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ABSTRACT

Large Language Models (LLMs) solve complex problems using training-free meth-
ods like prompt engineering and in-context learning, yet ensuring reasoning correct-
ness remains challenging. While self-correction methods such as self-consistency
and self-refinement aim to improve reliability, they often reinforce biases due to the
lack of effective feedback mechanisms. Multi-Agent Debate (MAD) has emerged
as an alternative, but we identify two key limitations: bias reinforcement, where
debate amplifies model biases instead of correcting them, and lack of perspective
diversity, as all agents share the same model and reasoning patterns, limiting true de-
bate effectiveness. To systematically evaluate these issues, we introduce MetaNIM
Arena, a benchmark designed to assess LLMs in adversarial strategic decision-
making, where dynamic interactions influence optimal decisions. To overcome
MAD’s limitations, we propose DReaMAD (Diverse Reasoning via Multi-Agent
Debate with Refined Prompt), a novel framework that (1) refines LLMs’ strategic
prior knowledge to improve reasoning quality and (2) promotes diverse viewpoints
within a single model by systematically modifying prompts, reducing bias. Empiri-
cal results show that DReaMAD significantly improves decision accuracy, reasoning
diversity, and bias mitigation across multiple strategic tasks, establishing it as a
more effective approach for LLM-based decision-making.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable problem-solving capabilities across
a wide range of tasks by leveraging knowledge acquired from vast datasets (Achiam et al., 2023;
The; Team et al., 2023; Dubey et al., 2024). These models can address complex decision-making
problems using training-free methods such as prompt engineering (White et al., 2023; Chen et al.,
2023a; Schulhoff et al., 2024b) and in-context learning (Brown et al., 2020; Dong et al., 2022; Wei
et al., 2022; Mavromatis et al., 2023; Pan, 2023), which provide guidance for effective reasoning.
However, these approaches do not explicitly guarantee the correctness of the generated responses.

To address this, recent research has explored self-correction mechanisms that allow LLMs to refine
their own outputs without external feedback. Self-consistency (Wang et al., 2022; Chen et al., 2023c)
enhances reliability by ensembling multiple responses. Self-refinement (Wan et al., 2023; Shinn
et al., 2023; Madaan et al., 2024) enables LLMs to iteratively critique and revise their outputs.
However, self-consistency lacks a critical feedback mechanism, meaning it does not iteratively refine
responses but merely reduces the model’s inherent randomness by converging on the most frequently
generated answer. Further recent studies (Huang et al., 2024) suggest that self-refinement can degrade
performance, as models often struggle to assess the correctness of their own reasoning.

Recently, inspired by the Society of Mind philosophy, Multi-Agent Debate (MAD; Chan et al.
2023; Du et al. 2023; Liang et al. 2023) has emerged as a promising alternative. However, its
success has been limited to static problem-solving and lacks assessments for adversarial strategic
reasoning (Cobbe et al., 2021; Edwards, 1994; He et al., 2020). Additionally, current evaluations
do not account for dynamic decision-making in interactive environments, where an agent’s choices
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Table 1: Feature comparison between self-correction methods. In contrast to Multi-Agent Debate,
DReaMAD encourages diverse viewpoints by varying prompts and enhancing debate robustness
through automated knowledge structuring.

Methods Single Model Usage Multiple Instances Rethinking Process Self-Feedback Diversity in reasoning Perspective Shifts
Self-Consistency ✓ ✓ ✗ ✗ ✗
Self-Refinement ✓ ✗ ✓ ✓ ✗ ✗
Multi-Agent Debate ✓ ✓ ✓ ✗ ✗
DReaMAD (Ours) ✓ ✓ ✓ ✗ ✓ ✓

: means diversity from LLM’s randomness, controlled by temperature hyperparameter.

influence and adapt to an opponent’s actions. This limitation hinders LLMs from retrieving and
applying strategic knowledge beyond the given context.

To overcome the above limitation, we introduce MetaNIM Arena, a framework for evaluating LLMs
in adversarial strategic decision-making. It allows us to assess their ability to adapt dynamically and
ensures robust reasoning under mathematically rigorous conditions. Through MetaNIM Arena, we
systematically analyze two fundamental limitations of MAD:

(1) Bias Reinforcement: In strategic reasoning tasks, LLMs tend to rely on immediate context
rather than retrieving broader strategic knowledge, leading to distorted reasoning instead of
correct inference. Debate-based frameworks further amplify this issue by reinforcing the model’s
inherent biases rather than mitigating them (§4.1-4.2).

(2) Lack of Perspective Diversity: Although MAD uses a debate structure, it relies on multiple
instances of the same model. This limits the diversity of perspectives introduced in the reasoning
process, reducing its ability to challenge inherent biases (§4.3).

Rooted in the Learning from Multiple Approaches framework (Council et al., 2005; Cleaves, 2008),
research shows that engaging with multiple problem-solving representations enhances comprehension
and mitigates biases. Building on this insight, we propose DReaMAD (Diverse Reasoning via Multi-
Agent Debate with Refined Prompt). DReaMAD addresses the limitations of MAD by (1) refining
LLMs’ domain-specific knowledge to guide more accurate strategic reasoning, and (2) systematically
modifying prompts to foster diverse perspectives. A detailed comparison with existing self-correction
methods is presented in Table 1. Our key contributions are as follows:

• We introduce MetaNIM Arena, a benchmark designed to evaluate LLMs in adversarial strategic
decision-making, where mathematical rigor enables precise assessment of reasoning quality and
strategic adaptability.

• We identify the bias reinforcement problem in Multi-Agent Debate, showing that MAD strength-
ens both correct and incorrect reasoning rather than inherently improving it.

• We propose DReaMAD, a novel framework that refines strategic prior knowledge and enhances
reasoning diversity through structured self-prompt refinement and perspective diversification,
achieving a +12.0% accuracy gain over standard prompting on MetaNIM Arena dataset and a
+20.8% higher win rate than MAD in the simulator.

2 PRELIMINARY

2.1 BIAS IN LLMS

Large Language Models (LLMs) can exhibit biases that lead to unfair or skewed outcomes, arising
from training data, model architectures, learning objectives, or deployment conditions (Guo et al.,
2024). Such biases manifest both intrinsically, for instance in word embeddings (Bolukbasi et al.,
2016), and extrinsically, reflecting real-world disparities (Goldfarb-Tarrant et al., 2021). Moreover,
biases can emerge dynamically during interactive reasoning, where current reinforcement mecha-
nisms—like self-consistency and self-refinement—often fail to mitigate them (Huang et al., 2024;
Shin et al., 2024). Indeed, recent research shows that iterative interactions can reinforce existing
biases instead of diversifying reasoning (Ganguli et al., 2023).

2.2 PROMPT ENGINEERING AND SELF-CORRECTION IN LLMS

Prompt engineering shapes model outputs without retraining, potentially improving generalization
and reducing bias (Brown et al., 2020; Reynolds & McDonell, 2021; Zhao et al., 2024; Schulhoff
et al., 2024a; Shin et al., 2024). However, fully eliminating biases in complex reasoning remains
challenging (Jiang et al., 2022; Lu et al., 2022).
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Meanwhile, self-correction mechanisms in LLMs refine responses without external supervision (Gan-
guli et al., 2023; Liu et al., 2024; Kamoi et al., 2024). Self-consistency, for instance, ensembles
multiple outputs but converges on frequent rather than correct answers (Wang et al., 2022; Chen
et al., 2023c), and self-refinement can reinforce rather than fix biases (Wan et al., 2023; Shinn et al.,
2023; Madaan et al., 2024; Huang et al., 2024). Feedback-loop methods such as STaR (Zelikman
et al., 2022), Reflexion (Shinn et al., 2023), and SCoRe (Kumar et al., 2024) also struggle to reliably
correct biases or foster diverse reasoning (Guo et al., 2024).

2.3 MULTI-AGENT DEBATE IN LLMS

Multi-Agent Debate (MAD) enables LLM agents to critique each other, enhancing reasoning on
complex tasks (Liang et al., 2023; Du et al., 2023). ChatEval (Chan et al., 2023), a multi-agent
evaluation system, simulates human judgment to assess model output quality. Optimizations include
task-specific strategies for improving debate effectiveness (Smit et al., 2024) and ACC-Debate, an
actor-critic framework that trains models to specialize in debates, achieving benchmark gains (Estor-
nell et al., 2024). While these enhancements improve performance, studies reveal a key limitation:
static evaluations focus on assessing predefined problems, whereas real-world decision-making often
involves dynamic, interactive environments where biases can evolve. Understanding how biases shift
in these settings is crucial for developing robust strategies that extend beyond conventional static
benchmarks.

