
A Preliminaries

General Notation. We use the notations: [n] := {1, 2, . . . , n} , [a±R] := [a−R, a+R], and
R+ := [0,∞). Given any distribution D, D

⊗
n denotes the product measure where each marginal

distribution is D. Thus, if we are given n independent samples from D, we write (X1, . . . , Xn) ∼
D

⊗
n. Also, depending on the context, we may use capital Latin characters like X to denote either an

individual sample from a distribution or a collection of samples X := (X1, . . . , Xn). To denote the
j-th component of a vector, we will use either a subscript (e.g., Xj , if the vector is X) or a superscript
(e.g., Xj

i , if the vector is Xi). The convention used will be clear depending on the context. The unit
ℓ2-sphere in d-dimensions that is centered at the origin is denoted by Sd−1. Finally, we give the
following definition for distributions with bounded k-th moments:
Definition A.1. Let D be a distribution over Rd. We say that D has k-th moments bounded by C if

E
X∼D

[∣∣∣〈X − E
X∼D

[X] , v
〉∣∣∣k] ≤ C,∀v ∈ Sd−1.

Linear Algebra Preliminaries. For a vector v ∈ Rd, vi refers to its i-th component and v−i ∈ Rd−1

describes the vector one gets by removing the i-th component from v. We use 1⃗d to refer to the all 1s
vector in Rd. For a pair of vectors x, y ∈ Rd, we write x ≤ y if and only if xi ≤ yi,∀i ∈ [n]. Given a
matrix M ∈ Rd×d, we denote the element at the i-th row and the j-th column by Mij or (M)ij . Also,

we denote the canonical flattening operation of M into a vector by v = M ♭ ∈ Rd2

and the inverse
operation by M = v# ∈ Rd×d. We denote its spectral norm by ∥M∥2 := sup

v∈Sd−1

∥Mv∥2. For

symmetric matrices M , this reduces to ∥M∥2 = sup
v∈Sd−1

∣∣v⊤Mv
∣∣, which is known to be equal to the

largest eigenvalue of M (in absolute value). Also, we denote the trace of M by tr (M) :=
∑
i∈[d]

Mii,

and its Frobenius norm by ∥M∥F :=
√

tr (M⊤M) =

√
d∑

i=1

d∑
j=1

M2
ij =

∥∥M ♭
∥∥
2
. For symmetric

matrices, the latter is equal to the square root of the sum of the squares of its eigenvalues. Moreover,
we consider the Mahalanobis norm (with respect to a non-degenerate covariance matrix Σ), both for
vectors

(
∥x∥Σ :=

∥∥∥Σ− 1
2x
∥∥∥
2

)
and matrices

(
∥M∥Σ :=

∥∥∥Σ− 1
2MΣ− 1

2

∥∥∥
F

)
. Furthermore, we use the

notation ⟨·, ·⟩ to denote inner products, either between vectors x, y ∈ Rd
(
⟨x, y⟩ := x⊤y

)
or between

matrices A,B ∈ Rd×d
(
⟨A,B⟩ := tr

(
AB⊤)). The inner product of a pair of d× d matrices A,B

can be reduced to an inner product between vectors in Rd2

via the identity ⟨A,B⟩ =
〈
A♭, B♭

〉
.

Additionally, given a pair of symmetric matrices A,B ∈ Rd, we write A ⪰ B if and only if
x⊤ (A−B)x ≥ 0,∀x ∈ Rd. Finally, given matrices A ∈ Rn×m and B ∈ Rk×ℓ, the Kronecker
product of A with B is denoted by A ⊗ B ∈ R(nk)×(mℓ). More linear algebra facts appear in
Appendix E.

A.1 Privacy Preliminaries

We define differential privacy and state its closure under post-processing property.
Definition A.2 (Differential Privacy (DP) [DMNS06]). A randomized algorithm M : Xn → Y
satisfies (ε, δ)-differential privacy ((ε, δ)-DP) if for every pair of neighboring datasets X,X ′ ∈ Xn

(i.e., datasets that differ in exactly one entry), we have:

P
M

[M (X) ∈ Y ] ≤ eε · P
M

[M (X ′) ∈ Y ] + δ, ∀Y ⊆ Y.

When δ = 0, we say that M satisfies ε-differential privacy or pure differential privacy.
Lemma A.3 (Post Processing [DMNS06]). If M : Xn → Y is (ε, δ)-DP, and P : Y → Z is any
randomized function, then the algorithm P ◦M is (ε, δ)-DP.

Finally, we discuss a recent technique from [ASZ21] for proving lower bounds for estimation
problems under approximate DP. It is a private version of the well-known Assouad Lemma [Yu97].
Let P be a family of distributions over Xn, where X is the data universe and n is the number of
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samples. Let θ : P → Θ be the quantity associated with the distribution that we want to estimate, and
let ℓ : Θ×Θ → R+ be the pseudo-metric (loss function) for estimating θ. We define the risk of an
estimator θ̂ : Xn → Θ as max

p∈P
E

X∼p
⊗

n

[
ℓ
(
θ̂ (X) , θ (p)

)]
. The minimax risk of (ε, δ)-DP estimators

for a statistical task is defined as:

R (P, ℓ, ε, δ) := min
θ̂ is (ε,δ)-DP

max
p∈P

E
X∼P

⊗
n

[
ℓ
(
θ̂ (X) , θ (p)

)]
.

Let V ⊆ P be a subset of distributions indexed by the points in the hypercube Ed = {−1, 1}d.

Suppose there exists a τ ∈ R, such that for all u, v ∈ Ed, ℓ (θ (pu) , θ (pv)) ≥ 2τ ·
d∑

i=1

1 {ui ̸= vi}.

For every coordinate i ∈ [d], define the following mixture distributions:

p+i :=
2

|Ed|
∑

e∈Ed : ei=1

pe and p−i :=
2

|Ed|
∑

e∈Ed : ei=−1

pe.

The DP Assouad’s method provides a lower bound for the minimax risk by considering the problem
of distinguishing between p+i and p−i.
Lemma A.4 (DP Assouad’s Method [ASZ21]). For all i ∈ [d], let ϕi : Xn → {−1, 1} be a binary
classifier. Then we have the following:

R (P, ℓ, ε, δ) ≥ τ

2
·

d∑
i=1

min
ϕi is (ε,δ)-DP

(
P

X∼p
⊗

n
+i

[ϕi (X) ̸= 1] + P
X∼p

⊗
n

−i

[ϕi (X) ̸= −1]

)
.

Moreover, if ∀i ∈ [d], there exists a coupling (X,Y ) between p+i and p−i with E [dHam (X,Y )] ≤ D,
then:

R (P, ℓ, ε, δ) ≥ dτ

2
·
(
0.9e−10εD − 10δD

)
.

A.2 Exponential Families

In this work, we make frequent use of exponential families due to their expressive power. This gives
us a unified way of dealing with multiple commonly used distributions (e.g., Gaussians, Bernoullis).
We first state the definition of exponential families.
Definition A.5 (Exponential Family). Let S ⊆ Rd and h : S → R+, T : S → Rk. Given η ∈ Rk,
we say that the density function pη belongs to the exponential family E (T, h) if its density can be
written in the form:

pη (x) = h (x) exp
(
η⊤T (x)− Z (η)

)
,∀x ∈ S,

where:

Z (η) = ln

∫
S

h (x) exp
(
η⊤T (x)

)
dx

 .

The functions h and T are referred to as the carrier measure and the sufficient statistics of the family,
respectively. Additionally, Z is known as the log-partition function and η is the natural parameter
vector. Finally, we denote the range of natural parameters by H ⊆ Rk, which is the set of values of
η for which the log-partition function is well-defined (Z (η) < ∞).1

We appeal to the following properties of exponential families.
Proposition A.6 (see [Jor10]). Let E (T, h) be an exponential family parameterized by η ∈ Rk. Then,
for all η in the interior of H, the following hold:

1. The mean of the sufficient statistics is:

µT := E
X∼pη

[T (X)] = ∇ηZ (η) .

1The definition is phrased in terms of continuous distributions, but applies to discrete distributions as well.
Indeed, pη will be a probability mass function, whereas the integral will be replaced by a sum in the definition of
Z. We gave this version of the definition to avoid measure-theoretic notation, since it does not add much to our
results.
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2. The covariance matrix of the sufficient statistics is:

ΣT := E
X∼pη

[
(T (X)− µT ) (T (X)− µT )

⊤
]
= ∇2

ηZ (η) .

3. For all s ∈ Rk such that η + s ∈ H, the MGF of the sufficient statistics is:

E
X∼pη

[
exp

(
s⊤T (X)

)]
= exp (Z (η + s)− Z (η)) .

4. The natural parameter range H is a convex set, and the log-partition function Z is convex.

For a number of facts from probability and statistics (both related and unrelated to exponential
families), we refer the reader to Appendix F.

B Omitted Proofs from Section 2

B.1 Omitted Proofs from Section 2.2

Proof of Lemma 2.2. Without loss of generality, we assume that all the intervals Ij are non-degenerate.
We have:

E
η,X

[
Z + ∥f (X)− (η −m)∥22

]
= E

η,X

∑
j∈[k]

{
Zj + [fj (X)− (ηj −mj)]

2
}

=
∑
j∈[k]

E
η,X

[
Zj + [fj (X)− (ηj −mj)]

2
]

=
∑
j∈[k]

E
η−j

[
E

ηj ,X

[
Zj + [fj (X)− (ηj −mj)]

2
]]

(a)

≥
∑
j∈[k]

E
η−j

[
R2

j

12

]

=
∥R∥22
12

,

where (a) is by a direct application of Lemma 2.1.

If there exists a degenerate interval Ij , we have Zj = fj (X) − (ηj −mj) = Rj = 0. Thus, it
suffices to apply the same argument as before for the non-degenerate intervals. ■

B.2 Omitted Proofs from Section 2.3

This appendix is dedicated to proving Lemma 2.3 and Theorem 2.4.

To prove the former, in addition to the correlation terms defined in Section 2.1, we introduce one
more correlation term. Let X ′

i be an independently drawn sample from pη and let X∼i be the dataset
that is the same as X with Xi replaced by X ′

i . We define:

sj :=

[
R2

j

4
− (ηj −mj)

2

]
[Mj (X∼i)− (ηj −mj)] ,∀j ∈ [k] , (1)

Z̃i :=
∑
j∈[k]

sj (Tj (Xi)− µT,j) . (2)

This measures the effect that replacing an individual sample has on the output of the estimator.
Observe that, conditioning on η, X∼i and Xi are independent. This implies that E

X∼i,Xi,M

[
Z̃i

]
= 0

and Var
X∼i,Xi,M

(
Z̃i

)
= E

X∼i,Xi,M

[
Z̃2
i

]
. Additionally, calculating the variance of Z̃i requires us to

3



reason about the covariance matrix of the sufficient statistics ΣT , since the calculation involves terms
of the form (Tj1 (Xi)− µT,j1) (Tj2 (Xi)− µT,j2) , j1, j2 ∈ [k].

