.2 CONDITIONAL DIFFUSION TRANSFORMER NETWORKS

We use a transformer network as a score estimator sW . Our notation follows (Hu et al., 2024).

Transformer Block. Let f (SA) : Rd×L → Rd×L denote the self-attention layer. Let h and s denote
the number of heads and hidden dimension in the self-attention layer, and then we have

f (SA) (Z) := Z +

h∑
i=1

W i
O(W

i
V Z) Softmax

[
(W i

KZ)
⊤(W i

QZ)
]
, (2.2)

where W i
V ,W

i
K ,W

i
Q ∈ Rs×d, and W i

O ∈ Rd×s are the weight matrices. Next, we define the
feed-forward layer with MLP dimension r:

f (FF)(Z) := Z +W2ReLU(W1Z + b1) + b2, (2.3)

where W (1) ∈ Rr×d and W (2) ∈ Rd×r are weight matrices, and b(1) ∈ Rr, and b(2) ∈ Rd are bias.

Definition 2.1 (Transformer Block). We define a transformer block of h-head, s-hidden dimension,
r-MLP dimension, and with positional encoding E ∈ Rd×L as

fh,s,r (Z) := f (FF)
(
f (SA) (Z + E)

)
: Rd×L 7→ Rd×L.

Now, we define the transformer networks as compositions of transformer blocks.

1t0 is the early stopping time to prevent the score function from blowing up (Fu et al., 2024a; Chen et al.,
2023c; Dhariwal and Nichol, 2021; Song et al., 2021).
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Definition 2.2 (Transformer Network Function Class). Let T h,s,r denote the transformer network
function class where each function τ ∈ T h,s,r is a composition of transformer blocks fh,s,r, i.e.,

T h,s,r := {τ : Rd×L 7→ Rd×L | τ = fh,s,r ◦ · · · ◦ fh,s,r}.

Conditional Diffusion Transformer (DiT). Let f ∈ T h,s,r be a transformer network, and (x, y, t) ∈
Rdx × Rdy × [t0, T ] be the input data. We follow the “in-context conditioning” conditional DiT
network in (Peebles and Xie, 2023) as in Figure 1. The following reshape layer converts a vector
input x ∈ Rdx into the sequential matrix input format Z ∈ Rd×L for transformer with dx = d · L.

Definition 2.3 (DiT Reshape LayerR(·)). LetR(·) : Rdx → Rd×L be a reshape layer that transforms
the dx-dimensional input into a d × L matrix. Specifically, for any dx = i × i image input, R(·)
converts it into a sequence representation with feature dimension d := p2 (where p ≥ 2) and
sequence length L := (i/p)

2. Besides, we define the corresponding reverse reshape (flatten) layer
R−1(·) : Rd×L → Rdx as the inverse of R(·). By dx = dL, R,R−1 are associative w.r.t. their input.

We define the following transformer network function class with the reshape layer. To simplify, we
define WKQ := (WK)⊤WQ and WOV :=WOWV .

Definition 2.4 (Transformer Network Function Class with Reshape Layer T h,s,r
R ). The transformer

network class with reshape layer T h,s,r
R (CT , C

2,∞
KQ , CKQ, C

2,∞
OV , COV , CE , C

2,∞
F , CF , LT ) satisfies:

• T h,s,r
R := {R−1 ◦ fT ◦R : Rdx → Rdx | fT ∈ T h,s,r};

• Transformer network output bound: supZ ∥fT (Z)∥2 ≤ CT ;
• Parameter bound in F (FF): max{∥W1∥2,∞, ∥W2∥2,∞} ≤ C2,∞

F , max{∥W1∥2, ∥W2∥2} ≤ C2
F ;

• Parameter bound in F (SA): ∥WKQ∥2 ≤ CKQ, ∥WOV ∥2 ≤ COV , ∥WKQ∥2,∞ ≤ C2,∞
KQ ,

∥WOV ∥2,∞ ≤ C2,∞
OV ,

∥∥E⊤∥∥
2,∞ ≤ CE , where 2,∞-norm follows ∥ · ∥2,∞ := maxj∈[L] ∥Z:j∥2;

• Lipschitz of fT ∈ T h,s,r: ∥fT (Z1)− fT (Z2)∥F ≤ LT ∥Z1 − Z2∥F , for any Z1, Z2 ∈ Rd×L.
These norm bounds are critical to quantify the interplay between model, performance and data.

3 STATISTICAL LIMITS OF CONDITIONAL DITS

In this section, we present a refined decomposition scheme for the fine-grained analysis of score
approximation, score estimation, and distribution estimation in conditional DiT. Our analysis con-
siders two assumptions on initial data distributions: (i) a generic Hölder smooth data assumption
(Section 3.1 for approximation, and Section 3.3 for estimation), (ii) a stronger Hölder smooth data
assumption (Section 3.2 for approximation, and Section 3.3 for estimation). This new scheme leads
to tighter bounds, including the minimax optimality of the unconditional DiT score estimator.

3.1 SCORE APPROXIMATION: GENERIC HÖLDER SMOOTH DATA DISTRIBUTIONS

We present a fine-grained piecewise approximation using transformers to approximate the conditional
score function under the Hölder smoothness assumption on the initial data (Fu et al., 2024b). At its
core, we introduce a score function decomposition scheme with term-by-term tractability.

We first introduce the definition of Hölder space and Hölder ball following (Fu et al., 2024b).

Definition 3.1 (Hölder Space). Let α ∈ Zd
+, and let β = k1 + γ denote the smoothness parameter,

where k1 = ⌊β⌋ and γ ∈ [0, 1). For a function f : Rd → R, the Hölder space Hβ(Rd) is defined
as the set of α-differentiable functions satisfying: Hβ(Rd) :=

{
f : Rd → R | ∥f∥Hβ(Rd) <∞

}
,

where the Hölder norm ∥f∥Hβ(Rd) satisfies:

∥f∥Hβ(Rd) :=
∑

∥α∥1<k1

sup
x

|∂αf(x)|+ max
α:∥α∥1=k1

sup
x ̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥γ∞

.

We also define the Hölder ball of radius B: Hβ(Rd, B) :=
{
f : Rd → R | ∥f∥Hβ(Rd) < B

}
.

Let x0 ∈ Rdx denote the initial data, and y ∈ [0, 1]dy the conditional label. With Definition 3.1, we
state the first assumption on the conditional distribution of initial data x0.
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Assumption 3.1 (Generic Hölder Smooth Data). The conditional density function p0(x0|y) is defined
on the domain Rdx × [0, 1]dy and belongs to Hölder ball of radius B > 0 for Hölder index β > 0,
denoted by p0(x0|y) ∈ Hβ(Rdx × [0, 1]dy , B) (see Definition 3.1 for precise definition.) Also, for
any y ∈ [0, 1]dy , there exist positive constants C1, C2 such that p0(x0|y) ≤ C1 exp

(
−C2∥x0∥22/2

)
.

Remark 3.1. The Hölder continuity assumption captures various smoothness levels in the conditional
density function. The light-tail condition relaxes the bounded support assumption in (Oko et al.,
2023). Moreover, Assumption 3.1 only applies to the initial conditional distribution and imposes no
constraints on the induced conditional score function. This is far less restrictive than the Lipschitz
score condition in prior works (Yuan et al., 2024; Lee et al., 2023; Chen et al., 2022).

In our work, we aim to approximate the conditional score function ∇ log pt(xt|y) using transformer
architectures. Hu et al. (2024) analyze the unconditional DiTs based on the established universality
of transformers (Yun et al., 2020). These theories discretize the input and output domains into in-
finitesimal grids and employ piecewise constant approximations to construct universal approximators
with controllable errors. However, such methods do not yield tight bounds for DiT architectures (Hu
et al., 2024). To combat this, we build on the key observation by Fu et al. (2024a)2:

pt(xt|y) =
∫
Rdx

dx0

σdx
t (2π)dx/2

· p0(x0|y)︸ ︷︷ ︸
≈k1-order Taylor polynomial

· exp

(
−∥αtx0 − xt∥2

2σ2
t

)
︸ ︷︷ ︸
≈k2-order Taylor polynomial

. (3.1)

A term-by-term Taylor expansion of the above conditional distribution under Assumption 3.1 enables
a more fine-grained analysis. As a result, we propose a fine-grained version of piecewise constant
approximation for conditional DiTs, allowing transformers to approximate the conditional score func-
tion with tighter error bounds. In particular, we utilize a refined transformer universal approximation
modified from (Kajitsuka and Sato, 2024) (see Appendix G.1 for details).

Our score approximation procedure has two stages: first, we construct a score approximator by
incorporating the approximation of pt and ∇pt using a Taylor expansion, then use transformers to
approximate the score approximator. These lead to provably tight estimation results in Section 3.3.

We state our main result of score approximation using transformers under Assumption 3.1 as follows:

Theorem 3.1 (Conditional Score Approximation under Assumption 3.1). Assume Assumption 3.1.
For any precision parameter 0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some
N ∈ N. LetCα, Cσ > 0 be some absolute constants. For any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ],
there exists a Tscore(x, y, t) ∈ T h,s,r

R such that∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y) dx = O
(B2

σ4
t

·N−β · (logN)dx+
β
2 +1
)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound O((log
(
1
ϵ

)
)dx/σ4

t ).
The parameter bounds for the transformer network class are as follows:

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4d+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β+3
2

)
;CE = O(1);CT = O(

√
logN/σ2

t ),

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Remark 3.2. N is the resolution of the input domain discretization. We remark that domain
discretization is essential for utilizing the local smoothness of functions under Hölder assumptions.
Furthermore, Cσ and Cα control the stability cutoff and early stopping time, respectively.

Proof Sketch. Recall that ∇ log pt(x|y) = ∇pt(x|y)
pt(x|y) . Our proof follows three steps:

Step 1: Smooth Local Approximations. A k1-th order and a k2-th order Taylor expansion for
p0(x|y) and exp(·) yield two explicit functions f1(x, y, t) and f2(x, y, t) that approximate pt(x|y)

2Recall that pt(xt|y) =
∫
Rdx

p(x0|y)pt(xt|x0) dx0 with Pt(·|y) ∼ N(αtx0, σtIdx). In below, when the
context is clear, we suppress the notation dependence of xt on the time step t.
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and ∇pt(x|y) in Lemma H.3 and Lemma H.4, respectively. Both f1(x, y, t) and f2(x, y, t) inherit
the Hölder smoothness. Altogether, this gives score approximator by ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y)

Step 2: Transformer Approximation on a Bounded Domain. We leverage the universal approxi-
mation capabilities of transformers to approximate the score approximator on a bounded domain.

Step 3: Extension to the Full Space via Sub-Gaussianity. We extend the bounded-domain
approximation to full space using the target density’s sub-Gaussian tails. Gaussian tail bounds cap
the error outside the domain and maintain the overall approximation accuracy.

Error Matching. The overall error includes ErrorTaylor and ErrorT . Given a fixed discretization
resolution N , ErrorTaylor remains fixed. However, the approximation error bound of the transformer
can be an arbitrary value. We align ErrorT and ErrorTaylor to optimize the final results.

Please see Appendix H for a detailed proof.

Remark 3.3 (Approximation Rate). Given a fixed resolution N , the approximation error scales
inversely with the smoothness β. As the smoothness increases, we get a tighter approximation error.

Remark 3.4 (Comparing with Existing Works). Fu et al. (2024a) provide approximation rates for
conditional diffusion models using ReLU networks. We are the first to establish approximation error
bounds with transformer networks. Additionally, Oko et al. (2023) establish approximation rates
under a compactness condition on the input data. We mitigate this compactness requirement by
applying a Hölder smoothness assumption to control approximation error outside a compact domain.

3.2 SCORE APPROXIMATION: STRONGER HÖLDER SMOOTH DATA DISTRIBUTIONS

Next, we study the conditional DiT score approximation problem using our score decomposition
scheme under the stronger Hölder smoothness assumption from Fu et al. (2024b, Assumption 3.3).

Assumption 3.2 (Stronger Hölder Smooth Data). Let function f ∈ Hβ(Rdx × [0, 1]dy , B). Given
a constant radius B, positive constants C and C2, we assume the conditional density function
p(x0|y) = exp

(
−C2∥x0∥22/2

)
· f(x0, y) and f(x0, y) ≥ C for all (x0, y) ∈ Rdx × [0, 1]dy .

Assumption 3.2 imposes stronger assumption than Assumption 3.1 and induces a refined conditional
score function decomposition. Explicitly, by Lemma I.1, ∇ log pt(x|y) becomes:

∇ log pt(x|y) =
−C2x

α2
t + C2σ2

t

+
∇h(x, y, t)
h(x, y, t)

, (3.2)

where h(x, y, t) :=
∫
Rdx

f(x0,y)

σ̂dx
t (2π)dx/2

exp
(
−∥x0−α̂tx∥2

2σ̂2
t

)
dx0, σ̂t = σt√

α2
t+C2σ2

t

, and α̂t =
αt

α2
t+C2σ2

t
.

We highlight that (3.2) leads to a tighter approximation error compared with Theorem 3.1. Intuitively,
Assumption 3.2 imposes a lower bound on the conditional density function and hence implies in
better regularity of the score function. In contrast, under Assumption 3.1, the score function lacks
such regularity and may explode when pt is small. These low-density regions act as holes in the data
support. They cause the score function to diverge near the boundary of these holes. To combat this,
an implication of (3.2) is handy — h is bounded from zero, ensuring that the score function remains
well-behaved across the entire data domain. To elaborate more, two technical remarks are in order.

Remark 3.5 (Linearity). The first term on the RHS of (3.2) is linear in x. This makes part of
∇ log pt(x|y) a linear function of x, enabling easy approximation with a tighter bound.

Remark 3.6 (Tightened Approximation Induced by h’s Lower Bound). Moreover, the introduction
of h tightens the approximation error due to the lower bound imposed by Assumption 3.2 (i.e.,
f(x, y) ≥ C). The second term on the RHS of (3.2) mirrors the form ∇ log pt(x|y) = ∇pt(x|y)

pt(x|y)
by replacing p with h. In the analysis of Section 3.1, especially in Step 1 of the proof (resembling
f1, f2 to approximate ∇pt(x|y)), we have to impose a threshold on the denominator of ∇pt(x|y)

pt(x|y) to
prevent score explosion under Assumption 3.1. This threshold introduces additional approximation
error (Lemma H.6). Assumption 3.2 remedies this by ensuring a lower bound on pt(x|y) through the
minimum values of f(x, y) and exp(−C2∥x∥22/2) within the compact domain after discretization.
Setting this lower bound eliminates the need for a threshold and improves the approximation.
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Consequently, decomposition (3.2) improves our approximation result from Section 3.1. We state our
main result of score approximation using transformers under Assumption 3.2 as follows:

Theorem 3.2 (Conditional Score Approximation under Assumption 3.2, Informal Version of Theo-
rem I.1). Assume Assumption 3.2. For any precision parameter 0 < ϵ < 1 and smoothness parameter
β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Let Cα, Cσ > 0 be some absolute constants. For any
y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R such that∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx = O
(B2

σ2
t

·N−2β · (logN)β+1
)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound Õ(ϵ2/σ2
t ).

Intrinsically, N is proportional to the size of the transformer network Tscore (see Theorem I.1). Hence,
the precision parameter ϵ is inversely proportional to the size of Tscore. Therefore, Theorem 3.2
specifies the required configuration (e.g., size) of Tscore for a desired score approximation accuracy.

Proof Sketch. The proof closely follows Theorem 3.1, but uses a different conditional score function
decomposition in the form of (3.2). We highlight this key distinction in Lemma I.1.

Please see Appendix I for a detailed proof, and see Theorem I.1 for the formal version.

Remark 3.7 (Comparing with Theorem 3.1). Let Õ(·) hide the terms about t0, log t0, log n. In
Theorem 3.2, the approximation rate Õ(N−2β) is faster than that of Theorem 3.1, i.e., Õ(N−β).

3.3 SCORE ESTIMATION AND DISTRIBUTION ESTIMATION OF CONDITIONAL DITS

Next, we study score and distribution estimations based on the two score approximation results for
two different data assumptions: Theorems 3.1 and 3.2. Let ŝ denote the trained score estimator.

Score Estimation. Building on our approximation results from Sections 3.1 and 3.2, the next
objective is to evaluate the performance of the score estimator ŝ trained with a set of finite samples
by optimizing the empirical loss (2.1). To quantify this, we introduce the score estimation risk.

Definition 3.2 (Conditional Score Risk). Given a score estimator ŝ, we define risk as the expectation
of the squared ℓ2 difference between the score estimator and the ground truth with respect to (xt, y, t):

R(ŝ) :=

∫ T

t0

1

T − t0
Ext,y∥ŝ(xt, y, t)−∇ log pt(xt|y)∥22dt.

Given a set of i.i.d sample {xi, yi}i∈[n], direct computation of E{xi,yi}i∈[n]
[R(ŝ)] is infeasible due to

the absence of access to the joint distribution P (xt, y). To address this, we: (i) Decompose the risk
into estimation and approximation errors, (ii) Bound the estimation error using the covering number
of transformers, and (iii) Bound the approximation error using Theorem 3.1 and Theorem 3.2.

Theorem 3.3 (Conditional Score Estimation with Transformer). Consider y ∈ [0, 1]dy and t ∈ [t0, T ]
with t0 = N−Cσ and T = Cα logN , where Cσ, Cα > 0 are absolute constants such that t0 < 1.
Furthermore, let ν1 = 16βd+ 12β and ν2 = 20dx + 4β + 18.
• Assume Assumption 3.1. Then, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
n−

β
ν1+Cσ+3β · (log n)ν2

)
.

• Assume Assumption 3.2. Then, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
n−

2β
ν1+6β · (log n)ν2

)
.

The upper bounds in Theorem 3.3 arises from the fundamental bias-variance trade-off. A key aspect
of the risk analysis comes from treating n i.i.d. training samples as random variables drawn from
the same distribution. Bounding this expectation relies on the log-covering number of transformer
network class, characterized by ν1, ν2 and ν3. Specifically, the difference between the risk computed
from the actual sample and computed from the closest element in the cover remains small. Controlling
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this gap ensures that the overall risk bound holds. In particular, A larger log-covering number
corresponds to a more expressive model, leading to higher variance in the learned estimator. One the
other hand, the bias term arises from the approximation error from Theorem 3.1 and Theorem 3.2.
Reducing the approximation error requires increasing network capacity, while expanding the function
class raises the log-covering number. The overall risk bound follows from balancing these two effects.

Proof. Please see Appendix J.2 for detailed proofs.

Remark 3.8 (Sample Complexity Bounds). To obtain ϵ-error in terms of score estimation, we
have the sample complexity Õ(ϵ−(ν1+Cσ+3β)/β) under Assumption 3.1 and Õ(ϵ−(ν3+6β)/2β) under
Assumption 3.2. Here Õ(·) ignores the terms about t0, log t0 and log n. The Hölder data smoothness
degree β affects the sample complexity. This indicates that the regularity of the initial data distribution
determines the complexity of score estimation.

Distribution Estimation. Next, we study the distributional estimation capability of the trained
conditional score network s(x, y, t) by analyzing the total variation distance between the estimated
and true distributions. Our strategy uses a three-part decomposition: (i) the total variation between
the true distributions at timestamps 0 and t0, (ii) the total variation between the true distribution at t0
and the reverse process distribution using the true score function, and (iii) the total variation between
the reverse process distributions using the true and estimated score functions at t0.

Theorem 3.4 (Conditional Distribution Estimation). For y ∈ [0, 1]dy , let P̂t0(·|y) denote estimated
conditional distributions at t0. Recall that P0(·|y) is the conditional distribution of initial data x0
given y and t ∈ [N−Cσ , Cα logN ]. Assume KL (P0(·|y) | N(0, I)) ≤ c for some constant c <∞.
• Assume Assumption 3.1. With ν1 and ν2, specified in Theorem 3.3, it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n−ω(log n)

ν2
2 + 3

2

)
,

where ω = min
{

Cσ

2(ν1+Cσ+3β) ,
Cα

ν1+Cσ+3β ,
β

2(ν1+Cσ+3β)

}
.

• Assume Assumption 3.2. With ν1 and ν2, specified in Theorem 3.3, for all x ∈ Rdx , it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n−ϕ(log n)

ν2
2 + 3

2

)
,

where ϕ = min
{

Cσ

2(ν1+6β) ,
Cα

ν1+6β ,
β

ν1+6β

}
.

Proof. Please see Appendix J.4 for a detailed proof.

3.4 MINIMAX OPTIMAL ESTIMATION OF UNCONDITIONAL DITS

We are now ready to present our minimax optimality result for unconditional DiTs. Recall the minimax
optimal rate for distribution estimation under the strong Hölder assumption (Assumption 3.2).

Lemma 3.1 (Proposition 4.3 of (Fu et al., 2024b) and (Yang and Barron, 1999)). For a fixed constant
C2 and a Hölder index β > 0. We consider the task of estimating a probability distribution P (x)
with its density function defined within the following function space

P =
{
p(x) = f(x) exp

(
−C2∥x∥22

)
: f(x) ∈ Hβ(Rdx , B), f(x) ≥ C ≥ 0

}
,

Given n i.i.d data {xi}ni=1, we have inf µ̂ supp∈P E{xi}ni=1
[TV(µ̂,P)] ≥ Ω(n−

β
dx+2β ). Here, the

estimator µ̂ ranges over all possible estimators constructed from the data.

Setting dy=0, we show unconditional DiTs match the minimax optimal rate under specific conditions.

Theorem 3.5 (Minimax Optimality of DiTs). Recall Theorem 3.4. The minimax optimality of
unconditional diffusion transformer holds under Cσ = 2Cα = 2β and 16β(d+ 1) = dx.

Proof. Please see Appendix J.5 for detailed proofs.
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Remark 3.9. Since we do not impose any assumptions on condition y (in contrast to data x),
Theorem 3.5 establishes only the minimax optimality of unconditional DiTs by setting dy = 0. We
leave the minimax optimality of conditional DiTs for future works.
Remark 3.10 (Comparing with Existing Works). Oko et al. (2023) analyze the ReLU network
and provide the near minimax optimal estimation rates in both the total variation distance and
Wasserstein distance of order one. Fu et al. (2024b) utilize the ReLU network and provides the
minimax optimality for distribution in total variation as well. Our results offer the first and exact
minimax optimal guarantee for unconditional DiTs in distribution estimation.

4 DISCUSSION AND CONCLUSION

We investigate the approximation and estimation rates of conditional DiT and its latent setting. We
focus on the “in-context” conditional DiT setting presented by Peebles and Xie (2023), and conduct
a comprehensive analysis under various common data conditions (Section 3 for generic and strong
Hölder smooth data, Appendix A for data with intrinsic latent subspace).

Interestingly, we establish the minimax optimality of the unconditional DiTs’ estimation by reducing
our analysis of conditional DiTs to the unconditional setting (Section 3.4 and Remark A.3). Our key
techniques include a well-designed score decomposition scheme (Section 3.1). These enable a finer
use of transformers’ universal approximation, compared to the prior statistical rates of DiTs derived
from the universal approximation results in (Yun et al., 2020) by Hu et al. (2024).

Consequently, we provide three extensions in the appendix:

• In Appendix A, we extend the results from Section 3.2 by assuming the input data has an intrinsic
lower-dimensional representation. Importantly, we establish the minimax optimality of estimation
for such latent DiTs.

• In Appendix D, we expand Appendix A and extend our well-designed score decomposition scheme
from Section 3 to the latent conditional DiT. Notably, we also obtain provably tight rate, i.e., for
distribution estimation under Assumption 3.2 (Remark A.3).

• In Appendix E, we extend the analysis of (Hu et al., 2024) to the conditional DiT setting and
provide an improved version. In particular, we analyze conditional latent DiTs under the following
three assumptions from (Hu et al., 2024) and obtained sharper rates:

– Low-Dimensional Linear Latent Space Data (Assumption A.1)
– Lipschitz Score Function (Assumption E.2)
– Light Tail Data Distribution (Assumption E.3)

In detail, we use a modified universal approximation of the single-layer self-attention transformers
(modified from (Kajitsuka and Sato, 2024)) to avoid the need for dense layers required in (Yun et al.,
2020). This refinement results in tighter error bounds for both score and distribution estimation.
Consequently, our sample complexity error bounds avoid the gigantic double exponential term
2(1/ϵ)

2L

reported by Hu et al. (2024), and obtain sharper rates than those of (Hu et al., 2024).
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A LATENT CONDITIONAL DITS

W⊤U
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−1/σ2
t

sW

Figure 2: Network Architecture of Latent Conditional DiT. The overall architecture consists of linear layer
of encoder and decoder W⊤

U and WU that transform input x ∈ Rdx into linear latent space Rd0 , reshaping layer
R̃(·) and R̃−1(·), embedding layer for label y and timestep t. The embedding concatenates with input sequences
and processes by the adapted transformer network T h,s,r

R̃
= R̃−1 ◦ gT ◦ f (FF) ◦ R̃.

In this section, we extend the results from Section 3 by considering the latent conditional DiTs.
Specifically, we assume the raw input x ∈ Rdx has an intrinsic lower-dimensional representation.

Assumption A.1 (Low-Dimensional Linear Latent Space). Initial data x has a latent representation
via x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The latent
variable h ∈ Rd0 follows the distribution Ph with a density function ph.

Remark A.1. “Linear Latent Space” means that each entry of a given latent vector is a linear
combination of the corresponding input, i.e., x = Uh. This is also known as the “low-dimensional
data” assumption in literature (Hu et al., 2024; Chen et al., 2023c). This assumption is fundamental in
dimensionality reduction techniques for capturing the intrinsic lower-dimensional structure of data.

Score Decomposition and Model Architecture. To derive approximation and estimation results,
we extend the techniques and network architecture presented in Section 3 to latent diffusion by
considering the “low-dimensional linear subpace”. Under Assumption A.1, we decompose the score:

∇ log pt(x|y) = U( σ2
t∇ log pht (U

⊤x|y) + U⊤x︸ ︷︷ ︸
:=q(U⊤x,y,t): Rd0×Rdy×[t0,T ]→ Rd0

)/σ2
t − x/σ2

t︸ ︷︷ ︸
residual connection

, (A.1)

following Hu et al. (2024); Chen et al. (2023c) (see Lemma D.1). Based on this decomposition,
we construct the model architecture in Figure 2. The network detail for approximate (A.1) are
as follow: a transformer gT (W⊤U x, y, t) ∈ T h,s,r

R̃
to approximate q(U⊤x, y, t), a latent encoder

W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to approximate U⊤ ∈ Rd0×dx and U ∈ Rdx×d0 , and a
residual connection to approximate −x/σ2

t . Importantly, d0 is the latent dimension.

For latent diffusion, we follow the standard setting by Peebles and Xie (2023). For each input x ∈ Rdx

and corresponding label y ∈ Rdy , we use a transformer network to obtain a score estimator sW ∈ Rdx .
The key differences from Section 3 are as follows: First, we apply a latent encoder W⊤U ∈ Rd0×dx to
map the raw data x ∈ Rdx into a low-dimensional representation h :=W⊤U x ∈ Rd0 , where d0 ≤ dx.
Second, we reshape h ∈ Rd0 into a sequence H ∈ Rd̃×L̃ using a layer R̃(·) : Rd0 → Rd̃×L̃, with
d0 = d̃ · L̃. Note that, by d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L. Third, we pass H ∈ Rd̃×L̃ through the
transformer gT . Lastly, We then obtain the predicted score sW ∈ Rdx by applying the inverse reshape
layer R̃−1(·) : Rd̃×L̃ → Rd0 , followed by the latent decoder WU : Rd0 → Rdx .

For our analysis, we study the cases under both the generic and strong Hölder smoothness assumptions
on latent representation z ∈ Rd0 . Specifically, we assume the “latent” data is β0-Hölder smooth with
radius B0 following Assumptions 3.1 and 3.2. We extend both approximation and estimation results
from Section 3 to latent diffusion and establish the minimax optimality of latent conditional DiTs.