3 METANIM ARENA

3.1 OVERVIEW

We introduce MetaNIM Arena, illustrated in Figure 8. It features four impartial combinatorial games,
meaning both players share identical moves at each state, all information is fully observable, and each
game terminates in a finite number of moves. By merging combinatorial game theory with adversarial
play, MetaNIM Arena serves as a benchmark for debate-based strategic reasoning in LLMs.

Dataset and Simulator. Key game situations are systematically collected into a dataset, each
accompanied by an optimal action, enabling LLMs to be tested for decision-making accuracy. These
results appear in Table 3, with details in Appendix A.7. Separately, MetaNIM Arena can function
as a simulator: the model encounters an adaptive opponent, so each trajectory depends on both the
agent’s and the opponent’s actions. Here, binary win/loss outcomes allows evaluation by win rate.
We demonstrate this approach in Table 4, with further explanation in Appendix A.8. We refer the
Appendix B for details of opponent modelling.

3.2 WHY METANIM ARENA?

MetaNIM Arena provides a rigorous environment for adversarial strategic reasoning in LLMs. Rather
than isolated problem-solving or factual recall, our framework uses impartial combinatorial games,
where each position’s Grundy number defines the provably correct move. We will discuss further
theoretical details in the following Section 3.4. This design offers:

1. Adversarial Strategic Reasoning: Each scenario includes an opponent whose actions shape
outcomes. Models must anticipate adversarial moves across multiple turns, going beyond static QA or
single-step predictions. This approach tests latent strategic knowledge in an interactive, step-by-step
context.

2. Clear Optimality Criterion: By the Sprague-Grundy Theorem, these games admit an optimal
strategy. MetaNIM Arena thus measures how closely a model’s reasoning aligns with that strategy,
instead of relying on approximate metrics like BLEU or perplexity.

We also assert that MetaNIM Arena naturally supports Reinforcement Learning framework. By
providing a binary win/loss signal and structuring gameplay as a Markov Decision Process (MDP), it
enables iterative strategy refinement—an advantage often absent in static benchmarks.

3.3 GAME VARIANTS

Here, we introduce four settings of MetaNIM ArenaDetailed explanation and theoretically determined
winning strategies for these games are provided in Appendix A.
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• NIM: Agents take turns removing 1 to N (typically 3) objects from a set of heaps where the player
who takes the last object wins. Success requires maintaining specific heap configurations to control
the game’s outcome.

• Fibonacci: A variation of NIM where an agent’s maximum removal is constrained by the oppo-
nent’s previous move. Each turn, an agent may remove between 1 and 2× the opponent’s last action.
This rule introduces dynamic strategy adjustments, balancing immediate gains with long-term
positioning.

• Kayles: Played with a or two row(s) of pins, where agents take turns knocking down one or
two adjacent pins. The player unable to make a move loses. The challenge lies in evaluating pin
configurations and predicting the opponent’s responses to optimize each turn.

• Chomp: Played on a quadrangle grid, agents take turns consuming a “block” of chocolate along
with all blocks below and to the right. The player forced to eat the top-right (or top-left) “poisoned”
block loses.

3.4 COMBINATORIAL GAMES: THEORY AND STRATEGY

All MetaNIM Arena games are impartial combinatorial games, forming a Directed Acyclic Graph
(DAG) where vertices represent game states and edges denote valid moves. The Grundy Number
framework, along with the Sprague-Grundy Theorem, guarantees the existence of a winning strategy
and provides a concrete method to determine it. In the MetaNIM Arena dataset, each state has a
mathematically provable optimal move, allowing an LLM’s decisions to be evaluated against the
theoretical optimal strategy—a key advantage for unbiased assessment.
Definition 3.1 (Grundy Number). For a finite impartial combinatorial game under normal play (where
the last player to make a valid move wins), the Grundy number (or Nimber) G(S) is recursively
defined as follows. If S is a terminal state with no valid moves, set G(S) = 0. Otherwise,

G(S) = mex{G(S′) | S′ is reachable from S } ,
where mex(X) is the smallest nonnegative integer not in X .

Note that the Grundy number is well-defined for every impartial combinatorial game, since the
game’s state space forms a DAG. In many combinatorial games, direct enumeration of all possible
move sequences is computationally infeasible. However, with Sprague-Grundy Theorem, we can
easily calculate Grundy Numbers on complex games. See Appendix A.1 for further discussions.

Optimal Strategy. When G(S) ̸= 0, there is at least one move to a successor S′ with G(S′) = 0,
forcing the opponent into a losing position. Conversely, if G(S) = 0, all successor states have
G(S′) ̸= 0. Because the game DAG is finite and acyclic, repeatedly applying “move to G = 0” (or
avoiding it) ensures a forced result under optimal play. See Appendix A.2 for more details, including
the misère variant where taking the last object loses.

4 UNDERSTANDING BIAS REINFORCEMENT IN DEBATE PROCESS

To quantitatively analyze bias in the debate process, we define strong consistency and bias reinforce-
ment as below.
Definition 4.1 (Strong Consistency). Strong consistency is a model’s tendency to consistently
produce the same output with high probability when given identical inputs. If a response’s probability
exceeds a threshold (set at 0.5) across multiple trials, we label the behavior as strongly consistent.
This phenomenon naturally emerges in strategic decision-making contexts. As shown in Figure 2,
when presented with a specific game state, the model repeatedly generates the same reasoning pattern,
highlighted in orange. Rather than effectively utilizing strategic prior knowledge, the model fixates
on a single line of reasoning, limiting adaptability and decision quality.
Definition 4.2 (Bias Reinforcement). Bias reinforcement in the context of large language models
refers to the phenomenon where iterative reasoning processes—such as multi-agent debates—amplify
pre-existing model biases instead of mitigating them. Rather than converging toward a more accurate
or optimal reasoning outcome, the debate process reinforces strongly consistent, yet potentially
suboptimal or distorted, reasoning patterns.
In the rest of this section, we analyze bias reinforcement and lack of diversity in the debate process,
using GPT-4o-mini and GEMINI-1.5-pro for the NIM game, and then extend the evaluation
to Fibonacci with those two plus GPT-4o and GEMINI-1.5-flash.
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Table 2: Bias reinforcement across models: showing that even after the debate concludes, strongly
consistent actions continue to exhibit strong consistency, reinforcing biased action distributions in the
Fibonacci game. A wrong bias occurs when the model’s biased response deviates from the optimal
action, while a good bias refers to cases where the biased response aligns with the optimal action. (a,
b) indicate the state where the remaining items are a, and player can take the items maximum to b.

(a) GPT-4o
Wrong Bias Good Bias

(20, 19) (12, 4) (7, 4) (15, 10) (16, 8) (7, 7)

Standard 0.700 0.675 0.600 0.525 0.725 0.850
+ After MAD 0.900 0.750 0.700 0.750 0.750 0.900

(b) GPT-4o-mini
Wrong Bias Good Bias

(18, 4) (12, 6) (10, 4) (15, 10) (7, 2) (15, 2)

Standard 0.700 0.875 0.600 0.975 0.950 0.975
+ After MAD 0.850 0.950 0.750 1.000 0.950 1.000

(c) GEMINI-1.5-pro
Wrong Bias Good Bias

(20, 19) (12, 4) (4, 4) (15, 10) (10, 4) (16, 8)

Standard 0.650 0.600 0.600 0.800 0.625 0.675
+ After MAD 0.700 0.650 0.800 0.800 0.800 0.700

(d) GEMINI-1.5-flash
Wrong Bias Good Bias

(12, 6) (12, 4) (7, 4) (15, 4) (20, 19) (7, 7)

Standard 0.800 0.700 0.525 0.750 0.500 0.750
+ After MAD 0.850 1.000 0.750 0.750 0.650 1.000

4.1 BIAS REINFORCEMENT IN MAD

In NIM: (Figure 1) We observed that instead of refining reasoning towards optimal strategies, MAD
reinforces a model’s inherent biases, leading the debate process to align with strongly consistent
incorrect responses. To systematically analyze this effect, we identified states where each model
exhibits strong consistency. We then conducted multi-agent debates using two identical agents
initialized with the same model.