The previous remarks are summarized in the following lemma.

Lemma B.1. Conditioning on η, it holds that:

E
X∼i,Xi,M

[
Z̃i

]
= 0,

Var
X∼i,Xi,M

(
Z̃i

)
= E

X∼i,Xi,M

[
Z̃2
i

]
= E

X∼i,M

[
s⊤ΣT s

]
.

Proof. We start by computing the mean. We have:

E
X∼i,Xi,M

[
Z̃i

]
= E

X∼i,Xi,M

∑
j∈[k]

sj (Tj (Xi)− µT,j)


=
∑
j∈[k]

E
X∼i,Xi,M

[sj (Tj (Xi)− µT,j)]

(a)
=
∑
j∈[k]

E
X∼i,M

[sj ]
���������:0
E
Xi

[Tj (Xi)− µT,j ]

= 0,

where (a) relies on the independence of sj =
[
R2

j

4 − (ηj −mj)
2
]
[Mj (X∼i)− (ηj −mj)] and

Tj (Xi)− µT,j conditioned on η.

We now proceed with the variance:

Var
X∼i,Xi,M

(
Z̃i

)
= E

X∼i,Xi,M

[
Z̃2
i

]
= E

X∼i,Xi,M

 ∑
j1∈[k]

∑
j2∈[k]

sj1sj2 (Tj1 (Xi)− µT,j1) (Tj2 (Xi)− µT,j2)


=
∑

j1∈[k]

∑
j2∈[k]

E
X∼i,M

[sj1sj2 ] E
Xi

[(Tj1 (Xi)− µT,j1) (Tj2 (Xi)− µT,j2)]

(a)
=
∑

j1∈[k]

∑
j2∈[k]

E
X∼i,M

[sj1sj2 ] ΣT,j1j2

= E
X∼i,M

 ∑
j1∈[k]

∑
j2∈[k]

sj1ΣT,j1j2sj2


= E

X∼i,M

[
s⊤ΣT s

]
.

where (a) is by the second part of Proposition A.6. ■

Now, we show how to upper-bound E
X,M

[Zi] using properties of differential privacy. We appeal to

the definition of DP to relate E
X,M

[Zi] with E
X∼i,Xi,M

[
Z̃i

]
and E

X∼i,Xi,M

[
Z̃2
i

]
. The proof involves

splitting Zi in its positive and negative components and applying the definition of DP to them. The
main steps of the proof are standard (e.g., see [SU17]), but we include everything for completeness.
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Proof of Lemma 2.3. Consider the random variables Zi,+ = max {Zi, 0} and Zi,− = −min {Zi, 0}.
These random variables are non-negative, so for any T > 0, we have:

E
X,M

[Zi] = E
X,M

[Zi,+]− E
η,X,M

[Zi,−]

=

∞∫
0

P
X,M

[Zi,+ > t] dt−
∞∫
0

P
X,M

[Zi,− > t] dt

=

∞∫
0

P
X,M

[Zi > t] dt−
∞∫
0

P
X,M

[Zi < −t] dt

=

T∫
0

P
X,M

[Zi > t] dt−
T∫

0

P
X,M

[Zi < −t] dt

+

∞∫
T

P
X,M

[Zi > t] dt−
∞∫
T

P
X,M

[Zi < −t] dt (3)

We focus our attention on the first two terms of (3). We consider the sets S+,Xi , S−,Xi ⊆ Rk:

S+,Xi
:=

Y ∈ Rk :
∑
j∈[k]

[
R2

j

4
− (ηj −mj)

2

]
[Yj − (ηj −mj)] (Tj (Xi)− µT,j) ≥ t

 ,

S−,Xi
:=

Y ∈ Rk :
∑
j∈[k]

[
R2

j

4
− (ηj −mj)

2

]
[Yj − (ηj −mj)] (Tj (Xi)− µT,j) ≤ −t

 .

By a direct application of the definition of DP on S+,Xi and S−,Xi
2 for the neighboring datasets X

and X∼i we have:

T∫
0

P
X,M

[Zi > t] dt−
T∫

0

P
X,M

[Zi < −t] dt

=

T∫
0

P
X,M

[M (X) ∈ S+,Xi
] dt−

T∫
0

P
X,M

[M (X) ∈ S−,Xi
] dt

≤
T∫

0

(
eε P

X∼i,Xi,M
[M (X∼i) ∈ S+,Xi ] + δ

)
dt

−
T∫

0

e−ε

(
P

X∼i,Xi,M
[M (X∼i) ∈ S−,Xi

]− δ

)
dt

≤
T∫

0

(
eε P

X∼i,Xi,M

[
Z̃i > t

]
+ δ

)
dt−

T∫
0

e−ε

(
P

X∼i,Xi,M

[
Z̃i < −t

]
− δ

)
dt

=
(
1 + e−ε

)
δT + eε

T∫
0

P
X∼i,Xi,M

[
Z̃i > t

]
dt− e−ε

T∫
0

P
X∼i,Xi,M

[
Z̃i < −t

]
dt.

2These are random subsets of Rk, since they depend on the random vector Xi (η is assumed to be fixed).
This does not affect the way the definition of privacy is applied.
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Under the assumption that ε ∈ [0, 1], it holds that eε ≤ 1 + 2ε and 1 ≥ e−ε ≥ 1 − ε ≥ 1 − 2ε.
Combined with the above, this yields:

T∫
0

P
X,M

[Zi > t] dt−
T∫

0

P
X,M

[Zi < −t] dt

≤ 2δT + (2ε+ 1)

T∫
0

P
X∼i,Xi,M

[
Z̃i > t

]
dt+ (2ε− 1)

T∫
0

P
X∼i,Xi,M

[
Z̃i < −t

]
dt

= 2δT + 2ε

T∫
0

(
P

X∼i,Xi,M

[
Z̃i > t

]
+ P

X∼i,Xi,M

[
Z̃i < −t

])
dt

+

T∫
0

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt

= 2δT + 2ε

T∫
0

P
X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣ > t
]
dt+

T∫
0

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt

≤ 2δT + 2ε

∞∫
0

P
X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣ > t
]
dt+

T∫
0

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt

= 2δT + 2ε E
X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣]+ T∫
0

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt

= 2δT + 2ε E
X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣]+ ∞∫
0

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt

−
∞∫
T

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt.

Defining Z̃i,+ = max
{
Z̃i, 0

}
and Z̃i,− = −min

{
Z̃i, 0

}
, we get:

T∫
0

P
X,M

[Zi > t] dt−
T∫

0

P
X,M

[Zi < −t] dt

≤ 2δT + 2ε E
X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣]+ ( E
X∼i,Xi,M

[
Z̃i,+

]
− E

X∼i,Xi,M

[
Z̃i,−

])

−
∞∫
T

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt

≤ 2δT + 2ε E
X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣]+
�������:0

E
X∼i,Xi,M

[
Z̃i

]
−

∞∫
T

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt

= 2δT + 2ε E
X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣]− ∞∫
T

(
P

X∼i,Xi,M

[
Z̃i > t

]
− P

X∼i,Xi,M

[
Z̃i < −t

])
dt, (4)

where we appealed to Lemma B.1 along the way.
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The second version of Fact F.4 for X =
∣∣∣Z̃i

∣∣∣ , Y = 1, and Lemma B.1 yield:

E
X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣] ≤√ E
X∼i,Xi,M

[
Z̃2
i

]
=
√

E
X∼i,M

[s⊤ΣT s]. (5)

Substituting (4) and (5) into (3), we get:

E
X,M

[Zi] ≤ 2δT + 2ε
√

E
X∼i,M

[s⊤ΣT s] +

∞∫
T

(
P

X,M
[Zi > t]− P

X,M
[Zi < −t]

)
dt

+

∞∫
T

(
P

X∼i,Xi,M

[
Z̃i < −t

]
− P

X∼i,Xi,M

[
Z̃i > t

])
dt

≤ 2δT + 2ε
√

E
X∼i,M

[s⊤ΣT s] +

∞∫
T

(
P

X,M
[|Zi| > t] + P

X∼i,Xi,M

[∣∣∣Z̃i

∣∣∣ > t
])

dt. (6)

We now show how to bound each of the tail probabilities involving Zi and Z̃i. For Zi, we have:

|Zi| =

∣∣∣∣∣∣
∑
j∈[k]

[
R2

j

4
− (ηj −mj)

2

]
[Mj (X)− (ηj −mj)] (Tj (Xi)− µT,j)

∣∣∣∣∣∣
≤
∑
j∈[k]

[
R2

j

4
− (ηj −mj)

2

]
|Mj (X)− (ηj −mj)| |Tj (Xi)− µT,j |

(a)

≤
∥R∥3∞

4

∑
j∈[k]

|Tj (Xi)− µT,j |

(b)

≤
∥R∥3∞

4

√
k ∥T (Xi)− µT ∥2 ,

where (a) relies on the assumption |Mj (Xi)− (ηj −mj)| ≤ Rj ,∀j ∈ [k], and (b) uses the first
version of Fact F.4 for x = 1⃗k, yj = |Tj (Xi)− µT,j | ,∀j ∈ [k].

The above yields:

∞∫
T

P
X,M

[|Zi| > t] dt ≤
∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 >

4t

∥R∥3∞
√
k

]
dt. (7)

Upper-bounding the term involving Z̃i in similar fashion and substituting (7) to (6), we get:

E
X,M

[Zi] ≤ 2δT + 2ε
√

E
X∼i,M

[s⊤ΣT s] + 2

∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 >

4t

∥R∥3∞
√
k

]
dt.

■

Now, we give the complete proof of Theorem 2.4.

Proof of Theorem 2.4. By Lemma 2.2 and (3), we have:

E
η,X,M

[Z] ≥
∥R∥22
24

.
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Additionally, by Lemma 2.3, we have:

E
η,X,M

[Z]

=
∑
i∈[n]

E
η,X,M

[Zi]

=
∑
i∈[n]

E
η

[
E

X,M
[Zi]

]

≤
∑
i∈[n]

E
η

2δT + 2ε
√

E
X∼i,M

[s⊤ΣT s] + 2

∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 >

4t

∥R∥3∞
√
k

]
dt


≤ n

2δT + 2εE
η

[√
E

X∼i,M
[s⊤ΣT s]

]
+ 2

∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 >

4t

∥R∥3∞
√
k

]
dt

 .

Combining the two, we get the desired result. ■

We conclude this appendix with three remarks about how Theorem 2.4 is applied.

Remark B.2. In order to apply Theorem 2.4, it is necessary for the parameter range H to have a
subset that is a (potentially degenerate) axis-aligned hyperrectangle. This is a very mild assumption,
since H is known to be convex (see the last part of Proposition A.6). Moreover, if H has a subset
that is a hyperrectangle, but is not axis-aligned, it suffices to remark that, for any rotation matrix
U ∈ Rk×k, η⊤T (x) = (Uη)

⊤
(UT (x)). This mapping is bijective and preserves the ℓ2-distance

between vectors. Thus, we can re-parameterize our exponential family in a way that will make the
aforementioned hyperrectangle axis-aligned and lower bounds proven for estimating the natural
parameter vector of the new family will hold for the original one as well.