Score Approximation. We now present the approximation rates for latent score function under both
generic and stronger Hölder data assumptions. Let h :=W⊤U x ∈ Rd0 and h := U⊤x ∈ Rd0 be the
estimated and ground truth (according to Assumption A.1) latent representations, respectively.
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Theorem A.1 (Score Approximation of Latent Conditional DiTs, Informal Version of Theorems D.1
and D.2). Assume d0 = Ω( logN

log logN ). For any precision 0 < ϵ < 1 and smoothness β0 > 0, let
ϵ ≤ O(N−β0) for some N ∈ N. Let Cα, Cσ > 0 be some absolute constant. For any y ∈ [0, 1]dy

and t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that

• Under Assumption 3.1, we have∫
Rd0

∥∥Tscore(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ4
t

·N−β0 · (logN)d0+
β0
2 +1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound O((log
(
1
ϵ

)
)d0/σ4

t ).

• Under Assumption 3.2, it holds∫
Rd0

∥∥Tscore(x, y, t)(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ2
t

·N−2β0 · (logN)β0+1

)
.

Notably, for ϵ = O(N−β0), the approximation error has the upper bound Õ(ϵ2/σ2
t ).

Proof. See Theorems D.1 and D.2 for the formal versions and Appendices H and I for proofs.

Remark A.2 (Comparing with Theorems 3.1 and 3.2). Recall dx ≥ d0. The approximation error
bounds are O((log

(
1
ϵ

)
)dx/σ4

t ) in Theorem 3.1 and Õ(ϵ2/σ2
t ) in Theorem 3.2. Theorem A.1 shows

that the latent conditional DiT achieves better approximation and has the potential to bypass the
challenges associated with the high dimensionality of initial data.

Score and Distribution Estimation. Based on Theorem A.1, we derive the score estimation bounds
in Theorem D.3, and report the results for distribution estimation in next theorem.

Theorem A.2 (Conditional Distribution Estimation). For y ∈ [0, 1]dy , let P̂t0(·|y) denote estimated
conditional distributions at t0. Recall that P0(·|y) is the conditional distribution of initial data x0
given y and t ∈ [N−Cσ , Cα logN ]. Assume KL (P0(·|y) | N(0, I)) ≤ c for some constant c <∞.

• Assume d0 = Ω( logN
log logN ) and Assumption 3.1. Let ν̃1 := 68β0 + 104Cσ and ν̃2 := 12d0 +

12β0 + 2. it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n−ω(log n)

ν̃2
2 + 3

2

)
,

where ω = min
{

Cσ

2(ν̃1+Cσ+3β0)
, Cα

ν̃1+Cσ+3β0
, β0

2(ν̃1+Cσ+3β0)

}
.

• Assume Assumption 3.2. Let ν̃3 := 4

d̃
(12β0d0 +31β0d̃+6β0)+

12Cα

d̃
(12d0 + 25d̃+ 6)+ 72Cσ .

For all x ∈ Rdx , it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n−ϕ(log n)max{7, β0+3

2 ,
d0+1

2 }
)
,

where ϕ = min
{

Cσ

2(ν̃3+6β0)
, Cα

ν̃3+6β0
, β0

ν̃3+6β0

}
.

Proof. Please see Appendix J.4 for a detailed proof.

Remark A.3 (Minimax Optimal Estimation). Following the same idea in Section 3.4, we show that
the estimation error bound in Theorem A.2 is the optimal tight bound for the latent unconditional DiT.
Specifically, by applying Lemma 3.1 and substituting p(x|y) and dx by pht (h|y) and d0 respectively
in Assumption 3.2, we follow the setting specified in Appendix J.5.
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Concluding Remarks. We defer the discussion of our results and concluding remarks to Section 4.
We extend our analysis to the setting of (Hu et al., 2024) and improve their results in Appendix E.
Importantly, our bounds avoid the gigantic 2(1/ϵ)

2L

term reported by Hu et al. (2024).

B NOTATION TABLE

We summarize our notations in the following table for easy reference.
Table 2: Mathematical Notations and Symbols

Symbol Description

[I] The index set {1, ..., I}, where I ∈ N+

a[i] The i-th component of vector a
Aij The (i, j)-th entry of matrix A
∥x∥ Euclidean norm of vector x
∥x∥1 1-norm of vector x
∥x∥2 2-norm of vector x
∥x∥∞ Infinite norm of vector x
∥W∥2 Spectral norm of matrix W
∥W∥F Frobenius norm of matrix W
∥W∥p,q (p, q)-norm of matrix W , where p-norm is over columns and q-norm is over rows
∥f(x)∥L2 L2-norm, where f is a function
∥f(x)∥L2(P ) L2(P )-norm, where f is a function and P is a distribution
∥f(·)∥Lip Lipschitz-norm, where f is a function

dp(f, g) p-norm of the difference between functions f and g defined as dp(f, g) =
(∫

|f(x)− g(x)|p dx
)1/p

f♯P Pushforward measure, where f is a function and P is a distribution
KL(P,Q) Kullback-Leibler (KL) divergence between distributions P and Q
TV(P,Q) Total variation (TV) distance between distributions P and Q
N(µ, σ2) Normal distribution with mean µ and variance σ2

a ≲ b There exist constants C > 0 such that a ≤ Cb

n Sample size
x Data point in original data space, x ∈ Rdx

y Conditioning Label, x ∈ Rdy

h Latent variable in low-dimensional subspace, h ∈ Rd0

h h = U⊤x
ph The density function of h
U The matrix with orthonormal columns to transform h to x, where U ∈ Rd×d0

B Radius of Hölder ball for conditional density function p(x|y)
B0 Radius of Hölder ball for latent conditional density function p(h|y)
β Hölder index for conditional density function p(x|y)
β0 Hölder index for latent conditional density function p(h|y)
D Granularity in the construction of the transformer universal approximation
N Resolution of the discretization of the input domain
R Score risk (expectation of squared ℓ2 difference between score estimator and ground truth)
N (ϵ,F , ∥·∥) Covering number of collection F (see Definition J.5)

T Stopping time in the forward process of diffusion model
t0 Stopping time in the backward process of diffusion model
µ Discretized step size in backward process
pt(·) The density function of x at time t
pht (·) The density function of h at time t
ψ (Conditional) Gaussian density function

T h,s,r Transformer network function class (see Definition 2.2)
fh,s,r Transformer block of h-head, s-hidden size, r-MLP dimension (see Definition 2.1)
d Input dimension of each token in the transformer network of DiT
L Token length in the transformer network of DiT
d̃ Latent data input dimension of each token in the transformer network of DiT
L̃ Latent data token length in the transformer network of DiT
X Sequence input of transformer network in DiT, where X ∈ Rd×L

H Sequence latent data input of transformer network in DiT, where X ∈ Rd×L

E Position encoding, where E ∈ Rd×L

R(·) Reshape layer in DiTs, R(·) : Rdx → Rd×L

R̃(·) Reshape layer in latent DiTs, R̃(·) : Rd0 → Rd̃×L̃

R−1(·) Reverse reshape layer in DiTs, R−1(·) : Rd×L → Rdx

R̃−1(·) Reverse reshape layer in latent DiTs, R̃−1(·) : Rd̃×L̃ → Rd0

WU The orthonormal matrix to approximate U , where WU ∈ Rdx×d0
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C RELATED WORKS, BROADER IMPACT AND LIMITATIONS

C.1 RELATED WORKS

In the following, we discuss the recent success of the techniques used in our work. We first give
the universality (universal approximation) of the transformer. Then, we discuss recent theoretical
developments (approximation and estimation) in diffusion generative models.

Universality of Transformers. The universality of transformers refers to their ability to approx-
imate any sequence-to-sequence function with arbitrary precision. Yun et al. (2020) establish this
by showing that transformers is capable of universally approximate sequence-to-sequence func-
tions using deep stacks of feed-forward and self-attention layers. Additionally, Alberti et al. (2023)
demonstrate universal approximation for architectures employing non-standard attention mechanisms.
Recently, Kajitsuka and Sato (2024) show that even a single-layer transformer with self-attention
suffices for universal approximation assuming all attention weights are rank-1. Moreover, Hu et al.
(2024) leverage (Yun et al., 2020)’s universality results to analyze the approximation and estimation
capabilities of DiT.

Our paper is motivated by and builds upon the works of Hu et al. (2024); Kajitsuka and Sato
(2024); Yun et al. (2020). Specifically, we utilize and extend the transformer universality result from
(Kajitsuka and Sato, 2024). We employ a relaxed contextual mapping property in (Kajitsuka and Sato,
2024) (see Appendix G.1). This generalization allows us to avoid the “double exponential” sample
complexity bounds in previous DiT analyses (Hu et al., 2024, Remark 3.4) and establish transformer
approximation in the simplest configuration — a single-layer, single-head attention model.

Approximation and Estimation Theories of Diffusion Models. The theories of DiTs revolve
around two main frontiers: score function approximation and statistical estimation (Chen et al., 2024a;
Tang and Zhao, 2024). Score function approximation refers to the ability of the score network to
approximate the score function. It leverages the universal approximation ability of the neural network
in Lp norms (Hayakawa and Suzuki, 2020), the approximation characterized as Taylor polynomial
(Fu et al., 2024a) or B-Spline (Oko et al., 2023). Chen et al. (2023c) and Fu et al. (2024a) investigate
score approximation under specific conditions, such as low-dimensional linear subspaces and Hölder
smooth data assumptions, using ReLU-based models. Furthermore, Hu et al. (2024) presents the first
characterization of score approximation in diffusion transformers (DiTs).

The statistical estimation includes score function and distribution estimation (Wu et al., 2024b; Dou
et al., 2024a; Guo et al., 2024; Chen et al., 2023c). Under a L2 accurate score estimation, several
works provide the convergence bounds under either smoothness assumptions (Benton et al., 2024;
Chen et al., 2022) or bounded second-order moment assumptions (Chen et al., 2023b; Lee et al., 2023).
Chen et al. (2023c) provide the first complete estimation theory using ReLU networks without precise
estimators. Oko et al. (2023) achieve nearly minimax optimal estimation rates for total variation and
Wasserstein distances. Meanwhile, Dou et al. (2024b) define exact minimax optimality using kernel
functions without characterizing the network architectures. In the realm of diffusion transformers,
Hu et al. (2024) introduces the first complete estimation theory. Jiao et al. (2024a;b) demonstrate
theoretical convergence for latent DiTs using ODE-based and Schrödinger bridge diffusion models.3

Our paper advances the foundational works of Fu et al. (2024b); Oko et al. (2023); Hu et al. (2024).
We adopt the Hölder smooth data distribution assumption4, a more practical approach than the
bounded support assumption in (Oko et al., 2023). Unlike the simple ReLU networks in (Fu et al.,
2024b), we provide a complete approximation and estimation analysis for conditional DiTs and
establish their exact minimax optimality. Furthermore, while Hu et al. (2024) analyze DiTs, their
estimation upper bounds are suboptimal. We refine this by avoiding the substantial double exponential
term 2(1/ϵ)

2L

reported by Hu et al. (2024, Remark 3.4) and present a provably tight, minimax optimal
estimation. Recent works on minimax optimality of diffusion model such as (Tang et al., 2024; Fu

3Of independent interest, many works investigate the convergence rates of diffusion models under various
score and data smoothness assumptions or with different samplers. Please see (Chen et al., 2025; Li et al.,
2024a;b;c; Potaptchik et al., 2024; Wu et al., 2024c; Liang et al., 2024b;a; Gatmiry et al., 2024; Gu et al., 2024;
Guo et al., 2023; Chen et al., 2024b; 2023b; 2022; Lee et al., 2023; 2022) and references therein.

4Recent work by Havrilla and Liao (2024) examines the generalization and approximation of transformers
under Hölder smoothness and low-dimensional subspace assumptions.
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et al., 2024b) demonstrate minimax-optimal under the total variation for ReLU network. Additionally,
Tang et al. (2024) extend the analysis to a more general setting by considering different smoothness
levels for the data x and condition y.

C.2 BROADER IMPACT

This theoretical work aims to shed light on the foundations of generative diffusion models and is not
expected to have negative social impacts.

C.3 LIMITATIONS

Although our study provides a complete theoretical analysis of the conditional DiTs and establishes
the minimax optimality of the unconditional DiT, we acknowledge three main limitations:

• The minimax optimality of conditional DiT remains not clear.

• We did not explore other architectures such as “adaptive layer norm” and “cross-attention” DiT. A
potential direction is by establishing the universal approximation capacity of the transformer with
cross-attention mechanisms.

• Although we achieve a better bound for the latent conditional DiT under the Lipschitz assumption
than under the Hölder assumption, we do not show the minimax optimality under the Lipschitz
assumption.

We leave these for future work.

Furthermore, there are limitations regarding the Hölder smooth data assumptions in Assumption 3.1
and Assumption 3.2. Our results in Section 3 and Appendix A depend on the Hölder smooth data
assumptions. However, it is challenging to measure the smoothness of a given dataset (e.g., CIFAR10),
because it requires knowledge of the dataset’s exact distribution. Conversely, it is feasible to create a
dataset with a predefined level of smoothness. To illustrate this, we provide two examples.

• Diffusion Models in Image Generation: When modeling conditional distributions of images given
attributes (e.g., generating images based on class labels), these assumptions hold if the data
distribution around these attributes is smooth and decays. In diffusion-based generative models,
the data distribution often decays smoothly in high-dimensional space. The assumption that the
density function decays exponentially reflects the natural behavior of image data, where pixels or
features far from a central region or manifold are less likely. This is commonly observed in images
with blank boundaries.

• Physical Systems with Gaussian-Like Decay: This applies to cases where the spatial distribution
of a physical quantity, such as temperature, is smooth and governed by diffusion equations with
exponential decay. In physics-based diffusion models, like those simulating the spread of particles
or heat in a medium (e.g., stars in galaxies for astrophysics applications), the conditional density
typically decays exponentially with distance from a central region.
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D LATENT CONDITIONAL DIT WITH HÖLDER ASSUMPTION

In this section, we elaborate more on Appendix A — conditional DiTs under (i) low-dimensional
linear latent (subspace) and (ii) Hölder data assumptions.

We extend the results on approximation and estimation of DiT from Section 3 by considering the
latent conditional DiTs. Latent DiTs enables efficient data generation from latent space and therefore
scales better in terms of spatial dimensionality (Rombach et al., 2022). Specifically, we assume the
raw input x ∈ Rdx has an intrinsic lower-dimensional representation in a d0-dimensional subspace,
where d0 ≤ dx. This setting is common in both empirical (Peebles and Xie, 2023; Rombach et al.,
2022) and theoretical studies (Hu et al., 2024; Chen et al., 2023c).

Organization. We present the statistical results under Hölder data smooth Assumptions 3.1 and 3.2
and state the results in Theorem D.1, Theorem D.2, Theorem D.3, and Theorem D.4, respectively. Ap-
pendix D.1 discusses score approximation. Appendix D.2 discusses score estimation. Appendix D.3
discusses distribution estimation. The proofs in this section primarily follow Appendices H and I.

Let d0 denote the latent dimension. We summarize the key points of this section as follows:

K1. Low-Dimensional Subspace Space Data Assumption. We consider the setting that latent
representation lives in a “Low-Dimensional Subspace” under Assumption A.1, following (Hu
et al., 2024; Chen et al., 2023c).

Assumption D.1 (Low-Dimensional Linear Latent Space (Assumption A.1 Restated)). Data
point x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The latent
variable h ∈ Rd0 follows a distribution Ph with a density function ph.

For raw data x ∈ Rdx , we utilize linear encoder W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to
convert the raw x ∈ Rdx and latent h ∈ Rd0 data representations. Importantly, x = Uh with
U ∈ Rdx×d0 by Assumption A.1.

For each input x ∈ Rdx and corresponding label y ∈ Rdy , we use a transformer network to
obtain a score estimator sW ∈ Rdx . To utilize the transformer network as the score estimator, we
introduce reshape layer to convert vector input h ∈ Rd0 to matrix (sequence) input H ∈ Rd̃×L̃.
Specifically, the reshape layer in the network Figure 2 is defined as R̃(·) : Rd0 → Rd̃×L̃ and its
reverse R̃−1(·) : Rd̃×L̃ → Rd0 , where d0 ≤ dx, d̃ ≤ d, and L̃ ≤ L.

We remark that the “low-dimensional data” assumption leads to tighter approximation rates than
those of Sections 3.1 and 3.2 and estimation errors due to d0 ≤ dx (Theorems D.1 and D.2).

K2. Hölder Smooth Assumption. For approximation and estimation results for latent conditional
DiTs (Theorems D.1 to D.4), we study the cases under both the generic and strong Hölder
smoothness assumptions on latent representation h ∈ Rd0 . Specifically, we assume the “latent”
data is β0-Hölder smooth with radius B0 following Assumptions 3.1 and 3.2. We extend both
approximation and estimation results from Section 3 to latent diffusion and establish the minimax
optimality of latent conditional DiTs.

Assumption D.2 (Generic Hölder Smooth Data (Assumption 3.1 Restated)). The conditional
density function ph0 (h0|y) is defined on the domain Rd0 × [0, 1]dy and belongs to Hölder ball of
radius B0 > 0 for Hölder index β0 > 0, denoted by ph0 (h0|y) ∈ Hβ0(Rd0 × [0, 1]dy , B0) (see
Definition 3.1 for precise definition.) Also, for any y ∈ [0, 1]dy , there exist positive constants
C1, C2 such that ph0 (h0|y) ≤ C1 exp

(
−C2∥h0∥22/2

)
.

Assumption D.3 (Stronger Hölder Smooth Data (Assumption 3.2 Restated)). Let function
f ∈ Hβ0(Rd0 × [0, 1]dy , B0). Given a constant radius B0, positive constants C and C2,
we assume the conditional density function p(h0|y) = exp

(
−C2∥h0∥22/2

)
· f(h0, y) and

f(h0, y) ≥ C for all (h0, y) ∈ Rd0 × [0, 1]dy .
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K3. Latent Score Network. Under low-dimensional data assumption, we decompose the score
function following (Hu et al., 2024; Chen et al., 2023c) (see Lemma D.1):

∇ log pt(x|y) = U(σ2
t∇ log pht (U

⊤x|y) + U⊤x︸ ︷︷ ︸
:=q(U⊤x,y,t): Rd0×[t0,T ]→ Rd0

)/σ2
t − x/σ2

t︸ ︷︷ ︸
residual connection

. (D.1)

Based on this decomposition, we construct the model architecture in Figure 2. The network detail
for approximate (D.1) are as follow: a transformer gT (W⊤U x, y, t) ∈ T h,s,r to approximate
q(U⊤x, y, t), a latent encoder W⊤U ∈ Rd0×dx and decoder WU ∈ Rdx×d0 to approximate
U⊤ ∈ Rd0×dx and U ∈ Rdx×d0 , and a residual connection to approximate −x/σ2

t .

We adopt the following transformer network class of one-layer single-head self-attention

T h,s,r

R̃
=

{
sW (x, y, t) =

1

σ2
t

WUgT
(
W⊤U x, y, t

)
− 1

σ2
t

x︸︷︷︸
residual connection

}
, (D.2)

where gT ∈ T h,s,r = {fFF
2 ◦ fh,s,r : Rd̃×L̃ → Rd̃×L̃}.

Let h := W⊤U x ∈ Rd0 and h := U⊤x ∈ Rd0 be the estimated and ground truth (according to
Assumption A.1) latent representations, respectively. Here we construct a network sW (x, y, t) to
approximate the score function in (D.1) (see Figure 2 for network illustration).

In Section 3, we give approximation results for score function ∇ log pt(x|y) using conditional DiTs
with a one-layer single-head self-attention transformer. We use the similar transformer architecture to
approximate latent score function ∇ log pht (h|y). Specifically, the density function takes the form

pht (h|y) =
∫
ψt(h|h)ph(h|y)dh,

where ψt(·|h) is Gaussian N(βth, σ
2
t Id0) with βt = e−t/2, and σ2

t = 1− e−t.

Based on the latent network construction in (K3), we employ the same techniques presented in
Section 3 for score function approximation and estimation. We restate for completeness. First, we
decompose the conditional score function ∇ log pht (h|y) as following:

∇ log pht
(
h|y
)
=

∇pht
(
h|y
)

pht
(
h|y
) . (D.3)

By the definition of Gaussian kernel, we have

pht
(
h|y
)
=

∫
Rd0

(2πσ2
t )
−dx/2 ph (h|y)︸ ︷︷ ︸

≈k1-order Taylor polynomial

exp

(
−
∥∥βth− h

∥∥2
2

2σ2
t

)
︸ ︷︷ ︸
≈k2-order Taylor polynomial

dh.

Similar to Section 3, our strategy is to expand above term-by-term with k1- and k2-order Taylor
polynomials for fine-grained characterizations.

Remark D.1. Here in the latent density function, we have (2πσ2
t )
−dx/2 instead of (2πσ2

t )
−d0/2.

However, the additional (2πσ2
t )
−(dx−d0)/2 term does not affect the application of Section 3 into

latent diffusion approximation.

Based on the low-dimensional data structure assumption, we have the following score decomposition
terms: on-support score s+(U⊤x, y, t) and orthogonal score s−(x, y, t).

21



Published as a conference paper at ICLR 2025

Lemma D.1 (Score Decomposition, Lemma 1 of (Chen et al., 2023c)). Let data x = Uh follow
Assumption A.1. The decomposition of score function ∇ log pt(x) is

∇ log pt(x) = U∇ log pht (h|y)︸ ︷︷ ︸
s+(h,y,t)

−
(
ID − UU⊤

)
x/σ2

t︸ ︷︷ ︸
s−(x,t)

, h = U⊤x, (D.4)

where pht
(
h|y
)
:=
∫
ψt(h|h)ph (h|y) dh, ψt(·|h) is the Gaussian density function of N(βth, σ

2
t Id0

),
βt = e−t/2 and σ2

t = 1− e−t.

Following the proof strategy of conditional DiTs in Appendices H and I with differences highlighted in
(K1), (K2), and the latent network in (K3). To derive the approximation and estimation under generic
and stronger Hölder assumptions results in Theorems 3.1 to 3.4 for data under low-dimensional data
assumption, we just need to replace the input dimension d, L to d̃ and L̃, and the input dimension dx
with d0, and consider the β0-Hölder smoothness assumption on latent data.

To begin, we clarify the relation between initial data admits to p(x|y) ∈ Hβ(Rdx × [0, 1]dy , B), and
under linear transformed data Assumption A.1 admits to p(h|y) ∈ Hβ0(Rd0 × [0, 1]dy , B0) where
β0 = β and B0 ≤ C̃B by Lemma D.2.

Lemma D.2 (Transformation of Stronger Hölder Smooth Data Distribution under Linear Mapping).
Let f ∈ Hβ(Rdx × [0, 1]dy , B) satisfy f(x, y) ≥ C > 0 for all (x, y) ∈ Rdx × [0, 1]dy . Consider
the conditional density function:

p(x|y) = f(x, y) exp

(
−C2

2
∥x∥22

)
.

Suppose the data undergo the linear transformation x = Uh, where U ∈ Rdx×d0 has orthonormal
columns (U⊤U = Id0

) and f0(h|y) = f(Uh|y). The transformed density p(h|y) becomes:

p(h|y) = f(Uh, y) exp

(
−C2

2
∥h∥22

)
.

The following condition holds for Hölder smooth data that undergoes linear transformation: f0 ∈
Hβ(Rdx × [0, 1]dy , B0) with B0 ≤ C̃B, where C̃ = max{C ′, C ′′}.

Proof. First, we compute the partial derivative of the transformed function f0(h|y) := f(Uh|y).
From the definition of Hölder space Definition 3.1, and let α = (αh, αy) where αh + αy ≤ k1. We
compute the partial derivative up to the order of k1 and show that it is bounded by some C ′, that is

∂αh

h ∂αy
y p(h|y) = ∂αh

h ∂αy
y

[
f(Uh, y) exp

(
−C2

2
∥h∥22

)]
=
∑
α≤ν

(
α

µ

)(
∂
αµ

h f(Uh, y)
)(

∂
(α−ν)
h exp

(
−C2

2
∥h∥22

))
.

(
By product rule

)
From the relation ∂αh

h f(Uh, y) = Uαh∂αh
x f(Uh, y) where Uαh is the product of U entries corre-

spond to αh. Therefore,
∥∥∂αh

h ∂
αy
y f0(h|y)

∥∥ ≤ C ′B for some C ′ depends on U and αh. Since f
satisfied Hölder condition and the mapping h 7→ Uh is linear, for Hölder condition |αh|+ |αy| = k1
there exist C ′′ such that ∣∣∂αh

h ∂
αy
y f0(h|y)− ∂αh

h ∂
αy
y f0(h

′|y′)
∣∣

∥(h, y)− (h′, y′)∥γ∞
≤ C ′′B.

The bounded partial derivate up to order k1 satisfied Hölder condition.

This completes the proof.
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D.1 SCORE APPROXIMATION

We present the approximation rate of latent score function under generic Hölder and stronger Hölder
data assumption in Theorems D.1 and D.2, respectively.

Theorem D.1 (Latent Conditional DiT Score Approximation, Formal Version of Theorem A.1).
Assume Assumption 3.1 and dx = Ω( logN

log logN ). For any precision 0 < ϵ < 1 and smoothness
β0 > 0, let ϵ ≤ O(N−β0) for some N ∈ N. Let Cα, Cσ > 0 be some absolute constant. For any
y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that∫

Rd0

∥∥Tscore(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ4
t

·N−β0 · (logN)d0+
β0
2 +1

)
.

Proof Sketch. The proof closely follows Theorem 3.1, with differences highlighted in (K1) and (K2).
Specifically, we replace d, L and dx with d̃, L̃ and d0 respectively. Moreover, we consider the
β0-Hölder smoothness assumption on latent data detailed in (K2). This completes the proof.

Please see Appendix H for a detailed proof.

Theorem D.2 (Latent Conditional DiT Score Approximation under Stronger Hölder Assumption,
Formal Version of Theorem A.1). Assume Assumption 3.2. For any precision 0 < ϵ < 1 and
smoothness β0 > 0, let ϵ ≤ O(N−β0) for some N ∈ N. Let Cα, Cσ > 0 be some absolute constant.
For any y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R̃
such that∫

Rd0

∥∥Tscore(x, y, t)(h, y, t)−∇ log pht (h|y)
∥∥2
2
· pht (h|y)dh = O

(
B2

0

σ2
t

·N−2β0 · (logN)β0+1

)
.

Proof Sketch. The proof closely follows Theorem I.1, with differences highlighted in (K1) and (K2).
We replace the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem I.1
with the β0-Hölder smoothness assumption on latent data detailed in (K2). This completes the proof.

Please see Appendix I for a detailed proof.

Remark D.2 (Score Approximation for Low-Dimensional Linear Latent Space). With the assumption
of low-dimensional latent space Assumption A.1, Theorems D.1 and D.2 provide better approximation
rates than Theorems 3.1 and 3.2 under Hölder smooth assumptions in Assumptions 3.1 and 3.2,
respectively. Specifically, from Lemma D.2 we have β0 = β and B0 ≲ B. Therefore, Theorems D.1
and D.2 deliver better approximation error over Theorem 3.1, where d0 ≤ dx.

D.2 SCORE ESTIMATION

In this section, we provide the extended results for Section 3.3 on score estimation with the estimator
Tscore. We state the main results under Hölder data assumptions in Theorem D.3.

Theorem D.3 (Conditional Score Estimation with Transformer). Consider y ∈ [0, 1]dy and t ∈ [t0, T ]
with t0 = N−Cσ and T = Cα logN , where Cσ, Cα > 0 are absolute constants such that t0 < 1.
• Assume Assumption 3.1. Then, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
n−

β0
ν̃1+Cσ+3β0 · (log n)ν̃2+2

)
.