In our setup, we collected 40 trials per state, with each agent generating 20 responses at a fixed
sampling temperature of 0.7. The same temperature was maintained during the MAD process to ensure
consistent evaluation. Initial action distributions are shown in light red, while blue bars represent
distributions after three rounds of debate. Ideally, if MAD functioned as an effective self-correction
mechanism, the distribution would shift toward optimal actions.

Figure 1: Bias reinforcement in NIM game by
MAD. We compared initial action distribution and
action distribution after 3 rounds of debates. MAD
amplifies a model’s biases, making debates favor
consistent but potentially incorrect responses.

However, we found the opposite: regardless
of whether the initial reasoning was correct,
the debate process consistently amplifies pre-
existing biases rather than mitigating them. For
instance, in the top-left graph of Figure 1,
the GPT-4o-mini model initially selects a
strongly consistent but suboptimal action (Ac-
tion 3) 82.5% of the time, while only 15.0% of
responses align with the optimal strategy. After
multiple rounds of debate, instead of converg-
ing towards the correct decision, the model fur-
ther entrenches its bias, increasing the frequency
of the incorrect action to 90.0%. Notably, the
proportion of optimal responses decreased even
further, reinforcing the idea that MAD serves
as an amplifier of existing biases rather than a
corrective mechanism.

This phenomenon is not unique to GPT models
but is also evident in the GEMINI series (bot-
tom row of Figure 1). Despite architectural dif-
ferences, GEMINI exhibited the same tendency.
Furthermore, we observed that this reinforcement occurs regardless of whether the bias is “wrong”
(leading to suboptimal moves) or “good” (aligning with optimal play). As illustrated, even in states
where strong consistency initially aligns with optimal actions (good bias cases), the debate process did
not introduce additional strategic insights but simply reinforces what is already dominant. In Figure 2,
we illustrate in detail how two LLMs, after receiving the current state, produce initial responses
and then proceed through a debate process. Notably, they converged on a strongly consistent line of
reasoning, which may not necessarily be correct. We observed that only after the first round of debate
do the two LLMs reach a consensus.

In Fibonacci: (Table 2) Following our analysis in the NIM game, we extended our investigation
to the Fibonacci game, a more complex setting where move constraints and dynamic interactions
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Figure 2: An example demonstrating how the debate process converges to a biased outcome. We
observed that bias reinforcement occurs in the first debate. Blue text indicates the correct reasoning
and orange text indicates the strong consistent (biased) reasoning. We skipped the second debate
process because it follows a process nearly identical to those of the first and third debates. We utilize
GPT-4o-mini as the debate agent.

shape strategic decision-making. We identified states where models exhibit strong consistency and
examined whether debate reinforces or mitigates initial biases. As in NIM, we categorize states into
those where strong consistency aligns with optimal strategies and those where it leads to suboptimal
choices. The MAD framework is then applied to analyze how action distributions evolve post-debate
(Table 2 (a), (b) for GPT models and (c), (d) for GEMINI models).

Our results confirm a consistent bias reinforcement effect: rather than converging toward optimal
strategies, MAD causes models to reinforce their strongly consistent responses, regardless of correct-
ness. As shown in Table 2, the proportion of responses adhering to the initially strongly consistent
action increases after debate, indicating further entrenchment of bias. Our analysis shows that after the
debate process, response reinforcement increases by 9.17% in GPT models and 12.29% in GEMINI
models, indicating a notable shift towards initially dominant responses across both model families.

4.2 OPTIMAL INPUTS DO NOT REDUCE BIAS IN MAD

Figure 3: Decline in optimal actions over
debate rounds, demonstrating the con-
vergence toward consistently biased rea-
soning. This observation underscores the
difficulty of addressing inherent biases
in LLMs through MAD.

To analyze the extent of bias reinforcement in
MAD, we conducted an additional experiment using
GPT-4o-mini in the NIM game (remaining items: 5), as
shown in Figure 3. We first collected 20 responses demon-
strating strong consistency, where the model repeatedly
selects the same biased action (Action 2) with high
probability. Additionally, we curated another set of 20
responses exhibiting optimal strategic reasoning, where
80% of actions align with the game-theoretically optimal
move (Action 1). We then introduced these responses
into a multi-agent debate setting using GPT-4o-mini,
pairing each strongly consistent response with an optimal
response, and observed how the model’s reasoning evolves
over multiple rounds of debate (denoted the game situation
in detail in Appendix E).

Our findings reveal that rather than converging toward more optimal decision-making, the debate
systematically reinforces the model’s pre-existing biases. Initially, the curated dataset contained 80%
optimal responses, yet after a single round of debate, the model predominantly aligned with the
biased responses, reducing the proportion of optimal decisions. As the debate progressed, this effect
intensified, with strong consistency actions increasingly dominating. That is, even when explicitly
injecting high-quality optimized responses, the debate process does not steer the model toward better
reasoning. Instead, it systematically aligns with its pre-existing consistency patterns, reinforcing
suboptimal but frequent choices.

This limitation in MAD highlights its tendency to amplify biases rather than correct them when strong
consistency is present. However, applying DReaMAD with curated optimal responses significantly
improved the preservation of correct reasoning, mitigating bias reinforcement. This underscores the
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Figure 4: DReaMAD framework in MAD method. DReaMAD improves LLM reasoning by combining
Strategic Prior Knowledge Elicitation and Perspective Diversification. In the first stage, the model
reinterprets the problem and formulates high-level strategies to reduce bias. In the second stage,
multiple agents adopt distinct viewpoints, engage in structured debate, and refine their conclusions to
enhance decision-making.

need for mechanisms that introduce diverse perspectives beyond internal debate, which we further
discuss in §5.

4.3 LACK OF REASONING DIVERSITY IN MAD

While MAD is designed to refine reasoning by allowing multiple agents to engage in discussion, its
effectiveness is fundamentally limited by a lack of true diversity (§2.3). To address this limitation,
Chen et al. (2023b) propose a multi-model debate framework that leverages multiple different models
to generate diverse reasoning paths. However, our research focuses on self-correction methods
that utilize a single model. We observe that even within the same model, slight variations in the
prompts can lead to significantly different outputs (demonstrated in Appendix D). For instance, simply
including or omitting the word Fibonacci in the prompt results in distinct reasoning trajectories. This
suggests that diversity in reasoning can be enhanced by strategically modifying prompts within the
same model, providing a practical alternative to multi-model debate frameworks.

5 DREAMAD: DIVERSE REASONING VIA MULTI-AGENT DEBATE

To address the limitations of Multi-Agent Debate (MAD) and improve strategic decision-making
in Large Language Models (LLMs), we introduce DReaMAD (Diverse Reasoning via Multi-Agent
Debate with Refined Prompt). Our framework refines prior knowledge and ensures diverse perspec-
tives by extending MAD in two main stages:
1. Strategic Prior Knowledge Elicitation: The model redefines the problem, extracts key strategic

insights, and formulates a high-level strategy before reasoning.
2. Perspective Diversification: Multiple agents are instantiated with self-generated distinct view-

points to engage in dialectical reasoning.

After these stages, the agents conduct a structured multi-agent debate. A final post-debate refinement
step then revisits their conclusions to improve reasoning quality. The complete workflow is illustrated
in Figure 4 and the detailed prompt formulation used in these two modules is well documented in the
Appendix C.

5.1 STRATEGIC PRIOR KNOWLEDGE ELICITATION

To address strongly consistent bias, DReaMAD integrates a structured module that ensures systematic
extraction and refinement of the LLM’s internal strategic knowledge before the debate. First, the
model is prompted to reinterpret the given problem, leading to a more organized understanding of
the strategic context (Game Situation Reinterpretation). Next, it formulates a set of high-level
strategies that can be applied to the scenario at hand (General Strategy Formulation), preventing
the model from settling too early on potentially flawed reasoning. As shown in Table 3, this module
enhances the model’s performance in tasks that require strategic prior knowledge (Figure 4-1). We
set the temperature hyperparameter to be 0.1 for strategic consistency.

5.2 PERSPECTIVE DIVERSIFICATION

Building on MAD, DReaMAD mitigates argument homogenization by ensuring each agent adopts
a distinct viewpoint prior to the debate. This approach is inspired by the Learning from Multiple
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Figure 5: In this example, we illustrate how the debate process converges to an optimal outcome
using DReaMAD. We begin with the same current state shown in Figure 2, employing self-generated
prompts for each LLM agent.