Remark B.3. The last term in the upper bound of Lemma 2.3 involves the tail of the random variable
∥T (Xi)− µT ∥2. The obvious way to bound that term is:

∞∫
T

P
Xi

[
∥T (Xi)− µT ∥22 >

16t2

∥R∥6∞ k

]
dt ≤

∞∫
T

E
Xi

[
∥T (Xi)− µT ∥22

]
16t2

∥R∥6
∞k

dt

=
∥R∥6∞ ktr (ΣT )

16

∞∫
T

dt

t2

=
∥R∥6∞ ktr (ΣT )

16T
.

Following the steps we sketched previously, this approach leads to a range for δ of the form δ ≤
Õ
(

1
n2

)
. However, when reasoning about the cost of approximate DP for various statistical tasks, in

order to claim that a full characterization has been achieved, it is generally the case that lower bounds
must be shown for δ as large as Õ

(
1
n

)
. To achieve this, we will apply the following strategy. First,

observe that we can approximate ∥T (X)− µT ∥2 using an ε-net (see Definition E.1). In particular, if

8



N 1
4

is a 1
4 -net of Sk−1 of minimum cardinality, using Facts E.3, E.4, and a union bound, we get that:

∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 >

4t

∥R∥3∞
√
k

]
dt

≤
∞∫
T

P
Xi

 1

1− 1
4

· sup
v∈N 1

4

|⟨v, T (Xi)− µT ⟩| >
4t

∥R∥3∞
√
k

 dt

=

∞∫
T

P
Xi

 sup
v∈N 1

4

|⟨v, T (Xi)− µT ⟩| >
3t

∥R∥3∞
√
k

 dt

≤
∣∣∣N 1

4

∣∣∣ ∞∫
T

P
Xi

[
|⟨v, T (Xi)− µT ⟩| >

3t

∥R∥3∞
√
k

]
dt

≤ 9k
∞∫
T

P
Xi

[
|⟨v, T (Xi)− µT ⟩| >

3t

∥R∥3∞
√
k

]
dt.

Now, to reason about the tail probabilities of |⟨v, T (Xi)− µT ⟩|, it suffices to leverage the fact that
the MGFs of univariate projections of the sufficient statistics of exponential families are well-defined
(see the third part of Proposition A.6). This renders it possible to prove Chernoff-type bounds in
the context that we are considering. In practice, we will not have to prove our own bounds, instead
appealing to various known bounds from the literature.
Remark B.4. In the above discussion, we have largely assumed that we want to prove lower bounds
under approximate DP, corresponding to δ > 0. However, applying the method becomes significantly
simpler for pure DP. Indeed, the reason we had to split R+ in the intervals [0, T ] and (T,∞) in the
proof of Lemma 2.3 and work separately with each interval is because, if we applied the definition of
DP to each of P

X,M
[Zi > t] , P

X,M
[Zi < −t] while integrating over all of R+, we would have to deal

with a term of the form
∞∫
0

δ dt = ∞. This would render our upper bound on the correlation terms

vacuous and it would be impossible to obtain any meaningful lower bounds. On the other hand, for
δ = 0, it suffices to integrate over all of R+ (corresponding to T = ∞). This would eventually lead

to the bound nE
η

[√
E

X∼i,M
[s⊤ΣT s]

]
≥ ∥R∥2

2

48ε .

C Omitted Proofs from Section 3

C.1 Omitted Proofs from Section 3.1

The first step of the proof is to write the Gaussian N (0,Σ) as an exponential family. By Fact F.3, we
have that the density can be written in the form:

pη (x) = h (x) exp
(
η⊤T (x)− Z (η)

)
,

h (x) = 1,

T (x) = −1

2

(
xx⊤)♭ ,

η =
(
Σ−1

)♭
,

Z (η) =
d

2
ln (2π)− 1

2
ln
(
det
(
η#
))

.

Observe that the natural parameter vector η is the flattening of the precision matrix Σ−1. However, we
cannot use this representation, because Σ−1 is symmetric. Indeed, this implies that the components
of η cannot be generated independently, as is required by Theorem 2.4. For that reason, we consider
an alternative parameterization.

9



Lemma C.1. Let N (0,Σ) be a d-dimensional Gaussian with unknown covariance Σ. Then,
it belongs to an exponential family with h0 ≡ h, η0 = 2U ♭, T0 ≡ T,Z0 (η0) = d

2 ln (2π) −
1
2 ln

(
det

(
η#
0 +(η#

0 )
⊤

2

))
where U ∈ Rd×d is an upper triangular matrix with:

Uij :=


1
2

(
Σ−1

)
ii
, i = j(

Σ−1
)
ij
, j > i

0, i > j

.

In particular, it holds that Z (η) = Z0 (η0) and η⊤T (x) = η⊤0 T0 (x).

Proof. Observe that η# = Σ−1 = U + U⊤ =
η#
0 +(η#

0 )
⊤

2 =⇒ Z (η) = Z0 (η0). Additionally, we
have:

η⊤T (x) =

〈(
Σ−1

)♭
,−1

2

(
xx⊤)♭〉 = −1

2

〈
Σ−1, xx⊤〉 = −1

2
x⊤Σ−1x

= −1

2
x⊤ (U + U⊤)x

= −1

2
x⊤Ux− 1

2
x⊤U⊤x

(a)
= −x⊤Ux

= −
〈
U, xx⊤〉

=

〈
2U ♭,−1

2

(
xx⊤)♭〉

= η⊤0 T0 (x) ,

where (a) used the fact that x⊤U⊤x ∈ R =⇒ x⊤U⊤x =
(
x⊤U⊤x

)⊤
= x⊤Ux.

Consequently, we have pη (x) = h (x) exp
(
η⊤T (x)− Z (η)

)
= h0 (x) exp

(
η⊤0 T0 (x)− Z0 (η0)

)
,

verifying the equivalence of the two parameterizations. ■

We now consider the following process to generate η0. Roughly speaking, modulo the parame-
terization issues mentioned above, the process consists of sampling the elements of the precision
matrix uniformly at random from intervals of width 1

2d . For the diagonal elements, these intervals
are centered at 3

4 , whereas for the non-diagonal elements they are centered at the origin. Similar
constructions have been employed previously, e.g., in [KLSU19].

We proceed to identify some properties of the matrices generated by the above process that will help
us to prove Theorem 3.1.

Lemma C.2. Let (Σ, η0) ∈ Rd×d × Rd2

be the output of Algorithm 1. We have that:

1. I ⪯ Σ ⪯ 2I.

2. The components of η0 are supported on intervals of the form:

Iℓ =


[
3
4 ± 1

4d

]
, (ℓ− 1) mod d = (ℓ− 1) div d[

± 1
2d

]
, (ℓ− 1) mod d > (ℓ− 1) div d

{0} , (ℓ− 1) mod d < (ℓ− 1) div d
.

3. The components of η0 are independent and it holds that ∥R∥∞ = 1
d and ∥R∥22 =

1
2

(
1− 1

2d

)
≥ 1

4 .

4. The vector m ∈ Rd2

is equal to:

mℓ =

{
3
4 , ℓ = (k − 1) d+ k, for some k ∈ [d]
0, otherwise .

10



Algorithm 1 Covariance Matrix Sampling
Input: d ∈ IN.
Output: A pair (Σ, η0).

1: procedure COVSAMP(d)
2: for i ∈ [d] do
3: for j ∈ [d] \ [i− 1] do
4: if i = j then
5: Draw an independent sample

(
Σ−1

)
ii
∼ U

[
3
4 ± 1

4d

]
.

6: Let Uii =
1
2

(
Σ−1

)
ii

.
7: else
8: Draw an independent sample

(
Σ−1

)
ij
∼ U

[
± 1

4d

]
.

9: Let
(
Σ−1

)
ji
=
(
Σ−1

)
ij

.
10: Let Uij =

(
Σ−1

)
ij

and Uji = 0.
11: end if
12: end for
13: end for
14: Let η0 = 2U ♭.
15: return (Σ, η0).
16: end procedure

Proof. 1. By a direct application of Theorem E.10, we get that the eigenvalues of Σ−1 all lie
in the interval

[
1
2 , 1
]
. Thus, we have 1

2 I ⪯ Σ−1 ⪯ I ⇐⇒ I ⪯ Σ ⪯ 2I.

2. Observe that, the first of the three branches in the definition corresponds to the diagonal ele-
ments of η#0 , the second corresponds to those above the diagonal, and the third corresponds
to those below the diagonal. The result follows directly from this remark.

3. The non-constant components of η0 are all independent draws from a uniform distribution,
which immediately yields the independence property. In addition to that, we have d non-
constant components taking values in an interval of length 1

2d , and d(d−1)
2 non-constant

components take values in an interval of length 1
d . This implies that ∥R∥∞ = 1

d and
∥R∥22 = d · 1

4d2 + d(d−1)
2 · 1

d2 = 1
2

(
1− 1

2d

)
.

4. Observe that the non-diagonal elements of η#0 = 2U are either constant and equal to 0 or
take values in a 0-centered interval. This implies that the only non-zero elements of m are
those corresponding to the diagonal elements of

(
Σ−1

)
ii

. This yields the desired result.

■

Remark C.3. Note that Theorem 3.1 holds only for α = O (1). In contrast, prior fingerprinting
lower bounds for mean estimation of product distributions and Gaussians gave non-trivial results in
the low-accuracy regime α = O

(√
d
)

(see, e.g., the results in Section G). In principle, it may be
able to achieve similar lower bounds for covariance estimation in Frobenius norm, as the Frobenius
diameter of the set of matrices that satisfy I ⪯ Σ ⪯ 2I is equal to

√
d. However, by the third part of

the above lemma, our construction only has an upper bound on this diameter of O (1). This makes
estimation trivial for any α which is larger, as one could output an arbitrary parameter vector within
the set. Thus, to prove a lower bound for all α = O

(√
d
)

, one must consider a different construction,
and it is not merely a deficiency of our analysis.

We show that, if one has an estimator for the covariance matrix Σ, then this implies an estimator
for the natural parameter vector η0. Therefore, a lower bound for the latter problem implies a lower
bound for the former, allowing us to focus on lower bounds for estimating the natural parameter
vector. More precisely, we present an (ε, δ)-DP mechanism TM : Rn×d →

⊗
j∈[d2]

Ij that satisfies

11



the guarantee E
X,TM

[
∥TM (X)− (η0 −m)∥22

]
≤ α2. TM assumes the existence of an (ε, δ)-DP

mechanism M : Rn×d → Rd×d such that E
X,M

[
∥M (X)− Σ∥2Σ

]
≤ α2

8 .

Algorithm 2 From Covariance Estimation to Natural Parameter Estimation

Input: X = (X1, . . . , Xn) ∼ N (0,Σ)
⊗

n and a mechanism M : Rn×d → Rd×d.
Output: TM (X) ∈

⊗
j∈[d2]

Ij .