• Assume Assumption 3.2. Then, it holds

E{xi,yi}ni=1
[R(ŝ)] = O

(
n−

2β0
ν̃3+6β0 · (log n)max{13,β0+2}

)
.
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Proof Sketch. The proof closely follows Theorem 3.3, with differences highlighted in (K1) and (K2).
By replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.3,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix J.2 for a detailed proof.

Remark D.3 (Comparing Score Estimation in Theorems 3.3 and D.3). Invoking Lemma D.2 where
β0 = β and B0 ≲ B the sample complexity in Theorem D.3 improves Theorem 3.3.

D.3 DISTRIBUTION ESTIMATION

In this section, we provide the extended results for Section 3.3 on distribution estimation with the
estimator Tscore. We restate the main results under Hölder data assumptions in Theorem D.3.

Theorem D.4 (Conditional Distribution Estimation, Theorem A.2 Restated). For y ∈ [0, 1]dy , let
P̂t0(·|y) denote estimated conditional distributions at t0. Recall that P0(·|y) is the conditional
distribution of initial data x0 given y and t ∈ [N−Cσ , Cα logN ]. Assume KL (P0(·|y) | N(0, I)) ≤
c for some constant c <∞.

• Assume Assumption 3.1. Then, it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n−ω̃(log n)

ν̃2
2 + 3

2

)
,

where ω̃ = min
{

Cσ

2(ν̃1+Cσ+3β0)
, Cα

ν̃1+Cσ+3β0
, β0

2(ν̃1+Cσ+3β0)

}
.

• Assume Assumption 3.2. Then, it holds

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n−ϕ̃(log n)

ν̃2
2 + 3

2

)
,

where ϕ̃ = min
{

Cσ

2(ν̃1+6β0)
, Cα

ν̃1+6β0
, β0

ν̃1+6β0

}
.

Proof. The proof closely follows Theorem 3.4, with differences highlighted in (K1) and (K2). By
replacing the input dimension d, L to d̃ and L̃, and the input dimension dx with d0 in Theorem 3.4,
and under the the β0-Hölder smoothness assumption on latent data detailed in (K2), the proof is
complete. Please see Appendix J.4 for a detailed proof.

Next, we present the distribution estimation result for low-dimensional input data.
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E LATENT CONDITIONAL DIT WITH LIPSCHITZ ASSUMPTION

In this section, we apply our techniques to the setting of (Hu et al., 2024) on DiT approximation
and estimation theory — under (i) low-dimensional linear latent (subspace), (ii) Lipschitz score
and (iii) sub-Gaussian data assumptions. Specifically, we extend their work by using the one-layer
self-attention transformer universal approximation framework introduced in Appendix G.1.

Compared to (Hu et al., 2024), we consider classifier-free conditional DiTs, providing a holistic
view of the theoretical guarantees under various assumptions. In particular, our sample complexity
bounds avoid the gigantic double exponential term 2(1/ϵ)

2L

reported in (Hu et al., 2024). We adopt
the following three assumptions considered by Hu et al. (2024):

(A1) Low-Dimensional Linear Latent Space Data Assumption.

Assumption E.1 (Low-Dimensional Linear Latent Space, Assumption A.1 Restated). Data
point x = Uh, where U ∈ Rdx×d0 is an unknown matrix with orthonormal columns. The
latent variable h ∈ Rd0 follows a distribution Ph with a density function ph.

Under this data assumption, Chen et al. (2023a) show that the latent score function endows a
neat decomposition into on-support s+ and orthogonal s− terms (see Lemma D.1).

Lemma E.1 (Score Decomposition, Lemma 1 of (Chen et al., 2023c), Lemma D.1 Restated).
Let data x = Uh follow Assumption A.1. The decomposition of score function ∇ log pt(x) is

∇ log pt(x) = U∇ log pht (h|y)︸ ︷︷ ︸
s+(h,y,t)

−
(
ID − UU⊤

)
x/σ2

t︸ ︷︷ ︸
s−(x,t)

, h = U⊤x, (E.1)

where pht
(
h|y
)

:=
∫
ψt(h|h)ph (h|y) dh, ψt(·|h) is the Gaussian density function of

N(βth, σ
2
t Id0), βt = e−t/2 and σ2

t = 1− e−t.

(A2) Lipschitz Score Assumption. We assume the on-support score function s+(h, y, t) to be
Ls+ -Lipschitz for any h and y.

Assumption E.2 (Ls+-Lipschitz of s+(h, y, t)). The on-support score function s+(h, y, t) is
Ls+-Lipschitz with respect to any h ∈ Rd0 and y ∈ Rdy for any t ∈ [0, T ]. i.e., there exist a
constant Ls+ , such that for any h, y and h

′
, y′:

∥s+(h, y, t)− s+(h
′
, y′, t)∥2 ≤ Ls+∥h− h

′∥2 + Ls+∥y − y′∥2.

(A3) Light Tail Data Assumption.

Assumption E.3 (Tail Behavior of Ph). The density function ph > 0 is twice continuously
differentiable. Moreover, there exist positive constants A0, A1, A2 such that when ∥h∥2 ≥ A0,
the density function ph (h|y) ≤ (2π)−d0/2A1exp(−A2∥h∥22/2).

We note that, the assumptions (A1) and (A3) are on data, and (A2) are on the score function. Notably,
(A2) on the smoothness of score function is stronger than Hölder data smoothness assumptions
considered in Section 3 and Appendix A.

Organization. We study latent conditional DiTs under low-dimensional data Assumption E.1,
Lipschitz smoothness Assumption E.2, and tail behavior of Ph Assumption E.3 and states the results
in Appendices E.1 to E.3, respectively. Appendix E.1 discusses score approximation. Appendix E.2
discusses score estimation. Appendix E.3 discusses distribution estimation. The proof in this section
provided in Appendices E.4 to E.6. The proof strategy in this section follows (Hu et al., 2024).

Here we summarize the key settings of this section:

S1. Lipschitz Smooth Assumption and Tail Behavior. Following (Hu et al., 2024), we introduce
two assumptions on Lipschitz smoothness for on-support score function s+ and tail behavior
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of Ph in Assumptions E.2 and E.3, respectively. The on-support score function is defined as
s+(U

⊤x, y, t) = U∇ log pht
(
U⊤x|y

)
(see Lemma D.1 for score decomposition).

S2. Low-Dimensional Space. We consider the setting of latent representation that is the data lives
in a “Low-Dimensional Subspace” under Assumption A.1, following (Hu et al., 2024; Chen
et al., 2023c). The raw data x ∈ Rdx is supported by latent h ∈ Rd0 where d0 ≤ dx.

S3. Transformer Network. We follow standard setting of “in-context” conditional DiTs by Peebles
and Xie (2023) on latent representation. Recall Appendix A for the transformer network setting.

E.1 SCORE APPROXIMATION

For completeness, we introduce the proofs from (Hu et al., 2024) for score approximation of the
conditional latent diffusion model.

Instead of assuming Hölder smoothness of the initial conditional data distribution as in Appendix A,
we use stricter assumptions on the latent density function. To be specific, we directly approximate the
on-support latent score function, instead of approximating the denominator and nominator separately.
From the score decomposition in (A.1), we define the on-support score function s+ as following:

s+(U
⊤x, y, t) = U

∫ ∇hψt(h|h)ph (h|y)∫
ψt(h|h′)ph′ (h′|y) dh′

dh

= U∇ log pht
(
U⊤x|y

)
. (E.2)

Here we require two assumptions following the proof of (Hu et al., 2024) on tail behavior of density
function and Lipschitz continuous for on-support score function. Assumption E.3 is the analogy
of Assumption 3.1 for assuming the tail behavior of the density function. On the other hand,
Assumption E.2 further assume the on-support score function s+ to be Ls+-Lipshitz. Note that this
assumption is stricter than Assumption 3.1 since we make the Lipschitz assumption directly on the
score function instead of on the latent density function.

Theorem E.1 (Latent Score Approximation of Conditional DiT, modified from Theorem 3.1 in Hu
et al. (2024)). For any approximation error ϵ > 0 and any data distribution P0 under Assumptions A.1,
E.2 and E.3, there exists a DiT score network Tscore(h, y, t) ∈ T h,s,r

R̃
where W = {WU , Tscore}, such

that for any t ∈ [t0, T ], we have:

∥Tscore(·, t)−∇ log pt(·)∥L2(Pt)
≤ ϵ ·

√
d0 + dy/σ

2
t ,

where σ2
t = 1− e−t and the parameter bounds in the transformer network class satisfy

∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2 ); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

Proof. Please see Appendix E.4 for a detailed proof.

26



Published as a conference paper at ICLR 2025

E.2 SCORE ESTIMATION

Theorem E.2 (Score Estimation of Latent DiT). Under the Assumptions E.1 to E.3, we choose
the score network Tscore(x, y, t) ∈ T h,s,r

R̃
from Theorem E.1 using ϵ ∈ (0, 1) and L̃ > 1. With

probability 1− 1/poly(n), we have

1

T − t0

∫ T

t0

∥Tscore(·, t)−∇ log pt(·)∥L2(Pt)
dt = Õ

(
1

t20
n

−3

2(1+3/d̃+4L̃) log3 L̃ log3 n

)
,

where Õ hides the factor about dx, dy, d0, d̃ and Ls+ .

Proof. Please see Appendix E.5 for a detailed proof.

E.3 DISTRIBUTION ESTIMATION

In practice, DiTs generate data using discretized version with step size µ. Let P̂t0 be the distribution
generated by Tscore(x, y, t) in Theorem E.2. Let Ph

t0 and pht0 be the distribution and density function
of on-support latent variable h at t0. We have following results for distribution estimation.

Theorem E.3 (Distribution Estimation of DiT, Modified from Theorem 3 of (Chen et al., 2023c)).
Let T = O(log n), t0 = O(min{c0, 1/Ls+}), where c0 is the minimum eigenvalue of EPh

[hh⊤].
With the estimated DiT score network Tscore(x, y, t) in Theorem E.2, we have the following with
probability 1− 1/poly(n).

(i) The accuracy to recover the subspace U is

∥∥WUW
⊤
U − UU⊤

∥∥2
F
= Õ

(
1

c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
. (E.3)

(ii) (WBU)⊤♯ P̂t0 denotes the pushforward distribution. With the conditions KL(Ph||N(0, Id0)) <

∞, and step size µ ≤ ξ(n, t0, L) ·t20/(d0
√
log d0). There exists an orthogonal matrix U ∈ Rd×d

such that we have the following upper bound for the total variation distance

TV(Ph
t0 , (WBU)⊤♯ P̂t0) = Õ

(
1

t0
√
c0
n

−3

4(1+3/d̃+4L̃) · log4 n
)
, (E.4)

where Õ hides the factor about dx, d0, d, and Ls+ .

(iii) For the generated data distribution P̂t0 , the orthogonal pushforward (I − WBW
⊤
B )♯P̂t0 is

N(0,Σ), where Σ ⪯ at0I for a constant a > 0.

Proof. Please see Appendix E.6 for a detailed proof.

Remark E.1 (Compare with Existing Work). In (Chen et al., 2023c, Theorem 3), the upper bound
for total variation distance with ReLU network is Õ

(√
1/(c0t0)n

−1/(d+5) log2 n
)

. Therefore, for

n≫ 1, Theorem E.3 gives tighter accuracy if 3d+ 11 > 12/d̃+ 16L̃ where d̃ ≤ d and L̃ ≤ L. On
the other hand, under similar conditions for d and L, Theorem E.3 suggest to achieve similar total
variation distance we only require

√
t0 early stopping time which is beneficial for empirical setting.

E.4 PROOF OF SCORE APPROXIMATION (THEOREM E.1)

To begin with, we restate some auxiliary lemmas and their proofs here from (Chen et al., 2023c) for
later convenience. Note that some of the proofs extend to the latent density function.
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Lemma E.2 (Modified from Lemma 16 in (Chen et al., 2023c)). Consider a probability density
function ph (h|y) = exp

(
−C∥h∥22/2

)
for h ∈ Rd0 and constant C > 0. Let rh > 0 be a fixed

radius. Then it holds∫
∥h∥2>rh

ph (h|y) dh ≤ 2d0π
d0/2

CΓ(d0/2 + 1)
rd0−2
h exp

(
−Cr2h/2

)
,∫

∥h∥2>rh

∥h∥22ph (h|y) dh ≤ 2d0π
d0/2

CΓ(d0/2 + 1)
rd0

h exp
(
−Cr2h/2

)
.

Lemma E.3 (Modified from Lemma 2 in (Chen et al., 2023c)). Suppose Assumption Assumption E.3
holds and q is defined as:

q
(
h, y, t

)
=

∫
hψt

(
h|h
)
ph (h|y)∫

ψt

(
h|h
)
ph (h|y) dh

dh, h = B⊤x.

Given ϵ > 0, with rh = c
(√

d0 log(d0/t0) + log(1/ϵ)
)

for an absolute constant c, it holds

∥∥q (h, y, t)1{∥∥h∥∥
2
≥ rh}

∥∥
L2(Pt)

≤ ϵ, for t ∈ [t0, T ].

Lemma E.4 (Modified from Theorem 1 in (Chen et al., 2023c)). We denote

τ(rh) = sup
t∈[t0,T ]

sup
h∈[0,rh]d0

sup
y∈[0,1]dy

∥∥∥∥ ∂∂tq(h, y, t)
∥∥∥∥
2

.

With q(h, y, t) =
∫
hψt(h|h)ph(h|y)/(

∫
ψt(h|h)ph(h|y)dh)dh and ph satisfies Assumption E.3,

we have a coarse upper bound for τ(rh)

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
.

Proof of Lemma E.4.

∂

∂t
q(h, y, t) = U

∫
h ∂
∂tψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

dh− U

∫
hψt(h|h)ph(h|y)

∫
∂
∂tψt(h|h)ph(h|y)dh(∫

ψt(h|h)ph(h|y)dh
)2 dh

= U

∫ h βt

σ2
t

(
∥h∥22 − (1 + β2

t )h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)ph(h|y)∫

ψt(h|h)ph(h|y)dh
dh

− U

∫ hψt(h|h)ph(h|y)
∫

βt

σ2
t

(
∥h∥22 − (1 + β2

t )h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)ph(h|y)dh(∫

ψt(h|h)ph(h|y)dh
)2 dh

(i)
=
βt
σ2
t

U
[
EPh

[
h∥h∥22

]
− (1 + β2

t ) Cov
[
h|h
]
h
]
,

where we plug in ∂ψt(h|h)/∂t = βt

(
∥h∥22 − (1 + β2

t )h
⊤h+ βt

∥∥h∥∥2
2

)
ψt(h|h)/σ2

t and collect
terms in (i). Since Ph has a Gaussian tail, its third moment is bounded.

Then we bound
∥∥Cov[h|h]∥∥

op
by taking derivative of s+(h, y, t) with respect to h, here

s+(h, y, t) = U
βt
σ2
t

∫
h · ψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

dh− U
h

σ2
t

.
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Then we have

∂

∂h
s+(h, y, t) =

(
βt
σ2
t

)2

U

[∫
hh⊤φ(h, y)dh−

∫
hφ(h, y)dh

∫
h⊤φ(h, y)dh

]
− 1

σ2
t

U

=

(
βt
σ2
t

)2

U

[
Cov(h|h)− 1

σ2
t

Id0

]
,

where

φ(h, y) =
ψt(h|h)ph(h|y)∫
ψt(h|h)ph(h|y)dh

.

Along with the Ls+ -Lipschitz property of s+, we obtain

∥∥Cov(h|h)∥∥
op

≤ σ4
t

β2
t

(
Ls+ +

1

σ2
t

)
.

Therefore, we deduce

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
,

as Ph having sub-Gaussian tail implies EPh

[
h∥h∥22

]
is bounded.

Lemma E.5 (Modified from Lemma 10 in (Chen et al., 2023c)). For any given ϵ > 0, and L-Lipschitz
function g defined on [0, 1]d0 × [0, 1]dy , there exists a continuous function f constructed by trapezoid
function that ∥∥g − f

∥∥
∞ ≤ ϵ.

Moreover, the Lipschitz continuity of f is bounded by∣∣f(x, y)− f(x′, y′)
∣∣ ≤ 10d0L∥x− x′∥2 + 10dyL∥y − y′∥2,

for any x, x′ ∈ [0, 1]d0 and y, y′ ∈ [0, 1]dy

Proof of Lemma E.5. This proof closely follows Lemma 10 in (Chen et al., 2023c). We divide the
proof into two parts: First, we use a collection of Trapezoid function f to approximate the function g
defined on [0, 1]d0 × [0, 1]dy . Then we establish the Lipschitz continuity of the function f to facilitate
the approximation with a transformer.

1. Approximation by Trapezoid Function. Given an integer N > 0, we choose (N + 1)d0 points
in the hypercube [0, 1]d0 and (N + 1)dy points in the hypercube [0, 1]dy . We denote the index
of the hypercubes as m = [m1,m2, · · · ,md0 ]

⊤ ∈ {0, · · · , N} and n =
[
n1, n2, · · · , ndy

]⊤ ∈
{0, · · · , N}. Next, we define a univariate trapezoid function (see Figure 3) as follow

ϕ(a) =


1, |a| < 1

2− |a|, |a| ∈ [1, 2]

0, |a| > 2

. (E.5)
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ϕ
(
3N
(
xk − mk

N

))

mk/N xk

Figure 3: Trapezoid function.

For any x ∈ [0, 1]d0 and y ∈ [0, 1]dy , we define a partition of unity based on a product of trapezoid
functions indexed by m and n,

ξm,n(x, y) = 1

{
y ∈

(
n− 1

N
,
n

N

]} d0∏
k=1

ϕ
(
3N
(
xk − m

N

))
. (E.6)

For example, the product of trapezoid function ξm,n(x, y) ̸= 0 only if y ∈
(
n−1
N , n

N

]
and

x ∈
[
m−2·1·3

N , m+2·1·3
N

]
. For any target L-Lipschitz function g with respect to x and y, it is more

convenient to write its Lipschitz continuity with respect to the ℓ∞ norm, i.e.,

|g(x, y)− g(x′, y′)| ≤ L∥x− x′∥2 + L∥y − y′∥2
≤ L

√
d0∥x− x′∥∞ + L

√
dy∥y − y′∥∞. (E.7)

We now define a collection of piecewise-constant functions as

Pm,n(x, y) = g(m,n) for m ∈ {0, . . . , N}d0 and n ∈ {0, . . . , N}dy .

We claim that f(x, y) =
∑

m,n ξm,n(x, y)Pm,n(x, y) is an approximation of g, with an approxi-
mation error evaluated as

sup
x∈[0,1]d0

sup
y∈[0,1]dy

∣∣f(x, y)− g(x, y)
∣∣

= sup
x∈[0,1]d0

sup
y∈[0,1]dy

∣∣∣∣∣∑
m,n

ξm,n(x, y) (Pm,n(x, y)− g(x, y))

∣∣∣∣∣
≤ sup

x∈[0,1]d0
sup

y∈[0,1]dy

∑
m:|xk−mk/N |≤ 2

3N

n:|yj−nj/N |∈(− 1
2N , 1

2N ]

|Pm,n(x, y)− g(x, y)|

= sup
x∈[0,1]d0

sup
y∈[0,1]dy

∑
m:|xk−mk/N |≤ 2

3N

n:|yj−nj/N |∈(− 1
2N , 1

2N ]

|g(m,n)− g(x, y)|

≤ L
√
d02

d0+1 1

3N
+ L

√
dy1

dy
1

2N

(
By Lipschitz continuity in (E.7)

)
=
L

N

(√
d02

d0+1

3
+

√
dy

2

)
,

where the last inequality follows the Lipschitz continuity in (E.7) and using the fact that there
are at most 2d0 terms in the summation of m and at most 1dy terms in the summation of n. By
choosing N = ⌈L

(√
d02

d0+1/3 +
√
dy/2

)
/ϵ⌉, we have

∥∥g − f
∥∥
∞ ≤ ϵ.
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2. Lipschitz Continuity. Next we compute the Lipschitz of the function f with respect to x and y.
Suppose the approximation error ϵ > 0 is small enough, then we have∣∣f(x, y)− f(x′, y′)

∣∣
≤
∣∣f(x, y)− g(x, y)

∣∣+ |g(x, y)− g(x′, y′)|+
∣∣g(x′, y′)− f(x′, y′)

∣∣
≤ 2ϵ+ L

√
d0∥x− x′∥∞ + L

√
dy∥y − y′∥∞

≤ 10L
√
d0∥x− x′∥∞ + 10L

√
dy∥y − y′∥∞

≤ 10Ld0∥x− x′∥2 + 10Ldy∥y − y′∥2.

This completes the proof.

Main Proof of Theorem E.1. Now we are ready to state the main proof.

Proof of Theorem E.1. From low-dimensional data assumption, the score function log pt(x|y) de-
composes as the on-support and orthogonal component (see Lemma D.1). Recall the on-support
score function is given by ∇ log pht

(
h|y
)
= U⊤s+(h, y, t) from (E.7). We use a latent score network

to approximate the score function (see (K3)). Specifically, the latent score network includes a latent
encoder and a latent decoder. The encoder approximates U⊤ ∈ Rd0×dx ,and decoder approximates
U ∈ Rdx×d0 . At its core, we use the transformer gT (W⊤U x, y, t) ∈ T h,s,r to approximate q

(
h, y, t

)
as defined in (D.1). The expression for q

(
h, y, t

)
is given by:

q(h, y, t) = σ2
t∇ log pht (U

⊤x|y) + U⊤x = σ2
tU
⊤(s+(h, y, t) + x/σ2

t ). (E.8)

We proceed as follows:

• Step 1. Approximate q(h, y, t) with a compact-supported continuous function f(h, y, t).

• Step 2. Approximate f(h, y, t) with a one-layer single-head transformer network.

Step 1. Approximate q(h, y, t) with a Compact-Supported Continuous Function f(h, y, t). First,
we partition Rd0 into a compact subset H1 := {h |

∥∥h∥∥
2
≤ rh} and its complement H2, where the

choice of rh comes from Lemma E.3. Next, we approximate q(h, y, t) on the two subsets by using
the compact-supported continuous function f(h, y, t). Finally, calculating the continuity of f gives
an estimation error of

√
d0 + dyϵ between q(h, y, t) and f(h, y, t). We present the main proof as

follows.

• Approximation onH2×[0, 1]×[t0, T ]. For any ϵ > 0, by taking rh = c(
√
d0 log(d0/t0)− log ϵ),

we obtain from Lemma E.3 that∥∥q(h, y, t)1{∥∥h∥∥
2
≥ rh}

∥∥
L2(Pt)

≤ ϵ for t ∈ [t0, T ] and y ∈ [0, 1].

So we set f(h, y, t) = 0 on H2 × [0, 1]× [t0, T ].

• Approximation on H1 × [0, 1]× [t0, T ]. On H1 × [0, 1]× [t0, T ], we approximate

q(h, y, t) = [q1(h, y, t), q2(h, y, t), · · · , qd0
(h, y, t)],

by approximating each coordinate qk(h, y, t) separately.

We firstly rescale the input by h′ = (h+ rh1)/2rh and t′ = t/T , so that the transformed input
space is [0, 1]d0 × [0, 1]dy × [t0/T, 1]. Here we do not need to rescale y, since it is already in [0, 1]
by definition. We implement such transformation by a single feed-forward layer.
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By Assumption E.2, the on-support score s+(h, y, t) is Ls+ -Lipschitz with respect to any h ∈ Rd0

and y ∈ Rdy . This implies q(h, y, t) is (1 + Ls+)-Lipschitz in h and y. When taking the
transformed inputs, g(h′, y, t′) = q(2rhh

′ − rh1, T t
′) becomes 2rh(1 + Ls+)-Lipschitz in h′;

each coordinate gk(h′, y, t) is also 2rh(1 + Ls+)-Lipschitz in h′. Here we denote L∗ = 1 + Ls+ .

Besides, g(h′, y, t′) is Tτ(rh)-Lipsichitz with respect to t, where

τ(rh) = sup
t∈[t0,T ]

sup
h∈[0,rh]d

sup
y∈[0,1]dy

∥∥∥∥ ∂∂tq(h, y, t)
∥∥∥∥
2

.

We have a coarse upper bound for τ(rh) in Lemma E.4. We restate it as follows:

τ(rh) = O
(
1 + β2

t

βt

(
Ls+ +

1

σ2
t

)√
d0rh

)
= O

(
eT/2Ls+rh

√
d0

)
.

Since each gk(h′, y, t) is Lipsichitz continuous, we apply Lemma E.5 to construct a collection of
coordinate-wise functions, denoted as fk(h′, y, t). We concatenate fk’s together and construct
f = [f1, . . . , fd0

]⊤. According to the construction of trapezoid function in Lemma E.5, for any
given ϵ, we have the following relations:

sup
h′,y,t′∈[0,1]d0×[0,1]

dy×[t0/T,1]

∥∥f(h′, y, t′)− g(h′, y, t′)
∥∥
∞ ≤ ϵ.

Considering the input rescaling (i.e., h→ h′, y → y and t→ t′), we obtain:

– The constructed function is Lipschitz continuous in h and y, i.e., for any h1, h2 ∈ H1, y1, y2 ∈
[0, 1] and t ∈ [t0, T ], it holds∥∥f(h1, y1, t)− f(h2, y2, t)

∥∥
∞ ≤ 10d0L∗

∥∥h1 − h2
∥∥
2
+ 10dyL∗∥y1 − y2∥2. (E.9)

– The function is also Lipschitz in t, i.e., for any t1, t2 ∈ [t0, T ] and
∥∥h∥∥

2
≤ rh, it holds∥∥f(h, y, t1)− f(h, y, t2)

∥∥
∞ ≤ 10τ(rh)∥t1 − t2∥2.

To conclude, the construction of f
(
h, y, t

)
uses a collection of trapezoid functions, as described

in Lemma E.5. This ensures that f(h, y, t) = 0 for
∥∥h∥∥

2
> rh, for all t ∈ [t0, T ] and y ∈ [0, 1].

Consequently, the Lipschitz continuity of f
(
h, y, t

)
with respect to h extends over the entire space

Rd0 .

• Approximation Error Analysis under L2 Norm. We first decompose the L2 approximation
error of f into two terms (

∥∥h∥∥
2
< rh and

∥∥h∥∥
2
< rh):∥∥q(h, y, t)− f

(
h, y, t

)∥∥
L2(Ph

t )

=
∥∥(q(h, y, t)− f

(
h, y, t

))
1
{∥∥h∥∥

2
< rh

}∥∥
L2(Ph

t )
+
∥∥q(h, y, t)1{∥∥h∥∥

2
> rh

}∥∥
L2(Ph

t )
.

By selecting rh = O
(√

d0 log(d0/t0) + log(1/ϵ)
)

(see Lemma E.3), we bound the second term
on the RHS of above expression as:∥∥g(h, y, t)1{∥∥h∥∥

2
> rh}

∥∥
L2(Ph

t )
≤ ϵ.
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For the first term, we bound∥∥(q(h, y, t)− f
(
h, y, t

))
1
{∥∥h∥∥

2
< rh

}∥∥
L2(Ph

t )

≤
√
d0 + dy sup

h′,y,t′∈[0,1]d0×[0,1]dy×[t0/T,1]

∥∥f(h′, y, t′)− g(h′, y, t′)
∥∥
∞

≤
√
d0 + dyϵ.

So we obtain ∥∥q(h, y, t)− f
(
h, y, t

)∥∥
L2(Ph

t )
≤
(√

d0 + dy + 1
)
ϵ.

Substituting ϵ with ϵ/2 gives an approximation error for f(h, y, t) of
√
d0 + dyϵ.

Step 2. Approximate f(h, y, t) with One-Layer Self-Attention. This step is based on the universal
approximation of single-layer single-head transformers for compact-supported continuous function
in Theorem G.2.

Recall the reshape layer R̃(·) from Definition 2.3. We use f(·) := R̃−1 ◦ ĝT ◦ R̃(·) to approximate
f t(·) := f(·, t), where ĝT (·) ∈ T h,s,r = {f (FF)

2 ◦ f (SA) ◦ f (FF)
1 : Rd̃×L̃ → Rd̃×L̃}.