Approaches concept in education theory (Council et al., 2005; Cleaves, 2008), which suggests that
individuals improve their problem-solving skills by exploring multiple representations of the same
problem. Analogously, this module ensures that each agent is given differentiated initial prompts
that guide reasoning along distinct strategic trajectories. By self-customizing initial prompts for each
model instance, DReaMAD encourages unique strategic perspectives and reduces the risk of bias
reinforcement (Figure 4-2) as demonstrated in Figure 5 and Figure 6. In Figure 5, although each agent
receives the same initial prompt, they independently generate different optimal prompts, leading to
distinct distributions of reasoning. This process reduces each agent’s bias and fosters a more robust
debate. Remarkably, even in a state with very strong consistency, the discussion converges well
toward the correct reasoning direction. Here, we set temperature to be 0.7 for diversity.

6 EXPERIMENTS

We utilized the new benchmark MetaNIM Arena as both our dataset and simulator. Our investigation
focuses on three key questions: (1) Does our approach improve reasoning quality compared to
existing prompting techniques? (2) Does our approach prove its strategic reasoning quality under
adversarial decision-making environments? (3) Does generating diverse prompts contribute to better
decision-making within the debate framework?

To address these questions, we compared DReaMAD against standard prompting methods, ReAct
(Yao et al., 2023), Chain-of-Thought (CoT), Self-Consistency (Wang et al., 2022), Self-Refinement
(Madaan et al., 2024), and Multi-Agent Debate (MAD; Du et al. (2023) (standard and CoT prompts
is explained in Appendix B). Our algorithm is built upon the work of Du et al. (2023), extending
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Table 3: Effect of Strategic Prior Knowledge Elicitation module. DReaMAD(−) indicates our method
except multi-agent debate process. We can fully evaluate reasoning ability between different prompt-
ing methods. The metric accuracy of selecting optimal action is used. The best results are highlighted
in bold.

LLM Models Prompting Methods NIM Fibonacci Chomp Kayles Average

GPT-4o
ReAct 0.95 ± 0.04 0.33 ± 0.04 0.18 ± 0.07 0.19 ± 0.08 0.41

+ CoT-Prompting 0.96 ± 0.04 0.43 ± 0.11 0.28 ± 0.09 0.20 ± 0.10 0.47
DReaMAD(−) 0.98 ± 0.04 0.44 ± 0.09 0.23 ± 0.10 0.23 ± 0.12 0.47

GPT-4o-mini
ReAct 0.75 ± 0.05 0.33 ± 0.04 0.40 ± 0.07 0.12 ± 0.06 0.40

+ CoT-Prompting 0.84 ± 0.08 0.36 ± 0.06 0.61 ± 0.05 0.02 ± 0.03 0.46
DReaMAD(−) 1.00 ± 0.00 0.49 ± 0.17 0.62 ± 0.10 0.18 ± 0.11 0.57

GEMINI-1.5-pro
ReAct 0.82 ± 0.06 0.42 ± 0.04 0.19 ± 0.08 0.57 ± 0.04 0.50

+ CoT-Prompting 0.88 ± 0.05 0.47 ± 0.11 0.22 ± 0.11 0.59 ± 0.04 0.54
DReaMAD(−) 0.97 ± 0.04 0.53 ± 0.07 0.24 ± 0.05 0.72 ± 0.12 0.62

GEMINI-1.5-flash
ReAct 0.94 ± 0.02 0.35 ± 0.04 0.05 ± 0.03 0.01 ± 0.02 0.34

+ CoT-Prompting 0.93 ± 0.02 0.33 ± 0.07 0.09 ± 0.04 0.0 ± 0.00 0.34
DReaMAD(−) 0.97 ± 0.04 0.45 ± 0.06 0.05 ± 0.00 0.42 ± 0.06 0.46

Average
ReAct 0.87 0.36 0.21 0.22 -

+ CoT-Prompting 0.90 0.40 0.30 0.20 -
DReaMAD(−) 0.98 0.48 0.29 0.39 -

MAD to incorporate structured self-prompt refinement and perspective diversification. For self-
refinement, we follow the methodology of Madaan et al. (2024), applying three iterative refinement
steps. Similarly, for MAD, we conducted up to three rounds of debate, following Du et al. (2023),
with the process terminating early if a consensus is reached before the final round. Additionally, we
analyzed whether different LLM architectures, including GPT and GEMINI models, exhibit similar
performance improvement through DReaMAD.

6.1 DOES DREAMAD IMPROVE REASONING QUALITY?

Figure 6: Effect of Perspective Diver-
sification with two different prompts.
(+)MAD vs DReaMAD. We run LLMs
total 50 runs for each simulator and re-
port average win-rate.

This experiment isolates the effect of strategic prior knowl-
edge elicitation (§5.1), allowing us to assess whether our
method enhances decision-making without relying on de-
bate dynamics.

Setup. To evaluate the effectiveness of our approach in im-
proving reasoning capabilities, we compare DReaMAD
without the debate process against ReAct and zero-
shot CoT prompting across multiple models in the
MetaNIM Arena dataset (§A.7). For showing versatility
of DReaMAD, we conduct experiments on four variants of
LLMs as shown in Table 3.

Results. Table 3 demonstrates that DReaMAD consistently
outperforms both ReAct and CoT prompting across all
models and tasks. These results highlight the impact of
our method in reinforcing structured strategic reasoning,
even without the iterative correction process of debate. Notably, our approach leads to substantial
improvements in NIM, Fibonacci, and Kayles, which are environments where long-term strategic
planning plays a crucial role. Since defining a general winning strategy in Chomp is non-trivial,
applying prior knowledge is challenging and results in less effectiveness compared to other games.
Furthermore, we observe that models with inherently weaker reasoning abilities benefit the most from
strategic prior knowledge elicitation (e.g., GPT-4o-mini with +17%p, GEMINI-1.5-flash
with +12%p on average).

6.2 DREAMAD IN ADVERSARIAL STRATEGIC DECISION-MAKING

Setup. We applied DReaMAD to GPT-4o-mini and GEMINI-1.5-flash and compared it with
self-correction methods, including standard-prompt, ReAct, self-refinement, self-consistency, and
MAD. To demonstrate its effectiveness, we used GPT-4o as the opponent model due to its superior
performance. In this experiments, we utilized MetaNIM Arena simulator (§A.8) to maximize the
effect of generating diverse prompts. We aimed to validate our hypothesis in a simulator that requires
strategic decision-making within complex dynamics. We ran 50 independent episodes and average
the win-rate.
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Table 4: Winning rate comparison across different models and different self-correction methods. This
is an result based on MetaNIM Arena simulator. The best results are highlighted in bold.

Method NIM Fibonacci Kayles Chomp

Normal Misère Normal Misère Single 2 Rows Rectangular Square

GEMINI-1.5-flash
Standard Prompting 0.32 0.54 0.16 0.10 0.54 0.56 0.78 0.18
+ ReAct 0.10 0.68 0.16 0.76 0.50 0.30 0.42 0.12
+ Self-Refinement 0.14 0.66 0.18 0.36 0.50 0.46 0.46 0.16
+ Self-Consistency 0.04 0.28 0.28 0.86 - - - -
+ MAD 0.06 0.30 0.12 0.78 0.54 0.20 0.74 0.14
+ DReaMAD 0.38 0.84 0.16 0.94 0.58 0.62 0.60 0.22
GPT-4o-mini
Standard Prompting 0.38 0.54 0.22 0.28 0.46 0.48 0.46 0.38
+ ReAct 0.22 0.68 0.20 0.34 0.40 0.26 0.58 0.34
+ Self-Refinement 0.22 0.70 0.18 0.50 0.46 0.52 0.52 0.44
+ Self-Consistency 0.14 0.52 0.34 0.46 - - - -
+ MAD 0.28 0.62 0.22 0.82 0.42 0.28 0.52 0.56
+ DReaMAD 0.98 0.74 0.54 0.94 0.68 0.84 0.64 0.22
Due to technical issues, the self-consistency results for Kayles and Chomp are omitted and will be updated soon.

Results. As shown in Table 4, DReaMAD consistently outperforms other self-correction methods
across various strategic environments, demonstrating a significant improvement in winning rates.
This result suggests that our approach enables LLM agents to effectively adapt to complex dynamics,
particularly in adversarial decision-making scenarios where strategic reasoning is crucial. However,
we observe that DReaMAD struggles in the Chomp game, which aligns with our hypothesis that
Chomp lacks a well-defined generalized winning strategy. Unlike other tested environments, Chomp
requires more exploratory play rather than direct reasoning from prior knowledge, highlighting a
limitation of our method in environments where strategic heuristics are less structured.