1: procedure TM (X)
2: Let Σ̂ = M (X).
3: for i ∈ [d] do ▷ Σ̂−1 may not be equal to any possible Σ−1 generated by Algorithm 1.
4: for j ∈ [d] do
5: Let Σ̃−1

ij be the projection of
(
Σ̂−1

)
ij

onto the support of Σ−1.

6: end for
7: end for
8: Let Ũ ∈ Rd×d be an upper triangular matrix such that Σ̃−1 = Ũ + Ũ⊤.
9: Let TM (X) = 2Ũ ♭ −m.

10: return TM (X).
11: end procedure

Lemma C.4. Let Σ ∈ Rd×d be a covariance generated by Algorithm 1, and X ∼ N (0,Σ)
⊗

n

be a dataset. If M : Rn×d → Rd×d is an (ε, δ)-DP mechanism with E
X,M

[
∥M (X)− Σ∥2Σ

]
≤

α2

8 ≤ 1
32 , then Algorithm 2 constructs an (ε, δ)-DP mechanism TM : Rn×d →

⊗
j∈[d2]

Ij that satisfies

E
X,TM

[
∥TM (X)− (η0 −m)∥22

]
≤ α2 ≤ 1

4 .

Proof. The privacy guarantee of TM is an immediate consequence of the guarantee of M and
Lemma A.3. Additionally, the only randomness used by TM is that used by M . Having established
that, we focus our attention on the accuracy guarantee. By the definitions of η0 and TM , we have:

E
X,TM

[
∥TM (X)− (η0 −m)∥22

]
= 4 E

X,M

[∥∥∥Ũ − U
∥∥∥2
F

]
. (8)

Additionally, the definitions of U and Ũ yield:

∥∥∥Ũ − U
∥∥∥2
F
=
∑
j≥i

(
Ũij − Uij

)2
=

1

4

∑
i∈[d]

[(
Σ̃−1

)
ii
−
(
Σ−1

)
ii

]2
+

1

2

∑
i ̸=j

[(
Σ̃−1

)
ij
−
(
Σ−1

)
ij

]2
≤ 1

2

∥∥∥Σ̃−1 − Σ−1
∥∥∥2
F

≤ 1

2

∥∥∥Σ̂−1 − Σ−1
∥∥∥2
F
, (9)

where the last inequality uses the fact that the projection we perform in Line 5 ensures that∣∣∣Σ̃−1
ij −

(
Σ−1

)
ij

∣∣∣ ≤ ∣∣∣∣(Σ̂−1
)
ij
−
(
Σ−1

)
ij

∣∣∣∣ ,∀i, j ∈ [d].

Combining (8) and (9), we get:

E
X,TM

[
∥TM (X)− (η0 −m)∥22

]
≤ 2 E

X,M

[∥∥∥Σ̂−1 − Σ−1
∥∥∥2
F

]
, (10)
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Now, observe that:∥∥∥Σ̂−1 − Σ−1
∥∥∥
F
=
∥∥∥Σ− 1

2

(
I− Σ

1
2 Σ̂−1Σ

1
2

)
Σ− 1

2

∥∥∥
F

(a)

≤
∥∥∥Σ− 1

2

∥∥∥2
2

∥∥∥I− Σ
1
2 Σ̂−1Σ

1
2

∥∥∥
F

(b)

≤
∥∥∥Σ−1 − Σ̂−1

∥∥∥
Σ−1

=
∥∥∥Σ−1 − Σ̂−1

∥∥∥
Σ− 1

2 Σ̂− 1
2 Σ̂Σ̂− 1

2 Σ− 1
2

(c)
=
∥∥∥Σ̂ 1

2Σ
1
2

(
Σ−1 − Σ̂−1

)
Σ

1
2 Σ̂

1
2

∥∥∥
Σ̂

=
∥∥∥Σ̂− Σ̂

1
2Σ

1
2 Σ̂−1Σ

1
2 Σ̂

1
2

∥∥∥
Σ̂

(d)
=
∥∥∥Σ̂− Σ

∥∥∥
Σ̂

(e)

≤ 2
∥∥∥Σ̂− Σ

∥∥∥
Σ
,

= 2 ∥TM (X)− Σ∥Σ , (11)

where (a) uses Fact E.6, (b) uses the fact that Σ−1 ⪯ I (which holds by the first part of Lemma C.4),
(c) uses Lemma E.7 for A = Σ− 1

2 Σ̂− 1
2 , (d) is by Lemma E.8, and (e) is by Lemma E.9.

Substituting based on (11) into (10), we get:

E
X,TM

[
∥TM (X)− (η0 −m)∥22

]
≤ 8 E

X,M

[
∥M (X)− Σ∥2Σ

]
,

which yields the desired result. ■

An immediate consequence of the above is the following:

Corollary C.5. Let Σ ∈ Rd×d be a covariance generated by Algorithm 1, and let X ∼ N (0,Σ)
⊗

n.

If any (ε, δ)-DP mechanism T : Rn×d →
⊗

j∈[d2]

Ij with E
X,T

[
∥T (X)− (η0 −m)∥22

]
≤ 8α2 ≤ 1

4

requires at least n ≥ nη0 samples, the same sample complexity lower bound holds for any (ε, δ)-DP

mechanism M : Rn×d → Rd×d that satisfies E
X,M

[
∥M (X)− Σ∥2Σ

]
≤ α2.

Having established the reduction from estimating η0 with respect to the ℓ2-norm to estimating Σ with
respect to the Mahalanobis norm, it remains now to apply Theorem 2.4 to the former problem. For
that reason, we work towards bounding the various quantities involved in it.

First, in accordance with Theorem 2.4, we assume the existence of an (ε, δ)-DP mechanism
M : Rn×d →

⊗
j∈[d2]

Ij such that:

E
X,M

[
∥M (X)− (η0 −m)∥22

]
≤ 8α2 ≤ 1

96
≤

∥R∥22
24

, (12)

where we appealed to the third part of Lemma C.2.

The next step to establishing our lower bound is reasoning about the quantity E
X∼i,M

[
s⊤ΣT0s

]
.

To do that, we identify an expression for ΣT0 for N (0,Σ) and use a result from [DKK+16]. By
Lemma C.1, we have T0 ≡ T =⇒ ΣT0 = ΣT . This yields:

ΣT = E
Y∼N (0,Σ)

[
T (Y )T (Y )

⊤
]
− µTµ

⊤
T

=
1

4
E

Y∼N (0,Σ)

[(
Y Y ⊤)♭ ((Y Y ⊤)♭)⊤]− 1

4
Σ♭
(
Σ♭
)⊤

=
1

4
E

Y∼N (0,Σ)

[
(Y ⊗ Y ) (Y ⊗ Y )

⊤
]
− 1

4
Σ♭
(
Σ♭
)⊤

(13)
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Observe now that, based on the definition we gave for s in Section 2 and the characteristics of the
particular exponential family that we are considering here, the matrix s# ∈ Rd×d is symmetric. We
use this observation to connect our problem with the following result:

Proposition C.6. [Theorem 4.2 from [DKK+16]] Let Ssym =
{
M ♭ ∈ Rd2

: M = M⊤
}

and X ∼

N (0,Σ). Let M be the d2 × d2 matrix given by M = E
[
(X ⊗X) (X ⊗X)

⊤
]
. Then, as an

operator on Ssym, we have:

M = 2Σ⊗2 +
(
Σ♭
)(

Σ♭
)⊤

.

Using the above, we prove the following lemma:

Lemma C.7. Let Σ ∈ Rd×d be a covariance matrix generated by Algorithm 1, and let X ∼
N (0,Σ)

⊗
n be a dataset. Also, let M : Rn×d →

⊗
j∈[d2]

Ij be an (ε, δ)-DP mechanism such that

E
X,M

[
∥M (X)− (η0 −m)∥22

]
≤ 8α2. Then, it holds that:

E
X∼i,M

[
s⊤ΣT s

]
≤ α2

d4
.

Proof. By Proposition C.6 and (13), we get that:

E
X∼i,M

[
s⊤ΣT s

]
=

1

4
E

X∼i,M

[
s⊤ E

Y∼N (0,Σ)

[
(Y ⊗ Y ) (Y ⊗ Y )

⊤
]
s

]
− 1

4
E

X∼i,M

[
s⊤Σ♭

(
Σ♭
)⊤

s

]
=

1

4
E

X∼i,M

[
s⊤
(
2Σ⊗2 +

(
Σ♭
)(

Σ♭
)⊤)

s

]
− 1

4
E

X∼i,M

[
s⊤Σ♭

(
Σ♭
)⊤

s

]
=

1

2
E

X∼i,M

[
s⊤Σ⊗2s

]
=

1

2
E

X∼i,M

[
∥s∥22

s⊤

∥s∥2
Σ⊗2 s

∥s∥2

]
(a)

≤ 1

2

∥∥Σ⊗2
∥∥
2

E
X∼i,M

[
∥s∥22

]
(b)
=

1

2
∥Σ∥22 E

X∼i,M

[
∥s∥22

]
(c)

≤ 2 E
X∼i,M

 ∑
j∈[d2]

[
R2

j

4
− (η0,j −mj)

2

]2
[Mj (X∼i)− (η0,j −mj)]

2


≤

∥R∥4∞
16

2 E
X∼i,M

[
∥M (X∼i)− (η0 −m)∥22

]
(d)

≤
∥R∥4∞

8
· 8α2

= ∥R∥4∞ α2

=
α2

d4
,

where (a) is by the definition of the spectral norm, (b) is by Fact E.5, (c) is by the first part of
Lemma C.2, (d) is because E

X,M

[
∥M (X)− (η0 −m)∥22

]
≤ 8α2, and the last equality is by the

third part of Lemma C.2. ■

Now, it remains to reason about the terms involving the tail probabilities of ∥T (Xi)− µT ∥2. Our
approach closely follows the strategy sketched in Remark B.3. The following lemma is devoted to
implementing this.
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Lemma C.8. Let Σ ∈ Rd×d be a covariance matrix generated by Algorithm 1, and Xi ∼ N (0,Σ).
For T ≥ 1

3d2 , we have:
∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 > 4d2t

]
dt ≤ 2

3cd2
e−d2(3cT−2 ln(3)),

where c ≈ 0.036425.

Proof. Setting Y := Σ− 1
2Xi ∼ N (0, I), we observe that:

∥T (Xi)− µT ∥2 =
1

2

∥∥∥(XiX
⊤
i

)♭ − Σ♭
∥∥∥
2
=

1

2

∥∥XiX
⊤
i − Σ

∥∥
F

=
1

2

∥∥∥∥Σ 1
2

[(
Σ− 1

2Xi

)(
Σ− 1

2Xi

)⊤
− I
]
Σ

1
2

∥∥∥∥
F

(a)

≤

∥∥∥Σ 1
2

∥∥∥2
2

2

∥∥Y Y ⊤ − I
∥∥
F

(b)

≤
∥∥∥Y Y ⊤ − E

[
Y Y ⊤]∥∥∥

F
,

where (a) uses Fact E.6, and (b) uses the assumption that Σ ⪯ 2I and the remark that, for symmetric
PSD matrices,

∥∥∥Σ 1
2

∥∥∥
2
=
√
∥Σ∥2.