We first use f̂t(·) := R̃−1 ◦ ĝT ◦ R̃(·) to approximate the function f t(·) constructed at Step 1 and
denote H = R(h). Using Theorem G.2, we have:

∥∥∥f t(h, y)− f̂(h, y)
∥∥∥
L2(Ph

t )
=

(∫
Ph

t

∥∥∥f t(h, y)− f̂(h, y)
∥∥∥2
2
dh

)1/2

(E.10)

=

(∫
Ph

t

∥∥∥R̃ ◦ f t ◦ R̃−1(H)− R̃ ◦ ĝT ◦ R̃−1(H)
∥∥∥2
F
dh

)1/2

=

(∫
Ph

t

∥∥∥R̃ ◦ f t ◦ R̃−1(H)− ĝT (H)
∥∥∥2
F
dh

)1/2

≤ ϵ. (E.11)

Along with Step 1, we obtain∥∥∥q(h, y, t)− f̂(h, y)
∥∥∥
L2(Ph

t )
≤
∥∥q(h, y, t)− f(h, y, t)

∥∥
L2(Ph

t )
+
∥∥f(h, y, t)− ĝT (h, y)

∥∥
L2(Ph

t )

≤
(
1 +

√
d0 + dy

)
ϵ.

The approximator s
Ŵ

for the score function ∇ log pt(h|y) is define in (D.2) where s
Ŵ

=

(WU f̂(U
⊤x, y, t)− x)/σ2

t . The approximation error for such an approximator is

∥∥∇ log pt(·)− s
Ŵ
(·, t)

∥∥
L2(Pt)

≤
1 +

√
d0 + dy

σ2
t

ϵ, for all t ∈ [t0, T ].

Finally, the parameter bounds in the transformer network class satisfy

∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;
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∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2 ); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

We refer to Appendix G.2 for the calculation of the hyperparameters configuration of this network.

This completes the proof.

E.5 PROOF OF SCORE ESTIMATION (THEOREM E.2)

Lemma E.6 (Lemma 15 of (Chen et al., 2023c)). Let G be a bounded function class, i.e., there exists
a constant b such that any function g ∈ G : Rd0 7→ [0, b]. Let z1, z2, · · · , zn ∈ Rd0 be i.i.d. random
variables. For any δ ∈ (0, 1), a ≤ 1, and c > 0, we have

P

(
sup
g∈G

1

n

n∑
i=1

g(zi)− (1 + a)E [g(z)] >
(1 + 3/a)B

3n
log

N (c,G, ∥·∥∞)

δ
+ (2 + a)c

)
≤ δ,

P

(
sup
g∈G

E [g(z)]− 1 + a

n

n∑
i=1

g(zi) >
(1 + 6/a)B

3n
log

N (c,G, ∥·∥∞)

δ
+ (2 + a)c

)
≤ δ.

Main Proof of Theorem E.2. Now we are ready to state the main proof.

Proof of Theorem E.2. Our proof is built on (Chen et al., 2023c, Appendix B.2).

Recall that the empirical score-matching loss is

L(s
Ŵ
) =

1

n

n∑
i=1

ℓ(xi, yi; sŴ ), (E.12)

with the loss function ℓ for a data sample (x, y) is defined as

ℓ(x, y, s
Ŵ
) =

∫ T

t0

1

T − t0
E(xt|x0=x,τ)

[
∥s(xt, τy, t)−∇ log ϕt(xt|x0)∥22

]
dt.

We organize the proof into the following three steps:

• Step 1. Decomposing L
(
s
Ŵ

)
: We first decompose L into three terms (A), (B), and (C).

• Step 2. Bounding Each Term: We then bound three terms separately using some helper from
Lemma E.2 and Lemma E.6.

• Step 3. Putting All Together: Finally, we combine the above bounds and substitute the covering
number of S (Cx) from Lemma J.3.

• Step 1. Decomposing L
(
s
Ŵ

)
:

Following (Chen et al., 2023c, Appendix B.2), for any a ∈ (0, 1), we have:

L(s
Ŵ
)
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≤ Ltrunc(s
Ŵ
)− (1 + a)L̂trunc(s

Ŵ
)︸ ︷︷ ︸

(A)

+L(s
Ŵ
)− Ltrunc(s

Ŵ
)︸ ︷︷ ︸

(B)

+(1 + a) inf
sW∈T h,s,r

R̃

L̂(sW )︸ ︷︷ ︸
(C)

.

where

Ltrunc(s
Ŵ
) := Ex∼P0

[
ℓ(x, τy, s

Ŵ
)1{∥x∥2 ≤ rx}

]
, rx > B,

We denote

η := 4CT (CT + rx)(rx/dx)
dx−2 · exp

(
−r2x/σ2

t

)
/t0(T − t0),

rx := O
(√

d0 log d0 + logCT + log
(
n/δ

))
.

• Step 2. Bounding Each Term: We bound (A), (B), and (C) term separately using some helper
from Lemma E.2 and Lemma E.6.

Bounding term (A). For any δ > 0, following (Chen et al., 2023c, Appendix B.2) and applying
Lemma E.6, we have the following for term (A) with probability 1− δ,

(A) = O

 (1 + 3/a)(C2
T + r2x)

nt0(T − t0)
log

N
(

(T−t0)(ϵc−η)
(CT +rx) log(T/t0)

, T h,s,r, ∥·∥2
)

δ
+ (2 + a)c

 ,

where c ≤ 0 is a constant, and ϵc > 0 is another constant to be determined later.

By setting ϵc = log(2/(nt0(T − t0))), then we have

(A) = O

 (1 + 3/a)
(
C2
T + r2x

)
nt0(T − t0)

log
N
(
(n(CT + rx)t0 log (T/t0))

−1
, T h,s,r, ∥·∥2

)
δ

+
1

n

,
(E.13)

with probability 1− δ.

Bounding term (B). Following (Chen et al., 2023c, Appendix B.2) and applying Lemma E.2, we
has the following bound for term (B):

(B) = O
(

1

t0(T − t0)
C2
T r

d0
x

2−2/d0+2d0
Γ(d0/2 + 1)

exp
(
−C2r

2
x/2
))

. (E.14)

Bounding term (C). In Theorem E.1, we approximate the score function with the network ŝW for
any ϵ > 0. We decompose the term (C) into statistical error (C1) and approximation error (C2):

(C) ≤ L̂(ŝW )− (1 + a)Ltrunc(ŝW )︸ ︷︷ ︸
(C1)

+(1 + a)Ltrunc(ŝW )︸ ︷︷ ︸
(C2)

.

Following (Chen et al., 2023c, Appendix B.2) and applying Lemma E.2 and Lemma E.6, we have
the following bound for term (C1):

(C1) = L̂trunc(ŝW )− (1 + a)Ltrunc(ŝW ) = O
(
(1 + 6/a)(C2

T + r2x)

nt0(T − t0)
log

1

δ

)
,

with probability 1− δ.
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Finally, for the term (C2) we use Theorem E.1 for score function approximation of L(ŝW ):

(C2) = O
(

d0 + dy
t0(T − t0)

ϵ2
)
+ (const.).

This give us the bound for term (C) ≤ (C1) + (1 + a)(C2) as

(C) ≤ O
(
(1 + 6/a)(C2

T + r2x)

nt0(T − t0)
log

1

δ
+

d0 + dy
t0(T − t0)

ϵ2
)
+ (const.). (E.15)

• Step 3. Putting All Together: In the final steps, we combine three terms and substitute the
covering number to get the score estimation bound for latent DiT.

Combining (A), (B) and (C). Following (Chen et al., 2023c, Appendix B.2), we set a = ϵ2 and
get the overall bound:

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt

= O

( (
C2
T + r2x

)
ϵ2nt0(T − t0)

log
N
(
(n(CT + rx)t0 log(T/t0))

−1,ST h,s,r , ∥·∥2
)

δ
+

1

n
+

d0 + dy
t0(T − t0)

ϵ2

)
,

(E.16)

with probability 1− 3δ.

Before we move on to the covering number of T h,s,r

R̃
, we first compute the Lipschitz upper bound

LT and model output bound CT .

Lipschitz Upper Bound LT and Model Output Bound CT . We then compute the Lipschitz
upper bound LT for the transformer. We denote f t,R(·) = R̃ ◦ ĝt ◦ R̃−1(·) and H =

(
R̃(h), y

)
.

We get the Lipschitz upper bound for f̂T ∈ T h,s,r

R̃
:∥∥∥f̂T (H1)− f̂T (H2)

∥∥∥
F
≤
∥∥∥f̂T (H1)− f t,R̃ (H1)

∥∥∥
F
+
∥∥∥f t,R̃ (H1)− f t,R̃ (H2)

∥∥∥
F

+
∥∥∥f t,R̃ (H2)− f̂T (H2)

∥∥∥
F

≤ 2ϵ+
∥∥∥f t,R̃ (H1)− f t,R̃ (H2)

∥∥∥
F

(
By (E.10)

)
≤ 2ϵ+ 10(d0 + dy)Ls+∥H1 −H2∥F .

(
By (E.9)

)
Then we get the upper bound of Lipschitzness of T h,s,r

R̃
:

LT = O
(
(d0 + dy)Ls+

)
. (E.17)

Next, we compute the model output bound for T h,s,r

R̃
. For the output of the constructed transformer

f̂T ∈ T h,s,r, according to (G.17), the output of the network is lower bounded by O(1). Thus with
the Lipschitz upper bound LT = O((d0 + dy)Ls+), we have ∥f̂T (H)∥F = O((d0 + dy)Ls+rh),
where ∥H∥F ≤ rh. With rh = c(

√
d0 log(d0/t0) + log(1/ϵ)), we obtain

CT = O
(
(d0 + dy)Ls+ ·

√
d0 log(d0/t0) + log(1/ϵ)

)
. (E.18)

Covering Number of T h,s,r

R̃
. The next step is to calculate the covering number of T h,s,r

R̃
. In

particular, T h,s,r

R̃
consists of two components: (i) Matrix WU with orthonormal columns; (ii)
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Network function gT . Suppose we have WU1,WU2 and g1, g2 such that ∥WU1 −WU2∥F ≤ δ1
and sup∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T ] ∥g1(x, y, t)− g2(x, y, t)∥2 ≤ δ2, where g1 = R̃−1 ◦

gT 1 ◦ R̃ and g2 = R̃−1 ◦ gT 2 ◦ R̃. Then we evaluate

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T ]

∥sWU1,gT 1
(x, y, t)− sWU2,gT 2

(x, y, t)∥2

=
1

σ2
t

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T ]

∥∥WU1g1(W
⊤
U1x, y, t)−WU2g2(W

⊤
U2x, y, t)

∥∥
2

≤ 1

σ2
t

sup
∥x∥2≤3rx+

√
dx log dx,y∈[0,1],t∈[t0,T ]

(∥∥WU1g1(W
⊤
U1x, y, t)−WU1g1(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

1st term

+
∥∥WU1g1(W

⊤
U2x, y, t)−WU1g2(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

2nd term

+
∥∥WU1g2(W

⊤
U2x, y, t)−WU2g2(W

⊤
U2x, y, t)

∥∥
2︸ ︷︷ ︸

3rd term

)

≤ 1

σ2
t

LT δ1√d0(3rx +
√
dx log dx)︸ ︷︷ ︸

1st term

+ δ2︸︷︷︸
2ndterm

+ δ1︸︷︷︸
3rd term

 , (E.19)

where LT upper bounds the Lipschitz constant of gT (see (E.17)).

For the set {WB ∈ Rdx×d0 : ∥WB∥2 ≤ 1}, its δ1-covering number is
(
1 + 2

√
d0/δ1

)dxd0 (Chen
et al., 2023c, Lemma 8). The δ2-covering number of f needs further discussion as there is a
reshaping process in our network. For the input reshaped from h ∈ Rd0 to H ∈ Rd̃×L̃, we have∥∥h∥∥

2
≤ rx ⇐⇒ ∥H∥F ≤ rx,

Thus we have

sup
∥h∥

2
≤3rx+

√
D logD,y∈[0,1],t∈[t0,T ]

∥∥g1(h, y, t)− g2(h, y, t)
∥∥
2
≤ δ2,

⇐⇒ sup
∥H∥F≤3rx+

√
D logD,y∈[0,1],t∈[t0,T ]

∥gT 1(H)− gT 2(H)∥2 ≤ δ2.

Next we follow the covering number property for sequence-to-sequence transformer T h,s,r

R̃
, i.e.,

Lemma J.2 and get the following δ2-covering number

logN
(
ϵc, T h,s,r

R̃
, ∥·∥2

)
(E.20)

≤ log(nL)

ϵ2c
· α2

(
(CF )

2C2,∞
OV

) 2
3︸ ︷︷ ︸

1st term

+(d+ dy)
2
3
(
C2,∞

F

) 4
3︸ ︷︷ ︸

2nd term

+(d+ dy)
2
3
(
2(CF )

2COV C2,∞
KQ

) 2
3︸ ︷︷ ︸

3rd term


3

,

(E.21)

where

α :=
∏
j<i

(CF )
2COV (1 + 4CKQ)(CX + CE).

Recall that from the network configuration in Theorem E.1, we have the following bound:
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∥WQ∥2 = ∥WK∥2 = O
(
d̃ · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WQ∥2,∞ = ∥WK∥2,∞ = O
(
d̃

3
2 · ϵ−(

1

d̃
+2L̃)(log L̃)

1
2

)
;

∥WO∥2 = O
(
d̃

1
2 ϵ

1

d̃

)
; ∥WO∥2,∞ = O

(
ϵ

1

d̃

)
;

∥WV ∥2 = O(d̃
1
2 ); ∥WV ∥2,∞ = O(d̃);

∥W1∥2 = O
(
d̃ϵ−

1

d̃

)
, ∥W1∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;

∥W2∥2 = O
(
d̃ϵ−

1

d̃

)
; ∥W2∥2,∞ = O

(
d̃

1
2 ϵ−

1

d̃

)
;∥∥E⊤∥∥

2,∞ = O
(
d̃

1
2 L̃

3
2

)
.

Note that WK,Q =WQW
⊤
K and WO,V =WOW

⊤
V . Combining every component and substitute

into (E.20), we have three respective terms bounded as

1st term = O
(
d̃2ϵ−2/(3d̃)

)
,

2nd term = O
(
(d0 + dy)

2/3
d̃2/3ϵ−4/(3d̃)

)
,

3rd term = O
(
(d0 + dy)

2/3 ·
(
log L̃

)2/3
· d̃4 · ϵ(−2/3)(3/d̃+4L̃)

)
.

Apparently the 3rd term dominates the other two. For the α2 term, we write

α2 = O
(
d̃10ϵ−2(3/d̃+4L̃)

(
log L̃

)
C ′x

)
,

where C ′x =
(
Cx + (d0 + dy)

3/2
)2

.

Combining the above bound we get the log-covering number of T2 as

logN
(
ϵc, T h,s,r

R̃
, ∥·∥2

)
≲ O

(
log (nL̃) log3 (L̃)

ϵ2c
d̃22(d0 + dy)

2ϵ−4(3/d̃+4L̃)C2
x

)
. (E.22)

Substituting the log-covering number of T h,s,r

R̃
into (E.16), we have

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt

= O
((C2

T + log
(

n
δ

))
nϵ2t0(T − t0)

(
log (nL̃) log3 (L̃)

(T − t0)n2
d̃22(d0 + dy)

2ϵ−4(
3

d̃
+4L̃)C2

x

)
+

1

n
+

d0 + dy
t0(T − t0)

ϵ2
)

(
By (E.16)

)
= O

( (d̃+ d0)
2L2

s+(d0 log
(

d0

t0

)
+ log

(
1
ϵ

)
) + log

(
n
δ

)
nϵ2t0(T − t0)

( log (nL̃) log3 (L̃)
(T − t0)n2

d̃22(d̃+ dy)
2ϵ−4(

3

d̃
+4L̃)C2

x

)
+

d0 + dy
t0(T − t0)

ϵ2
)
.

(
By (E.17) and (E.18)

)
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Balancing Error Terms. To balance the error term, we set ϵ = n−3/4(1+3/d̃+4L̃). Also setting
δ = 1/3n then we have

1

T − t0

∫ T

t0

∥∥s
Ŵ
(·, t)−∇ log pt(·)

∥∥2
L2(Pt)

dt = O

(
d̃22(d̃+ d0)

2(d̃+ dy)
2

t20
n

−3

2(1+3/d̃+4L̃) log3 L̃ log3 n

)
(E.23)

with probability of 1− 1
n .

This completes the proof.

E.6 PROOF OF DISTRIBUTION ESTIMATION (THEOREM E.3)

Our proof is built on Chen et al. (2023c, Appendix C). The main difference between our work and
Chen et al. (2023c) is our score estimation error from Theorem E.2. This is based on our universal
approximation of transformers.

Consequently, only the subspace error and the total variation distance differ from Chen et al. (2023c,
Theorem 3).

Proof Sketch of (i). We show that if the orthogonal score increases significantly, the mismatch
between the column span of U and WU will be greatly amplified. Therefore, an accurate score
network estimator forces U and WU to align with each other.

Proof Sketch of (ii). We conduct the proof via 2 steps:

• Step 1: Total Variation Distance Bound. We obtain the discrete result from the continuous-time
generated distribution P̂t0 by adding discretization error (Chen et al., 2023c, Lemma 4). It suffices
to bound the divergence between the following two stochastic processes:

– For the ground-truth backward process, consider h←t = B⊤yt and the following SDE:

dh←t =

[
1

2
h←t +∇ log phT − t(h←t )

]
dt+ dUh

t .

Denote the marginal distribution of the ground-truth process as Ph
t0 .

– For the learned process, consider h̃←,r
t and the following SDE:

dh̃
←,r

t =

[
1

2
h̃←,r
t + s̃hf,M (h̃←,r

t , T − t)

]
dt+ dU

h

t ,

where s̃hf,M (z, t) := [M⊤f(Mz, t) − z]/σ2
t and M is an orthogonal matrix. Following the

notation in (Chen et al., 2023c), we use (WUM)⊤♯ P̂t0 to denote the marginal distribution of
P̂t0 . We first calculate the latent score matching error, i.e., the error between ∇ log pht (h, y) and
s̃hM,f (h, y, t). Then, we adopt Girsanov’s Theorem (Chen et al., 2022) and bound the difference
in the KL divergence of the above two processes to derive the score-matching error bound.

Proof Sketch of (iii). We derive item (iii) by solving the orthogonal backward process of the
diffusion model.

Definition E.1. For later convenience, we define ξ(n, t0, d̃, L̃) := 1
t20
n

−3

2(1+3/d̃+4L̃) log3 n.

Here we include a few auxiliary lemmas from Chen et al. (2023c) without proofs. Recall the definition
of Lipschitz norm: for a given function f , ∥f(·)∥Lip = supx̸=y(∥f(x)− f(y)∥2/∥x− y∥2).
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Lemma E.7 (Lemma 3 of Chen et al. (2023c)). Assume that the following holds

Eh∼Ph
∥∇ log ph(h|y)∥22 ≤ Csh, λminEh∼Ph

[hh⊤] ≥ c0, Eh∼Ph
∥h∥22 ≤ Ch,

where λmin denotes the smallest eigenvalue. We denote

E[ϕ(·, t)] =
∫ T

t0

1

σ4
t

Ex∼Pt
[ϕ(·, t)]dt.

We set t0 ≤ min{2 log(d0/Csh), 1, 2 log(c0), c0} and T ≥ max{2 log(Ch/d0), 1}. Suppose we
have

E
∥∥WBf(W

⊤
B x, y, t)− Uq(B⊤x, y, t)

∥∥2
2
≤ ϵ.

Then we have ∥∥WUW
⊤
U − UU⊤

∥∥2
F
= O(ϵt0/c0),

and there exists an orthogonal matrix M ∈ Rd0×d0 , such that:

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2

= ϵ · O

(
1 +

t0
c0

[
(T − log t0)d0 ·max

t
∥f(·, t)∥2Lip + Csh

]
+

maxt ∥f(·, t)∥2Lip · Ch

c0

)
.

Lemma E.8 (Lemma 4 of Chen et al. (2023c)). Assume that Ph is sub-Gaussian, f(h, y, t) and
∇ log pht (h|y) are Lipschitz in both h, y and t. Assume we have the latent score matching error-bound∫ T

t0

Eh∼Ph
t

∥∥s̃hM,f (ht, y, t)−∇ log pht (ht|y)
∥∥2
2
dt ≤ ϵlatent (T − t0).

Then we have the following latent distribution estimation error for the undiscretized backward SDE

TV
(
Ph
t0 , P̂

h
t0

)
≲
√
ϵlatent (T − t0) +

√
KL (Ph∥N (0, Id0

)) · exp(−T ).

Furthermore, we have the following latent distribution estimation error for the discretized backward
SDE

TV
(
Ph
t0 , P̂

h,dis
t0

)
≲
√
ϵlatent(T − t0) +

√
KL (Ph∥N (0, Id0)) · exp(−T ) +

√
ϵdis(T − t0),

where

ϵdis =

(
maxh ∥f(h, y, ·)∥Lip

σ (t0)
+

maxh,t ∥f(h, y, t)∥2
t20

)2

η2

+

(
maxt ∥f(·, y, t)∥Lip

σ (t0)

)2

η2 max
{
E ∥h0∥2 , d0

}
+ ηd0,

and η is the step size in the backward process.
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Lemma E.9 (Lemma 6 of Chen et al. (2023c)). Consider the following discretized SDE with step
size µ satisfying T − t0 = KTµ

dyt =

[
1

2
− 1

σ(T − kµ)

]
ykµdt+ dUt, for t ∈ [kµ, (k + 1)µ),

where Y0 ∼ N(0, I). Then when T > 1 and t0 + µ ≤ 1, we have YT−t0 ∼ N
(
0, σ2I

)
with

σ2 ≤ e (t0 + µ).

Lemma E.10 (Lemma 10 in Chen et al. (2023c)). Assume that ∇ log ph(h|y) is Lh-Lipschitz. Then
we have Eh∼Ph

∥∇ log ph(h|y)∥22 ≤ d0Lh.

Main Proof of Theorem E.3. Now we are ready to state the main proof.

Proof of Theorem E.3. Recall that in (E.23), we have

ξ(n, t0, d̃, L̃) :=
1

t20
n

−3

2(1+3/d̃+4L̃) log3 L log3 n.

• Proof of (i). With Lemma E.7, we replace ϵ to be ϵ(T − t0)
2 and we set Csh = Lhd0 by

Lemma E.10, we have

∥∥WUW
⊤
U − UU⊤

∥∥2
F
= O

(
t20ξ(n, t0, d̃, L̃)

c0

)
.

We substitute the score estimation error in Theorem E.2 and T = O(log n) into the bound above,
we deduce ∥∥WUW

⊤
U − UU⊤

∥∥2
F
= Õ

(
1

c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
.

We note that log n is great enough to make T satisfies T ≥ max{log(Ch/d0 + 1), 1} where
Ch ≥ Eh∼Ph

∥h∥22.

• Proof of (ii). Lemma E.7 and Lemma E.10 imply that

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2
= O(ϵlatent(T − t0)),

where

ϵlatent = ϵ · O

(
t0
c0

[
(T − log t0)d0 · L2

s+ + d0Lh

]
+
L2
s+ · Ch

c0

)
.

Through the algebra calculation, we get

E
∥∥M⊤f(Mh, y, t)− q(h, y, t)

∥∥2
2
=

∫ T

t0

Eh∼Ph
t

∥∥∥∥U⊤f(Uh, y, t)− h

σ2
t

−∇ log pht (h|y)
∥∥∥∥2
2

dt

≤ ϵlatent(T − t0).

With ϵlatent and Lemma E.8, we obtain

TV(Ph
t0 , (WUM)⊤♯ P̂

dis
t0 )
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≲
√
ϵlatent (T − t0) +

√
KL (Ph∥N (0, Id0

)) exp(−T ) +
√
ϵdis (T − t0)

= Õ

(
1

t0
√
c0
n

−3

2(1+3/d̃+4L̃) · log3 n+
1

n
+ µ

√
d20 log d0
t20

+
√
µ
√
d0

)
.

As we choose time step µ = O
(
t20/d0

√
log d0n

−3

4(1+3/d̃+4L̃)

)
, we obtain

TV(Ph
t0 , (WUM)⊤♯ P̂

dis
t0 ) = Õ

(
1

t0
√
c0
n

−3

2(1+3/d̃+4L̃) · log3 n
)
.

By definition, P̂h,dis
t0 = (UWB)

⊤
♯ P̂

dis
t0 . This completes the proof of the total variation distance.

• Proof of (iii). We apply Lemma E.9 due to our score decomposition. With the marginal distribution
at time T − t0 and observing µ≪ t0, we obtain the last property.

This completes the proof.
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F SUPPLEMENTARY THEORETICAL BACKGROUND

In this section, we provide an overview of the conditional diffusion model and classifier guidance in
Appendix F.1 and classifier-free guidance in Appendix F.2.

F.1 CONDITIONAL DIFFUSION PROCESS

Conditional diffusion models use the conditional information (guidance) y to generate samples from
conditional data distribution P (·|y = guidance). Depending on the model’s objective, the guidance
is either a label for generating categorical images, a text prompt for generating images from input
sentences, or an image region for tasks like image editing and restoration. Throughout this paper, we
coin diffusion models with label guidance y as conditional diffusion models (CDMs). Practically,
implement a conditional diffusion model characterized as classifier and classifier-free guidance. The
classifier guidance diffusion model combines the unconditional score function with the gradient of an
external classifier trained on corrupted data. On the other hand, classifier-free guidance integrates the
conditional and unconditional score function by randomly ignoring y with mask signal (see (F.6)). In
this paper, we focus on the latter approach.

Specifically, we consider data x ∈ Rdx and label y ∈ Rdy with initial conditional distribution P (x|y).
The diffusion process (forward Ornstein–Uhlenbeck process) is characterized by:

dXt = −1

2
Xtdt+ dWt with X0 ∼ P (x|y), (F.1)

where Wt is a Wiener process. The distribution at any finite time t is denoted by Pt(x|y), and X∞
follows standard Gaussian distribution. Up to a sufficiently large terminating time T, we generate
samples by the reverse process:

dX←t =

[
1

2
X←t +∇ log pT−t(X

←
t |y)

]
dt+ dW t with X←0 ∼ PT (x|y), (F.2)

where the term ∇ log pT−t(X
←
t |y) represents the conditional score function. We have Xt|X0 ∼

N(αtX0, σ
2
t I) with αt = e−t/2 and σ2

t = 1− e−t.

We use a score network ŝ to estimate the conditional score function ∇ log pt(x|y), and the quadratic
loss of the conditional diffusion model is given by

ŝ := argmin
s∈T h,s,r

R

Et

[
E(x0,y)

[
E(x′∼x′|x0)

[
∥s(x′, y, t)−∇x′ log pt(x

′|x0)∥
2
2

]]]
, (F.3)

where t ∼ Unif(t0, T ).

With the estimate score network ŝ in (F.3), we generates the conditional sample in the backward
process as follows:

dX̃←t =

[
1

2
X̃←t + ŝ

(
X̃←t , y, T − t

)]
dt+ dW t with X̃←0 ∼ N(0, Id). (F.4)

Classifier guidance (Song et al., 2021; Dhariwal and Nichol, 2021) and classifier-free guidance (Ho
and Salimans, 2022) are piratical implementations for conditional score estimation. For classifier
guidance (Song et al., 2021; Dhariwal and Nichol, 2021), it use the gradient of the classifier to improve
the conditional sample quality of the diffusion model. According to Bayes rule, the conditional score
function has the relation:

∇x log pt(xt|y) = ∇ log pt(xt)︸ ︷︷ ︸
Approximate by ŝ

+ ∇x log pt(y|xt)︸ ︷︷ ︸
Guidance from classifier

. (F.5)
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It uses the neural network to approximate the unconditional score function ∇ log p̂t(xt) along with
external classifier to approximate p̂t(y|xt) and compute the gradient of the classifier logits as the
guidance ∇ log p̂t(y|xt).