6.3 DOES GENERATING DIVERSE PROMPTS IMPROVE PERFORMANCE?

Figure 7: Effect of Perspective Di-
versification by temperature. The Fi-
bonacci dataset is evaluated 15 times
with GPT-4o, averaged with a 95% con-
fidence interval. Higher temperatures im-
prove optimal action accuracy, showing
that greater prompt diversity enhances
reasoning performance.

We found that providing diverse prompts to multiple in-
stances of the same model improves decision-making. To
evaluate this, we generated identical prompts using the
Strategic Prior Knowledge Elicitation module for two in-
stances of the same model, denoted as (+)MAD, and dis-
tinct prompts for each instance, representing our proposed
approach, as shown in Figure 6. We conducted experi-
ments on four variants of MetaNIM Arena (NIM-Normal,
NIM-Misère, Fibonacci-Normal, and Fibonacci-Misère)
simulator (§A.8) total 50 episodes. Our results show that
incorporating diverse prompts within the MAD framework
significantly enhances performance, validating the effec-
tiveness of our Perspective Diversification module.

Further, we examined the effect of varying temperature
within the DReaMAD framework on the MetaNIM Arena
Fibonacci dataset, adjusting it to 0.0, 0.2, 0.4, 0.6, 0.8,
and 1.0 in the Strategic Prior Knowledge Elicitation and
Perspective Diversification modules to assess its impact
on prompt diversity. As shown in Figure 7, higher temperature (further diversity) correlates with
increased optimal action accuracy, indicating that greater diversity in generated prompts contributes
to improved reasoning performance.

7 CONCLUSIONS

Our study shows that Multi-Agent Debate (MAD) often reinforces biases instead of reducing them,
leading to suboptimal reasoning. Through our experiments with the MetaNIM Arena, we have
observed that models persist in biased reasoning even when presented with superior alternatives.
While our current strategy focuses on strategic games, the principles of structured self-refinement
and diversified reasoning could be valuable for a wider range of NLP tasks. These include complex
activities such as multi-step reasoning in question answering, legal analysis, and scientific inference.
Future work will explore how these techniques enhance decision-making beyond structured games.
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Adam Lopez. Intrinsic bias metrics do not correlate with application bias. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 1926–1940, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.150.

P. M. Grundy. Mathematics and games. Eureka, 2:6–8, 1939.

Yufei Guo, Muzhe Guo, Juntao Su, Zhou Yang, Mengqiu Zhu, Hongfei Li, Mengyang Qiu, and
Shuo Shuo Liu. Bias in large language models: Origin, evaluation, and mitigation, 2024.

Jie He, Tao Wang, Deyi Xiong, and Qun Liu. The box is in the pen: Evaluating commonsense reason-
ing in neural machine translation. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 3662–3672, 2020.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024.

Liwei Jiang, Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jenny Liang, Jesse Dodge,
Keisuke Sakaguchi, Maxwell Forbes, Jon Borchardt, Saadia Gabriel, Yulia Tsvetkov, Oren Etzioni,
Maarten Sap, Regina Rini, and Yejin Choi. Can machines learn morality? the delphi experiment,
2022.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can LLMs actually correct
their own mistakes? a critical survey of self-correction of LLMs. Transactions of the Association
for Computational Linguistics, 12:1417–1440, 2024. doi: 10.1162/tacl a 00713.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha Shrivastava,
Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra Faust. Training
language models to self-correct via reinforcement learning, 2024.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Guangliang Liu, Haitao Mao, Bochuan Cao, Zhiyu Xue, Xitong Zhang, Rongrong Wang, Jiliang
Tang, and Kristen Johnson. On the intrinsic self-correction capability of llms: Uncertainty and
latent concept, 2024.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8086–8098, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
556.

12



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Costas Mavromatis, Balasubramaniam Srinivasan, Zhengyuan Shen, Jiani Zhang, Huzefa Rangwala,
Christos Faloutsos, and George Karypis. Which examples to annotate for in-context learning?
towards effective and efficient selection. arXiv preprint arXiv:2310.20046, 2023.

Jane Pan. What in-context learning “learns” in-context: Disentangling task recognition and task
learning. Master’s thesis, Princeton University, 2023.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond
the few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors
in Computing Systems, CHI EA ’21, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450380959. doi: 10.1145/3411763.3451760.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, Pranav Sandeep Dulepet, Saurav
Vidyadhara, Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson Kroiz, Feileen Li, Hudson Tao, Ashay
Srivastava, Hevander Da Costa, Saloni Gupta, Megan L. Rogers, Inna Goncearenco, Giuseppe
Sarli, Igor Galynker, Denis Peskoff, Marine Carpuat, Jules White, Shyamal Anadkat, Alexander
Hoyle, and Philip Resnik. The prompt report: A systematic survey of prompting techniques, 2024a.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: A systematic
survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024b.

Philip Wootaek Shin, Jihyun Janice Ahn, Wenpeng Yin, Jack Sampson, and Vijaykrishnan Narayanan.
Can prompt modifiers control bias? a comparative analysis of text-to-image generative models,
2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023.

Andries Smit, Nathan Grinsztajn, Paul Duckworth, Thomas D. Barrett, and Arnu Pretorius. Should
we be going mad? a look at multi-agent debate strategies for llms. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024.
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A METANIM ARENA

Figure 8: The concept illustration of MetaNIM Arena. A detailed explanation of each game can be
found in Appendix A.

Algorithm 1 MetaNIM Arena: Turn-Based Opponent Task with Two Agents

Require: Initial State S0, Goal Condition G, Agents A1 and A2

Ensure: Final State Sf and Outcome
1: t← 0 Initialize turn counter
2: S ← S0 Set initial state
3: while S ̸∈ G and game is not terminated do
4: if t mod 2 = 0 then
5: at ← A1(S) Agent 1’s turn, selects action at
6: else
7: at ← A2(S) Agent 2’s turn, selects action at
8: end if
9: S ← UpdateState(S, at) Apply the action and update state

10: t← t+ 1 Increment turn counter
11: if S ∈ G then
12: Success: Goal Achieved
13: end if
14: end while

A.1 SPRAGUE-GRUNDY THEOREM

The Sprague-Grundy theorem provides a fundamental method for analyzing impartial combinatorial
games by decomposing complex games into simpler, independent subgames. As discussed in Sec-
tion 3.4, every impartial combinatorial game can be represented as a directed acyclic graph (DAG).
However, directly computing Grundy numbers recursively from terminal states is often impractical.

We summarize key results from Sprague (1935) and Grundy (1939). According to the theorem, the
optimal strategy for playing multiple impartial games simultaneously (in parallel), or a single complex
game viewed as multiple independent subgames, is equivalent to playing a single game of Nim with
multiple heaps. This equivalence arises from the concept of the disjunctive sum of DAGs.
Definition A.1 (Disjunctive Sum of DAGs). Let G1 = (X1, F1),G2 = (X2, F2), . . . ,Gn = (Xn, Fn)
be DAGs representing n impartial combinatorial games. The disjunctive sum of G1, . . . ,Gn is a DAG
G = (X,F ) defined as follows:

1. The vertex set X is the Cartesian product X1 ×X2 × · · · ×Xn.

2. The edge set F consists of edges connecting (x1, . . . , xn) to (y1, . . . , yn) if and only if
exactly one pair (xi, yi) is in Fi, and xj = yj for all j ̸= i.

Note. In a disjunctive sum of DAGs, each player chooses exactly one subgame to play during their turn
and moves within that subgame. The entire game ends when all subgames reach terminal positions.
Theorem A.2 (Sprague-Grundy (Sprague, 1935; Grundy, 1939)). A position S is losing if and only if
its Grundy number G(S) = 0; otherwise, if G(S) ̸= 0, it is winning. Furthermore, if a position S
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decomposes into independent subpositions S1, . . . , Sk via the disjunctive sum of DAGs, then

G(S)(2) = G(S1)(2) ⊕G(S2)(2) ⊕ · · · ⊕G(Sk)(2),

where ⊕ denotes bitwise XOR.

This result implies that Grundy numbers for complex games, such as Kayles or Chomp, can be
efficiently computed by decomposing them into simpler subgames and combining the Grundy
numbers using bitwise XOR.

For example, consider a variant of the game Kayles played on two separate rows of pins, each forming
an independent subgame. Suppose we computed the Grundy numbers separately for these rows,
obtaining Grundy numbers 7 for the first row and 4 for the second row. By the Sprague-Grundy
theorem, the combined Grundy number of the position is given by:

7(2) ⊕ 4(2) = 111(2) ⊕ 100(2) = 011(2) = 3.