Thus, we have:
∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 > 4d2t

]
dt ≤

∞∫
T

P
[∥∥∥Y Y ⊤ − E

[
Y Y ⊤]∥∥∥

F
> 4d2t

]
dt.

Working as we described in Remark B.3, we get:
∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 > 4d2t

]
dt

≤
∞∫
T

P
[∥∥∥∥(Y Y ⊤ − E

[
Y Y ⊤])♭∥∥∥∥

2

> 4d2t

]
dt

≤ 9d
2

∞∫
T

P
[∣∣∣∣〈M ♭,

(
Y Y ⊤ − E

[
Y Y ⊤])♭〉∣∣∣∣ > 3d2t

]
dt

≤ 9d
2

∞∫
T

P
[∣∣∣〈M,Y Y ⊤ − E

[
Y Y ⊤]〉∣∣∣ > 3d2t

]
dt

= 9d
2

∞∫
T

P
[∣∣∣Y ⊤MY − E

[
Y ⊤MY

]∣∣∣ > 3d2t
]
dt

= 9d
2

∞∫
T

P
[∣∣∣∣Y ⊤M +M⊤

2
Y − E

[
Y ⊤M +M⊤

2
Y

]∣∣∣∣ > 3d2t

]
dt (14)

where M is a matrix with ∥M∥F = 1.

We have that Y ∼ N (0, I), and that M+M⊤

2 is symmetric, so we can apply Fact F.7 to (14). Since∥∥∥M+M⊤

2

∥∥∥
F
≤

∥M∥F+∥M⊤∥
F

2 ≤ 1 and
∥∥∥M+M⊤

2

∥∥∥
2
≤
∥∥∥M+M⊤

2

∥∥∥
F
≤ 1, we get:

∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 > 4d2t

]
dt ≤ 2 · 9d

2

∞∫
T

exp
(
−cmin

{
9d4t2, 3d2t

})
dt.
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By our assumption that on T , we get min
{
9d4t2, 3d2t

}
= 3d2t, ∀t ≥ T . This leads to:

∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 > 4d2t

]
dt ≤ 2 · 9d

2

∞∫
T

exp
(
−3cd2t

)
dt =

2 · 9d2

3cd2
e−3cd2T

=
2

3cd2
e−d2(3cT−2 ln(3)).

■

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. We assume that the process generating Σ is that of Algorithm 1. By the first
part of Lemma C.2, the condition I ⪯ Σ ⪯ 2I is satisfied. We assume that there exists an (ε, δ)-
DP mechanism M : Rn×d →

⊗
j∈[d2]

Ij that satisfies E
X,M

[
∥M (X)− (η0 −m)∥22

]
≤ 8α2 ≤ 1

96 .

Combining the results of Lemmas C.7, and C.8, with Theorem 2.4, we get:

n

(
2δT + 2

αε

d2
+

4

3cd2
e−d2(3cT−2 ln(3))

)
≥ 1

48

(
1− 1

2d

)
≥ 1

96
. (15)

It remains to set the values of T and δ appropriately so that:

δT ≥ 4

3cd2
e−d2(3cT−2 ln(3)) and 3nδT ≤ 1

192
.

The first of these two conditions yields:

δT ≥ 4

3cd2
e−d2(3cT−2 ln(3)) ⇐⇒ Ted

2(3cT−2 ln(3)) ≥ 4

3cd2
· 1
δ
.

We set T = 1
3c

(
2 ln (3) + 1

d2 ln
(
1
δ

))
. This satisfies the constraint of Lemma C.8. Then, the above

becomes:
1

3c

(
2 ln (3) +

1

d2
ln

(
1

δ

))
1

δ
≥ 1

cd2
· 1
δ

⇐⇒ ln

(
1

δ

)
≥ 3− 2 ln (3) d2.

The RHS of the last inequality is < 0 for d ≥ 2. For d = 1, we get the constraint δ ≤ e2 ln(3)−3 ≈
0.44. Respecting this constraint, we proceed to identify a range of values for δ such that 3nδT ≤ 1

192 .
This is equivalent to:

δ

c

(
2 ln (3) +

1

d2
ln

(
1

δ

))
≤ 1

192n
⇐⇒ δ

(
1 +

ln
(
1
δ

)
2 ln (3) d2

)
≤ c

384 ln (3)n
. (16)

The above inequality yields a constraint on δ. To ensure that ln
(
1
δ

)
≥ 0, we need c

384 ln(3)nδ − 1 ≥
0 ⇐⇒ δ ≤ c

384 ln(3)n . We know from Lemma C.8 value of c is c ≈ 0.036425. Thus, this last
constraint is stricter than δ ≤ 0.44.

For (16) to hold, we will show that it suffices to have:

δ ≤ min

{
c

768 ln (3)n
,

cd2

768n ln
(
384n
cd2

)} ,

which trivially satisfies the previous constraint.

We set ϕ := cd2

384n , so the proposed range for δ becomes δ ≤ min

{
ϕ

2 ln(3)d2 ,
ϕ

2 ln( 1
ϕ )

}
. Additionally,

(16) can be equivalently written as:

δ

(
1 +

ln
(
1
δ

)
2 ln (3) d2

)
≤ ϕ

ln (3) d2
. (17)

Observe that, depending on how δ compares with e−2 ln(3)d2

determines which of the terms 1 and
ln( 1

δ )
2 ln(3)d2 dominates. Thus, our strategy to verify our claim is by considering cases based on whether

the proposed range for δ includes e−2 ln(3)d2

. This yields:
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1. min

{
ϕ

2 ln(3)d2 ,
ϕ

2 ln( 1
ϕ )

}
< e−2 ln(3)d2

. We start by arguing that:

min

 ϕ

2 ln (3) d2
,

ϕ

2 ln
(

1
ϕ

)
 < e−2 ln(3)d2

⇐⇒ ϕ

2 ln
(

1
ϕ

) < e−2 ln(3)d2

. (18)

The ⇐= direction is trivial, so we focus on the =⇒ direction.

We assume that min

{
ϕ

2 ln(3)d2 ,
ϕ

2 ln( 1
ϕ )

}
< e−2 ln(3)d2

but ϕ

2 ln( 1
ϕ )

≥ e−2 ln(3)d2

. Then, it

must be the case that ϕ
2 ln(3)d2 < e−2 ln(3)d2

. Setting y := 1
ϕ , the above system of inequalities

can be written in the form:  e2 ln(3)d2

2 ≥ y ln (y)

y > e2 ln(3)d2

2 ln(3)d2

.

The function y ln (y) is increasing for y ≥ e−1. We have e2 ln(3)d2

2 ln(3)d2 ≥ e−1,∀d ≥ 1. Thus,

for y > e2 ln(3)d2

2 ln(3)d2 , we get:

e2 ln(3)d2

2
≥ y ln (y) >

e2 ln(3)d2

2 ln (3) d2
ln

(
e2 ln(3)d2

2 ln (3) d2

)
=⇒ ln (3) d2 < ln

(
2 ln (3) d2

)
.

However, the above inequality cannot be satisfied, which leads to a contradiction.

Consequently, we have shown (18). Since we have assumed that min

{
ϕ

2 ln(3)d2 ,
ϕ

2 ln( 1
ϕ )

}
<

e−2 ln(3)d2

, it must be the case that ϕ

2 ln( 1
ϕ )

< e−2 ln(3)d2

.

We now turn our attention again to (17). We remark that, for δ < e−2 ln(3)d2

, we get
ln( 1

δ )
2 ln(3)d2 > 1. As a result, in order to satisfy (17), it suffices to have:

2δ
ln
(
1
δ

)
2 ln (3) d2

≤ ϕ

ln (3) d2
⇐⇒ δ ln

(
1

δ

)
≤ ϕ. (19)

Observe that the function δ ln
(
1
δ

)
is increasing for δ < e−2 ln(3)d2

< e−1. Combined with
our previous remarks, this implies that, in order to verify (19) for the values of δ we picked,
it suffices to show that it holds for δ = ϕ

2 ln( 1
ϕ )

. So, we have to verify the inequality: ϕ

2 ln
(

1
ϕ

)
 ln

2 ln
(

1
ϕ

)
ϕ

 ≤ ϕ ⇐⇒
ln
(
2 ln

(
1
ϕ

))
ln
(

1
ϕ

) ≤ 1.

Setting z := ln
(

1
ϕ

)
, this becomes equivalent to ln(2z)

z < 1, which holds for all z >

0 ⇐⇒ ln
(

1
ϕ

)
> 0 ⇐⇒ ϕ < 1. This last condition is satisfied by all ϕ such that

ϕ

2 ln( 1
ϕ )

< e−2 ln(3)d2

, so the desired result has been established.

2. min

{
ϕ

2 ln(3)d2 ,
ϕ

2 ln( 1
ϕ )

}
≥ e−2 ln(3)d2

. For this case, we consider two sub-cases, depending

on how δ compares with e−2 ln(3)d2

. We have:

• δ < e−2 ln(3)d2

. As before, we argue that it suffices to have δ ln
(
1
δ

)
≤ ϕ. Since

δ ln
(
1
δ

)
is increasing for δ < e−2 ln(3)d2

< e−1, all we have to do is show that
e−2 ln(3)d2

2 ln (3) d2 ≤ ϕ. This is an immediate consequence of our assumption that

min

{
ϕ

2 ln(3)d2 ,
ϕ

2 ln( 1
ϕ )

}
≥ e−2 ln(3)d2

.
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• δ ≥ e−2 ln(3)d2

. This implies
ln( 1

δ )
2 ln(3)d2 ≤ 1. Thus, for (17) to hold, it suffices that:

2δ ≤ ϕ

ln (3) d2
⇐⇒ δ ≤ ϕ

2 ln (3) d2
.

This is satisfied, because our proposed range for δ is δ ≤ min

{
ϕ

2 ln(3)d2 ,
ϕ

2 ln( 1
ϕ )

}
.

We have established that our proposed values of δ and T imply:

δT ≥ 4

3cd2
e−d2(3cT−2 ln(3)) and 3nδT ≤ 1

192
,

while respecting all the constraints.

We substitute this to (15) and get n ≥ d2

384αε . Appealing to Corollary C.5 completes the proof. ■

C.2 Omitted Proofs from Section 3.2

Proof of Theorem 3.2. First, assume that Σ is generated by Algorithm 1 (as was assumed in all of
Section 3.1). Additionally, assume that there exists an (ε, δ)-DP mechanism M : Rn×d → Rd×d with

ε ∈ [0, 1] and δ ≤ O
(
min

{
1
n ,

d2

n log( n
d2
)

})
that satisfies E

X,M

[∥∥∥Σ− 1
2 (M (X)− Σ)Σ− 1

2

∥∥∥2
2

]
≤

α2 and uses n = o
(

d1.5

αε

)
samples. Using the standard matrix-norm inequality ∥A∥F ≤

√
d ∥A∥2 ,∀A ∈ Rk×ℓ, we get:

E
X,M

[
∥M (X)− Σ∥2Σ

]
= E

X,M

[∥∥∥Σ− 1
2 (M (X)− Σ)Σ− 1

2

∥∥∥2
F

]
≤ d E

X,M

[∥∥∥Σ− 1
2 (M (X)− Σ)Σ− 1

2

∥∥∥2
2

]
≤ dα2.