F.2 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance (Ho and Salimans, 2022) provides a widely used approach for training
condition diffusion models. It not only simplifies the training pipeline but also improves performance
and removes the need for an external classifier. Classifier-free guidance diffusion model approximates
both conditional and unconditional score functions by neural networks sW , where W is the network
parameters.

Our primary goal is to establish the theoretical guarantee for selecting conditional score estimator
ŝ(x, y, t) chosen from the transformer architecture class and bound the error for such estimation.
Based on previous work by Dhariwal and Nichol (2021); Fu et al. (2024b); Sohl-Dickstein et al.
(2015); Ho and Salimans (2022), we adopt the unified setting for the conditional diffusion model.
First we define the mask signal as τ := {∅, id}, where ∅ denotes the the absence of guidance y and id
denotes otherwise. Unites the learning of conditional and unconditional scores by randomly ignoring
the guidance y. Therefore we write the function class of the score estimator as

s(x, y, t) =

{
s1(x, y, t), if y ∈ Rdy

s2(x, t), if y = ∅.
(F.6)

Both s1(x, y, t) and s2(x, t) belong to the transformer function class with slight adaption. Following
Fu et al. (2024b), we consider P (τ = id) = P (τ = ∅) = 1

2 without loss of generality, and we have
the following objective function for score matching:

ŝ := argmin
sW∈T h,s,r

R

Et

[
E(x0,y)

[
E(τ,x′∼x′|x0)

[
∥sW (x′, τy, t)−∇x′ log pt(x

′|x0)∥
2
2

]]]
.

In practice, the loss function is given by

ℓ(x0, y; sW ) =

∫ T

T0

1

T − T0
Eτ,xt|x0∼N(αtx0,σ2

t Idx )

[
∥sW (xt, τy, t)−∇xt

log pt (xt|x0)∥22
]
dt,

(F.7)

where T0 is a small value for stabilize training (Vahdat et al., 2021). To train sW we select n i.i.d.
training samples {x0,i, yi}ni=1, where x0,i ∼ P0(·|yi). We utilize the following empirical loss:

L̂(sW ) =
1

n

n∑
i=1

ℓ(x0,i, yi; sW ). (F.8)

With the estimate score function sW (x, y, t) from minimizing the empirical loss in (F.8), we use
sW (x, y, t) to generate new samples. In the classifier-free guidance setting, we generate a new
conditional sample by replacing the approximation sW in (F.4) with s̃W , defined as:

s̃W (x, y, t) = (1 + η) · sW (x, y, t)− η · sW (x, ∅, t), (F.9)

where the strength of guidance η > 0. The proper choice of η is crucial for balancing trade-offs
between conditional guidance and unconditional ones. The choice directly impacts the performance
of the generation process. Wu et al. (2024b) theoretically study the effect of guidance η on Gaussian
mixture model. They demonstrate that strong guidance improves classification confidence but reduces
sample diversity. For more detailed related work, refer to Appendix C.1.
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G UNIVERSAL APPROXIMATION OF TRANSFORMERS

In this section, we discuss the universal approximation theory of transformers.

In Appendix G.1, we present the universal approximation results of transformers for score approxi-
mation in Section 3. We emphasize that most of the material in Appendix G.1 is not original and is
drawn from (Hu et al., 2025; Kajitsuka and Sato, 2024; Yun et al., 2020).

In Appendix G.2, we compute the parameter norm bounds of the transformers used for score
approximation. These bounds are crucial for calculating the covering number of the transformers and
are essential for score and distribution estimation in Section 3.3.

G.1 TRANSFORMERS AS UNIVERSAL APPROXIMATORS

The key idea for demonstrating the transformers’ ability to capture the entire sequence lies in the
concept of contextual mapping (Hu et al., 2025; Kajitsuka and Sato, 2024; Yun et al., 2020). We
first restate the background of a (γ, δ)-contextual mapping in Definition G.3, using the definition of
vocabulary (Definition G.1) and token separation (Definition G.2) in the input sequences.

Background: Contextual Mapping. Let Z, Y ∈ Rd×L represent input embeddings and output
label sequences, respectively, where Z:,k ∈ Rd denotes the k-th token (column) of each Z sequence.
The vocabulary corresponding to the i-th sequence at the k-th index is defined in Definition G.1.

Definition G.1 (Vocabulary). We define the i-th vocabulary set for i ∈ [N ] by V(i) =
⋃

k∈[L] Z
(i)
:,k ⊂

Rd, and the whole vocabulary set V is defined by V =
⋃

i∈[N ] V(i) ⊂ Rd.

In line with prior works (Hu et al., 2025; Kajitsuka and Sato, 2024; Kim et al., 2022; Yun et al., 2020),
we assume the embeddings separateness to be (γmin, γmax, δ)-separated, as defined in Definition G.2.

Definition G.2 (Tokenwise Separateness). Let Z(1), . . . , Z(N) ∈ Rd×L be embeddings. Then,
Z(1), . . . , Z(N) are called tokenwise (γmin, γmax, δ)-separated if the following three conditions hold.

(i) For any i ∈ [N ] and k ∈ [n], ∥Z(i)
:,k∥ > γmin holds.

(ii) For any i ∈ [N ] and k ∈ [n], ∥Z(i)
:,k∥ < γmax holds.

(iii) For any i, j ∈ [N ] and k, l ∈ [n] if Z(i)
:,k ̸= Z

(j)
:,l , then ∥Z(i)

:,k − Z
(j)
:,l ∥ > δ holds.

Note that when only conditions (ii) and (iii) hold, we denote this as (γ, δ)-separateness. Moreover, if
only condition (iii) holds, we denote it as (δ)-separateness.

Next, we define a (γ, δ)-contextual mapping, building from conditions (ii) and (iii) in the definition
of Definition G.2. The contextual mapping extends the concept of token separateness to captures the
relationships between tokens across different input sequences effectively. This allows transformers’
to utilize self-attention for full context representation.

Definition G.3 (Contextual Mapping). Let Z(1), . . . , Z(N) ∈ Rd×L be embeddings. Then, a map
q : Rd×L → Rd×L is called an (γ, δ)-contextual mapping if the following two conditions hold:

1. For any i ∈ [N ] and k ∈ [L], ∥q(Z(i)):,k∥ < γ holds.

2. For any i, j ∈ [N ] and k, l ∈ [L] such that V(i) ̸= V(j) orZ(i)
:,k ̸= Z

(j)
:,l , ∥q(Z(i)):,k−q(Z(j)):,l∥ >

δ holds.
Note that q

(
Z(i)

)
for i ∈ [N ] is called a context ID of Z(i).

Helper Lemmas. For completeness, we restate existing lemmas before presenting the proof of
one-layer single-head attention mechanism as the contextual mapping in Theorem G.1.
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Lemma G.1 (Boltz Preserves Distance, Lemma 1 of (Kajitsuka and Sato, 2024)). Given (γ, δ)-
tokenwise separated vectors z(1), . . . , z(N) ∈ Rn with no duplicate entries in each vector:

z(i)s ̸= z
(i)
t ,

where i ∈ [N ] and s, t ∈ [L], s ̸= t. Also, let

δ ≥ 4 lnn.

Then, the outputs of the Boltzmann operator has the following properties:∣∣∣Boltz(z(i))∣∣∣ ≤ γ, (G.1)∣∣∣Boltz(z(i))− Boltz
(
z(j)
)∣∣∣ > δ′ = ln2(n) · e−2γ (G.2)

for all i, j ∈ [N ], i ̸= j.

Lemma G.2 (Lemma 13 of (Park et al., 2021)). For any finite subset X ⊂ Rd, there exists at least
one unit vector u ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥ ≤

∣∣u⊤ (x− x′)
∣∣ ≤ ∥x− x′∥

for any x, x′ ∈ X .

Lemma G.2 provides the existence of a unit vector u ∈ Rd that bounds the inner product of the
difference between points in a finite subset X ⊂ Rd.

We are now ready to restate the construction of rank-ρ weight matrices in a self-attention layer
following (Hu et al., 2025) in Lemma G.3.

Lemma G.3 (Construction of Weight Matrices, Lemma D.2 of (Hu et al., 2025)). Given a dataset
with a (γmin, γmax, ϵ)-separated finite vocabulary V ⊂ Rd. There exists rank-ρ weight matrices
WK ,WQ ∈ Rs×d such that∣∣∣(WKva)

⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ,

for any δ > 0, any min (d, s) ≥ ρ ≥ 1 and any va, vb, vc ∈ V with va ̸= vb. In addition, the matrices
are constructed as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d, WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, qi, q′i ∈ Rd are unit vectors that satisfy Lemma G.2, and pi, p′i ∈ Rs satisfies

∣∣p⊤i p′i∣∣ = 5 (|V|+ 1)
4
d

δ

ϵγmin
.

Proof of Lemma G.3. For completeness, we restate the key point from the proof in (Hu et al., 2025).

First, applying Lemma G.2 to V ∪ {0}, there exists at least one unit vector q ∈ Rd such that for any
va, vb ∈ V ∪ {0} and va ̸= vb the following holds:

1

(|V|+ 1)
2
d0.5

∥va − vb∥ ≤
∣∣q⊤ (va − vb)

∣∣ ≤ ∥va − vb∥.
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Following (Hu et al., 2025), let vb = 0 and all unit vector q ∈ {q ∈ Rn : ∥q∥ = 1}, and select some
arbitrary vector pairs pi, p′i ∈ Rs that satisfy the constraint:

∣∣p⊤i p′i∣∣ = (|V|+ 1)
4
d

δ

ϵγmin
. (G.3)

By constructing the weight matrices as follows:

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d, WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where for at least one i, pi, p′i satisfies (G.3) and qi, q′j ∈ Q, we are able to demonstrate that:∣∣∣(WKva)
⊤
(WQvc)− (WKvb)

⊤
(WQvc)

∣∣∣ > δ.

This completes the proof.

Any-Rank Attention is Contextual Mapping. Next, we present the generalized result where
self-attention mechanisms of any rank serve as contextual mappings, extending the low-rank analysis
in (Kajitsuka and Sato, 2024) to any-rank attention weights, as shown in (Hu et al., 2025).

Theorem G.1 (Any-Rank Attention is (γ, δ)-Contextual Mapping, Lemma 2.2 of (Hu et al., 2025)).
Given embeddings Z(1), . . . , Z(N) ∈ Rd×L which are (γmin, γmax, ϵ)-tokenwise separated and
vocabulary set V =

⋃
i∈[N ] V(i) ⊂ Rd. Also, let Z(1), . . . , Z(N) ∈ Rd×L be embedding sequences

with no duplicate word token in each sequence, that is, Z(i)
:,k ̸= Z

(i)
:,l , for any i ∈ [N ] and k, l ∈

[L]. Then, there exists a 1-layer single head attention with weight matrices WO ∈ Rd×s and
WV ,WK ,WQ ∈ Rs×d, that is a (γ, δ)-contextual mapping for the embeddings Z(1), . . . , Z(N) with

γ = γmax + ϵ/4, δ = exp
(
−5ϵ−1|V|4dκγmax logL

)
,

where κ = γmax/γmin.

Theorem G.1 shows that any-rank self-attention is able to distinguish two identical tokens in distinct
contexts. Specifically, this holds for embeddings Z(i)

:,k = Z
(j)
:,l when the vocabulary sets V(i) ̸= V(j).

Since the proof of Theorem G.1 is crucial for subsequent analysis, we restate it for later convenience.

Proof Sketch. Hu et al. (2025) generalize Theorem 2 of (Kajitsuka and Sato, 2024), where all weight
matrices have to be rank-1. This is achieved by constructing the weight matrices as an outer product
sum

∑ρ
i uiv

⊤
i , where ui ∈ Rs, vi ∈ Rd. The proof in (Hu et al., 2025) is divided into two parts:

• Construction of Softmax Self-Attention: Different input tokens are mapped to unique contextual
embeddings by configuring the weight matrices according to Lemma G.3.

• Handling Identical Tokens in Different Contexts: Use the tokenwise separateness guaranteed by
Lemma G.3 to handle identical tokens appearing in different contexts. Additionally, Lemma G.1
shows Boltz preserves separateness properties.

With these, we prove that self-attention distinguish input embeddings Z(i)
:,k = Z

(j)
:,l when the vocabu-

lary sets V(i) ̸= V(j).

Proof of Theorem G.1. For completeness, we restate the key point from the proof in (Hu et al., 2025).
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The proof consists of two parts: First, we show that the attention layer maps different tokens to unique
IDs. Second, we show that self-attention distinguishes duplicate input tokens when they appear in
different contexts.

For the first part, by utilizing Lemma G.3 and set the weight matrices as follows:

• Weight Matrices WK and WQ:

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where pi, p′j ∈ Rs and qi, q′j ∈ Rd. In addition, let δ = 4 lnn and p1, p′1 ∈ Rs be an arbitrary
vector pair that satisfies

∣∣p⊤1 p′1∣∣ = (|V|+ 1)
4
d

δ

ϵγmin
. (G.4)

• Weight Matrices WV and WO: In addition, for the other two weight matrices WO ∈ Rd×s and
WV ∈ Rs×d, we set

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d, (G.5)

where q′′ ∈ Rd, q′′1 = q1 and p′′i ∈ Rs is some nonzero vector that satisfies

∥WOp
′′
i ∥ =

ϵ

4ργmax
. (G.6)

This can be accomplished, e.g., WO =
∑ρ

i=1 p
′′′
i p
′′
i
⊤ for any vector p′′′i which satisfies ∥p′′′i ∥ =

ϵ/(4ρ2γmax∥p′′i ∥
2
) for any i ∈ [ρ].

• Mapping Condition: With above weights construction, for i ∈ [N ] and k ∈ [L], we have∥∥∥∥WO

(
WV Z

(i)
)
Softmax

[(
WKZ

(i)
)⊤ (

WQZ
(i)
:,k

)]∥∥∥∥ < ϵ

4
. (G.7)

For the second part, we prove that with the weight matricesWO,WV ,WK ,WQ configured above, the
attention layer distinguishes duplicate input tokens with different context, Z(i)

:,k = Z
(j)
:,l with different

vocabulary sets V(i) ̸= V(j).

We define a(i), a(j) as

a(i) =
(
WKZ

(i)
)⊤ (

WQZ
(i)
:,k

)
∈ Rn, a(j) =

(
WKZ

(j)
)⊤ (

WQZ
(j)
:,l

)
∈ Rn,

where a(i) and a(j) are tokenwise (γ, δ)-separated. Specifically, the following inequality holds

|a(i)k′ | ≤ (|V|+ 1)
4
d

δ

ϵγmin
γ2max.
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Since V(i) ̸= V(j) and there is no duplicate token in Z(i) and Z(j) respectively, we use Lemma G.1
and obtain ∣∣∣Boltz(a(i))− Boltz

(
a(j)
)∣∣∣

=

∣∣∣∣(a(i))⊤ Softmax
[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (G.8)

> δ′

= (lnn)2e−2γ .

Additionally, using Lemma G.3 and (G.4), and assuming Z(i)
:,k = Z

(j)
:,l , we have∣∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (G.9)

≤
ρ∑

i=1

γmax · (|V|+ 1)4
πd

8

δ

ϵγmin
·
∣∣∣(q⊤i Z(i)

)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣∣.

By combining (G.8) and (G.9), we have

ρ∑
i=1

∣∣∣(q⊤i Z(i)
)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣∣ > δ′

(|V|+ 1)
4

ϵγmin

dδγmax
. (G.10)

Finally, using (G.6) and (G.10). we derive the lower bound of the difference between the self-attention
outputs of Z(i), Z(j) as follows:∥∥∥∥f (SA)

S

(
Z(i)

)
:,k

− f
(SA)
S

(
Z(j)

)
:,l

∥∥∥∥ > ϵ

4γmax

δ′

(|V|+ 1)
4

ϵγmin

dδγmax
, (G.11)

where δ = 4 lnL and δ′ = ln2(L)e−2γ with γ = (|V|+ 1)
4
dδγ2max/(ϵγmin).

This completes the proof.

With Theorem G.1 establishing that any-rank attention is a contextual mapping, we restate the
universal approximation result for transformers with a single self-attention layer from (Hu et al.,
2025; Kajitsuka and Sato, 2024).

Theorem G.2 (Transformers with 1-Layer Self-Attention are Universal Approximators, Modified
from Proposition 1 of (Kajitsuka and Sato, 2024)). Let 0 ≤ p < ∞ and f (FF), f (SA) be feed-
forward neural network layers and a single-head self-attention layer. Then, for any permutation
equivariant, continuous function f with compact support and ϵ > 0, there exists f ′ ∈ T h,s,r

R such
that dp(f, f ′) < ϵ, where dp := (

∫
∥f(Z)− g(Z)∥ppdZ)1/p, and ∥ · ∥p is the element-wise ℓp-norm.

Proof of Theorem G.2. We restate the proof from (Kajitsuka and Sato, 2024) for completeness.

The proof consists of the following steps:

1. Approximate by Step Function: Given a permutation equivariant continuous function f on a
compact set, there exists a Transformer f ′ ∈ T h,s,r

R with one self-attention layer to approximate
f by step function with arbitrary precision in terms of p-norm.

2. Quantization via fFF
1 : The first feed-forward network fFF

1 quantize the input domain, reducing the
problem to memorization of finite samples.
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3. Contextual Mapping f (SA) and Memorization fFF
2 : According to Theorem G.1, we construct

any-rank attention f (SA) to be contextual mapping. Then use the second feed-forward fFF
2 to

memorize the context ID with its corresponding label.

The details for the three steps are below.

1. Since f is a continuous function on a compact set, f has maximum and minimum values on the
domain. By scaling with fFF

1 and fFF
2 , f is assumed to be normalized without loss of generality:

That is for any Z ∈ Rd×L \ [0, 1]d×L, we have f(Z) = 0. For any X ∈ [−1, 1]d×L, the function
f(X) satisfies −1 ≤ f(X) ≤ 1.

Let D ∈ N be the granularity of a grid

GD = {1/D, 2/D, . . . , 1}d×L ⊂ Rd×L

such that a piece-wise constant approximation

f(X) =
∑

L∈GD

f (L) 1Z∈L+[−1/D,0)d×L

satisfies

dp(f, f) < ϵ/3. (G.12)

Such a D always exists because of uniform continuity of f .

2. We use fFF
1 to quantize the input domain into GD.

We first define the following two terms for first feed-forward neural network to approximate.

• The quantize term (quantd×LD : Rd×L → Rd×L): Quantize [0, 1] into {1/D, . . . , 1}, while it
projects R \ [0, 1] to 0 by shifting and stacking step function.

D−1∑
t=0

ReLU [x/δ − t/δD]− ReLU [x/δ − 1− t/δD]

D

≈ quantD(x) =


0 x < 0

1/D 0 ≤ x < 1/D
...

...
1 1− 1/D ≤ x

. (G.13)

• The penalty term (penalty): Identify whether an input sequence is in [0, 1]d×L. This is defined
by

ReLU [(x− 1)/δ]− ReLU [(x− 1)/δ − 1]− ReLU [−x/δ]− ReLU [−x/δ − 1]

≈ penalty(x) =


−1 x ≤ 0

0 0 < x ≤ 1

−1 1 < x

. (G.14)

Combining these components together, the first feed-forward neural network layer fFF
1 approxi-

mates the following function:

f
(FF)
1 (X) = quantd×LD (X) +

d∑
t=1

L∑
k=1

penalty(Xt,k) (G.15)
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Note that this function quantizes inputs in [0, 1]d×L with granularity D, while every element of
the output is non-positive for inputs outside [0, 1]d×L. In particular, the norm of the output is
upper-bounded by

max
X∈Rd×L

∥∥fFF
1 (X):,k

∥∥ = dL︸︷︷︸
Total number of elements in X

×
√
d︸︷︷︸

Maximum Euclidean norm in d-dimensional space

(G.16)

for any k ∈ [L].

3. Let G̃D ⊂ GD be a sub-grid

G̃D = {G ∈ GD | ∀k, l ∈ [L], G:,k ̸= G:,l} ,

and consider memorization of G̃D with its labels given by f(G) for each G ∈ G̃D. Using our
modified any-rank attention is contextual mapping in Theorem G.1 allows us to construct a
self-attention f (SA) to be a contextual mapping for such input sequences, because G̃D can be
regarded as tokenwise (1/D,

√
d, 1/D)-separated input sequences. By taking sufficiently large

granularity D of GD, the number of cells with duplicate tokens, that is, |GD \ G̃D| is negligible.

From the way the self-attention f (SA) is constructed, we have∥∥∥f (SA)(X):,k −X:,k

∥∥∥ < 1

4
√
dD

max
k′∈[L]

∥X:,k′∥

for any k ∈ [L] and X ∈ Rd×L.

If we take large enoughD, every element of the output forX ∈ Rd×L\[0, 1]d×L is upper-bounded
by

f (SA) ◦ fFF
1 (X)t,k <

1

4D
(∀t ∈ [d], k ∈ [L]),

while the output for X ∈ [0, 1]d×L is lower-bounded by

f (SA) ◦ fFF
1 (X)t,k >

3

4D
(∀t ∈ [d], k ∈ [L]).

Finally, we construct bump function of scale R > 0 to map each input sequence L ∈ G̃D to
its labels f(L) and for input sequence outside the range X ∈ (−∞, 1/4D)d×L to 0 using the
second feed-forward fFF

2 . Precisely, bump function of scale R > 0 is given by

bumpR(x)

=
f(L)

dL

d∑
t=1

L∑
k=1

(ReLU [R(Xt,k −Gt,k)− 1]− ReLU [R(Zt,k −Gt,k)]

+ ReLU [R(Zt,k −Gt,k) + 1]) + ReLU[R(Gt,k − Zt,k)] (G.17)

for each input sequence G ∈ G̃D and add up these functions to implement fFF
2 .

In addition, the value of f (FF)
2 is always bounded: 0 ≤ f

(FF)
2 ≤ 1. Thus, by taking sufficiently

small δ > 0 to quantize the step function, we have

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
(FF)
2 ◦ f (SA) ◦ f (FF)

1

)
<
ϵ

3
. (G.18)
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Taking large enough D to make duplicate tokens negligible, we have

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
)
<
ϵ

3
. (G.19)

Combining estimation of step function (G.12), estimation of quantization (G.18) and estimatation
of duplicate tokens (G.19) together, we get the approximation error of the any-rank Transformer
as

dp

(
f
(FF)
2 ◦ f (SA) ◦ f (FF)

1 , f
)
< ϵ. (G.20)

This completes the proof.

G.2 PARAMETER NORM BOUNDS FOR TRANSFORMER APPROXIMATION

In the analysis of the approximation ability of transformers in (Kajitsuka and Sato, 2024), universal
approximation is ensured by using a sufficiently large granularity D, a sufficiently small δ in f (FF)

1 ,
and an appropriate scaling factor R in f (FF)

2 . Here, we provide a detailed discussion on parameter
bounds for matrices in T h,r,s

R , focusing on the choice of granularity and scaling factor.

Lemma G.4 (Order of Granularity and Scaling Factor). Recall universal approximation of trans-
former, Theorem G.2. Suppose the target function f is defined on domain Ω := [−I, I]d×L for
some I ∈ N. Further, suppose the target function is Lipschitz continuous on Ω with respect to the
element-wise ℓp-norm. The order for the granularity and the scaling factor follows D = O(ϵ−1) and
R = O(ID), and the parameter δ for the first feed-forward layer in (G.13) follows δ = o(D−1).

Proof. We investigate the more precise choice of D, R, and δ respectively. We begin by deriving
results for the domain [0, 1]d×L and then extend them to [−I, I]d×L.

• Bound on Granularity D. Note that there are O(D−d|GD|) omitted duplicated input. Clearly,∣∣∣GD \ G̃D

∣∣∣ becomes negligible by taking sufficiently large granularity. However, we aim to
evaluate the corresponding order of D. By the extreme value theorem, the continuous function
f on [0, 1]d×L is bounded by some constant, denoted by CB > 0. Moreover, the total number of
omitted points are O(Dd(L−1)) and the probability for selecting each point in GD is 1/DdL.

Therefore, the corresponding error is bounded by O(D−d/p). Since we require error to be
bounded ϵ/3, setting D = O(ϵ−p/d) for some constant p > 0 guarantees the result. Specifically,
let f(·) : [0, 1]d×L → [0, 1]d×L be the target function and f(·) be the piece-wise constant
approximation of granularity D. The p-norm difference between f(·) and f(·). (G.12) gives

dp(f, f) = (

∫
∥f(x)− f(x)∥pdx)1/p

= (O(DdL−d) ·Bp(1/D)dL)1/p

= O(D(dL−d)/p) · O(D−dL/p)

= O(D−d/p).

Here, O(D−d/p) = ϵ implies D = O(ϵ−p/d) for some constant p > 0. For simplicity, we use
D = O(ϵ−1/d) in our analysis without loss of generality. Furthermore, for Lipchitz continuous
target function f , there exist a grid GD on domain [−I, I]d×L such that

dp(f(Z), g1(Z)) < Lf∥Z − Z ′∥2 ≤ Lf∥Z − Z ′∥F ≤
√
dLLf/D,
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where Z ′ ∈ GD and Lf is the Lipchitz constant with respect to the matrix 2-norm. Therefore, it
suffices to take ϵ =

√
dLLf/D. Altogether, we take D = O(ϵ−1) such that Theorem G.2 holds.

• Bound on Parameter δ in f (FF)
1 . We ensure the error within region (i/D, i/D + δ) does not

affect the desired interval (i/D, (i+ 1)/D) for i ∈ [D]. Thus, we take δ = o(1/D).

• Bound on Scaling Factor in f (FF)
2 . We first ensure that R > 0 is large enough such that it maps

input Z ∈ (−∞, 1
4D )d×L to zero. Since Zt,k − Lt,k ≤ − 3

4D , by taking R = O(D), we obtain
(G.17) with all ReLU(·) output zero. Then, we ensure that R > 0 is large enough such that it
maps L ∈ G̃ ⊂ ( 3

4D ,∞)d×L to the corresponding label f(L). From (G.17), we achieve this by:

d∑
t=1

L∑
k=1

ReLU [RS − 1]− ReLU [RS] + ReLU [RS + 1]ReLU[−RS] = dL,

where S := Zt,k − Lt,k = O(D−1). For any S ∈ R, it suffices to take R = O(D) such that
|RS| ≤ 1 for any uniform continuous target function on [0, 1]d×L. To extend this to [−I, I]d×L
with the identical approximation error, we scale the granularity D → 2ID. In sum, we have
R = O(ID) in order to achieve ϵ precision on Lipschitz continuous target function on [−I, I]d×L.

This completes the proof.

Building upon Lemma G.4, we extend the results to derive explicit parameter bounds for matrices
regarding the transformer-based universal approximation framework. That is, we ensure a more
precise quantification of parameter constraints across the architecture.

Lemma G.5 (Transformer Matrices Bounds). Consider an input sequence Z ∈ [0, 1]d×L. Let
f(Z) : [0, 1]d×L → Rd×L be any permutation equivariant and Lipschitz continuous sequence-to-
sequence function. Then, given a transformer network f ′ ∈ T r,h,s

R (Definition 2.4) that approximates
f within ϵ precision, i.e., dp(f, f ′) < ϵ, the following parameter bounds hold for d ≥ 1 and L ≥ 2

CKQ, C
2,∞
KQ = O(I4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O

(
Iϵ−1 ·max ∥f(Z)∥F

)
; CE = O(1),

where O(·) hides polynomial and logarithmic factors depending on d and L.

Proof. We denote the separatedness of the input tokens by (γmin, γmax, ϵs) and the separatedness of
the output tokens by (γ, δs). We denote parameter taken in fFF

1 corresponding to granularity by δf1 .