Thus, even though the original game involves two distinct rows of pins, the strategic analysis reduces
precisely to analyzing a Nim heap of size 3. Since a Nim heap of size 3 is nonzero, this indicates a
winning position for the player about to move.

A.2 FURTHER DISCUSSIONS ON THE OPTIMAL STRATEGY

Why G(S) = 0 Implies Losing. Recall that G(S) is defined as:

G(S) = mex
{
G(S′)

∣∣∣ S′ is reachable from S
}
,

where mex(X) is the smallest nonnegative integer not in the set X . Thus,

G(S) = 0 ⇐⇒ 0 /∈
{
G(S′) : S′ is reachable from S

}
.

Concretely, if G(S) = 0, then no valid move leads to a successor S′ with G(S′) = 0. In other
words, from S, the player to move cannot transition the game into a G(·) = 0 state. Because a state
G(S′) = 0 corresponds to a losing position for the player who faces it, the mover in state S has no
way to force the opponent into a losing position on the next turn. Hence, S is losing for the player to
move.

Why G(S) ̸= 0 Implies Winning (Opposite viewpoint). By the same logic, if G(S) ̸= 0, then the
definition of mex guarantees 0 does appear among the Grundy values G(S′) of the successors. Thus,
there exists some child state S′ for which G(S′) = 0. Consequently, the current mover can place the
opponent directly into a losing position (i.e. a position with Grundy number 0). Recursively iterating
this argument along the Directed Acyclic Graph of states ensures that the current mover, if playing
optimally, keeps forcing the opponent into G(·) = 0 states until the game ends. Therefore, S must be
a winning state.

Misère Variant. Misère play reverses the normal condition: taking the last object loses rather than
wins. Although standard Sprague-Grundy analysis still applies to most states, a special exception
arises when all heaps (or subpositions) are size 1, such as in misère Nim. In that endgame scenario,
the usual strategy must switch to avoid forcing the final move, ensuring the player leaves the opponent
to pick the last object.

A.3 NIM

Nim is a mathematical strategy game where two players alternate turns removing objects from distinct
heaps/piles. The classic version follows these rules:

• Heaps: The game starts with k heaps containing n1, n2, . . . , nk objects respectively

• Moves: On their turn, a player must remove at least 1 to previously fixed number of objects
from exactly one heap

• Objective: The player who takes the last remaining object wins (normal play convention)
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Mathematical Strategy The game can be analyzed using binary representations through the
concept of Nimbers (Grundy numbers). For any position, the key is to calculate the binary XOR
(exclusive OR) sum of all heap sizes:

Nim-sum = n1 ⊕ n2 ⊕ · · · ⊕ nk

A position is losing if the Nim-sum equals 0. The winning strategy consists of always moving to
a position with Nim-sum 0. For the single-heap variant (as in our current game), this simplifies to
maintaining modular arithmetic conditions.

Example Consider a game with heaps [3, 4, 5]:
3 = 0112

4 = 1002

5 = 1012

Nim-sum = 0112 ⊕ 1002 ⊕ 1012 = 0102 = 2 ̸= 0

The first player can win by removing 2 objects from the 5-object heap to make the new Nim-sum 0.

Variants Several Nim variants exist, including:

• Single-heap Nim (as in our current game)
• Misère Nim (player taking last object loses)
• Multi-heap Nim with different removal constraints

The fundamental mathematical principles of combinatorial game theory apply to all variants.

A.4 FIBONACCI

The Fibonacci Game, also known as Fibonacci Nim, is a combinatorial number game where players
alternate removing items from a pile, with move constraints based on the Fibonacci sequence. The
rules are:

• Initial Move: First player takes 1 ≤ k < n items from a pile of n items
• Subsequent Moves: Each player must take between 1 and twice the number of items taken

by their opponent in the previous move
• Objective: The player who takes the last item wins

Mathematical Strategy The game is governed by Fibonacci numbers (F1 = 1, F2 = 2, Fn =
Fn−1 + Fn−2) and Zeckendorf’s Theorem, which states that every positive integer can be uniquely
expressed as a sum of non-consecutive Fibonacci numbers.

• Losing Positions: Pile sizes equal to Fibonacci numbers (Fn)
• Winning Strategy: Reduce the pile to the largest Fibonacci number smaller than the current

size

For a pile of size m, its Zeckendorf representation is:
m = Fk1

+ Fk2
+ · · ·+ Fkr

(|ki − kj | ≥ 2)

The optimal first move is to remove the smallest Fibonacci number in this decomposition.

Example For a starting pile of m = 20:
Zeckendorf: 20 = 13 + 5 + 2 (F7 = 13, F5 = 5, F3 = 2)

First move = Remove smallest term 2

New pile = 18 = 13 + 5

Now the opponent faces a position composed purely of Fibonacci numbers. Any move they make
(1 ≤ x ≤ 4) can be countered by reducing the pile to the next Fibonacci number.
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Key Properties

• If m is a Fibonacci number, the first player will lose against perfect play

• The number of moves in a game is always ≤ the index of the largest Fibonacci number ≤ m

• The golden ratio ϕ = 1+
√
5

2 emerges in win/loss probability analysis

Variants

• Reverse Fibonacci Nim (last player to move loses)

• Multi-pile Fibonacci games

• Constrained Fibonacci sequences (e.g., Tribonacci variants)

This game demonstrates deep connections between combinatorial game theory, number theory, and
the Fibonacci sequence.

A.5 KAYLES

Kayles is an impartial combinatorial game played with a linear arrangement of pins where players
alternate knocking down pins under specific adjacency rules. First analyzed in 1929 by Dudeney and
later studied by Conway and Berlekamp, it demonstrates complex mathematical patterns.

Basic Rules

• Initial Setup: A row of n identical pins

• Moves: On each turn, a player must either:

– Knock down 1 pin
– Knock down 2 adjacent pins

• Objective: Last player to make a valid move wins (normal play convention)

Mathematical Analysis The game is analyzed using Grundy numbers and the Sprague-Grundy
theorem. Positions split into independent segments after moves create disjunctive game components.

• Let G(n) be the Grundy number for a row of n pins

• Recursive Grundy number calculation:

G(n) = mex{G(n− 1), G(n− 2), G(a)⊕G(b)}

where a+ b = n− k for k ∈ {1, 2}, and mex = minimum excludant

Key Patterns

• Positions with Grundy number 0 are losing positions

• The Grundy sequence becomes periodic with period 12 for large n

• Known solution: G(n) = n mod 12 when n ≥ 70

Example Consider a row of 4 pins:

G(0) = 0

G(1) = mex{G(0)} = 1

G(2) = mex{G(1), G(0), G(0)⊕G(0)} = mex{1, 0, 0} = 2

G(3) = mex{G(2), G(1), G(1)⊕G(0)} = mex{2, 1, 1} = 0

G(4) = mex{G(3), G(2), G(2)⊕G(0)} = mex{0, 2, 2} = 1

A row of 4 pins has Grundy number 1, making it a winning position.
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Strategic Principles

• Split long rows into independent segments with XOR-sum 0

• Mirror opponent’s moves in symmetric positions

• Avoid leaving isolated single pins

Variants

• Circular Kayles (pins arranged in a circle)

• Multi-row Kayles

• k-Kayles (allow knocking down up to k adjacent pins)

• Misère Kayles (last player to move loses)

Computational Complexity Kayles is:

• PSPACE-complete for general positions

• Solved in linear time for standard single-row play

• Used in complexity theory to study impartial games

This analysis demonstrates how simple rule sets can generate complex mathematical structures.
The complete Grundy number sequence for Kayles was only fully determined through extensive
computational analysis.

A.6 CHOMP

Chomp is an impartial combinatorial game first formulated by David Gale in 1974. Played on a rect-
angular grid representing a chocolate bar, it features unique topological constraints and demonstrates
fundamental principles of partially ordered sets (posets).