By Theorem 3.1 for α →
√
dα, we get that any mechanism with the characteristics of M that

estimates a Gaussian covariance matrix in Mahalanobis error
√
dα requires n ≥ Ω

(
d1.5

αε

)
samples.

This leads to a contradiction, implying the desired sample complexity lower bound. ■

D Omitted Proof from Section

Proof of Theorem 4.1. We define the following family of distributions, such that the second moment
of each distribution is upper-bounded by 1. The loss function between the true distribution and the
estimate is the squared ℓ2-distance between their means. For each v ∈ Ed = {−1, 1}d, we define the
distribution Dv over Rd as follows. Let t > 0 and 0 < p < 1. For any X ∼ Dv , we have:

Xi =

{
vit, with probability p

0, with probability 1− p
,∀i ∈ [d] .

Then E
X∼Dv

[X] = ptv. We show that the second moment of this distribution is upper-bounded

by pt2, that is, E
X∼Dv

[
⟨X − ptv, u⟩2

]
≤ pt2,∀u ∈ Sd−1. Note that, for any i ∈ [d], we have

E
[
(Xi − ptvi)

2
]
= p (1− p) t2. We omit the subscript of the expectation when the context is clear.
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We have:

E
[
⟨X − ptv, u⟩2

]
= E

( d∑
i=1

(Xi − ptvi)ui

)2


=

d∑
i=1

E
[
(Xi − ptvi)

2
]
u2
i +

∑
i ̸=j

E [Xi − ptvi]E [Xj − ptvj ]uiuj

=

d∑
i=1

p (1− p) t2u2
i

= p (1− p) t2

≤ pt2.

We want this to be upper-bounded by 1:

pt2 = 1. (20)

Next, for any u, v ∈ Ed, we bound the loss function between Dv1 and Dv2 . As mentioned before, we
define ℓ (θ (Du) , θ (Dv)) = ∥θ (Du)− θ (Dv)∥22. We have the following:

∥θ (Du)− θ (Dv)∥22 =

d∑
i=1

p2t2 (vi − ui)
2

= p2t2
∑

i : ui ̸=vi

(vi − ui)
2

= 4p2t2
d∑

i=1

1 {vi ̸= ui} .

Using the notation in Lemma A.4, we have τ = 2p2t2. Using the same lemma, we have:

R (P, ℓ, ε, δ) ≥ dτ

2
·
(
0.9e−10εD − 10δD

)
≥ dτ

2
· [0.9 (1− 10εD)− 10δD]

=
dτ

2
· [0.9−D (9ε+ 10δ)]

≥ dτ

2
· [0.9− 10D (ε+ δ)] .

Setting R (P, ℓ, ε, δ) ≤ α2 and rearranging the above, we get:

D ≥ 1

10 (ε+ δ)
·
(
0.9− 2α2

dτ

)
. (21)

Now, from Equation (20), τ = 2p2t2 = 2p. Using this and (21), and setting p = 2α2

d , we have the
following.

D ≥ 0.04

ε+ δ
. (22)

For i ∈ [d], we define the mixture distributions p+i and p−i as in Lemma A.4. We define a coupling
(X,Y ) between p+i and p−i as follows. For every row Xj in X , if Xi

j ̸= 0, then Y i
j = −Xi

j ,
otherwise Y i

j = Xi
j . For all other coordinates k ̸= i, Y k

j = Xk
j . Notice that, for all k ̸= i,

the distributions for coordinate k for both p+i and p−i are identical because all coordinates are
independent. Therefore, by setting Y k

j = Xk
j , these coordinates of Xj and Yj have identical

distributions for all j ∈ [n]. The coordinate i of Xj is t with probability p, and 0 with probability
1− p. Hence, the coordinate i of Yj is −t with probability p, and 0 with probability 1− p. This is
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true for all j ∈ [n]. Since all n rows in both X (hence, in Y ) are chosen independently at random,
the distribution of X is p+i and the distribution of Y is p−i. Therefore, (X,Y ) is a valid coupling
of p+i and p−i. Next, we have to determine the value of D = E [dHam (X,Y )]. Note that for each

j ∈ [n], Xj can only differ from Yj when Xi
j ̸= 0. This can only happen with probability p. Thus,

by linearity of expectation, D = np.

Finally, using the fact that p = 2α2

d and t =
√
d√
2α

, and substituting this in Inequality (22), we have:

np ≥ 0.04

ε+ δ
=⇒ n ≥ d

50 (ε+ δ)α2
.

When ε ≥ δ, this gives us the desired lower bound. ■

E Facts from Linear Algebra and Geometry

In this appendix we collect some results from linear algebra and geometry which are referenced
throughout this work.

Definition E.1 (ε-net). Let (T, d) be a metric space. Consider a subset K ⊂ T and let ε > 0. A
subset Nε ⊆ K is called an ε-net of K if the following holds:

∀x ∈ K,∃y ∈ Nε : d (x, x0) ≤ ε.

Definition E.2 (Covering Number). The smallest possible cardinality of an ε-net of K is called the
covering number of K and denoted by N (K, d, ε). Equivalently, N (K, d, ε) is the smallest number
of closed balls with centers in K and radii ε whose union covers K.

Fact E.3 (Covering numbers of Sd−1). The covering numbers of the unit Euclidean sphere Sd−1

satisfy the following for any ε > 0:(
1

ε

)d

≤ N
(
Sd−1, ε

)
≤
(
1 +

1

ε

)d

.

Fact E.4 (Exercise 4.4.2 from [Ver18]). Let x ∈ Rd and Nε be an ε-net on Sd−1. It holds that:

sup
y∈Nε

|⟨x, y⟩| ≤ ∥x∥2 ≤ 1

1− ε
· sup
y∈Nε

|⟨x, y⟩| .

Fact E.5 (Spectral Norm of Kronecker Product). Let A ∈ Rn×m and B ∈ Rk×ℓ. Then, it holds that
∥A⊗B∥2 = ∥A∥2 ∥B∥2.

Fact E.6 (Frobenius Norm of Matrix Product). Let M,N ∈ Rd×d. Then, ∥MN∥F ≤ ∥M∥2 ∥N∥F ,
and ∥MN∥F ≤ ∥N∥2 ∥M∥F .

For a proof of the first of the two inequalities, see Lemma 4.26 of [DKK+16]. The proof for the
second one is analogous but we have to work with the rows of M instead of the columns of N .

Lemma E.7. Let A,Σ ∈ Rd×d be non-singular matrices and let X ∈ Rd×d. Then, it holds that
∥X∥AΣA⊤ =

∥∥∥A−1X
(
A⊤)−1

∥∥∥
Σ

.

For a proof of this statement for symmetric A (the proof does not change), we refer the reader to
Section 2.2 of [Li19].

Lemma E.8. Let A,B ∈ Rd×d be symmetric positive definite matrices. Then, it holds that:∥∥∥A−A
1
2B

1
2A−1B

1
2A

1
2

∥∥∥
A
= ∥A−B∥A .
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Proof. We have that:∥∥∥A−A
1
2B

1
2A−1B

1
2A

1
2

∥∥∥2
A
=
∥∥∥I−B

1
2A−1B

1
2

∥∥∥2
F

= tr

((
I−B

1
2A−1B

1
2

)2)
= tr

(
I− 2B

1
2A−1B

1
2 +B

1
2A−1BA−1B

1
2

)
(a)
= tr

(
I− 2A− 1

2BA− 1
2 +

(
A− 1

2BA− 1
2

)2)
= tr

((
I−A− 1

2BA− 1
2

)2)
=
∥∥∥I−A− 1

2BA− 1
2

∥∥∥2
F

= ∥A−B∥2A ,

where in (a) we use the cyclic property of the trace in individual terms. ■

Lemma E.9. Let Σ0,Σ1 ∈ Rd×d be symmetric positive definite matrices. If ∥Σ1 − Σ0∥Σ0
< 1

2 , it
holds that ∥Σ1 − Σ0∥Σ1

≤ 2 ∥Σ1 − Σ0∥Σ0
.

Proof. By the definition of the Mahalanobis norm, we have:

∥Σ1 − Σ0∥2Σ0
=
∥∥∥I− Σ

− 1
2

0 Σ1Σ
− 1

2
0

∥∥∥
F

= tr

((
I− Σ

− 1
2

0 Σ1Σ
− 1

2
0

)2)
= tr

(
I− 2Σ

− 1
2

0 Σ1Σ
− 1

2
0 +Σ

− 1
2

0 Σ1Σ
−1
0 Σ1Σ

− 1
2

0

)
= d− 2tr

(
Σ−1

0 Σ1

)
+ tr

((
Σ−1

0 Σ1

)2)
. (23)

Similarly, we have:

∥Σ1 − Σ0∥2Σ1
= d− 2tr

(
Σ−1

1 Σ0

)
+ tr

((
Σ−1

1 Σ0

)2)
. (24)

The eigenvalues of the matrix Σ−1
0 Σ1 are positive. Indeed, the previous matrix can be written as

Σ
− 1

2
0

(
Σ

− 1
2

0 Σ1Σ
− 1

2
0

)
Σ

1
2
0 , implying that it is similar to the symmetric matrix Σ

− 1
2

0 Σ1Σ
− 1

2
0 . This last

matrix is positive definite, since u⊤Σ
− 1

2
0 Σ1Σ

− 1
2

0 u =
(
Σ

− 1
2

0 u
)⊤

Σ1

(
Σ

− 1
2

0 u
)

and Σ1 ≻ 0. Thus, if

λ1, . . . , λd > 0 are the eigenvalues of Σ−1
0 Σ1, (23) and (24) can be written as:

∥Σ1 − Σ0∥2Σ0
= d− 2 ·

d∑
i=1

λi +

d∑
i=1

λ2
i =

d∑
i=1

(λi − 1)
2
,

∥Σ1 − Σ0∥2Σ1
= d− 2 ·

d∑
i=1

1

λi
+

d∑
i=1

1

λ2
i

=

d∑
i=1

(
1

λi
− 1

)2

.