• Bounds for WQ and WK in f (SA).
From the universal approximation theorem of transformer Theorem G.2, with pi, p′i ∈ Rs and
qi, q

′
i, being any unit vectors in Rd, we construct rank ρ matrix WQ and WK as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d,

WQ =

ρ∑
i=1

p′iq
′⊤
i ∈ Rs×d,

with the identity p⊤i p
′
i = (|V|+ 1)4dδs/(ϵsγmin). With this, we have the bound for pi, p′i:

∥pi∥ = O

(
|V|2

√
d

δs
ϵsγmin

)
, ∥p′i∥ = O

(
|V|2

√
d

δs
ϵsγmin

)
. (G.21)
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Summing over the set of p⊤i p
′
i for i = [ρ], we obtain the bound for rank ρ matrix WQ and WK

∥WQ∥2 = sup
∥x∥2=1

∥WQx∥2 ≤ CQ = O

(
√
ρ|V|2

√
d

δc
ϵcγmin

)
,

∥WQ∥2,∞ = max
1≤i≤d

∥(WQ)(i,:)∥2 ≤ C2,∞
Q = O

(
ρ|V|2

√
d

δs
ϵsγmin

)
,

∥WK∥2 = sup
∥x∥2=1

∥WKx∥2 ≤ CK = O

(
√
ρ|V|2

√
d

δs
ϵsγmin

)
,

∥WK∥2,∞ = max
1≤i≤d

∥(WK)(i,:)∥2 ≤ C2,∞
K = O

(
ρ|V|2

√
d

δs
ϵsγmin

)
,

where ρ ≤ s and the head size s ≤ d. After the first step quantization, we obtain vocabulary
bounds |V| = O(Dd) and output sequences with (1/D,

√
d, 1/D) tokenwise separatedness, and

we take δs = 4 logL in Theorem G.2 to ensure that f (SA) is a contextual mapping.

Furthermore, to extend this to domain [−I, I]d×L, we rescale the granularity to D → O(DI).
This gives D = O(ϵ−1). Lastly, recall WKQ :=W⊤KWQ, the bounds on WKQ follows

∥WKQ∥2 ≤ CKQ = O(ϵ−4d−2 · I4d+2); ∥WKQ∥2,∞ ≤ C2,∞
KQ = O(ϵ−4d−2 · I4d+2).

• Bounds for WO and WV in f (SA).
Following the construction of WQ and WK in Theorem G.2, we have

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d, WO =

ρ∑
i=1

p′′′i p
′′
i
⊤ ∈ Rd×s,

with the identity ∥p′′′i ∥ ≲ ϵs/(4ργmax∥p′′i ∥) from (G.6), and p′′i ∈ Rs is any nonzero vector.

Along with the (γmin = 1/D, γmax =
√
d, ϵs = 1/D) separateness and taking D = O(ϵ−1), we

have the following bounds for WV and WO:

∥WV ∥2 = sup
∥x∥2=1

∥WV x∥2 ≤ CV = O (
√
ρ) = O

(√
d
)
,

∥WV ∥2,∞ = max
1≤i≤d

∥(WV )(i,:)∥2 ≤ C2,∞
V = O (ρ) = O (d) ,

∥WO∥2 = sup
∥x∥2=1

∥WOx∥2 ≤ CO = O
(√
ρ · ρ−1 · γ−1max · ϵs

)
= O

(
d−1ϵ

)
∥WO∥2,∞ = max

1≤i≤s
∥(WO)(i,:)∥2 ≤ C2,∞

O = O
(
ρ · ρ−1 · γ−1max · ϵs

)
= O

(
d−1/2ϵ

)
,

where we use ρ ≤ d. Extending bounds to the case where f is defined on [−I, I]d×L, we have

∥WOV ∥2 = ∥WOWV ∥2 ≤ COV = O(ϵ); ∥WOV ∥2,∞ = ∥WOWV ∥2,∞ ≤ C2,∞
OV = O(ϵ)

• Bounds for W1 in fFF
1 .

In order to approximate the quantization in Theorem G.2, we set up fFF
1 as in (G.13) where every

entry of W1 in the layer is bounded by O(t/δD) and t = O(D). Therefore, we have

∥W1∥2,∞ ≤ C2,∞
F1

= O

(√
d

δ

)
, ∥W1∥2 ≤ ∥W1∥F ≤ CF1

= O
(
d

δ

)
.
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Furthermore, by Lemma G.4, we have δ = νD−1 for some ν ∈ (0, 1). Then,

∥W1∥2,∞ ≤ C2,∞
F1

= O (D) = O(ϵ−1), ∥W1∥2 ≤ ∥W1∥F ≤ CF1
= O (D) = O(ϵ−1).

• Bounds on W2 in fFF.
The bounds for ∥W2∥2, ∥W2∥2,∞ in (G.17) follow the same argument as for W1, with the replace-
ment of the largest element with the scaling factor R. So we have

∥W2∥2,∞ ≤ C2,∞
F2

= O
(√

dR
)
, ∥W2∥2 ≤ CF2

= O (dR) .

Furthermore, by Lemma G.4, we have R = O(D) = O(ϵ−1). Then,

∥W2∥2,∞ ≤ C2,∞
F2

= O (D) = O
(
max ∥f(Z)∥F

ϵ

)
, ∥W2∥2 ≤ CF2 = O (D) = O

(
max ∥f(Z)∥F

ϵ

)
.

• Bounds on Positional Encoding Matrix E.
For

∥∥E⊤∥∥
2
,
∥∥E⊤∥∥

2,∞, it suffices to set the positional encoding:

E =

2γmax 4γmax · · · 2Lγmax
...

...
. . .

...
2γmax 4γmax · · · 2Lγmax

 .

Since the ℓ2 norm over every row is identical, we have

∥∥E⊤∥∥
2,∞ =

(
L∑

i=1

(2iγmax)
2

) 1
2

=

(
4γ2max

L(L+ 1)(2L+ 1)

6

)2

= O
(
γmaxL

3
2

)
.

Recall that we have the relation γmax =
√
d in the self-attention layer. Therefore,

∥E⊤∥2,∞ ≤ CE = O(d1/2L3/2). (G.22)

This completes the proof.
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H PROOF OF THEOREM 3.1

Our proof leverages the local smoothness in Hölder spaces alongside the universal approximation
property of transformers. Results presented in Appendix G handle uniform continuous functions and
do not consider the higher-order regularity of the target function. However, bounding the weight
matrices in transformer network function class becomes infeasible without information on the target
function regularity. Therefore, we construct a function approximator for the score function that
captures Hölder smoothness. Then, we approximate the constructed function using transformers.

• Step 1: Function Approximation for the Score Function. Recall that (i) pt(x|y) follows the inte-
gral form shown in (3.1) (ii) the score function has the expression ∇ log pt(x|y) = pt(x|y)/∇pt(x).
We perform a k1-th order and a k2-th order Taylor expansion for p0(x|y) and exp(·) to construct two
function approximators f1(x, y, t) and f2(x, y, t) for pt(x|y) and ∇pt(x|y), respectively. These
functions inherit the Hölder smoothness property of the density function class (Definition 3.1).

• Step 2: Universal Approximation of Transformers on a Bounded Domain. We utilize the
universal approximation of transformers to approximate the constructed function on a bounded
domain with arbitrary precision. Notably, the constructed functions possess properties stronger
than uniform continuity, allowing us to bound the weight matrices in the transformers. We reiterate
that these bounds are essential for the later analysis of the transformer’s estimation capacity.

• Step 3: Approximation on the Full Domain with Sub-Gaussianity. We extend the approximation
results to full space Rdx by leveraging the sub-Gaussian property of the target density function.
Specifically, we apply the Gaussian tail bounds to control the error outside the bounded domain.

Organization. Appendix H.1 provides auxiliary lemmas. Appendix H.2 presents the approximation
of score function on a bounded domain. Appendix H.3 includes the main proof of Theorem 3.1.

H.1 AUXILIARY LEMMAS

In this section, we introduce auxiliary lemmas for the score approximation. Specifically, Lemma H.1
establishes an upper bound on the score function in the ℓ∞-distance. Further, Lemma H.2 presents an
integral domain clipping technique that enables the score approximation on a bounded domain.

Bounds on the Score Functions. We present a theoretical upper bound on the score function. We
remark that we use this bound to determine the transformer model output bound CT as well.

Lemma H.1 (Upper Bounds on the Score Function in ℓ∞ Distance, Lemma A.10 of (Fu et al.,
2024b)). Assume Assumption 3.1. Then, there exists a positive constant K such that

∥∇ log pt(x|y)∥∞ ≤ K(∥x∥+ 1)

σ2
t

.

Before presenting the clipping technique, we first introduce the multi-index notation for clarity.

Definition H.1 (Multi-Index). Let x ∈ Rdx . We say α = (α[1], . . . , α[dx]) is a dx-dimensional multi-
index if every α[i] is a non-negative integer and satisfies (i) factorial operation: α! := α[1]! · · ·α[dx]!
(ii) derivative operation: ∂α := ∂α[1] · · · ∂α[dx] (iii) power operation: xα := x[1]α[1] · · ·x[dx]α[dx].

Furthermore, when contexts are clear, we use p0(x|y), p(x0|y) and p0(x0|y) to denote the true
(target) density function throughout this section interchangeably.

Clipping Integral Domain. Let ϵ ∈ (0, 1) be a precision parameter and Bx be a bounded domain
dependent on ϵ and x ∈ Rdx . Considering the integral form of pt(x|y):

pt(xt|y) =
∫
Rdx

dx0

σdx
t (2π)dx/2

· p0(x0|y) · exp

(
−∥αtx0 − xt∥2

2σ2
t

)
,

the next lemma shows that the integral outside of the Bx is bounded by ϵ.
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Lemma H.2 (Approximating Clipped Multi-Index Gaussian Integral, Lemma A.8 of (Fu et al.,
2024b)). Assume Assumption 3.1. Let κ ∈ Zdx

+ be an integer vector with ∥κ∥1 ≤ n. Then, there
exists a constant C(n, dx) ≥ 1, such that for any x ∈ Rdx and 0 < ϵ ≤ 1/e, it holds∫

Rdx\Bx

∣∣∣∣(αtx0 − x

σt

)κ∣∣∣∣ · p(x0|y) · 1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0 ≤ ϵ. (H.1)

where

Bx :=
[x− σtC(n, dx)

√
log (1/ϵ)

αt
,
x+ σtC(n, dx)

√
log (1/ϵ)

αt

]
⋂[

− C(n, dx)
√

log (1/ϵ), C(n, dx)
√
log (1/ϵ)

]dx

.

In Appendix H.2, we approximate the score function on Bx and align the approximation error with
the error ϵ introduced by the integral domain clipping. We specify on the approximation error in
Lemma H.3 and Lemma H.4. For now, with hindsight, we set ϵ = N−β for some N ∈ N. This gives:

Bx,N :=

[
x− σtC(0, dx)

√
β logN

αt
,
x+ σtC(0, dx)

√
β logN

αt

]
︸ ︷︷ ︸

(I)⋂[
−C(0, dx)

√
β logN,C(0, dx)

√
β logN

]dx

︸ ︷︷ ︸
(II)

, (H.2)

and the clipping error follows Lemma H.2:

pt(x|y) =
∫
Rdx\Bx,N

p(x0|y) ·
1

σd
t (2π)

d/2
exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0 ≤ ϵ = N−β .

Next, we present the the score approximation on a bounded domain.

H.2 SCORE APPROXIMATION ON A BOUNDED DOMAIN

In this section, we approximate components of the score function and incorporate the Hölder
smoothness index (Definition 3.1) β > 0. Specifically, Lemma H.3 approximates pt(x|y), and
Lemma H.4 approximates ∇pt(x|y). Then, we approximate the constructed function on a bounded
domain by leveraging the universal approximation of transformers (Appendix G.1).

Step 1: Function Approximator for the Score Function. Recall that the score function has the form
∇ log pt(x|y) = ∇pt(x|y)/pt(x|y). First, we write pt(x|y) into the product of p(x0|y) and exp(·):

pt(x|y) =
∫
Rdx

p(x0|y)pt(x|x0)dx0 =

∫
Rdx

1

σdx
t (2π)dx/2

p(x0|y)exp

(
−∥αtx0 − x∥2

2σ2
t

)
dx0.

Let Bx,N be the bounded domain defined in Lemma H.2. Then, we approximate p(x0|y) and

exp
(
−∥αtx0−x∥2

2σ2
t

)
with k1-order Taylor polynomial and k2-order Taylor polynomial within Bx,N

respectively. Altogether, we approximate pt(x|y) with the following diffused local polynomial:

f1(x, y, t) =
∑

v∈[N ]dx ,w∈[N ]dy

∑
∥nx∥1+∥ny∥1≤k1

R
∥nx∥
B

nx!ny!

∂nx+nyp

∂xnx∂yny

∣∣∣∣∣
x=RB( v

N−
1
2 ),y=

w
N

Φnx,ny,v,w(x, y, t),

(H.3)
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where

• g(x[i], nx[i], v[i], u) := 1
σt

√
2π

∫
Bvi,ni,xi

(
x0

R + 1
2 − v[i]

N

)nx[i]
1
u!

(
−∥x[i]−σtx

2
0∥

2σ2
t

)u

dx0,

• Bvi,ni,xi
:=
[
x[i]−σtC(0,dx)

√
β logN

αt
, x[i]+σtC(0,dx)

√
β logN

αt

]⋂ [
( vi−1N − 1

2 )RB , (
vi
N − 1

2 )RB

]
,

• Φnx,ny,v,w(x, y, t) :=
(
y − w

N

)ny ∏dy

j=1 ϕ
(
3N(y[j]− w

N )
)∏dx

i=1

∑
u<k2

g(x[i], nx[i], v[i], u).

Remark H.1 (Diffused Local Polynomial). The expression of the diffused local polynomial given
(H.3) arises from the Taylor expansion applied on each grid point within [0, 1]dx+dy , where we use
v ∈ [N ]dx and w ∈ [N ]dy to denote the specific grid point undergoing the Taylor approximation.
Furthermore, Assumption 3.1 imposed on p(x0|y) allows us to leverage the Hölder smooth property
to establish an upper bound on the error arising from the remainder term in the Taylor expansion.

The next lemma specifies the approximation error for pt(x|y) using f(x, y, t).

Lemma H.3 (Approximation of pt(x|y) by f1(x, y, t), Lemma A.4 of (Fu et al., 2024b)). Assume
Assumption 3.1. For any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently large N > 0, there exists a
diffused local polynomial f1(x, y, t) with at most Ndx+dy (dx + dy)

k1 monomials such that

|f1(x, y, t)− pt(x|y)| ≲ BN−β log
dx+k1

2 N.

To avoid the score from exploding, we need to set a threshold for f1(x, y, t):

Definition H.2 (Truncated Approximator of pt(x|y)). Let ϵlow be a positive real number. Let
f1(x, y, t) be the diffused local polynomial defined in (H.3). Then, we define:

f1,clip(x, y, t) := max{ϵlow, f1(x, y, t)}.

Similarly, we have the approximation for ∇pt(x|y) based on the diffused local polynomial:

Lemma H.4 (Approximation of ∇pt(x|y) by f2(x, y, t), Lemma A.6 of (Fu et al., 2024b)). Assume
Assumption 3.1. Let f2 := (f2[1], . . . , f2[dx])

⊤ ∈ Rdx where f2[i] is a diffused local polynomial for
all i ∈ [dx]. Then, for any x ∈ Rdx , y ∈ [0, 1]dy , t > 0, and a sufficiently large N > 0, it holds

|f2(x, y, t)[i]− σt∇pt(x|y)[i]| ≲ BN−β log
dx+k1+1

2 N,

where each f2[i] contains at most Ndx+dy (dx + dy)
k1 monomials.

To this end, we complete the approximation of pt and ∇pt with diffused local polynomial f1 and f2.

Step 2. Score Approximation with Transformers on a Bounded Domain. We use transformers
to approximate a function approximator for the score constructed with f1(x, y, t) and f2(x, y, t).

Lemma H.5 (Approximate the Score Approximator with Transformers). Assume Assumption 3.1.
Let Cx(dx, β, C1, C2) be a positive constant. Let f3(x, y, t) := f2/(σt · f1,clip) be the target function.
Then, for any ϵ ∈ (0, 1), any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , any y ∈ [0, 1]dy and any t ∈

[N−Cσ , Cα logN ], there exists a transformer g(x, y, t) ∈ T h,s,r
R such that∫

∥x∥≤Cx

√
logN

∥g(x, y, t)− f3(x, y, t)∥22dx ≤ ϵ2.

Furthermore, the parameter bounds in transformer network function class satisfy:

CKQ, C
2,∞
KQ = O((logN)4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O

(
logNϵ−1 ·max ∥f3∥F

)
; CE = O(1),
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where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. Since the diffused local polynomials integrates over some polynomial functions and σt is a
smooth function, the target f3(x, y, t) is Lipschitz continuous. Therefore, for any ϵ ∈ (0, 1),

d2(g, f) =
(∫

∥g(x, y, t)− f3(x, y, t)∥22dx
)1/2

≤ ϵ.
(
By Theorem G.2

)
The parameter bounds in the transformer network class follow Lemma G.5.

This completes the proof.

Next lemma incorporates previous approximation results into an unified transformer architecture.

Lemma H.6 (Approximation Score Function with Transformer on Supported Domain). As-
sume Assumption 3.1. Consider t ∈ [N−Cσ , Cα logN ], for constant Cσ, Cα, and (x, y) ∈
[−Cx

√
logN,Cx

√
logN ]dx × [0, 1]dy , where N ∈ N and Cx depends on d, β,B,C1, C2. Then,

there exist a transformer network Tscore(x, y, t) ∈ T h,s,r
R such that∫ (

pt(x|y)
)2∥∇ log pt(x|y)− Tscore(x, y, t)∥22 ≲

B2

σ4
t

N−2β(logN)
3dx
2 +k1+1.

The parameter bounds in the transformer network class satisfy

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4d+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β+3
2

)
; CE = O(1); CT = O(

√
logN/σ2

t ),

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. Recall Lemma H.1, Lemma H.3, Definition H.2 and Lemma H.4. We define:

f3(x, y, t) = min

(
f2

σtf1,clip
,
K

σ2
t

(Cx

√
dx logN + 1)

)
,

where we set f1,clip = {f1, ϵlow} to prevent the score explosion. We specify the coice of ϵlow later.

We proceed with the following two steps:

• Step A. Approximate Score Function with f3. For any i ∈ [dx], it holds

|(∇ log pt)[i]− f3[i]|

≤
∣∣∣∣(∇ log pt)[i]−

f2[i]

σtf1,clip

∣∣∣∣
≤
∣∣∣∣ (∇pt)[i]pt

− (∇pt)[i]]
f1,clip

∣∣∣∣+ ∣∣∣∣ (∇pt)[i]f1,clip
− f2[i]

σtf1,clip

∣∣∣∣.
From Lemma H.1, the bound on the score implies (∇pt)[i] ≤ K(

√
dx logN+1)pt/σ

2
t . Therefore,

|(∇ log pt)[i]− f3[i]|

≤ K

σ2
t

(
√
d logN + 1)pt

∣∣∣∣ 1pt − 1

f1,clip

∣∣∣∣+ 1

f1,clip

∣∣∣∣ (∇σtpt)[1]− f2[1]

σt

∣∣∣∣,
≲

1

f1,clip

( 1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

)
.

(
By dropping Constant Terms

)
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From Lemma H.3, we have

|f1 − pt| ≤ BN−β log
dx+k1

2 N.

We set ϵlow = C3N
−β log

dx+k1
2 N ≤ pt such that f1 ≥ pt/2 by the choice of constant C3. Then,

|(∇ log pt)[1]− f3[1]|

≲
1

pt

( 1

σ2
t

√
logN |pt − f1,clip|+

(∇σtpt)[1]− f2[1]

σt

)
,

(
By the choice of ϵlow

)
≲

B

σ2
t pt

N−β(logN)
dx+k1+1

2 .
(
By Lemma H.3 and Lemma H.4

)
By the symmetry of each coordinate, it holds

∥∇ log pt − f3∥∞ ≤ ∥∇ log pt − f3∥2 ≲
B

σ2
t pt

N−β(logN)
dx+k1+1

2 . (H.4)

• Step B: Approximate f3 with Transformer Tscore. We use transformers to approximate f3 to an
accuracy of order N−β such that it aligns with the error order in (H.4). By Lemma H.5, we have∫

∥Tscore(x, y, t)− f3(x, y, t)∥22dx ≤ ϵ2.

By setting ϵ = N−β , it holds∫
p2t∥Tscore(x, y, t)−∇ log pt(x|y)∥22dx

≤
∫
p2t∥Tscore(x, y, t)− f3(x, y, t)∥22dx+

∫
p2t∥f3(x, y, t)−∇ log pt(x|y)∥22dx(

By triangle inequality
)

≤
∫

∥Tscore(x, y, t)− f3(x, y, t)∥22dx+

∫
p2t∥f3(x, y, t)−∇ log pt(x|y)∥22dx(

By pt(x|y) ∈ [0, 1]
)

≲
∫

∥Tscore(x, y, t)− f3(x, y, t)∥22dx+
B2

σ4
t

N−2β(logN)dx+k1+1

∫
dx

(
By (H.4)

)
≲
∫

∥Tscore(x, y, t)− f3(x, y, t)∥22dx+
B2

σ4
t

N−2β(logN)
3dx
2 +k1+1 (

By ∥x∥∞ ≤ Cx

√
logN

)
≤ B2

σ4
t

N−2β(logN)
3dx
2 +k1+1.

(
By Lemma H.5

)

Next, by Lemma H.1 and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , we have

∥∇ log pt∥∞ = O(
√
logN),

Therefore we have CT = O(
√
logN), and by (H.4) we have

|∇ log pt[i]− f3[i]| = O(N−β(logN)
dx+k1+1

2 ).

This implies

∥f3∥2 = O(
√
logN +N−β(logN)

dx+k1+1
2 ).
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We take a looser bound on f3 such that it holds for all dx:

∥f3∥2 ≤ dx∥f3∥∞ = O((logN)
dx+β+1

2 ),

where we use k1 ≤ β.

Then, the parameter bounds follow Lemma H.5 with ϵ = N−β . Therefore, we have

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4d+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β+3
2

)
; CE = O(1); CT = O(

√
logN/σ2

t ).

This completes the proof.

H.3 MAIN PROOF OF THEOREM 3.1

In Lemma H.6, we establish the score approximation with transformer that incorporates every
essential components and encodes the Hölder smoothness in the final result.

However, it is only valid within the input domain [Cx

√
logN,Cx

√
logN ]dx × [0, 1]dy , and we also

excludes region pt < ϵlow where the problem of score explosion remains unaddressed.

To combat this, we introduce two additional lemmas.

Lemma H.7 (Truncate x for Score Function, Lemma A.1 of (Fu et al., 2024b)). Assume Assump-
tion 3.1. For any R1 > 1, y, t > 0 we have∫

∥x∥∞≥R1

pt(x|y)dx ≤ R1 exp
(
−C ′2R2

1

)
,∫

∥x∥∞≥R1

∥∇ log pt(x|y)∥22pt(x|y)dx ≤ R3
1

σ4
t

exp
(
−C ′2R2

1

)
,

where C ′2 = C2/(2max(C2, 1)).

Remark H.2. Because we only impose assumption on the light tail property of the conditional
distribution in Assumption 3.1, the unboundedness of x necessitates a truncation for integrals
regarding x, or else the result would diverge.

Furthermore, we address the explosion of score function with the second lemma.

Lemma H.8 (Lemma A.2 of (Fu et al., 2024b)). Assume Assumption 3.1. For any R2, y, ϵlow > 0
we have ∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · pt(x|y)dx ≤ Rdx
2 ϵlow,∫

∥x∥∞≤R2

1{|pt(x|y)| < ϵlow} · ∥∇ log pt(x|y)∥22pt(x|y)dx ≤ 1

σ4
t

Rdx+2
2 ϵlow.

Remark H.3. Recall that the score function has the form ∇ log pt(x|y) = ∇pt(x|y)/pt(x|y). It is
essential to set a threshold for pt(x|y) prevents the explosion of the score function.

We begin the proof of Theorem 3.1.

Proof Sketch of Theorem 3.1. In the following proof, we give error bound for the three terms:

• (A.1): The approximation for ∥x∥∞ > R1.

This step controls the error from truncation of Rdx with radius R1 in ℓ2 distance. We approximate
the error with Lemma H.7
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• (A.2): The approximation for 1{pt(x|y) < ϵlow} and {∥x∥∞ ≤ R1}.
This step controls the error from setting a threshold to prevent score explosion within the bounded
domain ∥x∥∞ ≤ R1. We approximate the error with Lemma H.8.

• (A.3) The approximation for 1{pt(x|y) ≥ ϵlow} and {∥x∥∞ ≤ R1}.
With previous two steps ensuring the bounded domain and preventing the divergence of score
function, we approximate with Lemma H.6.

Proof of Theorem 3.1. First, we set R1 = R2 =
√
2β logN/C ′2 in Lemma H.7 and Lemma H.8.

Next, we expand the target into three parts (A1), (A2), and (A3):∫
Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx

=

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A1)

,

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A2)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx︸ ︷︷ ︸
(A3)

.

We derive the bound for (A1), (A2), (A3) and combine these results.

• Bounding (A1). We apply Lemma H.7. Note that we have ∥s(x, y, t)∥∞ ≲
√
logN/σ2

t from the
construction of the score estimator in Lemma H.6.∫

∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx
(
By expanding the ℓ2 norm

)
≤ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥22 · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤ 2dx

∫
∥x∥∞>

√
2β

C′
2
logN

∥s(x, y, t)∥2∞ · pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By the ℓ∞ bound on the score function

)
≲ 2dx

(√
logN

σ2
t

)2 ∫
∥x∥∞>

√
2β

C′
2
logN

pt(x|y)dx+ 2

∫
∥x∥∞>

√
2β

C′
2
logN

∥∇ log pt(x|y)∥22 · pt(x|y)dx(
By Lemma H.7 and dropping constant

)
≲ 2dx · logN

σ4
t

·

√
2β

C ′2
logN ·N−2β +

2

σ4
t

(
2β

C ′2
logN

) 3
2

N−2β(
By dropping constant and lower order term

)
≲

1

σ4
t

N−2β(logN)
3
2 .
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• Bounding (A2). We apply Lemma H.8. Recall that we set ϵlow = C3N
−β(logN)

dx+k1
2

(Lemma H.6).

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx(
By expanding the ℓ2 norm

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

21{|pt(x|y)| < ϵlow}
(
∥s(x, y, t)∥22 + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx

(
By ∥·∥22 ≤ dx∥·∥2∞

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}
(
dx∥s(x, y, t)∥2∞ + ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By the ℓ∞ bound on the score function
)

≲
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| < ϵlow}

(
dx

(√
logN

σ2
t

)2

+ ∥∇ log pt(x|y)∥22

)
· pt(x|y)dx(

By Lemma H.8 and dropping constant
)

≲ dx

(√
logN

σ2
t

)2(
2β

C ′2
logN

) dx
2

ϵlow +

(
2β

C ′2
logN

) dx+2
2 ϵlow

σ4
t(

By dropping constant and lower order term
)

≲
1

σ4
t

(logN)
dx+2

2 ϵlow.

• Bounding (A3). We apply Lemma H.6.∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}∥s(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx

=

∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
pt(x|y)

dx∥s(x, y, t)−∇ log pt(x|y)∥22 · p2t (x|y)dx(
Multiply with pt/pt

)
≤
∫
∥x∥∞≤

√
2β

C′
2
logN

1{|pt(x|y)| ≥ ϵlow}
ϵlow

dx∥s(x, y, t)−∇ log pt(x|y)∥22 · p2t (x|y)dx(
By 1/pt < 1/ϵlow

)
≲
B2

σ4
t

N−2β(logN)
3dx
2 +k1+1 · 1

ϵlow
.

(
Lemma H.6

)
• Combining Three Upper-Bounds.