Basic Rules

• Initial Setup: An m× n rectangular grid of ”chocolate squares”

• Special Square: The lower-left square (position (1,1)) is poisoned

• Moves: On each turn, a player must:

– Select any remaining square
– Remove (”chomp”) all squares above and/or to the right of the selected square

• Objective: Avoid taking the poisoned square - last player to make a valid move wins (normal
play convention)

Mathematical Analysis Chomp is particularly significant in combinatorial game theory because:

• It is a partisan game with inherent asymmetry

• The starting position is a poset under component-wise ordering

• A winning strategy exists for the first player (proven by strategy-stealing argument), though
explicit strategies are unknown for most grid sizes

KEY THEOREM (GALE, 1974)

Theorem A.3. For any initial grid size m×n where m,n ≥ 2, the first player has a winning strategy.
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Example: 2 × 3 Grid [
◦ ◦ ◦
• ◦ ◦

]
First player wins by taking the (2,3) square:

• If Player 2 takes (1,3), Player 1 takes (2,2)
• If Player 2 takes (2,2), Player 1 takes (1,2)
• All paths eventually force Player 2 to take the poison

Strategic Principles

• Maintain control of the antidiagonal
• Force symmetry when possible
• Reduce the game to independent subgames
• Avoid leaving isolated columns

Computational Complexity

• General Chomp is PSPACE-complete
• Solved in polynomial time for:

– 2 × n grids
– Square grids up to 5 × 5

• Number of winning positions grows exponentially with grid size

Variants

• 3D Chomp (cuboidal grids)
• Circular Chomp
• Hypergraph Chomp
• Misère Chomp (taking poison square wins)
• Numerical Chomp (played on factor lattices)

Significance Chomp demonstrates fundamental connections between:

• Combinatorial game theory
• Computational complexity
• Algebraic geometry (via Gröbner basis interpretations)

Despite its simple rules, Chomp remains unsolved for general grid sizes, making it an active research
area in computational combinatorics.

A.7 OUR DATASET USED IN EXPERIMENTS

We construct simple dataset based on the MetaNIM Arena. This dataset doesn’t require any opponent
model because samples in this dataset is focusing on the specific scene in each game.

Table 5: Constructed dataset using MetaNIM Arena. We conduct an experiment on this dataset and
report the results in Table 3.

Methods NIM Fibonacci Chomp Kayles
action space 1 - 3 dynamic (Max:30) x, y coordinate (differ to the scenario) a pin or adjacent two pins index
variants Normal Normal Square (2x2 ∼ 19x19) Normal
# of different samples 20 11 20 18
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A.8 OUR SIMULATOR USED IN EXPERIMENTS

We build simulator based on the MetaNIM Arena. This simulator requires any opponent available to
receive prompt and make an output as an action. Here, we utilize the gpt-4o model as an opponent.

Features NIM Fibonacci
Normal Misère Normal Misère

Starting Point remaining items: 31 remaining items: 31 remaining items: 20 remaining items: 20

Winning Condition taking last item avoiding last item taking last item avoiding last item

First Player? ✓ ✓ ✓ ✓
Action Space 1 - 3 1 - 3 dynamic dynamic
Opponent gpt-4o-2024-08-06

Table 6: MetaNIM Arena Simulator: NIM and Fibonacci

Features Kayles Chomp
Single 2 Rows Rectangular Square

Starting Point remaining items: 20 1 pile: 5, 2 pile: 6 2x8 5x5

Winning Condition taking last item taking last item avoiding poison avoiding poison
(top-left) (top-right)

First Player? ✓ ✓ ✓ ✓
Action Space pile index pile index (row, column) x, y coordinate x, y coordinate
Opponent gpt-4o-2024-08-06

Table 7: MetaNIM Arena Simulator: Kayles and Chomp
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B PROMPTS DESIGN

B.1 GAME PROMPTS

Table 8: NIM game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a game of Nim variants.
#Objective:
Your goal is to win the game by taking all remaining items on your turn, leaving no items for
your opponent. The person who takes the last item wins.
#Game Rule:
There is a single pile of items. You can take between 1 and {max take} items on your turn.
#Current State:
There are {remaining items} items remaining in the pile.
#Task:
Based on the current state of the game, decide how many items you will take (between 1 and
{max take}) on this turn.

Table 9: Fibonacci game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a simple Fibonacci game.

#Objective:
Your goal is to win the game by taking all remaining stones on your turn, leaving no stones for
your opponent. The person who takes the last stones wins.

#Game Rule:
1. There is a single pile of stones.
2. Players take turns one after another.
3. The first player can take any number of stones, but not all the stones in the first move.
4. On subsequent turns, the number of stones a player can take must be at least 1 and at most
twice the number of stones the previous player took.
5. The player who takes the last stone wins the game.

#Current State:
There are {remaining items} stones remaining in the pile.

#Task:
You are the first player. Based on the current state of the game, decide how many items you will
take (between 1 and {remaining items - 1}) on this turn.
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Table 10: Kayles game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a game of Kayles.

#Objective:
Your goal is to win the game by leaving your opponent with no valid moves. The player who
takes the last pin(s) wins.

#Game Rule:
1. There is a single row of pins.
2. On your turn, you can remove:

• 1 pin,
• 2 adjacent pins.

3. You cannot remove non-adjacent pins or pins that have already been removed.

#Current State:
The row of pins is represented as a binary string:
– ’1’ means the pin is still there.
– ’0’ means the pin has already been removed.
Current state: {remaining pins}
#Task:
Based on the current state of the game, decide which pin(s) you will take on this turn.

Table 11: Chomp game basic input prompt.

#Game Role:
You are {agent[’name’]}, a participant in a game of Chomp.

#Objective:
Your goal is to force your opponent to take the top-left corner of the grid (position (0, 0)).

#Game Rule:
1. The game is played on a square grid.
2. On your turn, you select a position (row, col).
3. All positions to the right and below the selected position are removed.
4. The player forced to select (0, 0) loses.

#Current State:
The grid is represented as a binary matrix, where ’1’ means the position is still available, and ’0’
means it is removed: {remaining grid}
#Task:
Based on the current state of the grid, decide which position (row, col) you will select.

B.2 PROMPTS FOR BASIC REASONING

B.2.1 STANDARD, REACT & COT PROMPTS

In our evaluation of LLMs within the MetaNIM Arena, we compare two key prompting techniques:
Standard Prompting and Chain-of-Thought (CoT) Prompting. The distinction between these ap-
proaches significantly impacts the model’s reasoning and decision-making process.

Standard Prompting (Table 12) Standard prompting provides a direct task description, outlining
the game rules, current state, and the required decision. The model is expected to generate only an
action to determine the best move. This method is cheap and efficient but often leads to suboptimal
decisions, as the model may fail to make proper reasoning before selecting the action.
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ReAct Prompting (Table 13) ReAct prompting provides a direct task description, outlining the
game rules, current state, and the required decision. The model is expected to generate an action with
proper explicit reasoning steps to determine the best move. This method is efficient but often leads to
suboptimal decisions, as the model may fail to retrieve and apply deeper strategic reasoning.

Chain-of-Thought (CoT) Prompting (Table 14) CoT prompting extends the standard prompt
by explicitly instructing the model to think step-by-step before making a decision. By guiding the
model through an explicit reasoning process, CoT enables it to break down the problem, consider
strategic implications, and refine its choices before committing to an action. This often leads to
improved decision-making, particularly in multi-step strategic environments where deeper reasoning
is required.

Key Difference and Impact As illustrated in Table 14, the only modification in the CoT prompt is
the addition of a simple directive: “Let’s think step-by-step. What is the best move for you?” This
small change significantly alters the model’s reasoning trajectory, encouraging more structured and
strategic decision-making. Our experimental results (detailed in §3) confirm that CoT prompting
leads to a measurable improvement in decision accuracy, particularly in complex scenarios where
retrieving and applying prior knowledge is essential.

By leveraging CoT, we can enhance the model’s ability to explain its decisions, mitigate biases,
and adapt more effectively to adversarial settings. However, as we further discuss in Experiment
Section, CoT has limitations to leverage the strategic reasoining well in our proposed environment,
necessitating additional mechanisms to further enhance strategic reasoning.

Table 12: Standard Prompt in NIM

#Game Role:
You are {agent[’name’]}, a participant in a game of Nim variants.

#Objective:
Your goal is to win the game by taking all remaining items on your turn, leaving no items for
your opponent. The person who takes the last item wins.

#Game Rule:
There is a single pile of items. You can take between 1 and {max take} items on your turn.

#Current State:
There are {remaining items} items remaining in the pile.

#Task:
Based on the current state of the game, decide how many items you will take (between 1 and
{max take}) on this turn.

Output Format:
The output should be a Markdown code snippet with the following scheme, including leading
and trailing triple backticks with "json" and:
‘‘‘
{
action: integer // This is an action you take. Only integer
between 1 and 3.
}
‘‘‘

Prompting Strategy for Opponent Modeling Anything can act as an opponent in the MetaNIM
Arena simulator, but we model OpenAI’s GPT-4o, the most powerful LLM model currently available,
as the opponent and apply the ReAct prompting method.
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Table 13: ReAct Prompt in NIM

#Game Role:
You are {agent[’name’]}, a participant in a game of Nim variants.