Therefore, proving the desired upper bound reduces to the following maximization problem:

max
λi

d∑
i=1

(
1

λi
− 1

)2

s.t.
d∑

i=1

(λi − 1)
2
= ∥Σ1 − Σ0∥2Σ0

<
1

4
,
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where we have omitted the constraint λi > 0, since we necessarily have λi ≥ 1− ∥Σ1 − Σ0∥Σ0
>

1
2 ,∀i ∈ [d]. The above problem is solvable exactly via the KKT conditions, yielding:

∥Σ1 − Σ0∥Σ1
≤

∥Σ1 − Σ0∥Σ0

√
d

√
d− ∥Σ1 − Σ0∥Σ0

≤ 2 ∥Σ1 − Σ0∥Σ0
,

for ∥Σ1 − Σ0∥Σ0
< 1

2 and d ≥ 1. ■

Theorem E.10 (Gershgorin Circle Theorem (see [Ger31])). Let A ∈ Rd×d. For any eigenvalue λ of
A, there exists an i ∈ [d], such that:

|λ− aii| ≤
∑
j ̸=i

|aij | .

F Facts from Probability & Statistics

In this appendix we collect some results from probability and statistics which are referenced through-
out this work.
Fact F.1. The Bernoulli distribution Be (p) is an exponential family with support S = {0, 1} and

h (x) = 1, η = ln
(

1−p
p

)
, T (x) = x, Z (η) = ln (1 + eη).

Fact F.2. The d-dimensional Gaussian distribution with unit covariance and unknown mean N (µ, I)

is an exponential family with support S = Rd and h (x) = 1

(2π)
d
2
e−

∥x∥22
2 , η = µ, T (x) = x, Z (η) =

∥η∥2
2

2 .
Fact F.3. The d-dimensional Gaussian distribution with mean 0 and unknown covariance N (0,Σ)

is an exponential family with support S = Rd and h (x) = 1, η =
(
Σ−1

)♭
, T (x) =

− 1
2

(
xx⊤)♭ , Z (η) = d

2 ln (2π)−
1
2 ln

(
det
(
η#
))

.
Fact F.4 (Cauchy-Schwarz). We consider the following variants of the Cauchy-Schwarz inequality:

1. For every x, y ∈ Rd, we have |⟨x, y⟩| ≤ ∥x∥2 ∥y∥2.

2. Let X,Y be random variables over R. Then:

E [|XY |] ≤
√
E [X2]

√
E [Y 2],

assuming all the quantities involved are well-defined.
Fact F.5. We denote the complementary error function by:

erfc (x) :=
2√
π

∞∫
x

e−t2 dt, x ≥ 0.

It holds that erfc (x) ≤ e−x2

,∀x ≥ 0.
Fact F.6 (Lemma 1 of [LM00]). If X ∼ χ2 (k), and β ∈ [0, 1], then:

P

[
X − k ≥ 2

√
k log

(
1

β

)
+ 2 log

(
1

β

)]
≤ β,

and:

P

[
k −X ≥ 2

√
k log

(
1

β

)]
≤ β.

Equivalently, the above can be written as:

P [X ≥ t] ≤ e−
(
√

2t−k−
√

k)2

4 ,∀t ≥ k,
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and:
P [X ≤ t] ≤ e−

(k−t)2

4 ,∀t ≤ k.

Thus, if Y ∼ N (0, I), then P
[
∥Y ∥22 ≥ d+ 2

√
d log

(
1
β

)
+ 2 log

(
1
β

)]
≤ β.

Fact F.7 (Gaussian Hanson-Wright Inequality - Theorem 1 and Proposition 1 from [Mos21]). Let
X ∈ Rd be a random vector with X ∼ N (0, I). For any non-zero symmetric matrix A ∈ Rd×d:

P
[∣∣∣X⊤AX − E

[
X⊤AX

]∣∣∣ ≥ t
]
≤ 2 exp

(
−cmin

{
t2

∥A∥2F
,

t

∥A∥2

})
,∀t ≥ 0,

where c is an absolute constant with c ≈ 0.036425.

G Basic Applications: Recovering Existing Lower Bounds

We show how to use Theorem 2.4 to recover existing lower bounds from [KLSU19]: (1) mean
estimation of binary product distributions, and (2) mean estimation of high-dimensional Gaussians.
Note that both classes of distributions are exponential families. The error metric for these lower
bounds would be the mean-squared-error (MSE), as opposed to constant-probability-error, as in
[KLSU19], but the bounds could be converted to constant-probability bounds at the cost of a log (d)
factor in the sample complexity (as was sketched in Section 1.1).

G.1 Mean Estimation of Binary Product Distributions

We start by stating the theorem for mean estimation of binary product distributions over {0, 1}d.
Theorem G.1 (Product Distribution Mean Estimation). There exists a distribution D over vectors
p ∈

[
1
3 ,

2
3

]d
such that, given p ∼ D and n independent samples X := (X1, . . . , Xn) from a binary

product distribution P over {0, 1}d with mean p, for any α = O
(√

d
)

and any (ε, δ)-DP mechanism

M : {0, 1}n×d →
[
1
3 ,

2
3

]d
with ε, δ ∈ [0, 1], and δ = O

(
1
n

)
that satisfies E

X,M

[
∥M (X)− p∥22

]
≤

α2, it holds that n = Ω
(

d
αε

)
.

Fact F.1 establishes that Bernoulli distributions are an exponential family. Using that, we
have that the probability mass function of binary product distributions can be written as pη =

h (x) exp
(
η⊤T (x)− Z (η)

)
,∀x ∈ {0, 1}d with:

h (x) = 1,

T (x) = x,

η =

(
ln

(
1− p1
p1

)
, . . . , ln

(
1− pd
pd

))⊤

,

Z (η) =
∏
j∈[d]

ln (1 + eηj ) .

Our process to generate η involves drawing independently ηj ∼ U [± ln (2)]. We have that ηj =

ln
(

1
pj

− 1
)

⇐⇒ pj = 1
1+eηj

, yielding ηj ∈ [± ln (2)] ⇐⇒ pj ∈
[
1
3 ,

2
3

]
. Thus, we have

Ij = [± ln (2)] , Rj = 2 ln (2) ,∀j ∈ [d] =⇒ ∥R∥22 = 4 ln2 (2) d, ∥R∥∞ = 2 ln (2), and m = 0.

We now show how to reduce estimating η with an ℓ2-guarantee under (ε, δ)-DP to estimating p with
an ℓ2-guarantee under the same constraint.

Lemma G.2. Let p ∈
[
1
3 ,

2
3

]d
be a randomly generated vector and let X ∼ P

⊗
n be a dataset drawn

from a binary product distribution over {0, 1}d with mean p. If M : {0, 1}n×d →
[
1
3 ,

2
3

]d
is an (ε, δ)-

DP mechanism satisfying E
X,M

[
∥M (X)− p∥22

]
≤ α2 ≤ d

9 , then there exists a TM : {0, 1}n×d →

[± ln (2)]
d that is also (ε, δ)-DP and satisfies E

X,TM

[
∥TM (X)− η∥22

]
≤ 81

4 α2.
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Proof. We define TM to be TM,j (X) = ln
(

1−Mj(X)
Mj(X)

)
,∀j ∈ [d]. TM satisfies (ε, δ)-DP by

Lemma A.3 and the only randomness employed by TM is that of M . Consider now the func-
tion g : (0, 1) → R with g (x) = ln

(
1
x − 1

)
and g′ (x) = − 1

x(1−x) . We have ηj = g (pj) and
TM,j (X) = g (Tj (X)). Observe now that, by the Mean Value Theorem, we have for some ξj
between ηj and Mj (X) (implying that ξj ∈

[
1
3 ,

2
3

]
):

|g (Mj (X))− g (pj)| = |g′ (ξj)| |Mj (X)− pj | ≤
9

2
|Mj (X)− pj | .

Applying this coordinate-wise, we get E
X,TM

[
∥TM (X)− η∥22

]
≤ 81

4 E
X,M

[
∥M (X)− p∥22

]
, yielding

the desired result. ■

We now present a restatement of the previous lemma from the point of view of lower bounds.

Corollary G.3. Let p ∈
[
1
3 ,

2
3

]d
be a randomly generated vector and let X ∼ P

⊗
n be a dataset

drawn from a binary product distribution over {0, 1}d with mean p. If any (ε, δ)-DP mechanism

T : {0, 1}n×d → [± ln (2)]
d satisfying E

X,T

[
∥T (X)− η∥22

]
≤ 81

4 α2 ≤ 9
4d requires at least

n ≥ nη samples, the same sample complexity lower bound holds for any (ε, δ)-DP mechanism

M : {0, 1}n×d →
[
1
3 ,

2
3

]d
that satisfies E

X,M

[
∥M (X)− p∥22

]
≤ α2.

In contrast to other lower bounds proven in this work using Theorem 2.4, we do not need to study the
concentration properties of ∥T (Xi)− µT ∥2 = ∥Xi − p∥2. Indeed, since T (X) = X ∈ {0, 1}d, it

suffices to pick a large enough threshold T > 0 so that P
Xi

[
∥Xi − p∥2 > t

2 ln3(2)
√
d

]
= 0,∀t ≥ T .

Based on the above, we are now ready to prove the main theorem of this section.

Proof of Theorem G.1. Let M : {0, 1}n×d → [± ln (2)]
d be an (ε, δ)-DP mechanism with:

E
X,M

[
∥M (X)− η∥22

]
≤ 81

4
α2 ≤ ln2 (2) d

6
=

∥R∥22
24

.

By Theorem 2.4 for product distributions with ηj ∈ [± ln (2)] ,∀j ∈ [d], we get:

n

2δT + 2εE
η

[√
E

X∼i,M
[s⊤ΣT s]

]
+ 2

∞∫
T

P
Xi

[
∥Xi − p∥2 >

t

2 ln3 (2)
√
d

]
dt

 ≥ ln2 (2) d

6
.

(25)

Observe that, since we have a product distribution and T (x) = x, it holds that µT = p and:

ΣT = Σ = diag {p1 (1− p1) , . . . , pd (1− pd)} ⪯ 1

4
I,

for pi ∈
[
1
3 ,

2
3

]
,∀i ∈ [d].

Thus, we have:

E
X∼i,M

[
s⊤ΣT s

]
=

1

4
E

X∼i,M

[
∥s∥22

]
≤

∥R∥4∞
64

α2 =
ln4 (2)α2

4
. (26)

Furthermore, we remark that ∥Xi − p∥2 ≤ 2
3

√
d. Thus, setting T = 4 ln3(2)d

3 yields:
∞∫
T

P
Xi

[
∥Xi − p∥2 >

t

2 ln3 (2)
√
d

]
dt = 0. (27)

Substituting (26) and (27) into (25), we get:

n

(
8 ln3 (2) dδ

3
+

ln2 (2)αε

2

)
≥ ln2 (2) d

6
.

Setting δ ≤ 1
32 ln(2)n results in n ≥ d

12αε , so appealing to Corollary G.3 completes the proof. ■
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G.2 Mean Estimation of High-Dimensional Gaussians

Our techniques also apply to recovering lower bounds for mean estimation of a Gaussian with
known covariance. By Fact F.2, we have that this class of distributions is an exponential family with
η = µ and T (x) = x (implying that µT = µ,ΣT = Σ). Therefore, we do not need to resort to a
reduction-based approach (as we did with binary product distributions).