Combining (A1), (A2) and (A3), we have∫
Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx

≲
N−2β(logN)

3
2

σ4
t︸ ︷︷ ︸

(A1)

+
ϵlow(logN)

dx+2
2

σ4
t︸ ︷︷ ︸

(A2)

+
B2

σ4
t ϵlow

N−2β(logN)
3dx
2 +k1+1︸ ︷︷ ︸

(A3)

.
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By replacing ϵlow with C3N
−β(logN)dx+k1/2 and using the relation k1 ≤ β,5 we obtain∫

Rd

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx = O
(
B2

σ4
t

N−β(logN)dx+
β
2 +1

)
.

Last, the transformer parameter norm bounds follow Lemma H.6.

This completes the proof.

5Recall the definition of the Hölder smoothness, Definition 3.1.
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I PROOF OF THEOREM 3.2

We provide the formal version of Theorem 3.2 at the end of Appendix I.2.

Organization. Appendix I.1 includes auxiliary lemmas for supporting our proof. Appendix I.2
includes the formal version and main proof of Theorem 3.2.

I.1 AUXILIARY LEMMAS

We utilize the condition assumed in Assumption 3.2 to achieve the decomposition.

Lemma I.1 (Lemma B.1 of Fu et al. (2024b)). Assume Assumption 3.2. The conditional distribution
at time t has the following expression:

pt(x|y) =
1

(α2
t + C2σ2

t )
dx/2

exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t )

)
h(x, y, t).

Moreover, the score function has the following expression:

∇ log pt(x|y) =
−C2x

α2
t + C2σ2

t

+
∇h(x, y, t)
h(x, y, t)

,

where h(x, y, t) =
∫ f(x0,y)

σ̂d
t (2π)

d/2 exp
(
−∥x0−α̂tx∥2

2σ̂2
t

)
dx0, σ̂t = σt

(α2
t+C2σ2

t )
1/2 , and α̂t =

αt

α2
t+C2σ2

t
.

Proof. Let z := x0 denote the initial data distribution.

By Assumption 3.2, we have p(z|y) = exp
(
−C2∥z∥22/2

)
· f(z, y). Therefore,

pt(x|y) =
∫

1

σd
t (2π)

d/2
p(z|y) exp

(
−∥x− αtz∥2

2σ2
t

)
dz,

=
1

σd
t (2π)

d/2

∫
exp

(
−
C2∥z∥22

2

)
f(z, y) exp

(
−∥x− αtz∥2

2σ2
t

)
dz. (I.1)

We rearrange the two exponential terms in (I.1) into

exp

(
−
C2∥z∥22

2

)
exp

(
−∥x− αtz∥2

2σ2
t

)
= exp

(
− 1

2σ2
t

d∑
i=1

(x[i]2 − 2αtx[i]z[i] + α2
t z[i]

2 + C2σ
2
t z[i]

2)

)
.

To simplify the summation in the exponents, we first rewrite the term for a single coordinate.

Without loss of generality, we derive the first coordinate of the fucntion:

exp

(
− 1

2σ2
t

(x[1]2 − 2αtx[1]z[1] + α2
t z[1]

2 + C2σ
2
t z[1]

2)

)
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

(
z[1]2 − 2αt

α2
t + C2σ2

t

x[1]z[1] +
x[1]2

α2
t + C2σ2

t

))
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

(
z[1]− αtx[1]

α2
t + C2σ2

t

)2

− 1

2σ2
t

(
−α2

t

α2
t + C2σ2

t

+ 1

)
x[1]2

)
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

(
z[1]− αtx[1]

α2
t + C2σ2

t

)2
)
exp

(
− C2x[1]

2

2(α2
t + C2σ2

t )

)
.

The other dx − 1 coordinates abide by the same derivation.
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Next, we rewrite the the exponential with product of all coordinates by

exp

(
−
C2∥z∥22

2

)
exp

(
−∥x− αtz∥2

2σ2
t

)
,

= exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

∥∥∥∥z − αtx

α2
t + C2σ2

t

∥∥∥∥2
)
exp

(
− C2

2(α2
t + C2σ2

t )
∥x∥22

)
. (I.2)

Define α̂t := αt/α
2
t + C2σ

2
t and σ̂2

t = σ2
t /α

2
t + C2σ

2
t . Next, we plug (I.2) into (I.1) and write

pt(x|y)

=
1

σd
t (2π)

d/2
exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t )

)∫
f(z, y) exp

(
− 1

2σ2
t

(α2
t + C2σ

2
t )

∥∥∥∥z − αtx

α2
t + C2σ2

t

∥∥∥∥2
)
dz,

=
1

σd
t (2π)

d/2
exp

(
−

C2∥x∥22
2(α2

t + C2σ2
t )

)∫
f(z, y) exp

(
−∥z − α̂tx∥2

2σ̂2
t

)
dz. (I.3)

Last, we define h(x, y, t) =
∫

1
σ̂d
t (2π)

d/2 f(z, y) exp
(
−∥z−α̂tx∥2

2σ̂2
t

)
dz and plug it back to (I.3).

This completes the proof.

Next, we provide lemma that provides bound on h(x, y, t) and ∇h(x, y, t) in Lemma I.1

Lemma I.2 (Lemma B.8 of (Fu et al., 2024b)). Under Assumption 3.2, we have the following bounds
for h(x, y, t) and σ̂t

α̂t
∇h(x, y, t)

C1 ≤ h(x, y, t) ≤ B,

∥∥∥∥ σ̂tα̂t
∇h(x, y, t)

∥∥∥∥
∞

≤
√

2

π
B,

where C1 and B are the hyperparameters of Hβ(Rdx × [0, 1]dy , B) in Assumption 3.2.

Remark I.1 (Bound on h and ∇h). We reiterate that Lemma I.2 drives the key distinction between
the analyses in Theorem 3.1 and Theorem 3.2. Specifically, in Appendix H.3, the decomposed term
containing the threshold ϵlow results in lower approximation rate, while bounds on h and ∇h eliminate
the need of the threshold with h’s lower bound C1, rendering faster approximation rate.

This step parallels Lemma H.2; however, the discretization differs due to the structure of h.

Lemma I.3 (Clipping Integral, Lemma B.10 of Fu et al. (2024b)). Assume Assumption 3.2. Consider
any integer vector κ ∈ Zdx

+ with ∥κ∥1 ≤ n. There exists a constant C(n, dx), such that for any
x ∈ Rdx and 0 < ϵ ≤ 0.99, it holds∫

Rdx\Bx

∣∣∣∣( α̂tx0 − x

σ̂t

)κ∣∣∣∣ · p(x0|y) · 1

σ̂d
t (2π)

d/2
exp

(
−∥α̂tx0 − x∥2

2σ̂2
t

)
dx0 ≤ ϵ, (I.4)

where
(

α̂tx0−x
σ̂t

)κ
:= (( α̂tx0[1]1−x[1]

σ̂t
)κ[1], ( α̂tx0[2]−x[2]

σ̂t
)κ[2], . . . , ( α̂tx0[dx]−x[dx]

σ̂t
)κ[dx]) and

Bx :=
[
α̂tx− C(n, d)σ̂t

√
log ϵ−1, α̂tx+ C(n, d)σ̂t

√
log ϵ−1

]dx

.

Step 2: Approximate h and ∇h with Polynomials. Similar to the construction of the diffused
local polynomials, the following two lemmas render the first step approximation for h(x, y, t) and
∇h(x, y, t) that captures the local smoothness.
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Lemma I.4 (Approximation with Diffused Local Polynomials, Lemma B.4 of (Fu et al., 2024b)).
Assume Assumption 3.2. For sufficiently larger N > 0 and constant C2, there exists a diffused local
polynomial f1(x, y, t) with at most Nd+dy (d+ dy)

k1 monomials such that

|f1(x, y, t)− h(x, y, t)| ≲ BN−β log
k1
2 N,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t > 0.

Lemma I.5 (Counterpart of Lemma I.4, Lemma B.6 of (Fu et al., 2024b)). Assume Assumption 3.2.
For sufficiently larger N > 0 and constant C2, there exists a diffused local polynomial f2(x, y, t) ∈
T h,s,r
R with at most Ndx+dy (dx + dy)

k1 monomials f2[i](x, y, t) such that∣∣∣∣f2[i](x, y, t)− ( σ̂tα̂t
∇h(x, y, t)

)
[i]

∣∣∣∣ ≲ BN−β log
k1+1

2 N,

for any x ∈ Rdx , y ∈ [0, 1]dy and t > 0.

Approximation of the Score Approximator with Transformers We apply the universal approxi-
mation of transformers to approxiamte a score approximator constructed with f1 and f2.

Lemma I.6 (Approximate the Score Approximator with Transformers). Assume Assumption 3.1.
Let Cx(dx, β, C1, C2) be a positive constant. Let f3(x, y, t) be the target function:

f3 :=
α̂t

σ̂t
· f2(x, y, t)
f1(x, y, t)

− C2x

α2
t + C2σ2

t

.

Then, for any ϵ ∈ (0, 1), any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , any y ∈ [0, 1]dy and any t ∈

[N−Cσ , Cα logN ], there exists a transformer g(x, y, t) ∈ T h,s,r
R such that∫

∥x∥≤Cx

√
logN

∥g(x, y, t)− f3(x, y, t)∥22 ≤ ϵ2.

Furthermore, the parameter bounds in transformer network function class follow Lemma H.5.

We introduce the counterpart of Lemma H.6. It is the core of the proof for Theorem I.1.

Lemma I.7 (Score Approximation with Transformer). Assume Assumption 3.2. For sufficiently
large integer N , there exists a mapping from transformer Tscore ∈ T h,s,r

R such that∫ ∥∥Tscore −∇ log h(x, y, t) +
C2x

α2
t + C2σ2

t

∥∥2
2
dx ≲

B2

σ2
t

N−2β(logN)k1+1,

for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx , y ∈ [0, 1]dy and t ∈ [N−Cσ , Cα logN ]. Furthermore, the

parameter bounds in transformer network function class follow Lemma H.6.

Proof. Our proof follows the proof structure of (Fu et al., 2024b, Proposition B.3).

We establish the the first-step approximator f3 with the form:

f3(x, y, t) :=
α̂t

σ̂t
· f2(x, y, t)
f1(x, y, t)

− C2x

α2
t + C2σ2

t

.

We derive the error bound on the approximation of the first term containing Taylor polynomials in f3.
We incorporate second term containing the linear function in x into the the transformer architecture.

We proceed with the following two steps.

• Step A. Approximate Scroe Function with f3.

67



Published as a conference paper at ICLR 2025

We first construct f1(x, y, t) and f2(x, y, t) from Lemma I.4 and Lemma I.5 to approximate
h(x, y, t) and ∇h(x, y, t) respectively.

From Lemma I.2, we have C1 ≤ h ≤ B and
∥∥∥ σ̂t∇h

α̂t

∥∥∥
∞

≤
√

2
πB. Next, by Lemma I.4 and

Lemma I.5, we select a sufficiently large N such that C1

2 ≤ f1 ≤ 2B and f2 ≤ B.

Without loss of generality, we begin by bounding the first coordinate of ∇h, denoted as ∇h[1]:∣∣∣∣∇h[1]h
− α̂t

σ̂t

f2[1]

f1

∣∣∣∣
≤
∣∣∣∣∇h[1]h

− ∇h[1]]
f1

∣∣∣∣+ ∣∣∣∣∇h[1]f1
− α̂t

σ̂t

f2[1]]

f1

∣∣∣∣,
≤
∣∣∣∣∇h[1]]h · f1

∣∣∣∣|f1 − h|+ α̂t

σ̂t

∣∣∣∣ 1f1
∣∣∣∣∣∣∣∣f2 − σ̂t

α̂t
∇h[1]]

∣∣∣∣,
≲
α̂t

σ̂t

(
|f1 − h|+

∣∣∣∣f2 − σ̂t
α̂t

∇h[1]
∣∣∣∣) , (

By bounds on h, ∇h, f1, f2
)

≲
α̂t

σ̂t

(
BN−β(logN

k1
2 +BN−β(logN

k1+1
2 )
)
,

(
By Lemma I.4 and Lemma I.5

)
≲

1

σt

(
BN−β(logN

k1+1
2 )
)
.

Note that in the last line, we utilize

α̂t

σ̂t
=
αt

σt

1√
α2
t + C2σ2

t

=
1

σt

1√
1 + C2 (σt/αt)

2
=

1

σt

1√
1 + C2

σ2
t

1−σ2
t

= O(σ−1t ).

By the symmetry of each coordinate in ∇h, we obtain the ℓ∞ bounds:∥∥∥∥∇h(x, y, t)h(x, y, t)
− α̂t

σ̂t

f2(x, y, t)

f1(x, y, t)

∥∥∥∥
∞

≲
B

σt
N−β(logN)

k1+1
2 . (I.5)

• Step B. Approximate f3 with Transformer Tscore. We use transformers to approximate f3 to an
accuracy of order N−β such that it aligns with the error order in (H.4). By Lemma I.6, we have∫

∥Tscore(x, y, t)− f3(x, y, t)∥22dx ≤ ϵ2.

By setting ϵ = N−β , it holds∫
p2t∥Tscore(x, y, t)−∇ log pt(x|y)∥22dx

≤
∫
p2t∥Tscore(x, y, t)− f3(x, y, t)∥22dx+

∫
p2t∥f3(x, y, t)−∇ log pt(x|y)∥22dx(

By triangle inequality
)

≤
∫

∥Tscore(x, y, t)− f3(x, y, t)∥22dx+

∫
p2t∥f3(x, y, t)−∇ log pt(x|y)∥22dx(

By pt(x|y) ∈ [0, 1]
)

≲
∫

∥Tscore(x, y, t)− f3(x, y, t)∥22dx+
B2

σ2
t

N−2β(logN)k1+1

∫
dx

(
By (I.5)

)
≲
∫

∥Tscore(x, y, t)− f3(x, y, t)∥22dx+
B2

σ4
t

N−2β(logN)
dx
2 +k1+1 (

By ∥x∥∞ ≤ Cx

√
logN

)
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≤ B2

σ4
t

N−2β(logN)
dx
2 +k1+1.

(
By Lemma I.6

)
Furthermore, the parameter bounds in the transformer network class follows Lemma H.6.

This completes the proof.

I.2 MAIN PROOF OF THEOREM 3.2

Similar to the proof of Theorem 3.1, we implement the truncation due to the unboundedness of x.

Lemma I.8 (Lemma B.2 of (Fu et al., 2024b)). Assume Assumption 3.2. For any R3 > 1, it holds∫
∥x∥∞≥R3

pt(x|y)dx ≲ R3 exp
(
−C ′2R2

2

)
.

Moreover, it holds∫
∥x∥∞≥R3

∥∇ log pt(x|y)∥22pt(x|y)dx ≲
1

σ2
t

R3
3 exp

(
−C ′2R2

3

)
,

where C ′2 = C2/(2max{1, C2}).

Unlike results under Assumption 3.1, the explicit form of pt(x|y) in (I.1) along with the upper and
lower bound on the joint distribution Lemma I.2 allow us to skip the threshold ϵlow as in Lemma H.8.

We state the formal version of Theorem 3.2.

Theorem I.1 (Score Approximation, Formal Version of Theorem 3.2). Assume Assumption 3.2.
For any precision parameter 0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for
some N ∈ N. Let Cα and Cσ be some positive absolute constants. For any y ∈ [0, 1]dy and
t ∈ [N−Cσ , Cα logN ], there exists a Tscore(x, y, t) ∈ T h,s,r

R such that∫
Rdx

∥Tscore(x, y, t)−∇ log pt(x|y)∥22 · pt(x|y)dx = O
(
B2

σ2
t

·N−2β · (logN)β+1

)
.

Notably, for ϵ = O(N−β), the approximation error has the upper bound Õ(ϵ2/σ2
t ). The parameter

bounds in the transformer network class satisfy

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4d+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β+3
2

)
; CE = O(1); CT = O(

√
logN/σt),

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof of Theorem 3.2. We apply Lemma I.7 and Lemma I.8.

Specifiaclly, we take Cx =
√

2β
C′

2
and R3 = Cx

√
logN .

Next, recall transformer parameter bounds in Lemma I.7. We have ∥Tscore∥2 ≤
√
logN/σt.

Therefore,∫
Rdx

∥Tscore −∇ log pt∥22 · ptdx
(
By expanding ℓ2 norm

)
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≤
∫
∥x∥∞>

√
2β

C′
2
logN

(
2∥Tscore∥22 + 2∥∇ log pt∥22

)
ptdx

︸ ︷︷ ︸
(A.1)

+

∫
∥x∥∞≤

√
2β

C′
2
logN

(
∥Tscore −∇ log pt∥22

)
· ptdx

︸ ︷︷ ︸
(A.2)

,

(
By ℓ2 bound on Tscore and Lemma I.7

)
≲
∫
∥x∥∞>

√
2β

C′
2
logN

(2 · logN
σ2
t

+ 2∥∇ log pt∥22
)
· ptdx+

B2

σ2
t

N−2β(logN)k1+1,

(
By Lemma I.8

)
≲ 2dx

√
logN

σ2
t

(
2β

C ′2
logN

) 1
2

N−2β +
2

σ2
t

(
2β

C ′2
logN

) 3
2

N−2β +
B2

σ2
t

N−2β(logN)k1+1,(
By dropping lower order term

)
≲
B2

σ2
t

N−2β(logN)β+1.

This completes the proof.
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J PROOF OF THE ESTIMATION RESULTS FOR CONDITIONAL DITS

Overview of Proof Strategy of Theorem 3.3.

Step 0. Preliminaries. We introduce the mixed risk that accounts for risk with the distribution of the
mask signal in Definition J.1. We restate the loss function and the score matching technique
in Definition J.2.

Step 1. Truncate the Domain of the Risk. We truncate the domain of the loss function in order
to obtain finite covering number of transformer network class. Precise definition of the
truncated loss function class is in Definition J.4. We bound the error from the truncation
from the assumed light tail condition in Lemma J.1.

Step 2. Derive the Covering Number of Transformer Network. We introduce the covering number
of a given function class in Definition J.5. We provide lemma detailing the calculation of
the covering number for transformer architecture in Lemma J.2. We derive the covering
numbers under the respective parameter configurations for our two previous main results in
Lemma J.3.

Step 3. Bound the True Risk on Truncated Domain. With the previous steps, we present the
upper-bound of the mixed risk in Lemma J.4.

Overview of Proof Strategy of Theorem 3.4. We decompose the total variation into three compo-
nents and we bound the separately.

Step 1. We bound the total variation distance between the true distributions evaluated at t = 0 and
early-stopping time t = t0.

Step 2. We bound the total variation between the true distribution at t0 and the reverse process
distribution using the true score function.

Step 3. We bound the total variation between the reverse process distributions using the true and
estimated score functions at t0.

Organization. Appendix J.1 includes auxiliary lemmas for supporting our proof of Theorem 3.3.
Appendix J.2 includes the main proof of Theorem 3.3. Appendix J.3 includes auxiliary lemmas for
supporting our proof of Theorem 3.4. Appendix J.4 includes the main proof of Theorem 3.4.

J.1 AUXILIARY LEMMAS FOR THEOREM 3.3

Step 0: Preliminary Framework. We evaluate the quality of the estimator sW through the risk:

R(sW ) :=

∫ T

t0

1

T − t0
Ext,y∥sW (xt, y, t)−∇ log pt(xt|y)∥22dt. (J.1)

Definition J.1 (Mixed Risk). The risk (J.1) considers label y throughout whole the diffusion process.
We refer to it as the conditional score risk. In contrast, we have the mixed risk Rm that accounts for
the distribution of the mask signal τ = {∅, id} with P (τ = ∅) = P (τ = id) = 0.5:

Rm(sW ) :=

∫ T

t0

1

T − t0
E(xt,y,τ)

[
∥sW (xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt, (J.2)

Remark J.1. Given score estimator ŝ trained from empirical loss (F.8), the conditional score risk is
upper-bounded by twice of the mixed risk. That is, we have R(ŝ) ≤ 2Rm(ŝ) by observing

Rm(ŝ) =
1

2

∫ T

t0

1

T − t0
Ext

[
∥ŝ(xt, ∅, t)−∇ log pt(xt)∥22

]
dt+

1

2
R(ŝ).
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Definition J.2 (Loss Function and Score Matching). Let x = xt|x0 denote the random variable
following Gaussian distribution N(αtx0, σ

2
t Idx

), we define loss function and score matching loss:

ℓ(x, y; sW ) :=

∫ T

T0

1

T − T0
Eτ,x

[
∥sW (xt, τy, t)−∇ log pt (xt|x0)∥22

]
dt,

L(sW ) :=

∫ T

t0

1

T − t0
Ex0,y

[
Eτ,x

[
∥sW (xt, τy, t)−∇ log pt(xt|x0)∥22

]]
dt.

Remark J.2. Given i.i.d samples {x0,i, yi}ni=1, we write ℓ(xi, yi; sW ) with the understanding that
xi = xt|x0,i. When context is clear, we use ℓ(xi, yi; sW ) and ℓ(x0,i, yi; sW ); {x0,i, yi}ni=1 and
{xi, yi}ni=1 interchangeably.

Remark J.3. By (Vincent, 2011), L(sW ) and Rm(sW ) differ by a constant that is inconsequential
to the minimization. Therefore, minimizing the mixed risk is equivalent to minimizing the score
matching loss

Definition J.3 (Empirical Risk). Consider a score estimator sW ∈ T h,s,r
R . Recall the definition of

empirical loss: L̂(sW ) =
∑n

i=1
1
nℓ(xi, yi; sW ). Let s◦ := ∇ log pt(x|y), we define empirical risk:

R̂m(sW ) := L̂(sW )− L̂(s◦) =
n∑

i=1

1

n
ℓ(xi, yi; sW )−

n∑
i=1

1

n
ℓ(xi, yi; s

◦).

Remark J.4. The key distinction between Rm and L lies in their formulations. Specifically, Rm

measures the expected difference between sW and the ground truth ∇ log pt(x|y) with respect to
(xt, y, τ). In contrast, the score matching loss L provides an explicit calculation based on the sample
{x0,i, yi}ni=1. With the tower property of conditional expectation, L measures the expected difference
between sW and ∇ log pt(x|x0) first with respect to (xt|x0, τ), and then with respect to x0.

Remark J.5. Observe (I): s◦ = ∇ log pt(x|y) is the ground truth of score function with Rm(s◦) = 0,
and (II): By (Vincent, 2011), Rm and L differ by a constant. Based on (I) and (II), we define the
empirical risk R̂m using the score matching loss as an intermediary: Rm(sW ) = Rm(sW ) −
Rm(s◦) = L(sW ) − L(s◦). This leads to the definition of the empirical risk R̂m as a practical
approximation of the true risk difference Rm(sW )−Rm(s◦).

Remark J.6. For any score estimator sW ∈ T h,s,r
R obtained from the training with i.i.d. samples

{xi, yi}ni=1, it holds E{xi,yi}ni=1
[R̂m(sW )] = Rm(sW ). This follows from direct calculation with

Definition J.3 and the i.i.d. assumption.

Step 1: Domain Truncation of the Risk. We define the loss function with truncated domain. This
is essential for obtaining finite covering number for transformer network class.

Definition J.4 (Truncated Loss). We define the truncated domain of the score function by D :=
[−RT , RT ]dx × [0, 1]dy ∪ ∅. Given loss function ℓ(x, y; sW ), we define the truncated loss:

ℓtrunc(x, y; sW ) := ℓ(x, y; sW )1{∥x∥∞ ≤ RT }. (J.3)

We define Ltrunc(sW ) := L(sW )1{∥x∥∞ ≤ RT } , Rtrunc
m (sW ) := Rm(sW )1{∥x∥∞ ≤ RT } and

R̂trunc
m (sW ) := R̂m(sW )1{∥x∥∞ ≤ RT }. We define the function class of the truncated loss by

S(RT ) := {ℓ(·, ·; sW ) : D → R | sW ∈ T h,s,r
R }. (J.4)

Next, we introduce the following lemma dealing with the error bound for the truncation of the loss.

Lemma J.1 (Truncation Error, Lemma D.1 of (Fu et al., 2024b)). Consider the truncated loss
ℓtrunc(x, y; sW ) and t ∈ [n−O(1),O(log n)]. Under Assumption 3.1, we have |ℓ(x, y; sW )| ≲ 1/t0.
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Consider the parameter configuration in Theorem 3.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT

(
1

t0

)
.

Moreover, under Assumption 3.2, we have |ℓ(x, y; sW )| ≲ log(1/t0). Consider the parameter
configuration in Theorem I.1, it holds:

Ex,y

[∣∣ℓ(x, y, t)− ℓtrunc(x, y, s)
∣∣] ≲ exp

(
−C2R

2
T
)
RT log

(
1

t0

)
.

Step 2: Covering Number of Transformer Network Class. We begin with the definition.

Definition J.5 (Covering Number). Given a function class F and a data distribution P . Sample n
data points {Xi}ni=1 from P , then the covering number N (ϵ,F , {Xi}ni=1, ∥·∥) is the smallest size of
a collection (a cover) C ⊂ F such that for any f ∈ F , there exist f̂ ∈ C satisfying

max
i

∥∥∥f(Xi)− f̂(Xi)
∥∥∥ ≤ ϵ.

Further, we define the covering number with respect to the data distribution as

N (ϵ,F , ∥·∥) = sup
{Xi}ni=1∼P

N (ϵ,F , {Xi}ni=1, ∥·∥).

Next, we introduce the following lemma that provides results for the calculation of the covering
number for transformer networks.

Lemma J.2 (Modified from Theorem A.17 of (Edelman et al., 2022)).

Let T h,s,r
R (CT , C

2,∞
Q , CQ, C

2,∞
K , CK , C

2,∞
V , CV , C

2,∞
O , CO, CE , C

2,∞
f1

, Cf1 , C
2,∞
f2

, Cf2 , LT )

represent the class of functions of one transformer block satisfying the norm bound for matrix and
Lipsichitz property for feed-forward layers. Then for all data point ∥X∥2,∞ ≤ RT we have

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ log(nLT )

ϵ2c
·
(
α

2
3

(
d

2
3

(
C2,∞

F

) 4
3

+ d
2
3

(
2(CF )

2COV C
2,∞
KQ

) 2
3

+ 2
(
(CF )

2C2,∞
OV

) 2
3

))3

,

where α := (CF )
2COV (1 + 4CKQ)(RT + CE).

Then, we derive the covering number under transformer weights configuration in Theorem 3.1 and
Theorem I.1.

Lemma J.3 (Covering Number for S(RT )). Consider ϵc > 0 and ∥x∥∞ ≤ RT . Given sample
{xi, yi}ni=1, the ϵc-covering number for S(RT ) with respect to ∥·∥L∞

under Theorem 3.1 and
Theorem I.1 satisfy

logN (ϵc,S(RT ), ∥·∥∞) ≲
log n

ϵ2c
Nν1(logN)ν2(RT )

2,

where ν1 = 16βd+ 12β and ν2 = 20dx + 4β + 18

Proof. Applying Lemma J.2, we have

logN (ϵc, T h,s,r
R , ∥·∥2)
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≤ log n

ϵ2c
· α2

(
2
(
(CF )

2C2,∞
OV

) 2
3︸ ︷︷ ︸

(I)

+(d
2
3

(
C2,∞

F

) 4
3︸ ︷︷ ︸

(II)

+ d
2
3

(
2(CF )

2COV C
2,∞
KQ

) 2
3︸ ︷︷ ︸

(III)

)3

, (J.5)

where α := (CF )
2COV (1 + 4CKQ)(RT + CE).

Note that we drop LT because it is inconsequential under either Assumption 3.1 or Assumption 3.2.

• Step A: Covering Number of Transformer Network Configuration.
Recall that the parameter bounds in Theorem 3.1 follows

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4d+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β+3
2

)
;CE = O(1);CT = O(

√
logN/σ2

t ),

Among three terms, it is obvious that (III) dominates the (II) and (I). Therefore,

(CF )
2COV C

2,∞
KQ

= O(N4β(logN)2dx+2β+4︸ ︷︷ ︸
(CF )4

N−2β︸ ︷︷ ︸
(COV )2

N8βd+4β(logN)8dx+4︸ ︷︷ ︸
(C2,∞

KQ )2

)

= O(N8βd+6β(logN)10dx+2β+8).