#Objective:
Your goal is to win the game by taking all remaining items on your turn, leaving no items for
your opponent. The person who takes the last item wins.

#Game Rule:
There is a single pile of items. You can take between 1 and {max take} items on your turn.

#Current State:
There are {remaining items} items remaining in the pile.

#Task:
Based on the current state of the game, decide how many items you will take (between 1 and
{max take}) on this turn.

Output Format:
The output should be a Markdown code snippet with the following scheme, including leading
and trailing triple backticks with "json" and:
‘‘‘
{
reasoning: string // This is the reason for the action
action: integer // This is an action you take based on the
reasoning. Only integer between 1 and 3.
}
‘‘‘

Table 14: CoT Prompt in NIM

#Game Role:
You are {agent[’name’]}, a participant in a game of Nim variants.

#Objective:
Your goal is to win the game by taking all remaining items on your turn, leaving no items for
your opponent. The person who takes the last item wins.

#Game Rule:
There is a single pile of items. You can take between 1 and {max take} items on your turn.

#Current State:
There are {remaining items} items remaining in the pile.

#Task:
Based on the current state of the game, decide how many items you will take (between 1 and
{max take}) on this turn.

Output Format:
The output should be a Markdown code snippet with the following scheme, including leading
and trailing triple backticks with "json" and:
‘‘‘
{
reasoning: string // This is the reason for the action
action: integer // This is an action you take based on the
reasoning. Only integer between 1 and 3.
}
‘‘‘
Let’s think step-by-step. What is the best move for you?
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C DREAMAD (−): STRUCTURED PROMPT OPTIMIZATION WITHOUT DEBATE

While the full DReaMAD framework integrates multi-agent debate to refine strategic reasoning, its core
prompting methodology—excluding debate—remains a powerful mechanism for enhancing decision-
making. This streamlined version, DReaMAD (−), focuses on three key stages to systematically
extract and refine strategic knowledge, improving reasoning diversity and mitigating bias. We present
the DReaMAD prompt as in Table 15.

1. Game Situation Reinterpretation The first step involves extracting fundamental game principles
from the standard prompt. The model is tasked with identifying key elements, such as:

• Game Definition: The nature of the game and its mechanics.
• Winning Condition: The criteria for victory.
• Move Constraints: The permissible actions per turn.

This step ensures that the model builds a structured understanding of the strategic environment before
making decisions.

2. General Strategy Formulation After extracting the core game elements, the model derives a
generalized winning strategy applicable to various game states. It generates:

• State Evaluation: How to assess the game state at any given turn.
• Winning Strategy: The optimal decision-making framework for victory.
• Endgame Tactics: Best strategies in near-win scenarios.

This formulation helps structure the model’s reasoning beyond the immediate game context, fostering
more strategic foresight.

3. Perspective Diversification Finally, the model refines the original prompt using the extracted
strategic knowledge. This process introduces structured variations to the initial prompt to encourage
diverse reasoning, rather than reinforcing a singular bias. The self-refined prompt:

• Guides decision-making explicitly.
• Prioritizes winning strategies.
• Encourages logical, step-by-step reasoning.

This structured refinement ensures that LLMs adopt distinct strategic viewpoints even without external
debate, improving their adaptability and robustness in adversarial environments.

By systematically structuring knowledge retrieval and refining prompts, DReaMAD (−) enhances
strategic reasoning as illustrated in Figure 10, this approach strengthens the model’s ability to
retrieve and apply prior knowledge effectively, offering a scalable solution for improving LLM-based
decision-making.
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Table 15: DReaMAD prompt design before debate

#Game Situation Reinterpretation:
game prompt :
Below is a game description. Extract the key information.
Game Description: {current state}
### Format response as:
‘‘‘
{
game definition: string // What is the definition of this
game?
winning condition: string // How to win the game.
move constraints: string // What actions are allowed per turn.
}
‘‘‘

#General Strategy Formulation:
strategy prompt :
Based on the game information below, derive the general
winning strategy in this game
Game: {game definition}
Winning Condition: {winning condition}
Move Constraints: {move constraints}
Current State: {current state in very short}
### Format response as:
‘‘‘
{
state evaluation: string // How to assess the game state.
winning strategy: string // Winning strategy in this turn to
win this game.
endgame tactics: string // Best strategy in a near-win
situation.
}
‘‘‘

#Perspective Diversification:
Refine the initial game prompt to improve decision-making
based on the Game and Strategy Information.
Initial Prompt: {given initial prompt}
Game and Strategy Information:
Game: {game definition}
Strategy:
- State Evaluation: {state evaluation}
- Winning Strategy: {winning strategy}
- Endgame Tactics: {endgame tactics}
### Format response as:
‘‘‘
{
optimized prompt: string // The refined prompt that clearly
directs decision-making.
}
‘‘‘
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D A WORD CHANGE IN PROMPTS LEAD TO DIFFERENT OUTPUT

Figure 9: According the word Fibonacci usage, the reasoning and the performance differs.

D.1 PROMPT BIAS: THE SENSITIVITY OF LLM REASONING TO PROMPT VARIATIONS

Despite the remarkable problem-solving capabilities of Large Language Models (LLMs), their
reasoning is highly sensitive to subtle changes in prompt phrasing. As demonstrated in Figure 9, even
a single word variation in the prompt can significantly alter the reasoning process and final decision-
making. This phenomenon underscores a critical limitation in LLM-based strategic reasoning: models
do not inherently generalize optimal strategies but instead rely on heuristic cues embedded within the
prompt.

D.1.1 IMPACT OF WORD CHOICE ON STRATEGIC REASONING

Figure 9 compares LLM responses when the word Fibonacci is explicitly mentioned versus when it
is omitted in an identical game scenario. In the presence of the keyword Fibonacci, the model aligns
its reasoning with Fibonacci-based strategy, leveraging number sequences to maintain control over
the game. Conversely, when the term is absent, the model defaults to an alternative heuristic, such
as maintaining a multiple of three or even resorting to a trivial greedy strategy. For instance, in the
first decision step, when instructed with Fibonacci, the model identifies 13 as the closest Fibonacci
number and takes 7 stones, ensuring an advantageous future state. Without the keyword, however, the
model applies a modulo-based heuristic, taking only 2 stones to leave a multiple of three. Similarly, in
the second decision step, the Fibonacci-aware model deliberately leaves 8 stones in the pile—another
Fibonacci number—while the other instance simply takes all remaining stones without strategic
foresight.

D.1.2 IMPLICATIONS FOR ROBUST PROMPTING

This stark contrast highlights the fundamental issue that LLMs do not inherently retrieve the most
effective strategic reasoning but are instead disproportionately influenced by linguistic cues. The
reliance on explicit terminology for optimal reasoning raises concerns about robustness, as different
wordings of the same task can lead to dramatically different problem-solving approaches. This
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suggests that ensuring reliable strategic reasoning in LLMs requires more than just fine-tuned
prompts; it necessitates methods that encourage models to autonomously retrieve and apply domain
knowledge without over-reliance on explicit wording cues.

These observations motivate our approach in DReaMAD, where we systematically refine LLMs’
strategic reasoning by structuring prior knowledge retrieval and diversifying input perspectives. By
mitigating the sensitivity to prompt variations, our method enhances the robustness and consistency
of LLM decision-making across different strategic environments.
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E ABLATION STUDY SETUP

For Figure 3, we explain the situation used in this experiment. Figure 10 illustrates a Nim game
scenario with a pile of 5 items remaining. On the left (Current State), we present the basic setting and
the task: the player (Agent 1) must decide how many items to take given the rules of the Nim variant.
Below it (Strong Consistency), we see a single-agent reasoning process where the agent internally
evaluates the outcome of different moves and arrives at a conclusion (taking 2 items, leaving 3 to the
opponent).

On the right (Multi-Agent Debate), we show a contrasting approach in which two agents (Agent 1 and
Agent 2) engage in a debate. Each agent proposes a move and justifies why it would be advantageous.
For example, Agent 1 reasons that taking 2 items leaves the opponent with a position that is favorable
for Agent 1 (which is wrong reasoning), while Agent 2 counters by proposing to take 1 item for a
different strategic benefit (correct reasoning).

Figure 10: The situation and debate process of the experiments in Figure 3
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