Theorem G.4 (Gaussian Mean Estimation). Given µ ∼ U
(
[±1]

d
)

and X ∼ N (µ, I)
⊗

n, for

any α = O
(√

d
)

and any (ε, δ)-DP mechanism M : Rn×d → [±1]
d with ε, δ ∈ [0, 1], and δ ≤

O

min

 1
n ,

√
d

n

√
log

(
n√
d

)

 that satisfies E

X,M

[
∥M (X)− µ∥22

]
≤ α2, it holds that n = Ω

(
d
αε

)
.

Before proving Theorem G.4, we start with a lemma that is concerned with upper-bounding the
term involving the tail probability of ∥T (Xi)− µT ∥2. The lemma does not rely on the approach of
Remark B.3, instead using the concentration properties of the χ2-distribution (Fact F.6).

Lemma G.5. Let µ ∈ [±1]
d, and Xi ∼ N (µ, I). Assuming that T ≥ 2d, we have:

∞∫
T

P
Xi

[
∥T (Xi)− µT ∥2 >

t

2
√
d

]
dt ≤

√
2πde−

(
√

T2−2d2−
√

2d)
2

8d .

Proof. Since Xi ∼ N (µ, I), we have T (Xi) − µT = Xi − µ. We observe that Xi − µ ∼
N (0, I) =⇒ ∥Xi − µ∥22 ∼ χ2 (d). By our assumption that T ≥ 2d =⇒ t2

4d ≥ T 2

4d ≥ d, we can
apply Fact F.6 with k = d. This yields:

∞∫
T

P
Xi

[
∥Xi − µ∥22 >

t2

4d

]
dt ≤

∞∫
T

exp

−1

4

(√
t2

2d
− d−

√
d

)2
 dt

z2= 1
4

(√
t2

2d−d−
√
d

)2

= 2
√
d

∞∫
√

T2
2d

−d−
√

d

2

2z +
√
d√

z2 +
(
z +

√
d
)2 e−z2

dz

(a)

≤ 2
√
2d

∞∫
√

T2
2d

−d−
√

d

2

e−z2

dz

=
√
2πderfc


√

T 2

2d − d−
√
d

2


(b)

≤
√
2πde−

(√
T2
2d

−d−
√

d

)2

4

=
√
2πde−

(
√

T2−2d2−
√

2d)
2

8d ,

where (a) is by the inequality a+b ≤
√
2
√
a2 + b2 for a = z, b = z+

√
d, and (b) is by Fact F.5. ■

We are now ready to prove the main theorem of this section.

Proof of Theorem G.4. Let M : Rn×d → [±1]
d be an (ε, δ)-DP mechanism with:

E
X,M

[
∥M (X)− µ∥22

]
≤ α2 ≤ d

6
=

∥R∥22
24

.
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By Theorem 2.4 for Gaussians N (µ, I) with µj ∈ [±1] ,∀j ∈ [d], we get:

n

2δT + 2εE
µ

[√
E

X∼i,M

[
∥s∥22

]]
+ 2

∞∫
T

P
Xi

[
∥Xi − µ∥2 >

t

2
√
d

]
dt

 ≥ d

6
. (28)

We have:

E
X∼i,M

[
∥s∥22

]
≤

∥R∥4∞
16

α2 = α2. (29)

We assume that T ≥ 2d, as is required by Lemma G.5. Later in the proof, when we pick a specific
value for T , we will verify that this condition is satisfied. Substituting based on that lemma and (29)
into (28), we get:

n

[
2δT + 2αε+ 2

√
2πde−

(
√

T2−2d2−
√

2d)
2

8d

]
≥ d

6
. (30)

It remains to set the values of T and δ appropriately so that:

δT ≥ 2
√
2πde−

(
√

T2−2d2−
√

2d)
2

8d and 3nδT ≤ d

12
.

The first of these two conditions yields:

Te
(
√

T2−2d2−
√

2d)
2

8d ≥ 2
√
2πd

δ
.

We set T = 2
√
d

√
ln
(
1
δ

)
+
(√

ln
(
1
δ

)
+

√
d
)2

. Since δ ≤ 1, we have ln
(
1
δ

)
≥ 0 =⇒ T ≥ 2d,

thus satisfying the condition of Lemma G.5. Substituting to the previous yields:

2
√
d

√√√√
ln

(
1

δ

)
+

(√
ln

(
1

δ

)
+

√
d

)2

· 1
δ
≥ 2

√
2πd

δ

⇐⇒

√√√√
ln

(
1

δ

)
+

(√
ln

(
1

δ

)
+

√
d

)2

≥
√
2π

⇐⇒ ln

(
1

δ

)
+
√
d

√
ln

(
1

δ

)
+

1

2
(d− 2π) ≥ 0.

Setting x :=
√
ln
(
1
δ

)
≥ 0, the above is a quadratic inequality with respect to x. Depending

on whether the trinomial in the LHS has any positive roots, this might imply a constraint on δ.
The discriminant is ∆ = 4π − d, so taking cases based on d, the strictest constraint we get is
δ ≤ e−π+

√
4π−1
2 ≈ 0.23, which is for d = 1. Respecting this constraint, we now must identify a

range of values for δ so that we have 3nδT ≤ d
12 . We have:

3nδT ≤ d

12
⇐⇒ 6nδ

√
d

√√√√
ln

(
1

δ

)
+

(√
ln

(
1

δ

)
+

√
d

)2

≤ d

12
.

It holds that ln
(
1
δ

)
+
(√

ln
(
1
δ

)
+
√
d
)2

≤ 2
(√

ln
(
1
δ

)
+
√
d
)2

, so it suffices to satisfy:

6
√
2nδ

√
d

(√
ln

(
1

δ

)
+
√
d

)
≤ d

12
⇐⇒ δ

1 +

√
ln
(
1
δ

)
d

 ≤ 1

72
√
2n

. (31)

The previous inequality imposes a condition on δ. Indeed, to ensure that
√

ln( 1
δ )

d ≥ 0, it is necessary
that 1

72
√
2nδ

− 1 ≥ 0 ⇐⇒ δ ≤ 1
72

√
2n

, which is stronger than δ ≤ 0.23.
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For (31) to hold, we will show that it suffices to have:

δ ≤ min


1

144
√
2n

,

√
d

288
√
2n

√
ln
(

144
√
2n√

d

)
 ,

which trivially satisfies the previous constraint.

We set ϕ :=
√
d

144
√
2n

, so the proposed range for δ becomes δ ≤ min

{
ϕ√
d
, ϕ

2
√

ln( 1
ϕ )

}
. Additionally,

(31) can be equivalently written as:

δ

1 +

√
ln
(
1
δ

)
d

 ≤ 2ϕ√
d
. (32)

To verify our claim, we consider the following two cases:

1. min

{
ϕ√
d
, ϕ

2
√

ln( 1
ϕ )

}
≤ e−d. We start by arguing that:

min


ϕ√
d
,

ϕ

2

√
ln
(

1
ϕ

)
 ≤ e−d ⇐⇒ ϕ

2

√
ln
(

1
ϕ

) ≤ e−d. (33)

The ⇐= direction is trivial, so we focus on the =⇒ direction.

We assume that min

{
ϕ√
d
, ϕ

2
√

ln( 1
ϕ )

}
≤ e−d but ϕ

2
√

ln( 1
ϕ )

> e−d. Then, it must be the

case that ϕ√
d
≤ e−d. Setting y := 1

ϕ , the above system of inequalities can be written in the
form: {

e2d

4 > y2 ln (y)

y ≥ ed√
d

.

The function y2 ln (y) is increasing for y ≥ e−
1
2 . We have ed√

d
> e−

1
2 ,∀d ≥ 1. Thus, for

y ≥ ed√
d

, we get:

e2d

4
> y2 ln (y) ≥ e2d

d
ln

(
ed√
d

)
=⇒ 3d < 2 ln (d) .

However, this leads to a contradiction, because 3d < 2 ln (d) ≤ 2d− 2 =⇒ d < −2.

Consequently, we have shown (33). Since we have assumed that min

{
ϕ√
d
, ϕ

2
√

ln( 1
ϕ )

}
≤

e−d, it must be the case that ϕ

2
√

ln( 1
ϕ )

≤ e−d.

We now turn our attention again to (32). We remark that, for δ ≤ e−d, we get
√

ln( 1
δ )

d ≥ 1.
As a result, in order to satisfy (32), it suffices to have:

2δ

√
ln
(
1
δ

)
d

≤ 2ϕ√
d

⇐⇒ δ

√
ln

(
1

δ

)
≤ ϕ. (34)

Observe that the function δ
√

ln
(
1
δ

)
is increasing for δ ≤ e−d < e−

1
2 . Combined with our

previous remarks, this implies that, in order to verify (34) for the values of δ we picked, it
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suffices to show that it holds for δ = ϕ

2
√

ln( 1
ϕ )

. So, we have to verify the inequality:

 ϕ

2

√
ln
(

1
ϕ

)

√√√√√√√ln

2

√
ln
(

1
ϕ

)
ϕ

 ≤ ϕ ⇐⇒
ln

(
2

√
ln
(

1
ϕ

))
ln
(

1
ϕ

) ≤ 3.

Setting z := ln
(

1
ϕ

)
, this becomes equivalent to

ln(2
√
z)

z ≤ 3, which holds for all z >

0 ⇐⇒ ln
(

1
ϕ

)
> 0 ⇐⇒ ϕ < 1. This last condition is satisfied by all ϕ such that

ϕ

2
√

ln( 1
ϕ )

≤ e−d, so the desired result has been established.

2. min

{
ϕ√
d
, ϕ

2
√

ln( 1
ϕ )

}
> e−d. For this case, we consider two sub-cases, depending on how

δ compares with e−d. We have:

• δ ≤ e−d. As before, we argue that it suffices to have δ
√
ln
(
1
δ

)
≤ ϕ. Since δ

√
ln
(
1
δ

)
is increasing for δ ≤ e−d < e−

1
2 , all we have to do is show that e−d

√
d ≤ ϕ. This,

however, is an immediate consequence of our assumption that min

{
ϕ√
d
, ϕ

2
√

ln( 1
ϕ )

}
>

e−d.

• δ > e−d. This implies
ln( 1

δ )
d < 1. Thus, for (32) to hold, it suffices that:

2δ ≤ 2ϕ√
d

⇐⇒ δ ≤ ϕ√
d
.

This is satisfied, because our proposed range for δ is δ ≤ min

{
ϕ√
d
, ϕ

2
√

ln( 1
ϕ )

}
.

We have established that:

T = 2
√
d

√√√√
ln

(
1

δ

)
+

(√
ln

(
1

δ

)
+

√
d

)2

and δ ≤ O

min


1

n
,

√
d

n

√
log
(

n√
d

)

 ,

imply:

δT ≥ 2
√
2πde−

(
√

T2−2d2−
√

2d)
2

8d and 3nδT ≤ d

12
,

while respecting all the constraints.

We substitute this to (30) and get n ≥ d
24αε , which yields the desired result. ■
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