Therefore,

logN (ϵc, T h,s,r
R , ∥·∥2) ≲

α2 log(nLT )

ϵ2c
(N8βd+6β(logN)10dx+2β+8).

By Lemma J.2, we have

α

:= (CF )
2COV (1 + 4CKQ)(RT + CE)

≲ N2β(logN)dx+β+2︸ ︷︷ ︸
(CF )2

N−β︸ ︷︷ ︸
(COV )

N4βd+2β(logN)4dx+2︸ ︷︷ ︸
(CKQ)

(RT + CE)
(
By the definition of α

)
= O(RTN

4βd+3β(logN)5dx+β+4).

Altogether, we have

logN (ϵc, T h,s,r
R , ∥·∥2) ≲

log (nLT )

ϵ2c
R2
TN

16βd+12β(logN)20dx+4β+16.

Further, by ∥ · ∥∞ ≤ ∥ · ∥2, we have

logN (ϵc, T h,s,r
R , ∥ · ∥∞) ≲

log(nLT )

ϵ2c
R2
TN

16βd+12β(logN)20dx+4β+16. (J.6)

Furthermore, the same bounds hold for results under Theorem I.1.

• Step B: Covering Number under Domain Truncation.
We extend the result to the covering number for S(RT ) defined in (J.4).
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For score estimators s1(x, y, t), s2(x, y, t) ∈ T h,s,r
R such that ∥s1 − s2∥L∞,D ≤ ϵ, by lemma D.3

in Fu et al. (2024b), the difference between the loss ℓ(·, ·, s1) and ℓ(·, ·, s2) in L∞ is bounded by

|ℓ(·, ·, s1)− ℓ(·, ·, s2)| ≲ ϵ logN. (J.7)

By replacing ϵc with ϵc/ logN in (J.6), we obtain the log-covering number

logN (ϵc,S(RT ), ∥·∥∞) ≲
log(nLT )

ϵ2c
R2
TN

ν1(logN)ν2 .

where ν1 = 16βd+ 12β and ν2 = 20dx + 4β + 18.

This completes the proof.

Step 3: Bound the True Risk on Truncated Domain. We begin with the definition.

Definition J.6. Let s◦ := ∇ log pt(x|y) denote the ground truth of score function for simplicity.
Given i.i.d samples {xi, yi}ni=1 and a score estimator sW ∈ T h,s,r

R , we define the difference function:

∆n(sW , s◦) :=
∣∣∣E{xi,yi}ni=1

[
R̂trunc

m (sW )−Rtrunc
m (sW )

]∣∣∣.
Remark J.7. Note that the difference function ∆n(sW , s◦) measures the expected difference between
the truncated empirical risk and the truncated mixed risk with respect to the training sample. Since
the true risk is unattainable, we construct ∆n(sW , s◦) serving as an intermediate that allows us to
derive the upper-bound on the mixed risk. Surprisingly, we are able to handle the upper-bound of the
difference function, presented in Lemma J.4.

Definition J.7. Given the truncated loss function class S(RT ), we define its ϵc-covering with the
minimum cardinality in the L∞ metric as LN := {ℓ1, ℓ2, . . . , ℓN }. Moreover, we define ℓJ ∈ LN
with random variable J . By definition, there exist ℓJ ∈ LN such that ∥ℓJ − ℓ(xi, yi; sW )∥∞ ≤ ϵc.

Note that Lemma J.3 provides the upper-bound on the ϵc-covering number of S(RT ) for score
estimator trained from transformer network class. Next, we bound the difference function.

Lemma J.4 (Bound on Difference Function). Consider i.i.d training samples {x0,i, yi}ni=1 and score
estimator ŝ from (2.1). Under Assumption 3.1 and parameter configuration in Theorem 3.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc,

where N (ϵc, T h,s,r
R , ∥·∥2) is the covering number of transformer network class. Moreover, Under

Assumption 3.2 and parameter configuration in Theorem I.1, it holds:

∆n(ŝ, s
◦) ≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+ log

1

t0

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc.

Proof. In this proof, we let zi := (x0i , yi), ℓ̂(zi) := ℓtrunc(zi; ŝ) and ℓ◦(zi) := ℓtrunc(zi; s
◦). For

simplicity, we use κ = 1/t0 for the case in Theorem 3.1 and κ = log(1/t0) for the case in
Theorem I.1.

• Step A: Rewrite the true risk.
To derive the upper-bound of the true risk, we introduce a different set of i.i.d samples {x′0,i, y′i}ni=1
independent of the training data drawn from the same distribution.
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This allows us to rewrite the true risk as:

Rm(ŝ)−Rm(s◦) = L(ŝ)− L(s◦) = E{x′
i,y

′
i}ni=1

[
1

n

n∑
i=1

(ℓ(x′i, y
′
i, ŝ)− ℓ(x′i, y

′
i, s
◦))

]
. (J.8)

With (J.8), we rewrite the difference function:

∆n(ŝ, s
◦) =

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

((
ℓ̂(zi)− ℓ◦(zi)

)
−
(
ℓ̂(z′i)− ℓ◦(z′i)

))]∣∣∣∣∣. (J.9)

• Step B: Introduce the ϵc-covering.
Before further decomposing (J.9), we introduce three definitions.

– ωJ(z) := ℓJ(z)− ℓ◦(z) and ω̂(z) := ℓ̂(z)− ℓ◦(z).

– Ω := max
1≤J≤N

∣∣∣∣ n∑
i=1

ωJ (zi)−ωJ (z
′
i)

hJ

∣∣∣∣.
– hJ := max{A,

√
Ez′ [ℓJ(z′)− ℓ◦(z′)]} with constant A to be chosen later.

With hj , ωj and Ω, we start bounding (J.9) by writing

∆n(ŝ, s
◦) =

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

((
ℓ̂(zi)− ℓ◦(zi)

)
−
(
ℓ̂(z′i)− ℓ◦(z′i)

))]∣∣∣∣∣
≤

∣∣∣∣∣ 1nE{zi,z′
i}ni=1

[
n∑

i=1

(ωJ(zi)− ωJ(z
′
i))

]∣∣∣∣∣+ 2ϵc
(
By Replacing ℓ̂ with ℓJ

)
≤ 1

n
E{zi,z′

i}ni=1
[hJΩ] + 2ϵc

(
By introducing Ω and hJ

)
≤ 1

n

√
E{zi,z′

i}ni=1
[h2J ]E{zi,z′

i}ni=1
[Ω2] + 2ϵc

(
By Cauchy-Schwarz inequality

)
≤ 1

n

(
n

2
E{zi,z′

i}ni=1
[h2J ] +

1

2n
E{zi,z′

i}ni=1
[Ω2]

)
+ 2ϵc

(
By AM-GM inequality

)
=

1

2
E{zi,z′

i}ni=1
[h2J ]︸ ︷︷ ︸

(I)

+
1

2n2
E{zi,z′

i}ni=1
[Ω2]︸ ︷︷ ︸

(II)

+2ϵc. (J.10)

– Step B.1: Bounding (I).
By the definition of hJ ,

E{zi,z′
i}ni=1

[h2J ] ≤ A2 + E{zi,z′
i}ni=1

[
Ez′ [ω2

J(z)]
]

≤ A2 + Ez′ [ω̂2(z′)] + 2ϵc

= A2 + E{zi}ni=1

[
Rtrunc

m (ŝ)
]
+ 2ϵc. (J.11)

– Step B.2: Bounding (II).
By Lemma J.1, we have |ℓ(z; sW )| ≲ κ, and by the definition of Ω2, we write

E{zi,z′
i}ni=1

[
n∑

i=1

(
ωJ(zi)− ωJ(z

′
i)

hJ

)2
]
≤

n∑
i=1

E{zi,z′
i}ni=1

[(
ωJ(zi)

hJ

)2

+

(
ωJ(z

′
J)

hJ

)2
]

(
By the independence between zi and z′i

)
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≤ κ

n∑
i=1

E{zi,z′
i}ni=1

[
ω2
J(zi)

hJ
+
ω2
J(z
′
i)

hJ

]
≤ 2nκ.

We use the Bernstein’s inequality and the following two facts

* (1)
∣∣∣ωJ (zi)−ωJ (z

′
i)

hJ

∣∣∣ ≤ κ/A.

* (2)
n∑

i=1

ωJ (zi)−ωJ (z
′
i)

hJ
is centered.

For any J and ω ≥ 0, it holds

P

( n∑
i=1

ωJ(zi)− ωJ(z
′
i)

hJ

)2

≥ ω

 = 2P

(
n∑

i=1

ωJ(zi)− ωj(z
′
i)

hj
≥

√
ω

)

≤ 2 exp

− ω/2

κ
(
2n+

√
ω

3A

)
 .

Therefore,

P
(
Ω2 ≥ ω

)
≤
N∑

J=1

P

( n∑
i=1

ωJ(zi)− ωJ(z
′
i)

hJ

)2

≥ ω

 ≤ 2N exp

− ω/2

κ
(
2n+

√
ω

3A

)
 .

For some ω0 > 0, we bound Ω2 by

E{zi,zn
i }ni=1

[
Ω2
]
=

∫ ω0

0

P
(
Ω2 ≥ ω

)
dω +

∫ ∞
ω0

P
(
Ω2 ≥ ω

)
dω,

(
By integral identity

)
≤ ω0 +

∫ ∞
ω0

2N exp

− ω/2

κ
(
2n+

√
ω

3A

)
dω,

≤ ω0 + 2N
∫ ∞
ω0

{
exp

(
− ω

8nκ

)
+ exp

(
−3A

√
ω

4κ

)}
dω,

≤ ω0 + 2N
{
8nκ exp

(
− ω0

8nκ

)
+

(
8κ

√
ω0

3A
+

32κ

9A2

)
exp

(
−
3A√

ω0

4κ

)}
.

Taking A =
√
ω0/6n and ω0 = 8nκ logN , we have

E{zi,zn
i }ni=1

[Ω2] ≤ nκ logN . (J.12)

• Step C: Combine (I) and (II).
Combining (J.11) and (J.12), it holds:

∆n(ŝ, s
◦) ≤ 1

2
E{zi,z′

i}ni=1
[h2J ] +

1

2n2
E{zi,z′

i}ni=1
[Ω2] + 2ϵc

≲
1

2
E{zi}ni=1

[
Rtrunc

m (ŝ)
]
+

κ

2n
logN +

7

2
ϵc.
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Recall Definition J.6 and multiply the above inequality with 2, we have

E{zi}ni=1

[
Rtrunc

m (ŝ)
]
≲ 2E{zi}ni=1

[
R̂trunc

m (ŝ)
]
+
κ

n
logN + 7ϵc.

Therefore,

∆n(ŝ, s
◦) ≲ E{zi}ni=1

[
R̂trunc

m (ŝ)
]
+
κ

n
logN + 7ϵc

(
By Lemma J.1

)
≲ E{xi,yi}ni=1

[
R̂m(ŝ)

]
+ κ

(
RT exp

(
−C2R

2
T
)
+

1

n
logN

)
+ 7ϵc,

This completes the proof.

J.2 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. Recall Definition J.1. We bound the mixed risk with following three steps.

• Step A: Decompose the mixed risk.
Let s◦(x, y, t) = ∇ log pt(x|y) be the ground truth. If y = ∅, we set s◦(x, y, t) = ∇ log pt(x).

Recall Definition J.3 and Lemma J.4.

Let {x′i, y′i}ni=1∼P0(x, y) be a different set of i.i.d. samples independent of the training samples.

Next, we rewrite the mixed risk

Rm(ŝ) = E{x′
i,y

′
i}ni=1

[
1

n

n∑
i=1

(ℓ(x′i, y
′
i, ŝ)− ℓ(x′i, y

′
i, s
◦))

]
= E{x′

i,y
′
i}ni=1

[
R̂′m(ŝ)

]
,

where we use R̂′m(ŝ) to denote the empirical risk of the score estimator ŝ trained from {x′i, y′i}ni=1.

Next, the decomposition of E{xi,yi}ni=1
[Rm(ŝ)] follows

E{xi,yi}ni=1
[Rm(ŝ)] = E{xi,yi}ni=1

[
E{x′

i,y
′
i}ni=1

[
R̂′m(ŝ)− R̂′ truncm (ŝ)

]]
︸ ︷︷ ︸

(I)

+ E{xi,yi}ni=1

[
E{x′

i,y
′
i}ni=1

[
R̂′ truncm (ŝ)− R̂trunc

m (ŝ)
]]

︸ ︷︷ ︸
(II)

+ E{xi,yi}ni=1

[
R̂trunc

m (ŝ)− R̂m(ŝ)
]

︸ ︷︷ ︸
(III)

+E{xi,yi}ni=1

[
R̂m(ŝ)

]
︸ ︷︷ ︸

(IV)

• Step B: Derive Upper Bounds.
Recall Lemma J.4.

Let κ = 1/t0 for results in Theorem 3.1 and κ = log(1/t0) for results in Theorem I.1.

By Lemma J.1, we have both (I), (III) ≲ κ exp
(
−C2R

2
T
)
RT .

By Lemma J.4, we have (II) ≲ (IV) + κ
(
RT exp

(
−C2R

2
T
)
+ 1

n logN
)
+ 7ϵc,

Next, we we bound (IV) by

(IV) = E{zi}ni=1

[
R̂(ŝ)

]
≤ E{zi}ni=1

[
R̂m(s)

]
= Rm(s).

Therefore, (IV) ≤ minsW∈T h,s,r
R

Rm(s).
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The inequality holds because ŝ is the minimizer of the empirical risk.

Combining these bounds, it holds

E{xi,yi}ni=1
[Rm(ŝ)] ≤ 2 min

sW∈T h,s,r
R

∫ T

t0

1

T − t0
Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
dt

+O
(κ
n
logN

)
+O(exp

(
−C2R

2
T
)
κ) +O (ϵc) . (J.13)

Next, we take RT =
√

(Cσ+2β) logN
C2

.

Since κ ≲ log(1/t0) ≲ 1/t0 = NCσ , it holds

E{xi,yi}ni=1
[Rm(ŝ)] ≤ 2 min

s∈T h,s,r
R

∫ T

t0

1

T − t0
Eτ,xt,y

[
∥s(x, τy, t)−∇ log pt(x|y)∥22

]
dt

+ O
(κ
n
logN

)
+O

(
N−2β

)
+O (ϵc) . (J.14)

To apply the previous approximation theorems (Theorem 3.1 and Theorem I.1) to the first term on
the RHS of (J.13), we rewrite the expectation as

2Ext,y,τ

[
∥s(xt, τy, t)−∇ log pt(xt|τy)∥22

]
(J.15)

=

∫
Rdx

∥s(x, ∅, t)−∇ log pt(x|y)∥22pt(x)dx+ Ey

[∫
Rdx

∥s(x, y, t)−∇ log pt(x|y)∥22pt(x|y)dx
]
.

Since pt(x) satisfies the subgaussian property as well, the previous result of the conditional score
estimation applies to its unconditional counterpart by removing the label throughout the process.

• Step C: Combine All Bounds.
First, we derive final bounds for results under Assumption 3.1.

Result under Assumption 3.1
Let γ1, γ2 ∈ (0, 1) be arbitrary real numbers.

By taking N = n
γ1
ν1 and ϵc = n−γ2 , we rewrite (J.14)

E{zi}ni=1
[Rm(ŝ)]

≲ O
(
N−β(logN)dx+

β
2 +1
)

︸ ︷︷ ︸
(i)

+O
(
N−2β

)︸ ︷︷ ︸
(ii)

+O
(

1

t0
· n−1 ·Nν1 · (logN)ν2 · ϵ−2c

)
︸ ︷︷ ︸

(iii)

+O (ϵc)︸ ︷︷ ︸
(iv)(

By Theorem 3.1
)

≲ O
(
n−

β·γ1
ν1 (log n)dx+

β
2 +1
)
+O

(
n

Cσγ1
ν1 · n−1 · nγ1 · (log n)ν2 · n2γ2

)
+O

(
n−γ2

)
≲ O

(
n−min(

βγ1
ν1

,1−Cσ·γ1
ν1
−γ1−2γ2,γ2) · (log n)ν2

)
,

where ν1 = 16βd+ 12β and ν2 = 20dx + 4β + 18.

We find the optimal upper-bound by the following choice of γ1 and γ2.

For any γ1, γ2 ∈ (0, 1) satisfying,

γ1 + 2γ2 +
Cσ · γ1
ν1

< 1,
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we consider

min

{
βγ1
ν1

, 1− γ1 − 2γ2 −
Cσγ1
ν1

, γ2

}
.

To simplify, we set

βγ1
ν1

= 1− γ1 − 2γ2 −
Cσγ1
ν1

= γ2,

and hence

βγ1
ν1

= γ2, 1− γ1 − 2γ2 −
Cσγ1
ν1

= γ2.

Rearranging and solving for γ1, γ2, we obtain

γ1 =
ν1

ν1 + Cσ + 3β
, γ2 =

β

ν1 + Cσ + 3β
,

so that the three arguments in the min{·} all coincide.

Therefore,

min

{
βγ1
ν1

, 1− γ1 − 2γ2 −
Cσγ1
ν1

, γ2

}
= γ2 =

β

ν1 + Cσ + 3β
.

Next, we ensure condition γ1 + 2γ2 +
Cσγ1

ν1
< 1.

Since

ν1
ν1 + Cσ + 3β

+
2β

ν1 + Cσ + 3β
+

Cσ

ν1 + Cσ + 3β
=
ν1 + Cσ + 2β

ν1 + Cσ + 3β
< 1,

the condition holds for all dx, β and Cσ .

Next, we derive final bounds for results under Assumption 3.2.

Result under Assumption 3.2
Let γ3, γ4 ∈ (0, 1) be arbitrary real numbers.

By taking N=nγ3/ν1 and ϵc = n−γ4 , we rewrite (J.14)

E{zi}ni=1
[Rm(ŝ)]

(
By Theorem I.1

)
≲ O

(
N−2β(logN)β+1

)︸ ︷︷ ︸
(i)

+O
(
N−2β

)︸ ︷︷ ︸
(ii)

+O
(

1

t0
· n−1 ·Nν1 · (logN)ν2 · ϵ−2c

)
︸ ︷︷ ︸

(iii)

+O (ϵc)︸ ︷︷ ︸
(iv)(

By dropping lower order term (ii)
)

≲ O
(
n−

2β·γ3
ν1 · (log n)β+1

)
+O

(
log n · n−1 · nγ3 · (log n)12 · n2γ4

)
+O

(
n−γ4

)
≲ O

(
n
−min

{
2βγ3
ν1

,1−γ3−2γ4,γ4

}
· (log n)max(13,β+2)

)
.

where ν3 = 4(12βdx+31βd+6β)
d + 12Cα·(12dx+25d+6)

d + 72Cσ .

We find the optimal upper-bound by the following choice of γ1 and γ2.
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For any γ1, γ2 ∈ (0, 1) satisfying,

γ3 + 2γ4 < 1,

we consider

min

{
2βγ3
ν1

, 1− γ3 − 2γ4, γ4

}

To simplify, we set

2β · γ3
ν1

= 1− γ3 − 2γ4 = γ4,

and get

γ3 =
ν1

ν1 + 6β
, γ4 =

2β

ν1 + 6β

with γ3 + 2γ4 < 1.

This completes the proof.
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J.3 AUXILIARY LEMMAS FOR THEOREM 3.4

We begin with following two lemmas that serves as the key components for the proof of Theorem 3.4.

Lemma J.5 (Lemma D.4 of Fu et al. (2024b), Proposition D.1 of Oko et al. (2023) and Chen et al.
(2022)). Consider probability distribution P0 and two stochastic processes Y = {Yt}t∈[0,T ] and
Y ′ = {Y ′t }t∈[0,T ] with distribution Pt and P ′t respectively, satisfying the following SDE:

dYt = b(Yt, t)dt+ dWt Y0 ∼ P0,

dY ′t = b′(Y ′t , t)dt+ dWt Y ′0 ∼ P0.

If the condition
∫
x
Pt(x)∥(b− b′)(x, t)∥dx ≤ C holds for any t ∈ [0, T ] and constant C, it holds

KL(PT || P ′T ) =
∫ T

0

1

2

∫
x

Pt(x)∥(b− b′)(x, t)∥dxdt.

Moreover, we need the following lemma to bound to total variation.

Lemma J.6 (Lemma D.5 of Fu et al. (2024b)). Assume Assumption 3.1. For any y ∈ [0, 1]dy it holds

TV (P0(·|y), Pt0(·|y)) = O
(√

t0 log
dx+1

2

(
1

t0

))
.

J.4 MAIN PROOF OF THEOREM 3.4

Proof of Theorem 3.4. Given label y, let P̂t0(·|y) denote the data distribution with early-stopped time
t0 generated by the reverse process with the score estimator ŝ from transformer network class.

We define the reverse process starting with standard Gaussian.

dX̃←t =

[
1

2
dX̃←t +∇ log pT−t(X̃

←
t |y)

]
dt+ dW t, X̃←0 ∼ N(0, Idx). (J.16)

We denote the distribution of X̃←t conditioned on the label y as P̃T−t(·|y).
Next, we decompose the total variation into three parts

TV
(
P (·|y), P̂t0(·|y)

)
≲ TV (P (·|y), Pt0(·|y))︸ ︷︷ ︸

(I)

+TV
(
Pt0(·|y), P̃t0(·|y)

)
︸ ︷︷ ︸

(II)

+TV
(
P̃t0(·|y), P̂t0(·|y)

)
︸ ︷︷ ︸

(III)

,

where we introduce distribution P̃t0 at time t0 as an intermediary defined in (J.16).

• Step A: Bounding (I).
By Lemma J.6, we bound term (I) by

TV
(
P (·|y), P̃t0(·|y)

)
= O

(√
t0 log

dx+1
2

(
1

t0

))
.

• Step B: Bounding (II).
By Data Processing Inequality and Pinsker’s Inequality (Canonne, 2022, Lemma 2), we write

TV
(
Pt0(·|y), P̃t0(·|y)

)
≲
√

KL(Pt0(·|y) || P̃t0(·|y)),
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≲
√

KL(PT (·|y) || N(0, Idx
)),

≲
√

KL(P (·|y) || N(0, Idx)) exp(−T ). (J.17)

Next, we bound term (II) by

TV
(
Pt0(·|y), P̃t0(·|y)

)
≲
√
KL(P (·|y) || N(0, Idx

)) exp(−T ),
(
By (J.17)

)
≲ exp(−T ).

• Step C: Bounding (III).
By Lemma J.5 and (J.17), we bound term (III) by

TV
(
P̃t0(·|y), P̂t0(·|y)

)
≲

√∫ T

t0

1

2

∫
x

pt(x|y)∥ŝ(x, y, t)−∇ log pt(x|y)∥2dxdt.

By incorporating three steps and taking expectation with respect to y, we obtain the upper-bound

Ey

[
TV

(
P (·|y), P̂t0(·|y)

)]
≲

√
t0 log

dx+1
2

(
1

t0

)
+ exp(−T ) +

√∫ T

t0

1

2

∫
x

pt(x|y)∥ŝ(x, y, t)−∇ log pt(x|y)∥2dxdt,(
By Jensen’s inequality

)
≲

√
t0 log

dx+1
2

(
1

t0

)
︸ ︷︷ ︸

(i)

+exp(−T )︸ ︷︷ ︸
(ii)

+

√
T

2
R(ŝ)︸ ︷︷ ︸

(iii)

.

• Result under Assumption 3.1.
Recall Step C.1 in the proof of Theorem 3.3.

We set N = nγ1/ν1 and ϵc = n−γ2 for all γ1, γ2 ∈ (0, 1) satisfying γ1 + 2γ2 +
Cσ·γ1

ν1
< 1.

Therefore,

Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]
≲ N−

Cσ
2 log

dx+1
2 (N−Cσ )︸ ︷︷ ︸

(i)

+N−Cα︸ ︷︷ ︸
(ii)

(
By Theorem 3.3

)

+

(
Cα · logN · n−min

{
β·γ1
ν1

,1−γ1−2γ2−Cσ·γ1
ν1

,γ2

}
· (log n)ν2+2

) 1
2

︸ ︷︷ ︸
(iii)

≲ n−
Cσ·γ1
2ν1 · log

dx+1
2 (n)︸ ︷︷ ︸

(i)

+n−
Cα·γ1

ν1︸ ︷︷ ︸
(ii)

(
By ν2 > dx + 1

)

+ n
−min

{
β·γ1
ν1

,1−γ1−2γ2−Cσ·γ1
ν1

,γ2

}
· (log n)

ν2
2 + 3

2︸ ︷︷ ︸
(iii)

≲ n−ω · (log n)
ν2
2 + 3

2 ,
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where ω = min
{

Cσ·γ1

2ν1
, Cα·γ1

ν1
, β·γ1

ν1
, 1− γ1 − 2γ2 − Cσ·γ1

ν1
, γ2

}
.

Moreover, recall that the following choice of γ1 and γ2 leads to the tightest upper-bound

γ1 =
ν1

ν1 + Cσ + 3β
, γ2 =

β

ν1 + Cσ + 3β
.

Therefore,

ω = min

{
Cσ

2(ν1 + Cσ + 3β)
,

Cα

ν1 + Cσ + 3β
,

β

ν1 + Cσ + 3β

}
.

This completes the first part of the proof.

• Result under Assumption 3.2.
Recall Step C.2 in the proof of Theorem 3.3.

We set N = nγ3/ν1 and ϵc = n−γ4 for all γ3, γ4 ∈ (0, 1) satisfying γ3 + 2γ4 < 1.

Therefore, by Theorem 3.3,

Ey

[
TV
(
P (·|y), P̂t0(·|y)

)]
≲ N−

Cσ
2 log

dx+1
2 (N−Cσ )︸ ︷︷ ︸

(i)

+N−Cα︸ ︷︷ ︸
(ii)

+

(
Cα · logN · n−min

{
2β·γ3

ν1
,1−γ3−2γ4,γ4

}
· (log n)max{13,β+2}

) 1
2

︸ ︷︷ ︸
(iii)

≲ n−
Cσ·γ3
2ν1 · log

dx+1
2 (n)︸ ︷︷ ︸

(i)

+n−
Cα·γ3

ν1︸ ︷︷ ︸
(ii)

+ n
−min

{
2β·γ3

ν1
,1−γ3−2γ4,γ4

}
· (log n)ν2︸ ︷︷ ︸

(iii)

,

≲ n−ϕ(log n)
ν2
2 + 3

2 , (J.18)

where ϕ = min
{

Cσ·γ3

2ν1
, Cα·γ3

ν1
, 2β·γ3

ν1
, 1− γ3 − 2γ4, γ4

}
.

Moreover, recall that the following choice of γ3 and γ4 leads to the tightest upper-bound

γ3 =
ν1

ν1 + 6β
, γ4 =

2β

ν1 + 6β
.

Therefore,

ϕ = min

{
Cσ

2(ν1 + 6β)
,

Cα

ν1 + 6β
,

2β

ν1 + 6β

}
.

This completes the second part of the proof.
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J.5 PROOF OF THEOREM 3.5

Recall Lemma 3.1, we have the minimax optimal rate

inf
µ̂

sup
p∈P

E{xi}ni=1
[TV(µ̂,P)] ≥ Ω(n−

β
dx+2β )

Further, recall Theorem 3.4, we have

E{xi,yi}ni=1

[
Ey

[
TV

(
P̂t0(·|y), P0(·|y)

)]]
= O

(
n−ϕ(log n)

ν2
2 + 3

2

)
,

where min
{

Cσ

2(ν1+6β) ,
Cα

ν1+6β ,
β

ν1+6β

}
. Therefore, unconditional diffusion transformers achieve

minimax optimality under the setting Cσ = 2Cα = 2β and β
ν1+6β = β

dx+2β .

This completes the proof.
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